Lecture Notes on Random Variables and Stochastic Processes

This lecture notes mainly follows Chapter 1-7 of the book Foundations of Modern Probability
by Olav Kallenberg. We will omit some parts.

1 Elements of Measure Theory

We begin with elementary notation of set theory. We use union AU B or |, Aa, intersection
AN B or (), Aa, difference A\ B = {r € A : x ¢ B}, and symmetric difference AAB =
(A\B)U(B\ A). A partition of a set A is a family A, C A, t € T, such that A =], A, and
for any t1 # to, Ay, N Ay, = 0. If a whole space 2 is fixed and contains all relative sets, the
complement A€ is 2\ A. Recall that

AN (UBQ) =JAnB,), Au (ﬂBa> =((AUB,)

«

(LQJAQ)C:OAE, (QAQ)C:L&JAE.

A o-algebra or o-field in a nonempty set €2 is defined as a collection of A of subsets of Q2
such that

1. 0,Q € A,
2. A € Aimplies that A° € A,
3. A, € Afor all n € N implies that |J,, A, € A and [, A, € A.

We may also say that a o-algebra is a class of subsets, which contains the empty set and
the whole space, and is closed under complement, countable union and countable intersection.
There are two trivial examples of o-algebras. First, {0, Q} is the smallest o-algebra. Second,
the collection 29 of all subsets of ) is the biggest o-algebra.

A measurable space is a pair (€2,.4), where ) is a nonempty set and A is a o-algebra in Q.
Every element of A is called a measurable set.

We observe that if Ay, a € A, is a family of o-algebras in (2, then (1, A, is a o-algebra in
Q). We use this fact to define the o-algebra generated by a collection of sets. Let C C 29, i.e.,



C is a collection of subsets of Q. Let M(C) be the set of all o-algebra A in Q such that C C A.

We define
sC)= (] A
AeM(C)
Then

1. o(C) D C as A D C for every A € M(C).
2. 0(C) is a o-algebra in Q as it is the intersection of a collection of o-algebras in .

These two properties imply that o(C) € M(C), and so is the smallest o-algebra in € that
contains C. We call ¢(C) the o-algebra generated by C. There are no simple expressions of o(C)
in terms of union, intersection, and complement of elements of C.

If S is a topological space, then the Borel o-algebra B(S) on S is the o-algebra generated
by the topology of S, i.e., the collection of open subsets of S. Thus, a topological space is also
viewed as a measurable space. We write B for B(R).

Besides o-algebras, the following notation will be useful for us.

1. A w-system C in € is a class of subsets of €2, which is closed under finite intersection, i.e.,
A, B € C implies that AN B € C.

2. A A-system D in 2 is a class of subsets of {2, which contains €2, and is closed under proper
difference and increasing limits. The former means that A, B € D and A D B implies
that A\ B € D. The latter means that if A; C Ay C Ay C --- € D, then |J,, An € D.

It is clear that A is a o-algebra if and only if it is both a m-system and a A-system. If £ C 29,
we may similarly define the 7-system (&) and the A-system A(E) generated by &, respectively.

The following monotone class theorem is very useful. An application of this result is called
a monotone class argument.

Theorem 1.1. If C is a w-system, then o(C) = A\(C).

Proof. Since a o-algebra containing C is also a A-system containing C, we have A\(C) C o(C).
We need to show that o(C) C A(C). It suffices to show that A(C) is a o-algebra. Since it is
already a A-system, we only need to show that it is a 7w-system. This means we need to show
that, if A, B € A(C), then AN B € A(C).
At the beginning, since C is a m-system, we know that if A, B € C, then AN B € C C A(C).
Now we show that
A € C and B € \(C) implies that AN B € A(C). (1.1)

We prove this statement in an indirect way. Fix A € C. Consider the set
Sa:={BCQ:ANBe\C)}.

Then



1. C C 8y,
2. S4 is a A-system.

To check the second claim, we note that
1. Q€ 84 because QN A = A;

2. If By D By € Sy, then BiNA D BasNA, and so (Bl\BQ)\A = (BlﬂA)\(BgﬂA) S A(C)
Thus, By \ B2 € Sa;

3.If Bl C B C B3 C -+- € Sa, then BBNAC BhbNACBsNAC--- € AlC). So
UBnNA=U(B,NA)e A(C), which implies that | J B,, € Sa.

This means that S is a A-system that contains C. So S4 contains A(C). This finishes the proof

of .

Next we show that
A € X\(C) and B € A\(C) implies that AN B € A(C).

This is enough to conclude that A(C) is a m-system. For the proof, for any A € A(C), we define
S by the same way as before. By (1.1}, S4 contains C. The argument in the last paragraph
shows that S4 is a A-system. So S contains A(C), and the proof is complete. O

For any family of spaces 4, t € T', the Cartesian product [, € is the class of all collections
(w:teT), where wy € Q forallt € T. When T ={1,...,n} or T=N={1,2,...}, we write
the product space as Q1 x --- x Q,, and Q; x Qy x ---. If all Q; = Q, we use the notation Q7
Q" or Q.

If each € is equipped with a o-algebra A;, then we introduce the product o-algebra [[, A;
as the o-algebra in [], Q; generated by the class of cylinder sets

{AtxHQS:{(wS:SGT):thAt and ws € Qg for s At} :t €T, Ae A} (1.2)
s#t

We call ([T, 2,11, A¢) the product of the measurable spaces (£, A;), t € T. In special cases,
we use the symbols A; x -+ Ay, A1 x Ay x ---, AT A", A=,

In Topology, one may define product of topological space, which is also a topological space.
A natural question to ask is whether the Borel o-algebra generated by the product topology
agrees with the product of the Borel o-algebra generated by each topology. The answer is Yes if
we only consider a countable product and each space is a separable metric space. A topological
space is called separable if it contains a countable dense set.

Lemma 1.2. Let S1,Ss,... be separable metric spaces. Then
B(S1 x Sg x--+)=B(S1) x B(S3) x +--.

We remark that the product on the left is about topological spaces, and the product on the right
is about measurable spaces. For example, since R is a separable metric space, B(R™) = B™.



Proof. Let T, denote the topology in S,,. Then o(7,) = B(Sy). Let
Cr={Anx [] Sm:An€B(SW)}, Cr={Anx [[ Sm:4neTh}, neN;
m#n m#n
Co = U,,C3 and C1 = |J,,C7. By definition of product o-algebra,
B(S1) x B(S2) x -+ =0(Cs).

On the other hand, the product topology on S1 X Sy X - -- is the topology generated by Cy. We
denote it by 7(C7). Thus, the Borel o-algebra on the product space is

B(Sy x Sz x -+ ) = o(T(Cr)).

It remains to show that o(Cs) = o(T(C1)). It is easy to show that C = o(C%) for each n.
So

o(Cr) = ol Jep) c ol Jo(cp) = o Jep) = o(Cr) € o(T(Cr)-

For the other direction, we use the fact that each 7, has a countable base, i.e., there is a
countable set 7,/ C T, such that each element of 7, can be expressed as a union of some elements
of 7. To construct 7, let A, be a countable dense subset of S,, (because S,, is separable), and
let

T ={{w e S, : dist(w,2) < q} : 2 € Ap,q € Q4 }.

It is easy to check that T,/ satisfies the desired property. We may use 7,/ to construct a countable
basis of the topology in S7 x Sy X -+, namely

Ay X Ag X+ X Ay X Sigt X St X -+

where m € N and A; € ’7;-’ for 1 < 7 < m. Every element of the countable basis belongs to
0(Cy). Since every open set in S; x Sg X --- is a countable union of elements in the basis, we
have T (Cr) C 0(Cy). Thus, o(T(C1)) C 0(Cs). The proof is then complete. O

Let S and T be two nonempty sets. A point mapping f : S — T induces two set mappings
f:2% 2T and f~1: 2T — 29 such that

fA={f(z):x €A}, f'B={zxecS:f(z)e B}

for A C S and B C T. Note that for the definition of f~! we do not need f to be surjective or
injective. Then we have

=By UBe=U By () Be=() 1B (1.3)
t t t t

For a class C C 27, we define
flc={f'B:BecC}.
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Lemma 1.3. Let S and T be o-algebras in S and T, respectively. Then f~'T is a o-algebra
inS and {B CT:f'BeS}isaoc-algebra in T.

Proof. Tt follows directly from (1.3). O

In the setup of Lemma 1.3, we call f~!T, denoted by o(f), the o-algebra induced or gen-
erated by f; and if f —IT c S, then we say that f is S/T-measurable or simply measurable if
S and T are fixed. Note that o(f) is the smallest o-algebra in S w.r.t. which f is measurable.

Lemma 1.4. If C C 27 satisfies that T = o(C), then f~'T C S if and only if f~1(C) C S.

Proof. Clearly f~'T C S implies that f~1(C) C S. On the other hand, if f~1(C) C S then
by Lemma 1.3, the class of sets B C T such that f _i(B) € Sisa o-algebra in T'. Such class
contains C by assumption, and so it contains o(C) = T. Thus, we get f~'T C S. O

Lemma 1.5. If f : S — T is a continuous mapping between two topological spaces, then f is
measurable with respect to the Borel o-algebras B(S) and B(T).

Proof. Let Tg and Tr be the topologies in S and T, respectively. Then B(S) = o(Ts) and
B(T) = o(T7). By continuity of f, f =177 C Ts C B(S). By Lemma 1.4, f1B(T) C B(S). O

Let C € 25 and A C S. We define
ANC={ANB:BeC}c2t

It is clear that if C is a o-algebra in S, then ANC is a o-algebra in A. We then call (4, ANC)
a (measurable) subspace of (S,C). This definition mimics that of topological subspaces.

Lemma 1.6 (slight variation). If A C S and C C 2%, then ca(ANC) = ANog(C). Here we
use o A(-) (resp. o5(-)) to denote the o-algebra in A (resp. S) generated by some class.

Proof. Since C C og5(C), ANC C ANog(C). Since the RHS is a o-algebra in A, we get
oa(ANC) C ANog(C). To prove the other direction, let S denote the class of B C S such
that AN B € o4(ANC). Then S contains C and ANS C o4(ANC). Since o4(ANC)
is a o-algebra in A, it is easy to see that S is a o-algebra in S. Thus, S D 05(C), and so
ANog(C) Coa(ANC). O

Suppose (5,C) is a topological space, and A C S. Then A is a topological subspace with
topology ANC. By Lemma 1.6, B(A) = ANB(S), and so A is also a measurable subspace of S.

Lemma 1.7 (composition). For three measurable spaces (S,S), (T,T), and (U,U), and two
measurable mappings f : S — T and g : T — U, the composition go f : S — U is measurable.

