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Abstract

In this paper, we will show that the higher moments of the natural parametrization of
SLE curves in any bounded domain in the upper half plane is finite. We prove this by
estimating the probability that an SLE curve gets near n given points.

1 Introduction

A number of measures arise from statistical physics are believed to have conformally invariant
scaling limits. In [14], a one-parameter family of measures on self-avoiding curves in the upper
half plane, called (chordal) Schramm-Loewner evolution (SLEκ) is defined. Here we only work
with chordal version so we omit chordal. By conformal invariance, it is extended to other simply
connected domains. Later, it was shown that SLE describes the limits of a number of models
from physics so answering the question of conformal invariance for them. These models include
loop-erased random walk for κ = 2 [9], Ising interfaces for κ = 3 and κ = 16/3 [17], harmonic
explorer for κ = 4 [15], percolation interfaces for κ = 6 [16], and uniform spanning tree Peano
curves for κ = 8 [9].

In order to define SLE, Schramm used capacity parametrization. We will see the definition
of SLE as well as capacity parametrization in the next section. Capacity parametrization
comes from Loewner evolution and makes it easy to analyze SLE curves by Ito’s calculus. In
all the physical models that we have above, in order to show the convergence, we have to first
parametrize them with discrete version of the capacity and then prove the convergence to SLE.
This parametrization is very different from the natural parametrization that we have for them
which is just the length of the curve.

In order to prove the same results with the natural parametrization, we need to define a
natural length for SLE curves. In [2], it is proved that the Hausdorff dimension of SLEκ
is d = min{2, 1 + κ

8}. In [8], the authors conjectured that the Minkowski content of SLE
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should exist. They defined the natural parametrization in a different way using Doob-Meyer
decomposition and proved the existence for κ < 5.021.... Moreover, they conjectured that the
natural length of SLE can be defined in terms of d-dimensional Minkowski content. Here is
how it is defined (see [6] for more details). Let

Contd(γ[0, t]; r) = rd−2Area {z : dist(z, γ[0, t]) ≤ r} .

Then the d-dimensional content is

Contd(γ[0, t]) = lim
r→0

Contd(γ[0, t]; r), (1.1)

provided that the limit exists. If κ > 8 the curve is space filling and d = 2 so this is just the
area and the problem is trivial. For k < 8, the existence was shown in [6]. We assume for the
purpose of this paper that κ < 8. We call this parametrization, natural length or length from
now on. Also a number of properties of the natural length were studied in [6]. For example the
authors computed the first and second moments of the “natural length”. Basically, this function
is the appropriate scaled version of the probability that SLE hits given point(s). Precisely, the
n-point Green’s function at z1, · · · , zn is

G(z1, . . . , zn) = lim
r1,...,rn→0

n∏
k=1

rd−2
k P

[ n⋂
k=1

{dist(zk, γ) ≤ rk}
]
, (1.2)

provided that the limit exists. The covariance rule of the Green’s function is obvious, that is,
if F maps (H; 0,∞) conformally onto (D;w1, w2), then

G(D;w1,w2)(z1, . . . , zn) = |(F−1)′(z)|2−dG(H;0,∞)(F
−1(z1), . . . , F−1(zn)), (1.3)

if the Green’s function at either side exists. Here we use G(D;w1,w2) to denote the Green’s
function for SLEκ in D from w1 to w2.

It is proved in [10] that a modified version of 1-point and 2-point Green’s function using
conformal distance instead of distance exist. In [6], the authors prove the above limit exist
for n = 1, 2. Lawler and Werness mentioned in [10] that the argument can be generalized to
define higher order Green’s function. So they conjectured the existence of multi-point Green’s
function. For n = 1 the exact formula is given in [6] which is

G(z) = G(H;0,∞)(z) = C|z|d−2 sin
κ
8

+ 8
κ
−2(arg z) = C Im(z)d−2 sin8/κ−1(arg z), (1.4)

where C = Cκ > 0 is an unknown constant. In arbitrary domain the exact formula of the
1-point Green’s function can be found by the covariance rule.

We now state the main theorems of this paper. Throughout, we fix κ ∈ (0, 8), the following
constants depending on κ:

d = 1 +
κ

8
, α =

8

κ
− 1.

We will use C to denote an arbitrary positive constant that depends only on κ, whose value
may vary from one occurrence to another. If we allow C to depend on κ and another variable,
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say n, then we will use Cn. We introduce a family of functions. For y ≥ 0, define Py on [0,∞)
by

Py(x) =

{
yα−(2−d)x2−d, x ≤ y;
xα, x ≥ y.

Since α ≥ 2− d > 0, if 0 ≤ x1 < x2, then

xα1
xα2
≤ Py(x1)

Py(x2)
≤ x2−d

1

x2−d
2

. (1.5)

The first main theorem is:

Theorem 1.1. Let z0, . . . , zn be distinct points on H such that z0 = 0. Let yk = Im zk ≥ 0 and
lk = dist(zk, {zj : 0 ≤ j < k}), 1 ≤ k ≤ n. Let r1, . . . , rn > 0. Let γ be an SLEκ curve in H
from 0 to ∞. Then there is Cn <∞ depending only on κ and n such that

P[dist(γ, zk) ≤ rk, 1 ≤ k ≤ n] ≤ Cn
n∏
k=1

Pyk(rk ∧ lk)
Pyk(lk)

.

Remark. The quantity on the righthand side of the above formula depends on the order of the
points z1, . . . , zn. However, if rj ’s are sufficiently small, say, rj < dist(zj , {z0, . . . , zn} \ {zj}),
then if we exchange any pair of consecutive points, i.e., zk and zk+1, then the new quantity is
no more than C times the old quantity, where C > 0 depends only on κ. Thus, if we permute
those n points, the quantity will increase at most Cn

2
times.

The second main theorem answers a question in [6].

Theorem 1.2. If γ is an SLE curve from 0 to ∞ in H, then for any bounded D ⊂ H, we have

E[Contd(γ ∩D)n] <∞, n ∈ N.

Remarks.

1. An immediate consequence of Theorem 1.1 is that the right-hand side of (1.2), with lim
replaced by lim sup, is finite. This result may help us to complete the proof of the existence
of multi-point Green’s functions for SLE.

2. In fact, Theorem 1.1 implies an upper bound of the Green’s function G(z1, · · · , zn) for
the above γ, if it exists. That is

G(z1, . . . , zn) ≤ Cn
n∏
k=1

y
α−(2−d)
k

Pyk(lk)
.

A natural question to ask is whether the reverse inequality also holds (with smaller Cn).

The answer is yes if n ≤ 2. In the case n = 1, the right-hand side is C yα−(2−d)

|z|α , which agrees

with the right-hand side of (1.4). In the case n = 2, the right-hand side is comparable to
a sharp estimate of the 2-point Green’s function given in [7] up to a constant. Thus, we
expect that it holds for all n ∈ N.
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3. We guess that the Cn in Theorem 1.1 can be taken as Cn. If we have this then we can
show E[eλContd(γ∩D)] <∞ for some λ > 0 in any bounded domain D. This is nice because
we can study natural length by its moment generating function.

4. If the Green’s function G(z1, · · · , zn) exits, the left-hand side of the displayed formula in
Theorem 1.2 equals to

∫
Dn G(z1, ..., zn)dA(z1)...dA(zn).

5. Theorem 1.1 also provides an upper bound for the boundary Green’s function, which is
the scaled version of the probability that SLE hits given boundary point(s). The scaling
exponent will be α instead of 2 − d so that the Green’s function does not vanish. To be
more precise, for the above γ, the boundary Green’s function at x1, . . . , xn ∈ R \ {0} is

G̃(x1, . . . , xn) = lim
r1,...,rn→0

n∏
k=1

r−αk P
[ n⋂
k=1

{dist(xk, γ) ≤ rk}
]
, (1.6)

provided that the limit exists. Lawler recently proved in [5] that the 1-point and 2-
point boundary Green’s function exist, and gave good estimates of these functions. Using
Theorem 1.1, we can derive the following conclusions. First, the right-hand side of (1.6),
with lim replaced by lim sup, is finite. This result may help us to prove the existence
of multi-point boundary Green’s functions for SLE. Second, if G̃(x1, · · · , xn) exits, then
G̃(x1, . . . , xn) ≤ Cn

∏n
k=1 l

−α
k , where lk = min0≤j<k |xk − xj | with x0 = 0. Similarly, we

get upper bounds for mixed Green’s functions, where some points lie on the boundary,
and others lie in the interior.