Proof. We have (go f)"'U = f~lg7'U c f'T C S. O

Lemma 1.8. Let (2, A) and (S;,S:), t € T. be measurable spaces. Let U C [[,S; and
f:Q — U. Then f is UNT], Si-measurable if and only if for each t € T, fy :== m o f is
Si-measurable, where my : [L, Sr — S; is the t-th coordinate map.
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Proof. Suppose f is U N[], S;-measurable. Fix t € T and B € S;. We have

fB= B[Sy = wnBx]s)eA
st s#t

So f; is Si-measurable. Now suppose each f; is S;-measurable. Then for each cylinder set in
ST of the form B x [Is4Ss: B € S, we have f~1(B x [Tsz Ss) = f 1B € A. Since the class
of such cylinder sets generates the o-algebra [], St, by Lemma 1.4, f~' [, S; C A. Thus, f is
[1; Si-measurable if we treat it as a function from Q to [], S;. For any A € U N[], S, there is
B €1, St such that A=UnNB. Then f"'A= f~'B e A So fis UNJ[[, Si-measurable. [

Recall that o(f) = f~'[[, S¢ and o (f;) = f; ', t € T, are the o-algebras in Q induced by f
and f;, respectively. Let

o(fe:teT)=o(l o))

teT

and we call it the o-algebra generated by f;, t € T.
Corollary . o(f) =o(fi:te€T).
Proof. This follows immediately from Lemma 1.8. We leave it as an exercise. 0
We use the following symbols:
R, =[0,00), R =[-00,00], Ry =[0,00].
The latter two spaces have Borel o-algebras
B(E) = o(B.{sc}, {-}), BE:) = o(BR4), {s0}).

We now fix a measurable space (£2,.4). A function f from Q into an interval I C R is
measurable if and only if for any z € I, {w : f(w) < x} is measurable. This follows from
Lemma 1.4 and the fact that the class (—oo,z] N1, x € I, generates the o-algebra B(I) = INB.
We will often write {f < z} for {w: f(w) < z}. The inequality < x may be replaced by < =z,
>z, or > . The statements also hold for I = R or R,..

Lemma 1.9. For any sequence of measurable functions f1, fa,... from (Q, A) into R, sup,, fn,
inf,, fn, imsup f, and liminf f,, are also measurable.

Proof. We use the equalities

sup fo <o) = (Who <o) {inf fo 2 o) = (o 2 o),

limsup f, = inf sup f,,, liminf f,, = sup inf f,,.
n om>n n m>n



This lemma in particular implies that the limit of measurable functions (if it exists pointwise)
is measurable. This statement also holds for a general metric space.

Lemma 1.10. Let f1, fa,... be measurable functions from (2, A) into some metric space (S, p).
Then

(i) If fn, — f, then f is measurable.
(ii) If (S, p) is separable and complete, then {w : lim f,(w) converges} is measurable.

Proof. (i) If f,, — f, then for any continuous function g : S — R, we have go f, = go f. So
go f from Q to R is measurable by Lemmas 1.5, 1.7 and 1.9. Fixing an open set G C S. We
may choose some continuous functions g, : S — Ry such that g, T 1¢. In fact, we may let

gn(s) = min{1,np(s, G°)},

where p(s,G°) = inf{p(s,t) : t € G°} is the distance from s to G, which is continuous in s
by the triangle inequality. Since each g, o f is measurable, 1g o f = 1;-15 is measurable. So
f~1(G) is measurable for every open set G. By Lemma 1.4, f is measurable.

(ii) Since S is complete, lim f,, (w) converges if and only if (f,(w)) is a Cauchy sequence in
S. Now

{w: (fn(w)) is Cauchy in S} = ﬂU ﬂ ﬂ {w: p(fn, (W), fro(w)) < %}

m N ni>Nno>N

This formula is another way to state that (f,,(w)) is a Cauchy sequence if and only if for any m €
N there exists N € N such that for any ny,ne > N, p(fn, (W), fns(w)) < =. To prove that the set
on the RHS is measurable it suffices to show that for any m,ni, na, {w : p(fn, (W), fr,(w)) < %}
is measurable. For that purpose, we use the fact that

(i) by Lemma 1.8, (fn,, fny) : Q — S? is A/B(S)?-measurable;

(ii) the map S? > (s1,52) — p(s1,s2) € Ry is continuous (follows easily from the triangle
inequality), and so by Lemma 1.5 is measurable w.r.t. B(S?);

(iii) by Lemma 1.2, B(S?) = B(S)?; (we use the separability of S here);
(iv) by Lemma 1.7, p(fn,, fn,) : & — R4 is A-measurable.
O

Lemma 1.12. For any measurable function f,g: (2, A) = R and a,b € R, af +bg and fg are
measurable. If, in addition, g does not take value 0, then f/g is measurable.

Proof. To prove the measurability of a f 4+ bg, we express a f + bg as the composition of the map
(f,9) : © — R? and the continuous function R? > (z,y) + ax + by € R. The proof for fg is
similar. For f/g, we express f/g as the composition of (f,g) : 2 — R x (R\ {0}) and the the
continuous function R x (R\ {0}) > (z,y) — z/y € R. O



For any A C €, we define the associated indicator function 14 : @ — R to be equal to 1
on A and to 0 on A°. Sometimes we write 1A instead of 14. It is clear that 14 is measurable
(w.r.t. A) if and only if A is a measurable set (w.r.t. A).

Linear combinations of indicator functions are called simple functions. Thus, a simple
function f: Q2 — R is of the form

f = CllAl + - 'Cn]-An)

where n € N, A;,..., A, C Q and c¢1,...,¢, € R. Here we only allow finite sums. If
Ay, ..., A, € A, then f is A-measurable, and called a measurable simple function.

Lemma 1.11. For any measurable function f : (Q,A) — Ry, there exist a sequence of mea-
surable simple functions fp, : (2, A) = Ry such that f, 1 f.

We use the following symbols from now on. For a,b € R, we use a A b and a V b to denote
min{a, b} and max{a, b}, respectively. The symbols also extend to a; A -+ Aay, a1 V-V ap,
Atay, and Viay, where the latter two are alternative ways to write inf; a; and sup, a;.

For x € R, we use |x] to denote the biggest integer n with n < z, and use [z] to denote
the smallest integer n with n > z. Then |[z] and [z] are monotone increasing.

Proof. We let

_[2"(FAn)]
In= T on
Then 0 < f,, < f An. We se that f, is a simple measurable function because it takes values in
{%:OSkgnQ"},

n € N.

) = o e < Jw) < 0y o<k <n2, (14)

n2™

fn_l({?}) ={w:n < fw)},

and the sets on the RHS are all measurable. To see that (f,) is increasing in n, we use the
inequality

[2"(f An)] _ [2(F A1) 2" (A (4 1)

on - on - on+1 ’
where the second “<” follows from |2x| > 2|z]. Finally, we show that f, — f pointwise.
Fix w € Q. If f(w) = oo, then f,(w) = n — f(w). Suppose f(w) < co. Let € > 0. We
may choose N such that N > f(w) and QLN < w. Forn > N, by 1} we get the inequality

|fa(w) = flw)] < gw <e O

We say that two measurable spaces (5,S) and (T,T) are Borel isomorphic if there is a
bijection f : S — T such that both f and f~! are measurable. This means that f~'7 = S and
fS =T. A space S that is Borel isomorphic to a Borel subset I of [0, 1], equipped with the
Borel o-algebra B(I) = I N B([0,1]), is called a Borel space. By the following lemma, a Polish
space is a Borel space.



Definition . A Polish space is a topological space, which admits a separable and complete
metrization.

Lemma A1.6. A Polish space S is a Borel space.

Sketch of the proof. The first step is to construct a continuous and injective function f : S —
[0,1]%°. Let (sy,) be a dense sequence in S. Then we define f(z) = (1 A p(z, s,,)). The second
step is to use binary expansions to construct a measurable injective function g : [0, 1]*° — [0, 1].
See Chapter 13 of Dudley, R.M.’s “Real Analysis and Probability” for details. O

For two functions f : Q — (S, S5) and g : Q — (T, T), where (S, S) and (T, T) are measurable
spaces, we say that f is g-measurable if o(f) C o(g), or equivalently, f 1S c ¢g7'T. If there is
a (T'/S-)measurable map h : T — S such that f = ho g, then

IS =g th 1S c g 'T.
So f is g-measurable. Under some mild conditions, the converse is also true.

Lemma 1.13. Under the above setup, if (S,S) is a Borel space, then f is g-measurable if and
only if there exists some measurable map h : T — S such that f = hog.

Proof. We only need to show the “only if” part. Since S is Borel, we may assume that S €
B([0,1]). We may then view f as a map from Q into [0, 1]. This new viewpoint does not change
o(f). So f is still g-measurable. If in this case, there exists a measurable map h : T' — [0, 1]
such that f = hog. Then we may define h such that h = h on h=1(S), and h = sg on
h=1([0,1] \ S), where sq is a fixed point in S. Then h : T — S is measurable, and f = h o g.
Thus, it suffices to assume that S = [0, 1].

If f=14,and A € o(g), then A = g !B for some B € T. So f = 1g0g and we may choose
h = 1p. The result extends by linearity to any g-measurable simple functions. In the general
case, by Lemma 1.11, there exists a sequence of g-measurable simple functions f, : © — [0, 1]
such that f, 1 f. For each n, there exists an T-measurable map h, : T — [0, 1] such that
fn = hnog. Then h := sup,, hy, : T — [0,1] is also T-measurable by Lemma 1.9. Finally, we
note that

hog= (suphy,)og=sup(h,og) =sup f, = f.
O

Definition . A measure on a measurable space (2,.4) is a map u : A — R, which satisfies
1 =0 and
,uU A, = Z WAy, for all mutually disjoint Ay, Ao, --- € A. (1.5)
n n

The triple (2,4, 1) is then called a measure space. The measure p is called finite if p2 < oo,
and is called a probability measure if €2 = 1. In the latter case, (2,.4, u) is called a probability
space. The u is called a o-finite measure if there is a sequence A, As,--- € A such that
Q =, A, and pA, < co for each n.



Remark . The property ([1.5) is called countably additivity, which clearly implies finitely addi-
tivity:

N N
1 U A, = Z Ay, for all mutually disjoint A1, As,... A, € A,
n=1 n=1

by setting A,, = () for n > N, and countably subadditivity:

#UBn < ZMBn, for all By, Bs,--- € A,
n n

by defining A,, = B, \ U<, B

Lemma 1.14 (Continuity). Let u be a measure on (,.A), and let Ay, Ag,--- € A.
(i) If A, T A, then uA, 1 pA.
(ii) If Ap L A, and pA; < oo, then puA, | pA.

Proof. (i) We apply (1.5)) to D, = A, \ A,—1 with Ay = 0. (ii) We apply (i) to B, = A1 \ A,,.
Since pA; < oo, we have pA, < oo as well, and B, = pA — pA, T pA1 — pA. O

Exercise . Suppose u : A — R, satisfies finitely additivity and the property that if By D
By D --- € A, and there is € > 0 such that uB,, > e > 0 for all n, then (", B, # (. Prove that
L 1s a measure.

Exercise . Prove that for two measures p and v on (Q,A) with uQ) = vQ < oo, the class
D={Aec A: uA =vA} is a A-system.

By monotone class theorem and the above exercise, we conclude that if two probability
measures on (€2, A) agree on a m-system C with o(C) = A, then the two measures must agree.

We may do the following operations on measures. If i is a measure, and ¢ € Ry, then cp is
also a measure. If u is finite, then 1%9 u is a probability measure. The sum of two measures is
a measure. If (i) is an increasing sequence of measures, then lim u,, is also a measure; if (u,)
is a decreasing sequence of measures, and g is finite, then lim p, is also a measure (Lemma
1.15). Thus, if p1, p2, ... are measures on the same space, then ), is a measure.

If 1 is a measure on (2, A) and B € A, then u(-NB) : A> A+ pu(ANB) is also a measure
on (£, A). It is called the restriction of y to B. One may also view the restriction as a measure
on the measurable subspace (B, BN A).

The simplest measure is the zero measure, which takes value zero at all A € A. Another
natural measure is the counting measure: uA = #(A) if A is finite; uA = oo if otherwise. For
s € Q, the Dirac measure (also called point mass) ds is defined by d5(A) = 1 if s € A, and
ds(A) = 0 if otherwise.

The most important nontrivial measure is the Lebesgue measure A. It is the unique measure
on (R, B) such that for any interval I, AI equals |I|, the length of I. It is o-finite because
R = U, ez[n,n 4+ 1). The proof uses the Carathéodory extension theorem stated below.
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We call a class R C 2% a ring if it contains () and is closed under finite union and difference,
i.e., A/B € R implies that AUB,A\ B € R. A map p: R — R, is called a pre-measure
if 4 = 0 and p satisfies countably additivity, i.e., if Ay, As,--- € R is a partition of A € R,
then pA = 3, pA,. By considering the sets B, = A\ Uj_, Bk, we find that countably
additivity is equivalent to the combination of finitely countability and the statement that for
any By D By D --- € R, if there is € > 0 such that uB,, > ¢ for all n, then we have ), B,, # 0.
If R has a partition Ay, As,--- € R such that uA, < oo for each n, then p is called o-finite.

Theorem (Carathéodory extension theorem). A pre-measure p on a ring R extends to a
measure on o(R). The extension is unique if p is o-finite.

We will only give a sketch of the proof of Carathéodory extension theorem, but will provide
details of the application of the theorem in constructing the Lebesgue measure because similar
arguments will be used later.

Proof of Carathéodory extension theorem (Sketch). The uniqueness part follows from a mono-
tone class argument. Note that for any n, the class A, N R is a w-system in A,, and if pu; and
o are two extensions, then the set of B € A, No(R) such that 3 B = peB form a A-system in
A,. The existence part uses outer measures. For every A C 2, we define the outer measure of
A by

A= inf pl.
WA= ramsalt

It is clear that u* = g on R. Then we consider the set F of all A C Q such that for every
E CQ,
WE = pt(ENA) + ' (B A).

Then one can prove the following statements:
(i) F is a o-algebra containing R;
(ii) p* restricted to F is a measure.

By (i), F C o(R). By (ii), #*|5(r) is the extension that we want. O

To construct Lebesgue measure, we define a ring R in R to be the class of finite disjoint
unions of intervals of the form (a,b], where @ < b € R. For an element A € R expressed as
disjoint union ;- (ak, bx], we define pA = 3" (by, — ag). It is easy to check that p satisfies
finitely additivity. Then we need to show that, if Ay D Ag--- € R, and pA, > e > 0 for all n,
then ), An # 0. For each n, we may pick A, € R such that A/, C A, and pu(4, \ 4;,) <e/2"
(if Ap = Uj,(ak,bi), we set A, = ;- (a,bg] such that ar < aj < by and a) — a is

small enough). Let A7 = (N;_, A". Then A C A, for each n, and Af D A4 D ---. Since
Ay \A) C Up—y (Ar \ AY), we get p(A, \ Ap) < zzilu(Ak \A)) < Zi:l 2%: e. From
A, > ¢ we get pAl > 0, and so Aj, # 0. Since each A/ is compact and A] D A D ---, we

get (), A? # 0, which together with A” C A,, implies that ), A, # 0. So u is a pre-measure
on R. We may then use Carathéodory extension theorem to extend p to a measure on R. It is
easy to check that the extension is the Lebesgue measure.
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Lemma 1.16 (Regularity). Let p be a finite measure on some metric space S. Then for any
B e B(Y5),

B = F = inf uG, 1.6

pB = sup pb = inf p (1.6)

with F' and G restricted to the classes of closed and open subsets of S, respectively.

Proof. Let C denote the set of B which satisfies . Then (i) S € C because S is both closed
and open; (ii) B € C implies that B¢ € C since F' C B and F' is closed if and only if F¢ > B¢
and F° is open; (iii) B!, B? € C implies that B' U B% € C because if for j = 1,2, closed sets
Fl c B/, neN, satisfy uFﬂ; — uB’ and open sets Gi, > B/, neN, satisfy ,uG% — B, then
w(FU F?) — u(B'U B?) and u(GL U G2) — (B U B?). The first follows from

(B'UB%)\ (F, UF) C (B'\ F,) U (B*\ Fy),

and the second is similar. The (ii) and (iii) together imply that C is closed under difference.
Suppose (B,,) is an increasing sequence in C, and B = J,, B,. Fix any ¢ > 0. We may first
choose n such that uB,, > uB—¢/2, and then choose closed F' C B,, such that uF > uB, —¢/2.
Since F' C B and pF > uB — ¢, we get uB = suppcp . On the other hand, for each n € N,
we may choose open G,, D B, such that uG, < uB, + 57. Let G = J,, G,,. Then G is open,
G D B,and u(G\ B) <}, 5= =¢. Thus, uB = infg5p uG. So B € C. Hence C is a A-system.
We also know that C contains all open sets since every open set G can be written as a union
of an increasing sequence of closed sets. By monotone class theorem, C contains the Borel
o-algebra B(S5), i.e., holds for any B € B(S). O

Let i be a measure on (S, S), and f is a measurable map from (S, S) into (7, T), then we
get a measure po f~! (also denoted by f.u) on (T,T) defined by

(no fHA=pfA

It is called the pushforward of p under f.
Given a measure space (2, .4, 1), we are going to define the integral

pf = /fdu— /f(a))u(dw)

for certain real valued measurable function f on (£2,.4). The construction is composed of several
steps.
Step 1. If f is a nonnegative measurable simple function of the form

f=cala +-epla,
with ¢1,...,¢, € Ry and Ay,..., A, € A, we define

pf =cipAy + -+ cppAy.

12



Throughout measure theory we follow the convention that 0-co = 0. Using the finite additivity
of p, one can show that the definition is consistent, i.e., if f has another expression: di1p, +

---dnlp,,, then dipuB; + -+ + dpuBy, equals the same number. We then get linearity and
monotonicity: for nonnegative measurable simple functions f and g:

plaf +bg) = apf + bug, for a,b>0; (1.7)

pf>pg >0, if f>g. (1.8)

Exercise . Check the consistency and formulas (1.7)) and (|1.8]).

Step 2. If f : Q@ — R, is measurable, by Lemma 1.11 we may choose a sequence of
nonnegative measurable simple functions (f,,) such that f,, T f. Then we define

pf =lmpfn.
We also need to prove the consistency, i.e., the definition does not depend on the choice of (f,).

Lemma 1.18. Let fi, fa,--- and g be simple measurable functions on Q such that 0 < f; <
fo<-- and 0 < g <lim f,. Then lim puf, > ug.

Proof. First suppose g = ¢l4 for ¢ € Ry and A € A. If ¢ = 0, it is trivial. For ¢ > 0, fix
e € (0,c) and let A, = AN{f, >c—e}. Then 4, 1T A, and so

pfn = plc—e)la, = (c—e)pdn 1 (c — e)uA.

So lim pufy, > (¢ — e)uA. Letting e — 0, we get lim puf, > cuAd = pg.
Now suppose ¢ = c114, + -+ cpnla,, with c1,...,¢n € Ry and A;,..., A4, € A We
may assume that Aj,..., A, are mutually disjoint. Let pur = p(- N Ag), 1 < k < m, and

po = (- N (Up Ar)9). Then p = Y ) o pk- So pufn > >0, pkfn. For 1 < k < m, since
lim,, f,, > g > cx14,, by the above paragraph we get lim,, . fr, > cppAg. Thus,

m m m
limpfo > lm Y ppfo =) lmpefo > Y cxpdy = pg.
k=1 k=1 k=1

O

Applying this lemma, we see that if (f,) and (g,,) are two sequences of measurable simple
functions with 0 < f,, 1 f and 0 < g, T f, then for each m, lim, puf, > pgm. So lim, pufy >
limy, pgm. By symmetry, we have limy, pgn, > limy, pf,. So lim, pfn, = limy, pgn, and we get
the consistency in the definition of uf.

We can easily prove the linearity and monotonicity: for measurable functions f and g from

Q into Ry, (1.7) and (1.8) both hold.

Theorem 1.19 (Monotone Convergence Theorem). Let fi, fa, -+ : (Q2,.A) — R4 be measurable.
Suppose fn T f. Then pfn T pf.
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Proof. For each n, we choose a sequence of measurable simple functions (g}) such that g 1 fp
as k — oo. Then puf, = limy pgy’. Define

hi =gV ge V-V gi.

Then (hy) is an increasing sequence of nonnegative simple measurable functions. Since for each
keN, hpy < fiVvfoV- - fi = fir <f, wehavelimh; < f and

lim phy < limpfr < pf. (1.9)
For any fixed n € N, we have h > g} for k > n. So limhy > limy g = f,. Thus, limh; >
sup fp, = f. So we get hy T f and pf = lim phg. By (1.9) we get lim pfr = puf. O
Lemma 1.20 (Fatou). For any measurable functions f1, fa,---: (Q, A) — Ry, we have

liminf pf, > pliminf f,.
Proof. Fix n € N. Since fi, > inf,,>,, f, for all £ > n, by monotonicity,
ggi pfi = unigl fm-
Letting n — oo and using monotone convergence theorem, we get
liminf pf, = li7ILn égi w2 liqununi%fn fm = ,u1i711n #&fn fm = pliminf f,,.
O

Step 3. We define pf for integrable functions. A measurable function f : (Q, A4, ) - R
is called integrable if u|f| < oo. Here since |f| is a nonnegative measurable function, p|f| was
defined in Step 2. For the definition, we find two nonnegative measurable functions f; and fo
such that f = f1 — fo and pfi, pfo < 0o, and then let

wf = pfr — pufo.

For the existence of such f1 and fo, we may let f1 = f4 ;= fVvOand fo = f_ :=(—f) V0. In
fact, we have fy,f- >0, f=fyr— f—,and |f| = f+ + f-. So 0 < fi < |f|, which implies that
wfs < plf| < co. For the consistency, suppose g1 and go satisfy the same properties as f; and
J2. Then from f1 — fo = g1 — g2 we get fi1 + g2 = g1 + f2, and so pf1 + pg2 = pg1 + pfa. Since
every item is a real number, we get ufi — pfo = pugr — pge. Thus, pf is well defined. Finally,
since pf = pfy — pf-and plf| = pfy + pf-, we get |uf| < plf].