The organization of the rest of the paper goes as follows. In the next section we review the
definition of SLE and some fundamental estimates for SLE. In the third section, we will prove
two main lemmas. At the end, we will prove the two main theorems.

2 Preliminaries

2.1 Definition of SLE

In this subsection we review the definition of SLE and its basic properties. See [3, 4, 10, 6] for
more details.

A bounded set K ⊂ H = {x+ iy : y > 0} is called an H-hull if H \K is a simply connected
domain, and the complement H \ K is called an H-domain. For every H-hull K, there is a
unique conformal map gK from H \K onto H that satisfies

gK(z) = z +
c

z
+O(|z|−2), |z| → ∞

for some c ≥ 0. The number c is called the half plane capacity of K, and is denoted by hcap(K).
Suppose that γ : (0,∞) → H is a simple curve with γ(0+) ∈ R and γ(t) → ∞ as t → ∞.

Then for each t, Kt := γ(0, t] is an H-hull. Let gt = gKt and a(t) = hcap(Kt). We can
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reparameterize the curve such that a(t) = 2t. Then gt satisfies the (chordal) Loewner equation

∂tgt(z) =
2

gt(z)− Vt
, g0(z) = z, (2.1)

where Vt := limH\Kt3z→γ(t) gt(z) is a continuous real-valued function.
Conversely, one can start with a continuous real-valued function Vt and define gt by (2.1).

For z ∈ H \ {0}, the function t 7→ gt(z) is well defined up to a blowup time Tz, which could be
∞. The evolution then generates an increasing family of H-hulls defined by

Kt = {z ∈ H : Tz > t}, 0 ≤ t <∞,

with gt = gKt and hcap(Kt) = 2t for each t. One may not always get a curve from the evolution.
The (chordal) Schramm-Loewner evolution (SLEκ) (from 0 to ∞ in H) is the solution to

(2.1) where Vt =
√
κBt, where κ > 0 and B(t) is a standard Brownian motion. It is shown in

[13, 9] that the limits
γ(t) = lim

H3z→Vt
g−1
t (z), 0 ≤ t <∞,

exist, and give a continuous curve γ in H with γ(0) = 0 and limt→∞ γ(t) = ∞. Only in the
case κ ≤ 4, the curve is simple and stays in H for t > 0, and we recover the previous picture.
For other cases, γ is not simple, and Ht := H \Kt is the unbounded component of H \ γ(0, t].

We can define SLEκ in other simply connected domains using conformal maps. Roughly
speaking, SLEκ in a simply connected domain D $ C is the image of the above γ under a
conformal map F from H onto D. However, since γ in fact lies in H instead of H, the rigorous
definition requires some regularity of D. For simplicity, we assume that ∂D is locally connected
(c.f. [12]), and call such domain D regular. This ensures that any conformal map F from H
onto D has a continuous extension to H, and so F ◦ γ is a continuous curve in D.

Now we state the definition. Let D be a regular simply connected domain, and w0, w∞ be
distinct prime ends (c.f. [12]) of D. Let F : H→ D be a conformal transformation of H onto D
with F (0) = w0, F (∞) = w∞. Then γ̃ := F ◦ γ is called an SLEκ curve in D from w0 to w∞.
Although such F is not unique, the definition is unique up to a linear time change.

Now we state the important Domain Markov Property (DMP) of SLE. Let D be a regular
simply connected domain with prime ends w0 6= w∞, and γ an SLEκ curve in D from w0 to
w∞. For each t0 ≥ 0, let Dt0 be the connected component of H\γ(0, t0] which is a neighborhood
of w∞ in D, and γt0(t) = γ(t0 + t), 0 ≤ t < ∞. Let T be any stopping time w.r.t. γ. Then
conditioned on γ(0, T ] and the event {T <∞}, a.s. γ(T ) ∈ ∂DT determines a prime end of DT ,
and γT has the distribution of SLEκ in DT from (the prime end determined by) γ(T ) to w∞.

2.2 Crosscuts

Let D be a simply connected domain. A simple curve ρ : (a, b) → D is called a crosscut in D
if limt→a+ ρ(t) and limt→b− ρ(t) both exist and lie on ∂D. We emphasize that by definition the
end points of ρ do not belong to ρ, and so ρ completely lies in D. It is well known (c.f. [12])
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that as t → a+ or t → b−, ρ(t) tends to a prime end of D. We say that these two prime ends
are determined by ρ. Thus, if f maps D conformally onto D, then f(ρ) is a crosscut in D. So
we see that D \ ρ has exactly two connected components.

For the ease of labeling the two components of D \ ρ, we introduce the following symbols.
Let K be any subset of C such that K ∩ D is a relatively closed subset of D, and let S be a
connected subset of D\K. We use D(K;S) to denote the connected component of D\K which
is a neighborhood of S in D; and let D∗(K;S) = D \ (K ∪ D(K;S)), which is the union of
components of D\K other than D(K;S). For example, D(K; z1) 6= D(K; z2) means that z1 and
z2 are separated inD byK. If ρ and η are disjoint crosscuts inD. ThenD\ρ = D(ρ; η)∪D∗(ρ; η)
and D \ η = D(η; ρ) ∪D∗(η; ρ); and we have D∗(ρ; η) ⊂ D(η; ρ) and D∗(η; ρ) ⊂ D(ρ; η).

The symbols D(K;S) and D∗(K;S) also make sense if S is a prime end of D such that
D \K is a neighborhood of S in D. If D is an H-domain, and S is the prime end ∞, then we
omit the ∞ in D(K;∞) and D∗(K;∞). For example, for the SLEκ curve γ in H from 0 to ∞,
the corresponding H-hull Kt satisfies that H \Kt = H(γ(0, t]).

Lemma 2.1. Let D ⊂ D̃ be two simply connected domains. Let ρ be a Jordan curve in D̃,
which intersects ∂D, or a crosscut in D̃. Let Z1 and Z2 be two connected subsets or prime ends
of D̃ such that D̃(ρ;Zj), j = 1, 2, are well defined and not equal. In other words, D̃ \ ρ is a

neighborhood of both Z1 and Z2 in D, and Z1 is disconnected from Z2 in D̃ by ρ. Suppose D is
a neighborhood of both Z1 and Z2 in D̃. Let Λ denote the set of connected components of ρ∩D.
Then there is a unique λ1 ∈ Λ such that D(λ1;Z1) 6= D(λ1;Z2), and if D(λ;Z1) 6= D(λ;Z2)
for some λ ∈ Λ, then D(λ1;Z1) ⊂ D(λ;Z1) and D(λ1;Z2) ⊃ D(λ;Z2).

Remark. Every λ ∈ Λ is a crosscut in D. We call the λ1 given by the lemma the first
sub-crosscut of ρ in D that disconnects Z1 from Z2.

Proof. Let Λ0 = {λ ∈ Λ : D(λ;Z1) 6= D(λ;Z2)}. We first show that Λ0 is finite. Let γ be
any curve in D connecting Z1 with Z2. Since γ ∩ ρ is a compact subset of

⋃
λ∈Λ λ, and every

λ ∈ Λ is a relatively open subset of ρ, we see that γ intersects finitely many λ ∈ Λ. From the
definition of Λ0, γ intersects every λ ∈ Λ0. Thus, Λ0 is finite. We emphasize here that the
above argument does not exclude the possibility that Λ0 is empty.