We then have the monotonicity and the linearity with real coefficient: if f,g : 2 — R are
integrable, and a,b € R, then af + bg is also integrable, and p(af + bg) = apf + bug.

In summary, the integral uf is defined for (i) all measurable functions f : (Q, A4, u) — Ry;
and (ii) all measurable functions f : (2,4, ) — R such that p|f| < co. In the former case, uf
takes values in R, and in the latter case, uf takes values in R.
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Theorem 1.21 (Dominated Convergence). Let f, f1, fa,... and g,91,92,... be R-valued mea-
surable functions on (2, A, n) with |fn| < gn for all n, and such that f, — f, gn — g, and

pgn — pg < oo. Then pfn — pf.

Proof. The sequence (g, £ f,,) are nonnegative measurable functions and g, + f,, — g+ f. Since
ug < oo and pg, — ug, g and g, are integrable for all but finitely many n. Since |f,| < g, and
|f| < g, the same statement holds for g and f. By Fatou’s lemma and linearity of integral,

pg £ pf = p(g = f) <liminf p(gn £ fr) = Iminf(ugy, + pfn) = pg + lminf (£ fn).

So we get pf < liminfuf, and —pf < liminf(—pf,) = —limsup uf,, which implies that
limsup pufy, < pf <liminf pf,. So limuf, = uf. 0

Lemma 1.22 (Substitution). Let f from a measurable map from (Q, A, p) to (S, S). Let pof=!
be the pushforward measure on (S,S). Then for measurable function g : S — R,

(wo f g =uplgof) (1.10)

Here the equality means that when one side is defined, then the other side is also defined, and
the two sides agree.

Proof. We first show that if g : S — R, and so go f : Q — R and both sides are well defined,
then ([1.10)) holds. The simplest case is g = 14. In this case

(o fg=(uof NA=pf'A=plyy=plgof)

By linearity, (1.10)) then holds for all nonnegative measurable simple functions. By monotone
convergence, ({1.10)) also holds for all nonnegative measurable functions.

For measurable g : S — R, since |go f| = |g| o f, by g is integrable w.r.t. po f~1 if
and only if g o f is integrable w.r.t. . Moreover, if g = g1 — go such that ¢g1,92 : S — R are

measurable and (,uof_l)gj < 00, j = 1,2, then by applying (1.10)) to g; we get (1.10]) for g. O

Given a measurable function f : (2, A, ) — R, we may define another measure f -y on

(Q,A) by
(f-u)AZ/Afdu:/lAf-

The countably additivity of f-u follows from monotone convergence theorem. The f is referred
as the p-density of f - pu.

Lemma 1.23 (Chain Rule). For any measurable maps f,q: (Q, A, u) — R with f >0,

(f-m)g=u(fg).

The meaning of the equality should be explained in the same way as , t.e., when one side
is define, the other side is also defined, and the two sides agree.
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Proof. As in the last proof, we may begin with the case when ¢ is an indicator function and
then extend in steps to the general case. O

This lemma implies that, if f,g: Q — R, are measurable, then f - (g-u) = (fg) - p.

Given a measure space (2, A, i), aset A € Ais called p-null if A = 0. A relation depending
on w € (Q is said to hold p-almost everywhere if there is a p-null set A such that it holds for all
w € A°. We often write u-a.e. or simply a.e.

Lemma 1.24. If f,g : (Q, A, 1) — R satisfy that p-a.e. f = g, then uf = pg. Again the
equality means that if any of uf and ug is defined, then the other is also defined, and the two
values are equal.

Proof. First, suppose g = 0 and f > 0. Let (f,) be a sequence of measurable simple functions
with 0 < f, 1 f. Then {f, # 0} C {f # 0}, and so {f, # 0} is a null set. We may
express each f,, as ¢c;la, +---cpmla, wither,..., ¢ € Ry and Ay, ..., A, are null sets. Then
pfn =2 cxpAr = 0. So pf =limpf, =0 = pg.

Second, suppose f,g > 0. Let h = fV g. Then h > f and p-a.e., h = f. We may write
h = f + ¢, where ¢ : Q@ — R, is measurable and p-a.e., ¢ = 0. By the first paragraph, pu¢ = 0.
So ph = pf + pg = pf. Similarly, uh = pg. So pf = ug.

Now we consider integrable functions. Since p-a.e., |f| = |g|, by the second paragraph,
wlf| = ulg|. So f is integrable if and only if g is integrable. Now suppose f and g are integrable.
Since fr = (£f) V0 = (£g) V0 = g+ a.e., by the previous result we have pufy = pg+. So
pf = pfv — pf- = pg+ — pg— = pg- O

On the other hand, if f : (2, A, u) — R satisfies that uf = 0, then p-a.e. f = 0. In fact,
since {f # 0} =, {f > 1/n}, if u{f # 0} > 0, then there is n € N such that p{f > 1/n} > 0.
Then we get

1 1
pf 2 po oy = Cplf 21/n} > 0.

Since two integrals agree when two integrands agree p-a.e., we may allow the integrands
to be undefined on some p-null sets. Monotone Convergence Theorem, Fatou’s Lemma, and
Dominated Convergence Theorem remain valid if the hypothesis are only fulfilled outside some
null sets. We also note that if f : Q — R satisfies uf < oo, then a.e. f € R, because from

00 > pf > o0 pf oo} we get puf~'{oo} = 0.

Definition . Let p and v be two measures on a measurable space (£2,.4). We say that v is
absolutely continuous with respect to p and write v < p if every p-null set is also a v-null set.
We say that p and v are mutually singular and write p L v if there is A € A such that uA =0
and vA° = 0.

If v = f - p, then for any p-null set A, vA = [14fdp = 0 since p-a.e., 14f = 0. So A is
also a v-null set. Thus, we have f -y < u. We focus on o-finite measures.

Theorem A1.3 (Radon-Nikodym). Let p and v are two o-finite measures on (2, A),

16



(i) If v < p, there there is a p-a.e. unique measurable function f : Q — Ry such that
v=f-pu.

(ii) In the general case, there is a p-a.e. unique measurable function f : Q — Ry such that
o:=v— f-uis a measure that is singular to .

In Part (i) of the theorem, we also call f the Radon-Nikodym derivative of v against u. For
the proof of Radon-Nikodym Theorem, we introduce the notation of real measures, which is
important on its own.

Definition . Let (©2,.4) be a measurable space. A function v : A — R is called a real measure
or signed measure if it satisfies countably additivity with v = 0, i.e., if Ay, Ay, --- € A are
mutually disjoint, then v |J,, A, =), vAy, where the series converges absolutely.

A finite measure is a real measure, and the space of all real measures on (£2,.4) is a linear
space. Thus, the difference of two finite measures is a real measure. If u is a measure, and
[+ Q — R is integrable with respect to p, then (f - p)(A) := [, fdu is a real measure. The
countably additivity follows from the Dominated Convergence Theorem.

A real measure v satisfies continuity: if A, T A or A, | A, then vA, — vA. Actually,
if A, T A, we may write A = |J,,(An \ An—1) with A9 = 0. Since A4, \ A,_1 are mutually
disjoint, vA =" v(Ap\ An—1) =), (VA, — VA1) =limvA,. If A, | A, then Af, T A° and
vA® = vl —vA and VA = vQ) — VA,

Theorem (Hahn decomposition). Given a real measure v on (2, A), there exists a partition
{P,N} of Q such that PN € A, vE >0 for all E € PN A, and vE <0 for all E € NN A.

Proof. Let s = sup{vA : A € A}. Then s > 0 since v} = 0. We now exclude the possibility
that s = +00. Suppose s = +o00. Let

B={Ac A:sup{vB:Be€ A B C A} = +o0}.

Then 2 € B. It is also easy to see that if A;, Ay € A\Band A;NAy =0, then A;UAy € A\B.
Thus, if A4; € B, Ay € A\ B, and Ay C Ay, then A; \ Ay € B. First, suppose

sup{vB: B € B,BC A} =400, VA€B. (1.11)

Then we can inductively construct a sequence Ag O A1 D As D --- in B with Ag = Q and
vAp+1 > vA,+1. Then (vA,) does not converge, which contradicts the continuity of v. Second,
suppose does not hold. Then there exist Ay € B and M € (0, 00) such that for any B € B
with B C Ag, we have vB < M. We inductively choose a sequence of mutually disjoint sets
(A,) in Ag N A such that vA,, > M for each n. First, since Ay € B, we may choose A; € A
such that vA; > M. Since vB < M for any B € B with B C Ay, we see that A; € A\ B.
So Ag \ A1 € B. Suppose we have found mutually disjoint sets Aq,..., A, € Ag N A such that
Ao\Uj_, Ak € B (this is the case for n = 1). Then by the definition of B, we can find A, € A
with A1 C Ag \ Ujp_y Ak and vA,41 > M. Now Ay, ..., A1 are mutually disjoint. Since
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Any1 C A, we get Ayyy € A\ B. Thus, A\ Ut Ay = (Ao \ Ui—; Ax) \ 4nt1 € B. So
the sequence (A,) is constructed. However, by the countably additivity of v, we should have
vA, — 0, which is a contradiction. Thus, s < 400.

For any A, B € A, we have by inclusion-exclusion,

v(ANB)=vA+vB—-v(AUB) >vA+vB —s.

Sos—vANB < (s—vA)+ (s—vB). By induction, we have
n n
s—v[)Ar <Y (s—vAR), Ai,..., A, €A
k=1 k=1

If Ay, As,... is a sequence in A, then by continuity v, An, = lim, v(,_; Ax. So
s—y<ﬂAn) SZ(S—VAn), (1.12)

By the definition of s, there is a sequence Ai, Ao, --- € A such that vA,, > s — 2% for each n.
Define an increasing sequence (B,,) by B, = (,._, Am. By (1.12),

o0

1 1
VBnZS—Z?:S—F, n € N. (113)

k=n
Let P =, By and N = P°. Then {P, N} is a measurable partition of Q. By continuity
of v and , vP = limvB, > s. By the definition of s, vP < s. So vP = s. If there is
E € PN A such that vE < 0, then v(P \ E) = vP —vE > vP = s, which contradicts the
definition of s. So vFE > 0 for any F € A with £ C P. If there is £ € NN A such that vFE > 0,
then v(PUFE) = vP +vE > vP = s, which again contradicts the definition of s. So vE > 0
for any £ € A with £ C P. O

If we set vy =v(-NP) and v— = —v(- N N), then vy and v_ are two finite (nonnegative)
measures, and v = v; —v_. Since v; P =v_P =0, we have vy L v_. Wecallv =vy —v_
the Jordan decomposition of v.

Lemma . The Jordan decomposition of a real measure is unique.
Proof. We leave this as an exercise. O

If v — v_ is the Jordan decomposition of a real measure v, then we define the measure
|v| = vy +v_, and call it the total variation of v.

Proof of Radon-Nikodym Theorem. (i) The uniqueness part is easy. If v = f -y = g- u, and
w{f # g} >0, then p{f > g} >0or u{g > f} > 0. By symmetry we assume that u{f > g} >
0. Then there is n € N such that u{f > g+ 1/n} > 0. Then f - u does not agree with g - on
{f > g+ 1/n}, a contradiction.
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For the existence, we may assume that p and v are finite. This is because we may find a
measurable partition {4, : n € N} of Q such that pA,,vA, < oo for each n. Then p, :=
u(- N Ap) and v, := v(-N A,) are finite measures with v, < p, for each n. If for each
n, Vn = fn - pp for some f, : A, — R4, then we may construct the p-density f of v with
f ‘An = f n-

Now p and v are finite measures. Let F' be the set of measurable functions f : @ — R4
such that f-pu <wv,ie, vA > (f-p)A for all A € A. Here F contains 0. For fi, fo € F, let
Ay ={f1 > fo} and Ay = {f1 < fo}. For any A € A,

/f1\/f2d,u:/ fld,u—i—/ fodu <vANA +vAN Ay =vA.
A ANA; ANAs

So fiV fa € F. Let s =sup{uf : f € F}. Then 0 < s < 1) < co. We may find a sequence
91,92, -+ € F such that ug, — s. Let f,, = g1V---Vgn, n € N. Then (f,) is increasing, and for
each n, f, € F, and f, > gn. So ufn, — s. Let f =lim f,,. By monotone convergence theorem,
forany A e A, [, fdp =1lim [, fudp < vA. So f € F. Moreover, puf = lim puf, = s. We claim
that v = f - p. If it is not true, then vy := v — f - 4 is a none-zero measure. Since p is finite,
there is € > 0 such that 1) > euf). Now 7 := 1y —epu is a real measure with 72 > 0. By Hahn
decomposition theorem, there is a partition Q = P U N such that 7(- N P) and —7(- N N) are
measures. For every A € A, from 7(ANP) > 0, we get vo(ANP) > eu(AN P), and so

VA:/fd,u+1/0A2/fd,u+1/0AﬁP2/fdu+£uAﬂP:/(f+elp)d/L.
A A A A

Thus, f+elp € F. From s = uf < pu(f +elp) < s weget uP =0. Sovp =19yP =7P =0.
Then we see that —7 is a (positive) measure, which contradicts that 72 > 0. The contradiction
shows that v = f - u.

(ii) Let 7 = p+ v. Then 7 is also a o-finite measure. Since 0 < v < 7, we have v < 7.
By (i) there is a measurable g : 2 — Ry such that v = ¢g - 7. We have 7-a.e. g < 1 because
forany Ae A, [41—gdr =7A—(9-7)A=7A—-vA = pA > 0. By changing the values of
g on a 7-null set, we may assume that 0 < g < 1. From v =g -7 we get u = (1 —g) - 7. Let
A ={g <1}. Then pA®=0. Define f = %> on A and f =0 on A°. Then v(-NA) = f-p.
Let c=v—f-u=v(-nNA°. Then cA=0. Soo L pu.

For the uniqueness, we still let 7 = p + v. Suppose v = f - u + o for some measurable
f:Q — R4 and some measure o with o 1 pu. Let A € A be such that pA° = ocA = 0. Then

v=1af -pu+1gc-0, 7=14(f+1) -+ 1g-0.
Sov = (1A%+1Ac)‘7. By the uniqueness part of (i), if 7 = ¢g - pu+ p and uB¢ = pB = 0,

then
/ g

+1pe=1
f+1 A Bg+1

This implies that 7-a.e. 14 f = 1pg. Since pA¢ = B¢ =0 and pu < 7, we get p-a.e. f =g. O

14 +1gc, 7T —a.e..
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Radon-Nikodym theorem also extends to real measures.

Corollary . Let y be a o-finite measure on (2, A). Let v be a real measure on (2, A). Suppose
v &, i.e., forany A € A, pA =0 implies vA = 0. Then there a p-a.e. unique f : Q — R,
which is integrable w.r.t. p, such that v = f - p.

Proof. This follows from the Radon-Nikodym theorem and Jordan decomposition. O

Example (An important application). Suppose p is a probability measure on (2,.4), F is a
sub-o-algebra of A, and f : Q@ — R is A-measurable with u|f| < co. Let v = f- u. Then v is
a signed measure on (£2,.4), and v < p. Let ¢/ = u|r and v/ = v|z. Then 1’ is a probability
measure on (2, F), v/ is a signed measure on (2, F), and ' < p'. By the above corollary, there
is an F-measurable f’: Q — R with ¢/|f’| < oo such that v/ = f’- u. Then for any A € F,

/A fldp = /A Fldp =V A=vA= /A fdp.

Such f’ is p-a.e. unique, and is called the expectation of f conditionally on F with respect to
1.

A measure space (2, A, u) is called complete if for every B € A C Q with A € A and
uwA =0, we have B € A. Given a measure space (2,4, ), a pu-completion of A is the o-algebra

AP =0 (A,N,),

where N, is the class of all subsets of p-null sets in A. Note that NV, is closed under countable
union because if N1, Ng,--- € ./\/'u, there there are Ay, As,--- € A with N,, C A,, and pA, =0
for each n. Then |J,, N,, € U,, An € A, and U, An = 0. So U,, Ny, € N,..

Lemma 1.25. (i) A set A C Q is A*-measurable if and only if there exist A', A" € A with
A" C AcC A" and u(A”\ A') = 0. (ii) A function f from Q to a Borel space (S,S) is A*-
measurable if and only if there is an A-measurable map g : Q — (S, S) such that p-a.e., f = g.

Proof. (i) Let A¥ denote the set of A C Q such that the A’, A” in the statement exist. We
need to show that A* = A*. Clearly, A, N, C A AP, Tt suffices to show that A* is a
o-algebra. We need to show that (a) if A € .A“ then A° ¢ A“, and (b) if Ay, Ag,--- € A“
then J,, A, € A*. For (a), note that if A” ¢ A C A” with A", A” € A and p(A” \ A’), then
(A")e c A C (A")¢, and p((A")°\ (A7)¢) = 0. For (b), note that if for each n, A}, C A, C Al,
A A7 € A and p(A) \ A,) = 0, then A" := |J,A],,A" =, A, € A and satisfy that
ACcACA and 0 < p(A"\A') <>, n(AZ\ A)) =

(ii) If the g exists, then there is N € A with uN = 0 such that f = g on N¢. For any B € S,
we have

FB=((fTB)\N)U((f'B)NN) = ((¢"'B)\ N)U((f'B)NN).
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So (¢7'B)\N C f'BcC (¢g7'B)UN. Since (¢7'B)\ N,(¢g 'B)UN € A and uN = 0, by (i),
f~1B e A*. So f is A*-measurable.

Now suppose f is A*-measurable. Since S is a Borel space, we may assume that it is a Borel
subset of [0,1]. We first show that there is an R-valued A-measurable function g such that p-
a.e., f =g. If f =14 for some A € A™u, then by (i), there exist A’, A” € A with A’ Cc A C A”.
Then p-a.e., f = 14 := g. The statement then extends to simple measurable functions by
linearity. Now suppose f > 0. There exists a sequence of A*-measurable simple functions (f,,)
such that 0 < f,, 1 f. For each n, there exists an 4-measurable simple function g, such that
p-a.e. f, = gn. The sequence (g,) may not be nonnegative or increasing. However, we may
choose N,, € A such that uN,, = 0 and f,, = g, on NS. Let N = J,, N,. Then N € A and
uN =0,and 0 < g, T f on N€ Let g =1limg, on N° and = 0 on N. Then g is .A-measurable
and p-a.e., f = g. Finally, we may modify the value of g such that g takes values in S, and
still satisfies other properties that we want. Let NV € A be such that u/N = 0 and f = g on N€.
Then g € S on N€ since f takes values in S. So g~1.S C N¢. We now choose sy € S, and define
g such that g =g on g7'S € Aand §g = sg on (g715)°. Then §: Q — S is A-measurable, and
p-a.e., g = g, so p-a.e., f =g. O

It is natural to extend p to the completion A* in the way such that if A’ ¢ A C A” with
AA" € Aand p(A”\ A’) = 0, then uA = pA’. The definition is consistent, and defines a

measure on (£, A").
Exercise . Prove the statements in the above paragraph.

We are going to construct product measures. Let (S,S,u) and (T,T,v) be two o-finite
measure spaces. We want the product measure X v be a measure on S x T that satisfies

(uxv)(Ax B)=puAxvB, VYAcSand BeT. (1.14)
We will also show that such measure is unique. The p x v is called the product of p and v.

Lemma 1.26. For any measurable function f : S x T — Ry, and any t € T, the function
f(,t): S =Ry is g—meamgable. If we integrate f(-,t) against p and get pf(-,t) € Ry for each
teT, thent— pf(-,t) is T-measurable.

Proof. First suppose j is finite. Let C denote the set of C € S x T such that the lemma
holds for f = 1¢. Then C contains the 7m-system {A x B : A € §,B € T}. In fact, if
f = laxp, then for t € B, f(-,t) = 14, and for t € B¢, f(-,t) = 0. In either case f(-,t) is
S-measurable. Moreover, uf(-,t) = pAlg(t) is T-measurable. Using the linearity of integrals,
we easily see that C is a A-system. By monotone class theorem, C = S x 7. Thus, the lemma
holds for indicator functions. By linearity and monotone convergence, the statement extends
to nonnegative measurable functions.

Now we do not assume that p is finite. Since it is o-finite, we may express g = fi,, Where
each p, is a finite measure. The measurability of each f(-,¢) does not rely on the finiteness
of u. Since t — pu,f(-,t) is T-measurable for each n, the same is true for t — uf(-,t) =

2n bn (1) 0
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Theorem 1.27 (Fubini). The product measure p X v exists uniquely, and for any measurable
f:SxT =Ry or f:8%xT — R with (ux v)|f] < oo, we have

Guxf = [ ids) [ ss.optde) = [ viar) [ 16s. () (1.15)

Here the meaning of the second double integral is that we first fix ¢t € T, treat f(s,t) as a
function in s € S, and integrate the function against the measure u. The integral is a function
of t € T. We then integrate the function against the measure v. The procedure is valid for
measurable f : S xT — R, by Lemma 1.26. The meaning of the first double integral is similar.

Proof. By a monotone class argument involving partitions of S and T into finite measurable
sets, it is easy to see that there exists at most one product measure.
By Lemma 1.26, we may define

(uxv)C = /,u(ds)/lc(s,t)l/(dt), CeSxT.

Then p x v is clearly a measure that satisfies (1.14]). By uniqueness and symmetry, we also
have

(uxv)C = /I/(dt)/lc(s,t)u(ds), CeSxT.

Thus, ([1.15)) holds for indicator functions. By linearity and monotone convergence, the state-
ment extends to measurable R, -valued functions.
If f: 59 xT — R is integrable w.r.t. pu x v, then (u x v)|f| < co. By (1.15),

/u(dt)/|f(s,t)|u(ds) < 0. (1.16)

So for v-ae. t € T, [|f(s,t)|p(ds) < oo, Le., f(-,t) is integrable w.r.t. s. So we may define
[ f(s,t)p(ds) (as a function of t) outside a v-null set. Since | [ f(s,t)u(ds)| < [|f(s,t)|u(ds)
whenever f(-,t) is p-integrable, by , t — [ f(s,t)p(ds) is v-integrable. So the double
integral [v(dt) [ f(s,t)u(ds) is well defined. Similarly, [ u(ds) [ f(s,t)v(dt) is also well defined.