Next, we show that Λ0 is nonempty. We choose γ such that it minimizes Λ(γ) := {λ ∈
Λ : γ ∩ λ 6= ∅}, which can not be empty since

⋃
λ∈Λ λ = ρ ∩ D disconnects Z1 from Z2 in D.

Let λ0 ∈ Λ(γ). Let w1 and w2 be the first point and the last point on γ, which lies on λ0,
respectively. Let λ′0 be the sub curve of λ0 with end points w1 and w2. There is ε > 0 such that
dist(λ′0, λ) > ε for any λ ∈ Λ \ {λ0}. Suppose λ0 6∈ Λ0. Then D(λ;Z1) = D(λ;Z2). We may
choose for j = 1, 2, w′j on the part of γ between Zj and wj , which is very close to wj , such that
there is a curve γε connecting w′1 and w′2 in D(λ0;Z1), which stays in the ε-neighborhood of λ′0.
Construct a new curve γ′ in D connecting Z1 and Z2 by modifying γ such that the part of γ
between w′1 and w′2 is replaced by γε. Then we find that Λ(γ′) = Λ(γ)\{λ0}, which contradicts
the assumption on γ. Thus, Λ0 ⊃ Λ(γ) is nonempty.

Finally, we need to show that there is λ1 ∈ Λ0, which minimizes {D(λ;Z1) : λ ∈ Λ0} and
maximizes {D(λ;Z2) : λ ∈ Λ0}. This follows from the finiteness and nonemptyness of Λ0 and
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the facts that for any λ1, λ2 ∈ Λ0, one of D(λ1;Z1) and D(λ2;Z1) is a subset of the other, and
the inclusion relation is reversed if Z1 is replaced by Z2.

Lemma 2.2. Let D be a simply connected domain and ρ a crosscut in D. Let w0, w1 and
w∞ be connected subsets or prime ends of D such that D \ ρ is a neighborhood of all of them
in D. Suppose that ρ disconnects w0 from w∞ in D. Let γ(t), 0 ≤ t < T , be a continuous
curve in D with γ(0) ∈ ∂D. Suppose for 0 ≤ t < T , D \ γ[0, t] is a neighborhood of w0, w1

and w∞ in D, and w0, w1 ⊂ Dt := D(γ[0, t];w∞). For 0 ≤ t < T , let ρt be the first sub-
crosscut of ρ in Dt that disconnects w0 from w∞ as given by Lemma 2.1. For 0 ≤ t < T , let
f(t) = 1 if w1 ∈ Dt(ρt;w∞); = 0 if w1 ∈ D∗t (ρt;w∞). Then f is right-continuous on [0, T ),
and left-continuous at those t0 ∈ (0, T ) such that γ(t0) is not an end point of ρt0.

Remark. It is easy to see that (Dt)0≤t<T is a decreasing family of H-domains. But (ρt)0≤t<T
may not be a decreasing family.

Proof. We first show that f is right-continuous. Fix t0 ∈ [0, T ). From the definition of ρt0 ,
there exist a curve β0 in Dt0 , which goes from w0 to w∞, crosses ρt0 for only once, and does
not visit ρ\ρt0 before ρt0 . Let S = w∞ or w0 depending on whether f(t0) = 1 or 0. Then there
is a curve β1 in Dt0 \ ρt0 that connects w1 with S. Since γ(t0) 6∈ Dt0 and γ is continuous, there
is t1 ∈ (t0, T ) such that γ[t0, t1) is disjoint from β0 and β1. Fix t ∈ (t0, t1). Then β0, β1 ⊂ Dt.
From Lemma 2.1, there is the first sub-crosscut of ρt0 , denoted by ρt0,t in Dt that disconnects
w0 from w∞. From the properties of β0, ρt0,t is the connected component of ρt0 ∩ Dt that
contains β0 ∩ ρt0 . Since β0 does not intersect ρ before β0 ∩ ρt0 , we have ρt = ρt0,t ⊂ ρt0 . Thus,
β1 is a curve in Dt \ ρt connecting w1 with S, which implies that f is constant on [t0, t1).

Suppose γ(t0) is not an end point of ρt0 for some t0 ∈ (0, T ). We now show that f is
left-continuous at t0. There exists t1 ∈ [0, t0) such that γ(t1, t0] does not intersect ρt0 . Fix
t ∈ (t1, t0]. Then ρt0 is a crosscut in Dt. Let β0, S, β1 be as above. Then β0 and β1 are also
curves in Dt. From the properties of β0, we see that ρt = ρt0 . Thus, β1 is a curve in Dt \ ρt
connecting w1 with S, which implies that f is constant on (t1, t0].

2.3 Estimates

We give some important estimates for SLE in this subsection. The first one is the interior
estimate. To begin with, we quote the following theorem proved in [2].

Theorem 2.1. Suppose γ is an SLEκ curve from w1 to w2 in a simply connected domain D.
If z ∈ D, then

P[dist(γ, z) ≤ r] ≤ CG(D;w1,w2)(z)r
2−d,

where G(D;w1,w2) is the 1-point Green’s function for the γ.

A stronger estimate is obtained in [6]: P[dist(γ, z) ≤ r] = r2−dG(D;w1,w2)(z)[1+o(rα)], α > 0.

Using (1.4), (1.3) and Koebe’s 1/4 theorem, we find that G(D;w1,w2)(z) ≤ C dist(z, ∂D)d−2. So
we have the following interior estimate which is a corollary of Theorem 2.1.

7



Lemma 2.3. [Interior estimate] For any z ∈ D,

P[dist(γ, z) ≤ r] ≤ C
( r

dist(z, ∂D)

)2−d
.

We will state the boundary estimate for SLE in several different forms. The original one
comes from [1], which is the following theorem.

Theorem 2.2. [Boundary estimate v.0] Let γ be an SLEκ curve in H from 0 to ∞. Then
for any x0 ∈ R \ {0} and r > 0,

P[dist(γ, x0) ≤ r] ≤ C
( r

|x0|

)α
.

We will express the above theorem in another form using the notation of extremal distance.
The reader may refer to [12] for the definition and properties of extremal distance (length).
We use dD(L1, L2) to denote the extremal distance between L1 and L2 in D. Suppose K is a
nonempty H-hull with K ∩ R− = ∅. Let xK = max{K ∩ R} and rK = max{|z − xK | : z ∈ K}.
It is well known that there are absolute constants C and M such that rK

xK
≤ Ce−πdH(K,R−) if

dH(K,R−) ≥M . So the above theorem implies the following corollary.

Lemma 2.4. [Boundary estimate v.1] Let γ be as above. Then for any H-hull K with
K ∩ R− = ∅, we have

P[γ ∩K 6= ∅] ≤ Ce−απdH(K,R−).

The same is true if R− is replaced with R+.

Using conformal invariance and comparison principle of extremal distance, we immediately
get the following version of boundary estimate from the previous one.

Lemma 2.5. [Boundary estimate v.2] Let D be a regular simply connected domain, and
w0 and w∞ be two distinct prime ends of D. Let ρ and η be two disjoint crosscuts in D such
that D(ρ; η) is not a neighborhood of both w0 and w∞. For w0, the condition means that either
D \ ρ is a neighborhood of w0 and D(ρ;w0) = D∗(ρ; η), or w0 is a prime end determined by ρ;
and likewise for w∞. Let γ be an SLEκ curve in D from w0 to w∞. Then

P[γ ∩ (η ∪D∗(η;w∞)) 6= ∅] ≤ Ce−απdD(ρ,η).

We now combine the interior estimate and the boundary estimate to get the following one-
point estimate, which implies the case n = 1 in Theorem 1.1.