We may prove ((1.15) for such f by expressing f = fi — f—. O

Note that the product p x v is also a o-finite measure, and we may then define (u x v) x o
for another o-finite measures. If (Sk, Sk, ux), 1 < k < n, are o-finite measure spaces, then we
may use induction to construct the product measure g1 x --- X p, on Sq x --- x S, which is
the unique measure that satisfies

(1 X - X pn)(Ag x - x Ap) = [ eAr, VA €Sk, 1<k <n.
k=1

In the case all u,, are the same u, we write the product as u™. For the Lebesgue measure A on
R, its power u™ is called the Lebesgue measure on R”.

We may define the product of infinitely many measures, but need to assume that they are
all probability measures.
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Definition . Let (S;, Sy, ut), t € T, be a family of probability spaces. A probability measure p
on the product measurable space (I, St, [1; S;) is called the product of yy, t € T, denoted by
[T, , if for any finite A C 7', and Ay € Sy, A € A, we have

M“I&XII&%JIMM-

AEA teT\A AEA

By a monotone argument, we see that the product measure in the definition is unique, if
it exists. The existence of the infinite product measure (assuming S; are Borel spaces) will be
proved in the next chapter.

Definition . A measurable group is a group G endowed with a o-algebra G such that the
group operations in G are measurable. This means

(i) the map g+ ¢! from G to G is G/G-measurable;

(ii) the map (f,g) — fg from G? to G is 62/@—measurable.

If G is a topological group, i.e., endowed with a topology such that the group operations
are continuous, and has a countable basis, then it is a measurable group. We will mainly work
with the Euclidean space R™ as a measurable group.

Definition . For two o-finite measures p and v on a measurable group G, the convolution of
u and v, denoted by p * v, is the pushforward of the product measure pu x v under the map

(f,9) = fg.

The convolution p * v may not be o-finite. If both p and v are finite, u * v is also finite. If
11, o, p3 are finite measures, then the associative law holds: (pg * pa) * pug = p1 * (o * ps). If
G is Abelian, then the commutative law holds: p* v = v * p.

Definition . A measure p on a measurable group G is said to be right- or left invariant if
1o Tg_1 = p for any g € G, where T, denotes the right or left shift x — xg or x — gx. If G is
Abelian, right-invariance and left-invariance are equivalent.

Example . The Lebesgue measure A" is an invariant measure on R”, and any locally finite
invariant measure on R is a scalar product of \".

Lemma 1.28. Let (G,+) be an Abelian measurable group with an invariant measure \. Suppose
u and v are o-finite measures on G with A-densities f and g. Then pxv has a A-density f * g
given by

(F + g)(s /fs—t Adt) /f g(s—DAdE), seC. (1.17)

Proof. Let m: G x G — G be the map (s,t) — s +t. Let A € G. Then (s,t) € 7 A if and
onlyifte A—s:={z—s:x € A}. So

(s ) A= (e 0)(a4) = [ ulds) [ 1sals, thvian
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= [ tas) [ 1acatwian = [ utas) [ 1a-.@gr@
= [ ntds) [ 1arate - 3@ = [ F6)x@) [ 1atbrale - )30
= [Latonan) [ 1)t - 9N@s) = [ 14+ ) OMdo)

Here in the third line we use the invariance of A\. Thus, p * v has a A-density f * g. 0

Note that when G = R™ and A is the Lebesgue measure on R”, the f * g defined by
agrees with the convolution of f and g.

We now define LP-spaces for p > 0. Given a measure space ({2, 4, u) and p > 0, we write
LP = LP(), A, ) for the class of all measurable functions f : Q — R with

1£1lp == (ulfP)'P < oo

In particular, L' is the space of all integrable functions. We have a scaling property |[cf]|, =
lel|| f]lp for any c € R.

Lemma 1.30 (Holder inequality and norm inequality). For any measurable functions f and g
on €2,

(i) if p,a>1 and 1 =p~t +q7", then [|fglly < [Ifllpllgllq;
(ii) for allp >0, ||f +glp™ < 115" + llalp™

Proof. (i) If || ||, or ||gllq equals 0, then the inequality is trivial because fg = 0 a.e. If || f||, and
llg]lq4 are both positive, and one of them is oo, the inequality is also trivial because the RHS is oo.
So we may assume that || f||,, ||lgllq € (0,00). By scaling we may assume that || f||, = ||g|lq = 1.

The relation p~! + ¢~! = 1 implies that (p — 1)(¢ — 1) = 1. So for z,y > 0, y = 2P~ if
and only if z = y?~!. Consider two subsets of R%: Ay = {(z,y) : 0 <z < 0,0 <y < 2P71}
and Ay = {(z,y) : 0 <y < 50,0 < z < 3971}, By Fubini theorem, \2A; = Jo? xP~1dx and
A2A, = Oyo y9~dy. Suppose (x,y) € [0, 2] x [0,v0]. If y < 2P~ then (x,y) € Ay;if y > 2P~ L,
then o < y9~!, and (z,5y) € As. So [0, z0] x [0,70] C A1 U As. Thus,

xo Yo
zoyo = N[0, 0] x [0,90] < A2A1 + N2Ay = / P ldz +/ y"ldy = 2§ /p+ yi/a.
0 0

Applying the inequality to zo = |f| and yo = |g|, we get

Ifglly = plfllgl < p(FP/p+191"/a) = /p+1/qg = 1= [|fllpllgll4-

(ii) If p € (0, 1], the inequality follows from the inequality (x4 y)P < 2P +yP for any xz,y > 0
(because x — zP is a concave function). Suppose p > 1. If || f||, or ||g|l, = oo, the inequality
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trivially holds. Suppose ||£],,lglly < 0. Since [ +gf? < 2(Lf v gl)? < 2°(| P+ [gl?), we get
|l f + gll, < co. By applying (i) to ¢ := p%l, we get

I+l = / 1+ glPdu < / I+ g+ / gl + glPdu

<N Flpllf + 9P Mg + Ngllplllf + glP~ -
Note that

_ _ 1/q s _
17+ = ([ 1 +91 D)™ = (17 +gdn) 7 =15+l
So £ + gl < 1 + g5 (1l + llal). which implis (i) because [1£ + gl < oc. =

Since || f|l, = 0 if and only if a.e. f = 0. By the norm inequality, LP becomes a metric space

with distance p(f,g) = ||f — g|[5"" if we identify functions that agree p-a.e. From now on, L?

will be a space of measurable functions with || f||, < co modulus the “equal almost everywhere”
equivalence. We say that f, — f in L? if || f,, — f||, = 0. For p > 1, L? is a normed space. We
now show that LP is complete for all p > 0. Then for p > 1, LP is a Banach space.

Lemma 1.31. Let (f,) be a Cauchy sequence in LP, where p > 0, then for some f € LP,
[fn = fllp = 0.
pA1

Proof. First choose a subsequence (fy,) with >, || fn,., — fa,llp - < oo. By Lemma 1.30 and

monotone convergence, we get || Y, | fn,, ., — Fan M < 00, and so Dok [y — fril < 00 ace.
Hence (fy, ) is Cauchy in R a.e. So there is a measurable function f such that f,, — f a.e. By
Fatou’s lemma,

/|fn — fIPdp < limkinf/ | fro = fr|Pdp < Slip / |frn = fmlPdp — 0, n — oo.

Thus, f € LP and || f, — f|[, = 0. O

Lemma 1.32. For any p > 0, let f, f1, fo,--- € LP with f, — f a.e. Then f, — f in LP if
and only if || fullp = I|.f[lp-

Proof. 1f f, — f in LP, by the norm inequality,

£ = WM < WL fn = FIRM = 0,
and 50 | fully = Fllp- 16 [ fully — 1] then we define

gn =2 ful? +|fIP), g =2""|fP.

We have g, — g a.e. and pug, — pg = 2P| f||b < co. Since g, > |f, — f|P — 0, by dominated
convergence theorem, p|f, — f|P — 0, i.e., f, — f in LP. O
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Lemma 1.33. Given a metric space (S, p) and a finite measure p on (S, B(S)), for any p > 0,
the space Cy(S,R) of bounded real valued continuous functions on S is dense in LP(S,B(S), u).

Proof. Since p is finite, we have C, C LP(u). We need to show that the closure Cj, of C in
LP equals LP. First, for every open set G, there is a sequence (f,) in Cj such that f, — 1g
pointwise. We may choose f,,(s) =1 A np(x,G). Since 0 < f,, < 1, by dominated convergence
theorem, f, — 1¢ in LP. So 1¢ € Cy. By Lemma 1.16, for every B € B(S), 15 € C,. Since C}
is a linear space, it then contains all measurable simple functions. By monotone convergence,
we see that Cp contains all nonnegative functions in L”, and so equals LP. O

Because of Holder’s inequality, if f, g € L?, fg is integrable, and

| / fodp] < (11122

So L? is a Hilbert space with inner product: (f,g) := [ fgdu.
Another important space is L>°(u): the space of bounded measurable functions modulo
equivalence. It is a Banach space with the norm

1flleo = inf{a>0: |f] < ap—ac).
p

Theorem . Suppose p is a o-finite measure. Let p € [1,00). Let ¢ = Py ifp>1; and g =00
if p = 1. Then every continuous linear function T : LP — R corresponds to a unique g € L1
such that for any f € LP, T(f) = [ fgdu. Conversely, every g € L determines a continuous

linear function on LP defined by f — f fagdu. Moreover, for any g € L9,

| [ fgdu|
sup  ————— = lgllq-
rerrvioy I fllp

This means that LY can be identified as (LP)*, the dual of LP.

Sketch of the proof. Let T be given. Let {A,} be a partition of Q such that pA, < oo for
every n. For each n, we may define a real measure v, on A, such that v,A = T(14) for
Ae Aand A C A,. If pA =0, then 14, = 0 a.e. and so T(14) = 0, which implies that
vpA = 0. So v, < A. By Radon-Nikodym theorem, there is a measurable g, on A,, such that
A= 4 9ndp. Define g on Q such that g|a, = gn for each n. Then using Hélder inequality,
one can check that such g satisfies the properties. ]
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Exercise . Complete the above proof.

Fix a measurable space (S, 5). Let M(S) denote the spaces of o-finite measures on (.5, S).
For each B € S, we define a map 7 : M — R such that mp(u) = uB. We endow M(S) with
the o-algebra generated by the mappings np for B € S, i.e.,

o(rz (B(Ry)): B€S).
Then M(S) becomes a measurable space. Let P(.5) denote the space of all probability measures
on (S,S). Then P(S) = ng{l} is a measurable subset of M(S).
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Lemma 1.35. For any measurable spaces (S, S) and (T,T), the product mapping (u,v) — puxv
is measurable from P(S) x P(T) to P(S x T).