Lemma 2.6. [One-point estimate] Let D be an H-domain with a prime end w0 6= ∞. Let
γ be an SLEκ curve in D from w0 to ∞. Let z0 ∈ H, y0 = Im z0 ≥ 0, and R > r > 0. Let
ρ = {z ∈ H : |z − z0| = R} and η = {z ∈ H : |z − z0| = r}. Suppose {z ∈ H : |z − z0| ≤ R} ⊂ D
and w0 6∈ {x ∈ R : |x− z0| < R}. Then

P[γ ∩ η 6= ∅] ≤ C Py0(r)

Py0(R)
.
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Proof. We consider different cases. Case 1: y0 ≥ R. The conclusion follows from the interior

estimate because
Py0 (r)

Py0 (R) = ( rR)2−d and dist(z0, ∂D) ≥ R. Case 2: y0 ≤ r. We have
Py0 (r)

Py0 (R) =

( rR)α. By increasing the value of C, we may assume that R > 4r. The conclusion follows
from the boundary estimate because ρ and η are separated in D by the two crosscuts {z ∈ H :
|z − Re z0| = 2r} and {z ∈ H : |z − Re z0| = R/2}, and the extremal distance between them in
D is log(R/(4r))/π. Case 3: R > y0 > r. Let ρ′ = {z ∈ H : |z − z0| = y0}, which separates ρ
from η in D. Let T be the first time that γ hits ρ′, and γT (t) = γ(T + t), 0 ≤ t <∞, if T <∞.
Then T is an stopping time, and {γ ∩ η 6= ∅} = {γT ∩ η 6= ∅} ⊂ {T <∞} almost surely. From

the result of Case 2, P[T < ∞] ≤ C
Py0 (y0)

Py0 (R) . From DMP, conditioned on γ[0, T ] and {T < ∞},
the γT is an SLEκ curve in D(γ[0, T ]) from γ(T ) to ∞. Since dist(z0, ∂DT ) = y0, from the

result of Case 1, we get P[γT ∩ η 6= ∅|γ[0, T ], T < ∞] ≤ C
Py0 (r)

Py0 (y0) . Combining this with the

estimate for P[T <∞], we get the conclusion in Case 3.

The following version of boundary estimate will be frequently used in this paper.

Lemma 2.7. [Boundary estimate v.3] Let D be an H-domain with a prime end w0 6= ∞.
Let γ be an SLEκ curve in D from w0 to ∞. Let ρ be a crosscut in D such that D∗(ρ) is not a
neighborhood of w0 in D, and S ⊂ D∗(ρ). Let D̃ be a domain that contains D, and ρ̃ a subset
of D̃ that contains ρ. Let η̃ be a Jordan curve in D̃, which intersects ∂D, or a crosscut in D̃.
Suppose that η̃ disconnects S from ρ̃ in D̃. Then

P[γ ∩ S 6= ∅] ≤ Ce−παdD̃(ρ̃,η̃).

Proof. From Lemma 2.1, η̃ contains a sub-crosscut in E, denoted by η, which disconnects S
from ρ. Since S ⊂ D∗(ρ), we have η ⊂ D∗(ρ) and S ⊂ D∗(η). Thus, D(ρ; η) = D∗(ρ) is not a
neighborhood of either ∞ or w0 in D. Using the boundary estimate v.2, we get

P[γ ∩ S 6= ∅] ≤ P[γ ∩D∗(η) 6= ∅] ≤ Ce−παdD(ρ,η) ≤ Ce−παdD̃(ρ̃,η̃).

3 Main Lemmas

In this section, we let γ be an SLEκ curve in H from 0 to∞. Given any set S, let τS = inf{t ≥
0 : γ(t) ∈ S}; we set inf ∅ = ∞ by convention. Let (Ft) be the right-continuous filtration
generated by γ. For t0 ≥ 0, let γt0(t) = γ(t0 + t), 0 ≤ t <∞, and Ht0 = H(γ[0, t0]). Recall the
DMP: if T is an (Ft)-stopping time, then conditioned on FT and T <∞, γT is an SLEκ curve
in HT from (the prime end of HT determined by) γ(T ) to ∞.

9



Theorem 3.1. Let m ∈ N, zj ∈ H and Rj ≥ rj > 0, 0 ≤ j ≤ m. Let ξ̂j = {|z − zj | = Rj},
ξj = {|z − zj | = rj}, and D̂j = {|z − zj | ≤ Rj}, 0 ≤ j ≤ m. Suppose that 0 6∈ D̂j, 0 ≤ j ≤ m;

and D̂0 ∩ D̂j = ∅, 1 ≤ j ≤ m. Let r′0 ∈ (0, r0) and ξ′0 = {|z − z0| = r′0}. Let

E = {τξ0 < τ
ξ̂1
≤ τξ1 < · · · < τ

ξ̂m
≤ τξm < τξ′0 <∞}.

Let yj = Im zj, 1 ≤ j ≤ m. Then we have

P[E|Fτξ0 ] ≤ Cm
( r0

R0

)α/4 m∏
j=1

Pyj (rj)

Pyj (Rj)
.

Discussion. From the 1-point estimate, we see that, given γ up to hitting ξ̂j , the probability

that it reaches ξj is at most C
Pyj (rj)

Pyj (Rj)
. The DMP allows us to put these estimates together

to get the product on the righthand side of the above formula. The key point of the proof is
to use the boundary estimate to derive the factor ( r0R0

)α/4. Recall that the boundary estimate
can be applied when the SLE curve is required to cross a disjoint pair of crosscuts from the
unbounded component to the bounded component determined by these crosscuts. But whether
a given set lies in the bounded component may vary as the SLE curve grows. So we have to
carefully keep track of the changes of the “topology” situations.

Proof. Let Ξ be the set of ξj , ξ̂j , 0 ≤ j ≤ n, and ξ′0. By Theorem 2.2, for any ξ ∈ Ξ, γ almost
surely does not visit ξ ∩ R. By discarding an event with probability zero, we may assume that
γ does not visit ξ ∩ R for any ξ ∈ Ξ. Then for any ξ ∈ Ξ, τξ = τξ∩H. Thus, it suffices to prove
the lemma with each ξ ∈ Ξ replaced by ξ ∩H. This means that every ξ ∈ Ξ is a Jordan curve
or crosscut in H. After that, we see that τξ < ∞ implies that γ(τξ) ∈ ξ ∩ H, and γ does not
visit H∗(ξ) before ξ.

Let τ0 = τξ0 , τ̂j = τ
ξ̂j

and τj = τξj , 1 ≤ j ≤ m, and τm+1 = τξ′0 . From the DMP and

one-point estimate (Lemma 2.6), we get

P[τj <∞|Fτ̂j ] ≤ C
Pyj (rj)

Pyj (Rj)
, 1 ≤ j ≤ m. (3.1)

Thus, P[E|Fτ0 ] ≤ Cm
∏m
j=1

Pyj (rj)

Pyj (Rj)
. If R0 = r0, the proof is finished.

Suppose R0 > r0. Let ρ = {z ∈ H : |z− z0| =
√
R0r0}. Then ρ is a Jordan curve or crosscut

in H, which lies between ξ̂0 and ξ0, and

dH(ρ, ξ0), dH(ρ, ξ̂0) ≥ log(R0/r0)

4π
. (3.2)

Also note that ρ disconnects ξ′0 from ∞. Let T = inf{t ≥ 0 : ξ′0 6⊂ Ht}. For τ0 ≤ t < T , ξ′0
is a connected subset of Ht, and ρ intersects ∂Ht. Thus, we may use Lemma 2.1 to define ρt to

10



be the first sub-crosscut of ρ in Ht that disconnects ξ′0 from ∞ for τ0 ≤ t < T . Note that every
ρt is Ft-measurable.

Let I = {(j, j + 1) : 0 ≤ j ≤ m} ∪ {(j, j) : 1 ≤ j ≤ m}, and define (Aι)ι∈I by

A(0,1) = {T > τ0} ∩ {H∗(ξ1) ⊂ H∗τ0(ρτ0)} ∈ Fτ0 ;

A(j,j) = {T > τj} ∩ {H∗(ξj) ⊂ Hτj−1(ρτj−1)} ∩ {H∗(ξj) ⊂ H∗τj (ρτj )} ∈ Fτj , 1 ≤ j ≤ m;

A(j,j+1) = {T > τj} ∩ {H∗(ξj) ⊂ Hτj (ρτj )} ∩ {H∗(ξj+1) ⊂ H∗τj (ρτj )} ∈ Fτj , 1 ≤ j ≤ m− 1;

A(m,m+1) = {T > τm} ∩ {H∗(ξm) ⊂ Hτm(ρτm)} ∈ Fτm .

Suppose E occurs. Then γ does not visit ξ′0 at any time t ≤ τm. So ξ′0 is a connected subset of
H\γ[0, τm]. Then we must have ξ′0 ⊂ Hτm because γτm visits ξ′0, and γτm ⊂ Hτm ⊂ Hτm∪γ[0, τm].
Thus, T > τm > τm−1 > · · · > τ1 > τ0. Similarly, since H∗(ξj) is not visited by γ at any time
t ≤ τj , we conclude that H∗(ξj) ⊂ Ht for t ≤ τj . Since H∗(ξj) is disjoint from ρ ⊃ ρt, we
conclude that H∗(ξj) is contained in either Ht(ρt) or H∗t (ρt) for any t ≤ τj .

Define a strict total order on I such that (0, 1) < (1, 1) < (1, 2) < (2, 2) < · · · < (m−1,m) <
(m,m) < (m,m+ 1). Define a family of events Eι, ι ∈ I, such that Eι = E \

⋃
ι′:ι′>ιAι′ . Using

induction, one can prove that

Eι ⊂ {H∗(ξι1) ⊂ H∗τι2 (ρτι2 )}, ι = (ι1, ι2) ∈ I \ {(m,m+ 1)}.

Especially, we get

E0,1 = E \
⋃

ι∈I\{(0,1)}

Aι ⊂ {H∗(ξ0) ⊂ H∗τ1(ρτ1)} ⊂ A(0,1).

Thus, we have E ⊂
⋃
ι∈I Aι. We will finish the proof by showing that

P[E ∩Aι|Fτ0 ] ≤ Cm
( r0

R0

)α/4 m∏
j=1

Pyj (rj)

Pyj (Rj)
, ι ∈ I. (3.3)

Case 1. Suppose A(0,1) occurs and τ0 < τ̂1. Since ξ̂1 and H∗(ξ1) are subsets of H∗(ξ̂1) ∪ ξ̂1,
which is a connected subset of (H \ γ[0, τ0]) \ ρτ0 , from H∗(ξ1) ⊂ H∗τ0(ρτ0), we conclude that

ξ̂1 ⊂ H∗τ0(ρτ0). Note that ρ disconnects ξ̂1 from ξ′0 in H, and intersects ∂Hτ0 . Applying Lemma

2.1, we get a sub-crosscut of ρ, denoted by ρ′τ0 , that disconnects ξ̂1 from ξ′0 in Hτ0 . Since both ξ̂1

and ξ′0 lie in H∗τ0(ρτ0), so does ρ′τ0 . Thus, H∗τ0(ρ′τ0) ⊂ H∗τ0(ρτ0). Since ρτ0 is the first sub-crosscut
of ρ in Hτ0 that disconnects ξ′0 from ∞, we see that ρ′τ0 does not disconnect ξ′0 from ∞. Thus,

ξ′0 ⊂ Hτ0(ρ′τ0), and ξ̂1 ⊂ H∗τ0(ρ′τ0) as ρ′τ0 disconnects ξ̂1 from ξ′0 in Hτ0 . See Figure 1.
Since H∗(ξ0) is a connected subset of Hτ0 \ρ′τ0 , and contains ξ′0 and a curve that approaches

γ(τ0) ∈ ξ0, we conclude that Hτ0(ρ′τ0 ; γ(τ0)) = Hτ0(ρ′τ0 ; ξ′0) = Hτ0(ρ′τ0). Thus, Hτ0(ρ′τ0 ; ξ̂1) =
H∗τ0(ρ′τ0) is not a neighborhood of γτ0(0) = γ(τ0) in Hτ0 . Since τ0 < τ̂1, τ̂1 < ∞ implies that
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Figure 1: This figure shows the event A(0,1) with γ stopped at τ0 = τξ0 .

the SLEκ curve γτ0 in Hτ0 (conditioned on Fτ0) visits ξ̂1. Since ξ̂0 disconnects ξ̂1 from ρ ⊃ ρ′τ0
in H, and intersects ∂Hτ0 , from the boundary estimate v.3 (Lemma 2.7) and (3.2), we get

P[τ̂1 <∞|Fτ0 , A(0,1), τ0 < τ̂1] ≤ Ce−απdH(ρ,ξ̂0) ≤ C
( r0

R0

)α/4
,

which together with (3.1) implies that (3.3) holds for ι = (0, 1).

Case 2. Suppose for some 1 ≤ j ≤ m−1, A(j,j+1) occurs and τj < τ̂j+1. Using the argument in

the previous case with τ0 and ξ̂1 replaced by τj and ξ̂j+1, respectively, we get a sub-crosscut of

ρ, denoted by ρ′τj , that disconnects ξ̂j+1 from ξ′0 in Hτj , and conclude that H∗τj (ρ
′
τj ) ⊂ H

∗
τj (ρτj ),

ξ′0 ⊂ Hτj (ρ
′
τj ), and ξ̂j+1 ⊂ H∗τj (ρ

′
τj ).

Since H∗(ξj) is a connected subset of Hτj \ρτj , and contains a curve that approaches γ(τj) ∈
ξj , we conclude that Hτj (ρτj ; γ(τj)) = Hτj (ρτj ;H∗(ξj)) = Hτj (ρτj ). Thus, H∗τj (ρ

′
τj ) ⊂ H∗τj (ρτj )

is not a neighborhood of γτj (0) = γ(τj) in Hτj . Since τj < τ̂j+1, τ̂j+1 < ∞ implies that the

SLEκ curve γτj in Hτj (conditioned on Fτj ) visits ξ̂j+1. Since ξ̂0 disconnects ξ̂j+1 from ρ ⊃ ρ′τj
in H, from Lemma 2.7 and (3.2), we get

P[τ̂j+1 <∞|Fτj , A(j,j+1), τj < τ̂j+1] ≤ Ce−απdH(ρ,ξ̂0) ≤ C
( r0

R0

)α/4
,

which together with (3.1) implies that (3.3) holds for ι = (j, j + 1), 1 ≤ j ≤ m− 1.

Case 3. Suppose A(m,m+1) and τm < τm+1 occur. Since H∗(ξm) is a connected subset of Hτm \
ρτm , and contains a curve that approaches γ(τm) ∈ ξm, we conclude that Hτm(ρτm ; γ(τm)) =
Hτm(ρτm ;H∗(ξm)) = Hτm(ρτm). Thus, H∗τm(ρτm) is not a neighborhood of γτm(0) = γ(τm) in
Hτm . Since τm < τm+1, τm+1 < ∞ implies that the SLEκ curve γτm in Hτm (conditioned on
Fτm) visits ξ′0 ⊂ H∗τm(ρτm). Since ξ0 disconnects ξ′0 from ρ in H, and intersects ∂Hτm , we may
apply Lemma 2.7 and (3.2) to get

P[τm+1 <∞|Fτm , A(m,m+1), τm < τm+1] ≤ Ce−πdH(ξ0,ρ) ≤ C
( r0

R0

)α/4
,

which together with (3.1) implies that (3.3) holds for ι = (m,m+ 1).

Case 4. Finally, we consider (3.3) in the case ι = (j, j). Fix 1 ≤ j ≤ m and define

σj = inf{t ≥ τj−1 : H∗(ξj) ⊂ H∗t (ρt)}.

From Lemma 2.2 and the right-continuity of (Ft), we have

1. Every σj is an (Ft)-stopping time.
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Figure 2: This figure shows the event Fk, a sub event of A(j,j), with γ stopped at σj , the first
time after τj−1 = τξj−1

that ξj lies in the bounded component of Ht \ ρt.