Proof. 1t suffices to show that for any C € S x T, mc(p x v) = (u x v)C from P(S) x P(T)
to R is measurable. Let C denote the class of all such C'. Then C is a A-system. On the other
hand, it contains the m-system {A x B : A € S, B € T}, which generates the o-algebra S x T.
By monotone class theorem, C equals S x T. O

Definition . Given two measurable spaces (S,S) and (T,T), a mapping p : S x T — R, is
called a (probability) kernel from S to T' if for every s € S, us := pu(s,-) is a (probability)
measure on (7, 7T), and for every B € T, s — u(s, B) is a measurable function on (.5, .5).

A measure i on T can be viewed as a kernel: pu; = p for every s € S. In general, a
kernel from S to T can be understood as a S-measurable measure on (T, T). For a nonnegative
measurable function f : T — R, we may define the integral uf = [ u(s,dt)f(t). The value is a
function on S.

Lemma 1.37. Let C be a m-system in T with o(C) = T. Let {us : s € S} be a family of
probability measures on (T,T). The following are equivalent.

(i) u(s,B) := ps(B) is a probability kernel from S to T';
(ii) the map s+ ps from S to P(T) is measurable;
(iii) for any B € C, s+ psB from S to [0,1] is measurable.

Proof. The equivalence between (i) and (iii) follows from monotone class theorem since the set
of B € T such that s — usB is measurable form a A-system. The equivalence between (i) and
(ii) is also straightforward because by the definition of the o-algebra on P(T'), the map s — ps
is measurable if and only if for any B € T, s — p,B is measurable. O

Lemma 1.38. Fiz three measurable spaces (S,S), (T,T), and (U,U). Let ju be a probability
kernel from S to T, and v be a probability kernel from S x T to U. Let f: S xT — Ry and
g: 8 xT — U be measurable. Then

(1) psf(s,-) is a measurable function of s € S;
(ii) pso (g(s,-))~! is a kernel from S to U;

(iii) we may define a probability kernel p @ v from S to T x U by
(nv)(s,C) = /M(s,dt)/u(s,t, du)le(t,u), CeT xU. (1.18)

Proof. (i) By Lemma 1.26, for every s € S, f(s,-) is measurable. So usf(s,-) is well defined.
If f=1axp for A€ S and B €T, then psf(s,) = 14(s)usB is measurable in s. This then
extends to all indicator functions by a monotone class argument, and to arbitrary f by linearity
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and monotone convergence. (ii) For every s € S, us o (g(s,+))™! is a probability measure on
U. For any B € U, (uso (g(s,))")B = ps(1p o g(s,-)). Since (s,t) — 1p(t) o g(s,t) from
S x T to Ry is measurable, applying (i) to the function f(s,t) := 1p(t) o g(s,t), we see that

— (s o (g(s, )) 1B is measurable. (iii) Applying (i) to the function f((s,t),u) := 1¢(t,u),
we see that [v(s,t du)lc(t u) is a measurable function of (s,t) € S x T. Applying (i) again
to the function f(s,t) := [v(s,t,du)lc(t,u), we see that the RHS of (1.18) is well defined
and measurable in s € 5’ for a fixed C € T x U. When s is fixed, by monotone convergence,
(L®wv)(s,-) is a measure on S x T'. Since pu(s,-) and v(s,t,-) are both probability measures, we
get (n@v)(s,T xU)=1. So p® v is a probability kernel from S to T' x U. O

Note that when p and v are probability measures, i.e., ;4 does not depend on s and v does
not depend on (s,t), then p ® v is the product measure p X v.
By linearity and monotone convergence, for any measurable f : T x U — Ry,

(L@ v)sf = / sdt/ (5. £, du) f (£, ).

We may simply write it as (u @ v)f = p(vf).
Suppose we have kernels py from Sp x -+ x Sg_1 to Si, k= 1,...,n. By iteration we may
combine them into a kernel p; ® - -+ ® pp from Sg to Sy x -+ x Sy, given by

(1 @ @ pn) f = pr(p2(--- (pnf) )

for any measurable f :S; x ---S, — R4. In the context of Markov chains, py, is often a kernel
from Si_1 to Sg, 1 <k < n, and we can get a kernel p; - - -, from Sy to S, given by

(1 pn)sB = (1 ® -+ ® pin)5(S1 X -+ X Sp_y x B)

:/M1(37d31)/ﬂ2(317d32>"'/Mn—l(sn—Qydsn—l)ﬂn(sn—hB)a s€Sy, BEeS,.

Exercise . Problems 1, 6, 7, 15, 19 in Exercises of Chapter 1.

2 Processes, Distributions, and Independence

We now begin the study of probability theory. Throughout, fix a probability space (£2,.A,P).
In the probability context, the sets A € A are called events, and PA = P(A) is called the
probability of A. Given a sequence of events, we may be interested in the events

limsup A, :ﬂ U Ay, liminf A4, = U m A,
n m>n n m>n

Since w € limsup A,, if and only if there are infinitely many n such that w € A,, we also
call limsup A,, the event that A, happens infinitely often, and denote it as {A,, i.0.}. Since
w € liminf A,, if and only if there is IV such that w € A, for all n > N, we also call liminf A,
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the event that A,, happens ultimately, and denote it as {A,, ult.}. By basic set theory, we get
{4, i.0.}¢ = {A¢ ult.}. We may understand {A4,, i.0.} and {A,, ult.} from another perspective.
We view every w € ) as a universe. The space (2 is a collection of parallel universes. For a
universe w, we understand A,, as something that we know whether it happens at the time n. If
w € Ay, then in the universe w, A4, happens at the time n. Then {4,, i.0.} is the collection of
universes in which A,, happen infinitely many times; and {4,, ult.} is the collection of universes
in which all A,, happen for n big enough.
By countably subadditivity of PP, for any m € N,

oo o

P{A,io} <P An < D PA,.
n=m n=m

If Y, PA, < oo, then ) 2 PA, — 0as m — co. So we get P{A,, i.0.} = 0. This is the easy

part of the Borel-Cantelli lemma.

A measurable mapping f from  to another measurable space (S,S) is called a random
element in S. It is called a random variable when S = R, a random vector when S = R", a
random sequence when S = R*°, a random or stochastic process when S is a function space, and
a random measure (kernel) when S is a class of measures. The notation P-almost everywhere
will now be called almost surely (abbreviated as a.s.). Let (S, S) be a measurable space and T'
be an abstract index set. Let U € S”. A mapping X from Q to U, which is U ﬂ?T—measurable,
is called an S-valued (random) process on T" with paths in U. By Lemma 1.8, X can be treated
as a family of random elements X; in the state space S.

Given a random element ¢ in (S, 5), the pushforward P o (~! is a probability measure on
(S, S), and is called the distribution or law of (. We write it as Law((). For two random elements

¢ and 7 in the same measurable space, the equality ¢ 4 n means that Law(¢) = Law(n).

If for every t € T', X; is a random element in a measurable space (St,gt). Then X = (X, :
t € T) is a random element in (], S, [[, S¢). For every finite subset A C T, the associated
finite-dimensional distribution is given by

pup = Law (X, : t € A).

For Ay C Ay C T, we use mp z, to denote the natural projection from HteAQ S to HteAl Sk,
which is measurable. We omit Ap when it is equal to T". Since (X; : t € A) = mp(X), the finite
dimensional distribution pp is the pushforwards of the law of X under 7y, i.e.,

pup = Law(Xy : t € A) = (mp ) Law (X).

Let P.(T) to denote the class of all nonempty finite subset of 7. Suppose A; C Ay € P.(T).
From mp, = 7, A, © A, We get

iy = (Tagay )iy, A1 C A € Pu(T). (2.1)

If we have a family of finite dimensional distributions ps, A € Pu(T), on [[,co St, and the
consistency condition (2.1)) holds for every pair Ay C Az € Pi(T), then we call (uaA)rep, (1) @
consistent family.
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Theorem 5.16 (Kolmogorov extension theorem). Suppose each Sy, t € T, is a Borel space.
Then for any consistent family (ual)acp, (1), there exists a unique probability measure p on
[Licr St such that for every A € Py(T), pa = (7A)xpt-

Remark . One important application of Kolmogorov extension theorem is the existence of
infinite product measure. Suppose T is an infinite index set, and for each t € T, u; is a
probability measure on a Borel measurable space (S, S;). We define the family

BA = Hut, A € P(T),

teA

where P, (T') is the class of nonempty subsets of 7. We have known that the finite product
measures are well defined. The consistency condition is easy to check. Since S; are all Borel
spaces, by Kolmogorov extension theorem, there is a unique probability measure u on [], S;
such that pp = (mp)« (1) for every A € Py(T). Such p is the product [ [, e

For a random variable (, the expected value, expectation, or mean of ( is defined as

E¢ = /CdIP’— /deaw(()

whenever either integral exists. The last equality follows from Lemma 1.22. By that lemma,
we also note that for any random element ¢ in a measurable space S and a measurable map
f:9 =R,

Ef(C) = /Q F(Q)dP = /S f(5)d Law(C) = /IR wd Law(f o),

if any integral exists. For a random variable ( and an event A, we often write E[(; A] for
E[14¢] = [, ¢dP.

Proof of Kolmogorov extension theorem. The uniqueness part follows from the monotone class
theorem.

We now consider the existence part. First assume that T = N. Every Borel space S is
Borel isomorphic to a Borel subset of [0,1]. Since the theorem depends only on the o-algebra
structure of Sy, we may assume that each S; is a Borel subset of [0,1]. Then each pa can be
also viewed as a probability measure on [0, 1]2.

The proof uses Carathéodory extension theorem. For each n € N, let F, denote the o-
algebra on [ [, .y Sk generated by the projection my,,, where N, = {1,...,n}. This means that
Fp is the family of subsets A C [0, 1]°° of the form B x [0, 1]*°, where B € B([0, 1])". Then F, is
increasing in n. Let R = |J,, F». Then R is a ring in [0, 1]*°, and B([0, 1])*° = o(R). We define
R — [0,1] such that if A = B x [0,1]* € F, for some B € B([0,1])", then nA = uy, B.
Such p is well defined thanks to the consistency condition.

We now show that p is a pre-measure. It is easy to see that p satisfies the finitely additivity.
It remains to show that if A1 D Ap D --- € R with pA, > e > 0 for all n, then (), 4, # 0.
Assume that Ay € F,,. Since F, is increasing in n, we may assume that (ny) is increasing
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in k. By inserting repeated sets (e.g., if ny = 2, no = 5, ng = 7, then we use a new sequence
(A1, Ay, Ag, Ay, Ay, As, As, ... ) to replace (A1, Ag, As,...)), we may assume that A, € F, for
each n. Suppose A,, = B, x [0, 1]* for some B,, € B([0,1])".

By Lemma 1.16, for each n, there is a closed set K, C By, such that un, (B, \ Kp) < 5.
Let A}, = K, x [0,1]>° C A,. Then u(A, \ A4},) < 57, and each A] is a compact subset of
[0,1]. Let A7 = (j_; A}, n € N. Then for every n, A} is a compact subset of A,, and
Ap \ AL Cj=1 (A5 \ A%). The latter implies that pu(A, \ A7) < Y% 57 < &, which together
with pA, > e implies that A # (. Since A] D AJ O --- and each A! is compact, we get
N, A% # 0, which together with A7 C A, implies that (), A, # 0.