2. If σj <∞, then H∗(ξj) ⊂ H∗σj (ρσj ).

3. If A(j,j) occurs, then τj−1 < σj < τj .

4. If τj−1 < σj <∞, then γ(σj) is an endpoint of ρσj .

Note that the last property implies that H∗σj (ρσj ) is not a neighborhood of either γ(σj) or ∞
in Hσj . Let F< = {σj < τ̂j} and F≥ = {τ̂j ≤ σj < τj}. Then A(j,j) ⊂ F< ∪ F≥.

Case 4.1. Suppose F≥ occurs. Let N = dlog(Rj/rj)e ∈ N. Let ζk = {z ∈ H : |z − zj | =

(RN−kj rkj )1/N}, 0 ≤ k ≤ N . Note that ζ0 = ξ̂j and ζN = ξj . Then F≥ ⊂
⋃N
k=1 Fk, where

Fk := {τζk−1
≤ σj < τζk}, 1 ≤ k ≤ N.

If Fk occurs, then ζk ⊂ H∗σj (ρσj ) because H∗(ζk) ∪ ζk is a connected subset of (H \ γ[0, σj ]) \ ρ
that contains both ζk and H∗(ξj), and H∗(ξj) ⊂ H∗σj (ρσj ). See Figure 2.

From Lemma 2.7 and (3.2), we get

P[τζk <∞|Fσj , Fk] ≤ Ce
−απdH(ρ,ζk−1) ≤ Ce−απ(dH(ρ,ξ̂0)+dH(ζ0,ζk−1)) ≤ C

( r0

R0

)α/4( rj
Rj

)α
2
k−1
N
.

From Lemma 2.6, we get

P[Fk|Fτj−1 , τj−1 < τ̂j ] ≤ C
Pyj ((R

N−k+1
j rk−1

j )1/N )

Pyj (Rj)
.

P[τj <∞|Fτζk , Fk] ≤ C
Pyj (rj)

Pyj ((R
N−k
j rkj )1/N )

.

The above three displayed formulas together with (1.5) imply that

P[τj <∞, Fk|Fτj−1 , τj−1 < τ̂j ] ≤ C
( r0

R0

)α/4( rj
Rj

)α
2
k−1
N
( rj
Rj

)−α/N Pyj (rj)

Pyj (Rj)
.

Since F≥ ⊂
⋃N
k=1 Fk, by summing up the above inequality over k, we get

P[τj <∞, F≥|Fτj−1 , τj−1 < τ̂j ] ≤ C
( r0

R0

)α/4 Pyj (rj)
Pyj (Rj)

[( rj
Rj

)−α/N 1− (
rj
Rj

)α/2

1− (
rj
Rj

)α/(2N)

]
. (3.4)

By considering the cases Rj/rj ≤ e and Rj/rj > e separately, we see that the quantity inside
the square bracket is bounded by the constant eα

1−e−α/4 .
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Case 4.2. Suppose F< occurs. Then H∗(ξ̂j)∪ ξ̂j is a connected subset of (H \ γ[0, σj ]) \ ρ that

contains H∗(ξj). So we get ξ̂j ⊂ H∗σj (ρσj ;H
∗(ξj) = H∗σj (ρσj ). Since ξ̂0 disconnects ρ from ξ̂j in

H, applying Lemma 2.7 and (3.2), we get

P[τ̂j <∞|Fσj , F<] ≤ Ce−απdH(ρ,ξ̂0) ≤ C
( r0

R0

)α/4
,

which together with (3.1) implies that

P[τj <∞, F<|Fτj−1 ] ≤ C
( r0

R0

)α/4 Pyj (rj)
Pyj (Rj)

. (3.5)

Combining (3.4) and (3.5), we get

P[τj <∞, A(j,j)|Fτj−1 , τj−1 < τ̂j ] ≤ C
( r0

R0

)α/4 Pyj (rj)
Pyj (Rj)

,

which together with (3.1) implies that (3.3) holds for ι = (j, j), 1 ≤ j ≤ m.

Let Ξ be a family of mutually disjoint circles with center in H, each of which does not pass
through or enclose 0. Define a partial order on Ξ such that ξ1 < ξ2 if ξ2 is enclosed by ξ1. One
should keep in mind that a smaller element in Ξ has bigger radius, but will be visited earlier
(if it happens) by a curve started from 0.

Suppose that Ξ has a partition {Ξe}e∈E with the following properties:

1. For each e ∈ E , the elements in Ξe are concentric circles with radii forming a geometric
sequence with common ratio 1/4. We denote the common center ze, the biggest radius
Re, and the smallest radius re.

2. Let Ae = {re ≤ |z− z0| ≤ Re} be the closed annulus associated with Ξe, which is a single
circle if Re = re, i.e., |Ξe| = 1. Then the annuli Ae, e ∈ E , are mutually disjoint.

Note that every Ξe is a totally ordered set w.r.t. the partial order on Ξ.

Theorem 3.2. Let ye := Im ze ≥ 0, e ∈ E. Then there is C|E| < ∞, which depends only on κ
and |E|, such that

P
[ ⋂
ξ∈Ξ

{γ ∩ ξ 6= ∅}
]
≤ C|E|

∏
e∈E

Pye(re)

Pye(Re)
.

Discussion. Suppose γ visits all ξ ∈ Ξ. For ξ1, ξ2 ∈ Ξ, if ξ1 < ξ2, then γ will visit ξ1 before ξ2.
Other than these constraints, γ can visit the elements in Ξ in any order. The simplest case is
that γ does not jump back and forth between different groups {Ξe : e ∈ E}. This means that γ
first visits all circles in Ξe1 for some e1 ∈ E before all other circles in Ξ, then visits all circles
in Ξe2 for some e2 ∈ E \ {e1} before circles in Ξ \ (Ξe1 ∪ Ξe2), and so on. In this case, we can
easily use the 1-point estimate and DMP to get the righthand side of the above formula. We
use Theorem 3.1 to deal with the general cases. The key point is that γ has to pay a price to
jump back and forth between different Ξe’s due to the factor ( r0R0

)α/4 given in Theorem 3.1.
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Proof. We write Nn for {k ∈ N : k ≤ n}. Let S denote the set of bijections σ : N|Ξ| → Ξ such
that ξ1 < ξ2 implies that σ−1(ξ1) < σ−1(ξ2). Let E =

⋂
ξ∈Ξ{γ ∩ ξ 6= ∅} and

Eσ = {τσ(1) < τσ(2) < · · · < τσ(|Ξ|) <∞}, σ ∈ S.

Then the above discussion gives

E =
⋃
σ∈S

Eσ. (3.6)

We will derive an upper bound of P[Eσ] in (3.9).
Fix σ ∈ S. For e ∈ E , we label the elements of Ξe by ξe0 < · · · < ξeNe , where Ne = |Ξe| − 1.

Let
Je = {1 ≤ n ≤ Ne : σ−1(ξen) > σ−1(ξen−1) + 1} ∪ {0},

In plain words, n ∈ Je means that either n = 0 or after visiting ξen−1, γ does not immediately
visit ξen without visiting other circles in Ξ that it has not visited before. In the latter case, after
visiting ξen−1, γ visits the circles in

⋃
e′ 6=e Ξe′ before ξen.

Order the elements of Je by 0 = se(0) < · · · < se(Me), where Me = |Je|−1. Set se(Me+1) =
Ne + 1. Every Ξe can be partitioned into Me + 1 subsets:

Ξ(e,j) = {ξen : se(j) ≤ n ≤ se(j + 1)− 1}, 0 ≤ j ≤Me.

The meaning of the partition is that, after γ visits the first element in Ξ(e,j), which must be
ξese(j), it then visits all elements in Ξ(e,j) without visiting any other circles in Ξ that it has not

visited before. Let I = {(e, j) : e ∈ E , 0 ≤ j ≤ Me}. Then {Ξι : ι ∈ I} is another partition of
Ξ, which is finer than {Ξe : e ∈ E}. Note that every σ−1(Ξι), ι ∈ I, is a connected subset of Z.

For ι ∈ I, let eι denote the first coordinate of ι, zι = zeι and yι = Im zι. Let Pι =
Pyι (Rmax Ξι )
Pyι (Rmin Ξι )

.

Recall that if ι = (e, j), min Ξι = ξese(j) and max Ξι = ξese(j+1)−1. From Lemma 2.6 we get

P[τmax Ξι <∞|Fmin Ξι ] ≤ CPι, ι ∈ I. (3.7)

Let Pe =
Pye (re)
Pye (Re)

, e ∈ E . From (1.5) we get

Me∏
j=0

P(e,j) ≤ 4αMePe, e ∈ E . (3.8)

We have |I| =
∑

e∈E(Me + 1). Considering the order that γ visits Ξι, ι ∈ I, we get a
bijection map σ̂ : N|I| → I such that n1 < n2 implies that maxσ−1(Ξσ̂(n1)) < minσ−1(Ξσ̂(n2)),
and n1 = n2 − 1 implies that maxσ−1(Ξσ̂(n1)) = minσ−1(Ξσ̂(n2))− 1. We may now express Eσ

as

Eσ = {τmin Ξσ̂(1)
< τmax Ξσ̂(1)

< τmin Ξσ̂(2)
< τmax Ξσ̂(2)

< · · · < τmin Ξσ̂(|I|) < τmax Ξσ̂(|I|) <∞}.

Fix e0 ∈ E . Let nj = σ̂−1((e0, j)), 0 ≤ j ≤ Me0 . Then nj+1 ≥ nj + 2, 0 ≤ j ≤ Me0 − 1.

Fix 0 ≤ j ≤ Me0 − 1. Let m = nj+1 − nj − 1. Applying Theorem 3.1 to ξ̂0 = min Ξe0 ,
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ξ0 = max Ξ(e0,j) = max Ξσ̂(nj), ξ
′
0 = min Ξ(e0,j+1) = min Ξσ̂(nj+1), ξ̂k = min Ξσ̂(nj+k) and

ξk = max Ξσ̂(nj+k), 1 ≤ k ≤ m, we get

P[Eσ[max Ξσ̂(nj),min Ξσ̂(nj+1)]
|Fτmax Ξσ̂(nj)

] ≤ Cm4−α/4(se0 (j+1)−1)

nj+1−1∏
n=nj+1

Pσ̂(n),

where Eσ[max Ξσ̂(nj),min Ξσ̂(nj+1)]
is the Fτmin Ξσ̂(nj+1)

-measurable event

{τmax Ξσ̂(nj)
< τmin Ξσ̂(nj+1)

< τmax Ξσ̂(nj+1)
< · · · < τmax Ξσ̂(nj+m)

< τmin Ξσ̂(nj+1)
<∞}.

Letting j vary between 0 and Me0 − 1 and using (3.7) and we get

P[Eσ] ≤ C |I|4−α/4
∑Me0
j=1 (se0 (j)−1)

∏
ι∈I

Pι.

Using (3.8) and |I| =
∑

e(Me + 1), we find that the right-hand side is bounded by

C |E|C
∑
e∈EMe4−

α
4

∑Me0
j=1 se0 (j)

∏
e∈E

Pe,

Taking a geometric average over e0 ∈ E , we get

P[Eσ] ≤ C |E|C
∑
e∈EMe4

− α
4|E|

∑
e∈E

∑Me
j=1 se(j)

∏
e∈E

Pe. (3.9)

So far we have omitted the σ on I, Me, se(j) and etc; we will put σ on the superscript if
we want to emphasize the dependence on σ. From (3.6) and the above result, it follows that

P[E] ≤ C |E|
∑

(Me;(se(j))
Me
j=0)e∈E

|S(Me,(se(j)))|C
∑
e∈EMe4

− α
4|E|

∑
e∈E

∑Me
j=1 se(j)

∏
e∈E

Pe, (3.10)

where
S(Me,(se(j))) := {σ ∈ S : Mσ

e = Me, s
σ
e (j) = se(j), 0 ≤ j ≤Me, e ∈M},

and the first summation in (3.10) is over all possible (Me; (se(j))
Me
j=0)e∈E , namely, Me ≥ 0 and

0 = se(0) < se(1) < · · · se(Me) ≤ Ne for every e ∈ E . It now suffices to show that∑
(Me;(se(j))

Me
j=1)e∈E

|S(Me,(se(j)))|C
∑
e∈EMe4

− α
4|E|

∑
e∈E

∑Me
j=1 se(j) ≤ C|E|, (3.11)

for some C|E| <∞ depending only on |E| and κ.
We now bound the size of S(Me,(se(j))). Note that Mσ

e and sσe (j), 0 ≤ j ≤ Mσ
e , e ∈ E ,

determine the partition Ξι, ι ∈ Iσ, of Ξ. When the partition is given, σ is then determined by

16



σ̂ : N|Iσ | → Iσ, which is in turn determined by eσ̂(n), 1 ≤ n ≤ |Iσ| =
∑

e∈E(M
σ
e + 1), because

if eσ̂(n) = e0, then σ̂(n) = (e0, j0), where j0 = min{0 ≤ j ≤ Me0 : (e0, j) 6∈ σ̂(m),m < n}.
Since each eσ̂(n) has at most |E| possibilities, we have |S(Me,(se(j)))| ≤ |E|

∑
e∈E(Me+1). Thus, the

left-hand side of (3.11) is bounded by

|E||E|
∑

(Me;(se(j))
Me
j=0)e∈E

∏
e∈E

(C|E|)Me4
− α

4|E|
∑Me
j=1 se(j)

= |E||E|
∏
e∈E

Ne∑
Me=0

(C|E|)Me
∑

0=se(0)<···<se(Me)≤Ne

4
− α

4|E|
∑Me
j=1 se(j)

≤ |E||E|
∏
e∈E

∞∑
M=0

(C|E|)M
∞∑

s(1)=1

· · ·
∞∑

s(M)=M

4
− α

4|E|
∑M
j=1 s(j)

≤ |E||E|
∏
e∈E

∞∑
M=0

(C|E|)M
M∏
j=1

∞∑
s(j)=j

4
− α

4|E| s(j) =

[
|E|

∞∑
M=0

(
C|E|

1− 4
− α

4|E|

)M
4
− α

8|E|M(M+1)

]|E|
.

The conclusion now follows since the summation inside the square bracket equals to a finite
number depending only on κ and |E|.

4 Proofs of the Main Theorems

First, we are going to use Theorem 3.2 to prove Theorem 1.1. What we need to do in the proof
is to use the radii rj ’s and the distances lj ’s to construct a group of circles Ξ and a partition
Ξe, e ∈ E , that satisfy the conditions in Section 3, and prove that the upper bound given by
Theorem 3.2 is comparable to the upper bound in Theorem 1.1.

Proof of Theorem 1.1. We assume that any rj is of the form
lj

4hj
for some integer hj . If not,

it is between two of them and by changing Cn in the theorem and using (1.5) we can get the
result easily. Also we can assume hj ≥ 1 for every j because otherwise the corresponding term

on right-hand side i.e
Pyj (rj∧lj)
Pyj (lj)

is 1 so we can just ignore it. We want to deduce this theorem

from Theorem 3.2, so we want to construct a family Ξ. Consider

ξsj = {|z − zj | =
lj
4s
}, 1 ≤ j ≤ n, 1 ≤ s ≤ hj .

The family {ξsj : 1 ≤ j ≤ n, 1 ≤ s ≤ hj} may not be mutually disjoint. To solve this issue,
we will remove some circles as follows. For 1 ≤ j < k ≤ n, let Dk = {|z − zk| ≤ lk/4}, which
contains every ξrk, 1 ≤ r ≤ hk, and

Ij,k = {ξsj : 1 ≤ s ≤ hj , ξsj ∩Dk 6= ∅}. (4.1)
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Then Ξ := {ξsj : 1 ≤ j ≤ n, 1 ≤ s ≤ hj} \
⋃

1≤j<k≤n Ij,k is mutually disjoint. If dist(γ, zj) ≤ rj ,
then γ intersects every ξsj , 1 ≤ s ≤ hj . So we get

P[dist(γ, zj) ≤ rj , 1 ≤ j ≤ n] ≤ P
[ n⋂
j=1

hj⋂
s=1

{γ ∩ ξsj 6= ∅}
]
≤ P

[ ⋂
ξ∈Ξ

{γ ∩ ξ 6= ∅}
]
. (4.2)

Next, we construct a partition {Ξe : e ∈ E} of Ξ. First, Ξ has a natural partition Ξj ,
1 ≤ j ≤ n, such that Ξj is composed of circles centered at zj . For each j, we construct a graph
Gj , whose vertex set is Ξj , and ξ1 6= ξ2 ∈ Ξj are connected by an edge iff the bigger radius is
4 times the smaller one, and the open annulus between them does not contain any other circle
in Ξ. Let Ej denote the set of connected components of Gj . Then we partition Ξj into Ξe,
e ∈ Ej , such that every Ξe is the vertex set of e ∈ Ej . Then the circles in every Ξe are concentric
circles with radii forming a geometric sequence with common ratio 1/4, and the closed annuli
Ae associated with Ξe, e ∈ Ej , are mutually disjoint. From the construction we also see that
for any j < k, and e ∈ Ej , Ae does not intersect Dk, which contains every Ae with e ∈ Ek. Let
E =

⋃n
j=1 Ej . Then Ae, e ∈ E , are mutually disjoint. Thus, {Ξe : e ∈ E} is a partition of Ξ that

satisfies the properties before Theorem 3.2. So we get

P
[ ⋂
ξ∈Ξ

{γ ∩ ξ 6= ∅}
]
≤ C|E|

∏
e∈E

Pye(re)

Pye(Re)
= C|E|

n∏
j=1

∏
e∈Ej

Pyj (re)

Pyj (Re)
. (4.3)

Here we set
∏
e∈Ej = 1 if Ej = ∅. We will finish the proof by comparing |E| with n and the

product
∏
e∈Ej

Pyj (re)

Pyj (Re)
with

Pyj (rj)

Pyj (Rj)
.

Here is a useful fact: every Ij,k defined in (4.1) contains at most one element. The reason is

maxz∈Dk{|z − zj |}
minz∈Dk{|z − zj |}

=
|zj − zk|+ lk/4

|zj − zk| − lk/4
≤ lk + lk/4

lk − lk/4
< 4.

The above formula also implies that, for j < k,
⋃
ξ∈Ξk

ξ ⊂ Dk intersects at most 2 annuli from

{lj/4r ≤ |z − zj | ≤ lj/4r−1}, 2 ≤ r ≤ hj . If j > k, by construction,
⋃
ξ∈Ξk

ξ is disjoint from the

annuli {lj/4r ≤ |z − zj | ≤ lj/4r−1}, 2 ≤ r ≤ hj , which are contained in Dj .
We now bound |Ej |. We may obtain G by removing vertices and edges from a path graph

Ĝj , whose vertex set is {ξsj : 1 ≤ s ≤ hj}, and two vertices are connected by an edge iff the

bigger radius is 4 times the smaller one. Every edge e of Ĝj determines an annulus, denoted
by Ae. The vertices removed are the elements in Ij,k, k > j; and the edges removed are those
e such that Ae intersects some ξ ∈ Ξk with k 6= j, which may happen only if k > j. Thus, the
total number of vertices or edges removed is not bigger than

∑
k>j(1 + 2) = 3(n − j). So we

get |Ej | ≤ 1 + 3(n− j). Thus, |E| ≤ n+ 3n(n−1)
2 . This means that C|E| may be written as Cn.

Finally we compare
∏
e∈Ej

Pyj (re)

Pyj (Re)
with

Pyj (rj)

Pyj (Rj)
. If A is an annulus {r ≤ |z − z0| ≤ R} for

some z0 ∈ H with y0 ∈ Im z0 ≥ 0 and R ≥ r > 0, we define PA =
Py0 (r)

Py0 (R) . Let Aj,s = {lj/4s ≤
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|z − zj | ≤ lj/4s−1}, 1 ≤ s ≤ hj , and Sj = {s ∈ Nhj : Aj,s ⊂
⋃
e∈Ξj

Ae}. Then

Pyj (rj)

Pyj (lj)
=

hj∏
s=1

PAj,s ,
∏
e∈Ej

Pyj (re)

Pyj (Re)
=
∏
s∈Sj

PAj,s .

Using (1.5), we get ∏
e∈Ej

Pyj (re)

Pyj (Re)
≤ 4

α|Nhj \Sj |
Pyj (rj)

Pyj (lj)
.

Now s ∈ Nhj \ Sj only if s = 1 or there is some k > j with Dk ∩ Aj,s 6= ∅. Since for k > j, Dk

intersects at most two Aj,s, we find that |Nhj \ Sj | ≤ 1 + 2(n− j). Thus,

n∏
j=1

∏
e∈Ej

Pyj (re)

Pyj (Re)
≤ 4αn

2
n∏
j=1

Pyj (re)

Pyj (Re)
.

Combining the above formula with (4.2) and (4.3), we complete the proof.

Proof of Theorem 1.2. As we mentioned before we can define natural length of SLE in a
domain by Minkowski content. See equation (1.1). Similarly if D is a bounded subset of the
upper half plane we can define Contd(γ ∩D) as the natural length of SLE in the domain D in
the obvious way.

The main theorem of [6] becomes

lim
r→0

Contd(γ ∩D; r) = Contd(γ ∩D),

with probability 1. Now we compute

E[Contd(γ ∩D; r)n] = E[rn(d−2)(Area(z ∈ D |dist(z, γ) < r)n)

= rn(d−2)E
[( ∫

D
1dist(z,γ)<rdA(z)

)n]
=

∫
Dn

rn(d−2)P(dist(z1, γ) < r, ...,dist(zn, γ) < r)dA(z1)...dA(zn).

For the above equality, we changed expectation and integral which is allowed because the
integrand is always positive. We will find an upper bound for

sup{rn(d−2)P(dist(z1, γ) < r, ...,dist(zn, γ) < r)},

which is integrable over Dn. By Theorem 1.1 we know that this is bounded above by

rn(d−2)Cn

n∏
k=1

Pyk(r ∧ lk)
Pyk(lk)

.
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Now assume that r is smaller than li1 , ..., lik and bigger than the rest. Then by equation (1.5)
and the definition of Py we get that the above quantity is bounded by

Cnr
n(d−2)

k∏
j=1

r2−d

l2−dij

≤ Cn
n∏
s=1

ld−2
s .

We have the last inequality because if r > l then rd−2 < ld−2. So now we should show

f(z1, ..., zn) =

n∏
k=1

ld−2
k =

n∏
k=1

min{|zk − z0|, |zk − z1|, . . . , |zk − zk−1|}d−2

is integrable over Dn. This is true because for every 1 ≤ k ≤ n,∫
D

min{|zk − z0|, |zk − z1|, . . . , |zk − zk−1|}d−2dA(zk) ≤
k−1∑
j=0

∫
D
|zk − zj |d−2dA(zk)

≤ k
∫
|z|≤diam(D∪{0})

|z|d−2dA(z) = 2πk

∫ diam(D∪{0})

0
rd−1dr <∞,

as d > 0. Finally, we may apply Fatou’s lemma to conclude that

E[Contd(γ ∩D)n] ≤
∫
D
· · ·
∫
D

n∏
k=1

lk(z1, . . . , zn)dA(z1) · · · dA(zn) <∞.
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