Thus, p is a pre-measure on R. By Carathéodory extension theorem, p extends to a
probability measure on [0,1]°°. By the definition of u on R, for every n € N, ,u(H?Zl Sj %
[0,1]°) = pn, [T7=1 S = 1. So p][;Z, Sn = lim, u(ITj-; Sj x [0,1]%°) = 1. Thus, p is also
a probability measure on [[72, S,. For every A, € [[j_;S; € B([0,1])", we have u(A, x
[152,0185) = u(An x [0,1]%°) = pn, An. So pn, = (mn,)«(p) for every n € N. For every
A € P.(N), there is n € N such that A C N,,. By we have

pa = (T, A) (Bn,,) = (T, A )% © (T, )« (1) = (A )« (1)

So p is what we need. We now know that the theorem holds if T' is countable.

Finally, we consider a general T. Let P,(T") denote the class of all nonempty countable
subsets of T. We have proved that for any I" € P,(T'), there exists a unique probability measure
pr on [[,cp Sy such that for any finite subset A of I', pup = (7ra)«(pr). By the uniqueness, if
I'y € Ty € Po(T), then pur, = (mr,1, )«(r,). For each I € P, (T), let

Fr = (mp)! HSt = H?t X H S;.

teT tel teT\T

It is easy to check that UFePU(T) Jr is a o-algebra, and so equals [[,.p S;. We define  :
Urep, () F© — [0,1] such that if A has an expression T B € Fr for some T' € P,(T) and

B € [1;er St, then pA = puip B. The value of A does not depend on the choice of the expression
of A thanks to the consistency condition pur, = (7, r, )«(pr,). So g is well defined. From the
definition, ur = (7r).p for every I' € P, (T). If A € P.(T'), we may pick I' € P, (T') with I D A.
Then we get the desired equality pa = (7. )« © (Tr)spt = (TA)sft. O]

Remark . For the existence of infinite product measure, we do not need to assume that the S;
are Borel spaces. The proof still uses Carathéodory extension theorem. Following the proof of
Kolmogorov extension theorem and the construction of the infinite product measure, we need
to show that, if T'=N, and A; D Ay D --- satisfy that for some ¢ > 0,

A, = B, x H S;, for some B, € ng with (H 1i)Bn > e,
j=1

i>n j=1

for all n € N, then ), Ay, # 0.
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For n >m € Nand (v1,...,2m) € [T}, Sj, we define

n
By(z1, ..y xm) = {(®mi1, ..., 2n) € H Sj i (z1,22,...,2n) € By,

j=m+1
By Lemma 1.26, for each (x1,...,2,) € Hm Sj, Bn(x1,...,2m) is a measurable subset
of [[j 155, and (z1,...,2m) = (I[j_41 ,uJ)B (ml, ..., Tm) is a measurable function on
[T/, Sj. Forn > 2, let
n
Fél) ={z1€ 51: H n(x1) >€e/2}.

Then FQ(I) D Fg(l) D --- are measurable subsets of S;. By Fubini theorem,

n

e < (JHluj)Bn = /Ml (dz1) H n(71) < 2M1(F( N+ FY,

which implies that ulF,(ll) > ¢/2 for all n > 2. So pi(), Egl) > ¢/2, and then we have

nn>2 # @
Pick 77 € ﬂn22 F,gl). Let B,(Zl) = B, (Z1), n > 2. For every n > 3, and x3 € Sy, let

n

BV (w3) = Bn(T1,22) = {(3,...,2n) € [[ Sj : @1,22,35,...,2n) € Bn.
j=3

For n > 3, let

F,,(ZQ) = {33‘2 €85y H B(1 1‘2 > 6/4}

Using Fubini theorem and a similar argument as above, we get [),,~5 FT(LQ) # (). So we may pick

T2 ﬂn>3 F?. Then (ITj=5 1) Bn(T1,72) > /4 for any n > 3.
Repeatlng the argument, we can find a sequence T := (T1,T2,...) € [[, Sk such that
T € Sk, k € N, and

H 1i)Bm(Z1,...,Tp) >€/2", Vm>neN.
Jj=m+1

We now show that z € [, An. Pick any n € N, since A4,, = B,, X H;‘;nﬂ Sj, to prove that
T € A,, it suffices to show that (Zi,...,Z,) € B,. To prove this assertion, note that from
tn+1Bnt1(T1, ..., Ty) > 0 we get Bp1(T1,...,%n) # 0. So there is x,41 € Sp41 such that
(T1y.. Ty, Tnt1) € Bpg1. From A,y C Ay, we get Byi1 C By, X Spq1, which then implies

(fl,. ..,fn) € B,.
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A random vector ¢ in R™ is called integrable if every component ¢, 1 < j < n, is integrable.

Lemma 2.5 (Jensen’s inequality). Let ¢ be an integrable random vector in R™. Let f : R™ — Ry
be convez, i.e.,

floz+ (A =ply) <pf(x)+ (1 -p)f(y), zyeR", 0<p<L
Then f(EC) < E[f(¢)]-
Proof. We use a version of Hahn-Banach Theorem, which asserts that

f(x) = sup L(x),
L

where the supremum is over all affine functions L : R®™ — R with L < f. Since for every affine
function L < f,

L(E¢) = E[L(C)] < E[f(¢)],
taking the supremum over all affine functions L < f, we get f(E¢) < E[f(()]. O

For a random variable ¢ and p > 0, the integral E[C|P = ||¢||} is called the p-th absolute
moment of (.

Lemma 2.4. For any random variable ¢ > 0 and p > 0,

ECP = p/ooo P{¢ > t}tP~ dt = p/oo P{¢ > t}tP~Lat.

0

Proof. By Fubini’s theorem and change of variables,

ECP = E/OO 1{¢? > s}ds = /OOIEI{C > sY/P}ds
0 0

= /OO E1{¢ > t}ptP~1dt = p/oo P{¢ > t}tPat.
0 0

Here in the third “=" we used s = tP. The proof if the second expression is similar. ]

Exercise . Show that ||C||, < ||C]|4 if p < ¢. Here we use the fact that PQ2 = 1. So the LP-spaces
are decreasing in p.

The covariance of two random variables ,n € L? is given by

cov(¢,n) = E(¢ = EC)(n — En) = E¢n — ECEn.

It is clearly bilinear. The variance of ¢ € L? is defined by

var(¢) = cov((, ¢) = E(¢ — E¢)* = E¢* — (E()*.
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By Cauchy inequality,
| cov(¢,m)|? < var(¢) var(n).

We say that ¢ and 7 are uncorrelated if cov((,n) = 0.

For any collection (; € L?, t € T, the associated covariance function ps; = cov(Cs, (t), 8,t €
T, is nonnegative definite, in the sense that for any n € N, ¢1,...,t, € T, and a1,...,a, € R,
Zi,j a;ajpy;+; > 0. This is because

Z aijpe;t; = Z aia;E(G, — E¢,) (G — EG) Z a;(C, —E¢,))” > 0.

Example . We now study the following distributions (i.e. probability measures) on R. In each
case below, we suppose ( is a random variable with Law(§) = p. Recall that E¢ = [ xdu and
var(¢) = E¢? — (E¢Q)? = [2?du — ([ #dp)? are determined by p. We first consider discrete
distributions, which are combinations of Dirac measures.

(i) The degenerate distribution at xg. This is the point mass u = d5,, o € R. We have
E¢ = [ 2ddy, = xo and E¢? = [ 2%dd,, = 23 and so var(¢) = 0.

(ii) The Bernoulli distribution with parameter p € [0,1]. The measure, denoted by B(p),
has the form p = pd; + (1 — p)dg. We have E¢ = p(1) + (1 — p)(0) = p and E¢? =
p(12) + (1 = p)(0%) = p. So var(¢) = p — p*.

(iii) The binomial distribution with parameter n € N and p € [0, 1]. The measure, denoted by

B(n,p), has the form p = > 3_,p*(1 — p)»=* (Z’)c?k It is a probability measure because
Zﬁzopk(l _P)n_k(Z) =(p+ (1 —p))" =1. We have

n!
EC= Zp nkk() Zp (1=p (k—l)!(n—k)!

L . n—1)!
angpk '1-p) k(k (1)!(n) Timles
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(iv) The geometric distribution with parameter p € (0,1]. The measure, denoted by Geom(p),
has the form pu = 372, (1 — p)*"Ipdg. It is a probability measure because > 7o (1

p)Flp = 1_(’1’_}7) = 1, where we used ) ;2 zk = ﬁ for |x| < 1. We have
P 1
EC=S k(1 - _r ____
Z T 0-0-p2
E(¢? = ¢) =D k(k =11 —p)"'p
k=1
- 2p(1 —p) 2(1 —p)
—p)Y k(k—-1)(1—-p)F 2= = :
)Z ( )( ) (1—(1—p))3 p2
Here we used the equalities Y oo, ka*~1 = ﬁ and Y o2, k(k — 1)zb"2 = ﬁ for

|z| < 1, which can be proved by differentiating the equality > 3o 2% = ﬁ Thus,
var(() = B(¢? — () + B — (B = 252 4+ 5 = o = 5.

PP p?
(v) The Poisson distribution with parameter A > 0. The measure, denoted by Pois()), has
the form p = "7 e~ k' 5k It is a probability measure because y po 0% )‘k = ¢*. We have

> Ak_l

AF
EC:Zkﬁz)\Zm:)\;
k=0 k=1

e )\k ) > )\k—? )
:Zk(k—i)HZA Z(k_2)! =2,
k=0 k=2

Sovar(() =E((? =) +EC— (EO)?2 = A2+ X - A2 =\

Below are continuous distributions on R, which have density functions w.r.t. the Lebesgue
measure \. In each example below, f is the A-density of Law(¢). Then E¢ = [, f(x)dz and

EC? = [p2°f(2)
(i) The uniform distribution Ula,b] for @ < b € R. The density is f(z) = ;= 14 Then
B¢ = L [Pade = ;1-20h = @b and B2 = L [Palde = L2 = %(a +ab + b?).

So var(¢) = %(a2 +ab + b?) — (aTer)Q _ (a;2b)2'

(ii) The exponential distribution Exp(\) with parameter A > 0. The density is 1[0700))\6_*”.

It is a probability measure because fooo e Mdxr = 1. We have

[o.¢] o0 1
E¢ = / zhe Mdy = —/ (—e M)de = =;
0 0 A

0o S 2
E¢? = / 22 Xe Mdy = —/ Qm(—e_’\”)da: = -
0 0 A

Here we use integration by parts. So var(¢) = E¢? — (E¢)? = %
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(iii) The normal distribution N(u, 0?) with parameter u € R and o > 0. The density is

1 _(a—pw)?
r) = —e¢ 202
/(@) \V2mo

It is a probability measure because using a change of variable x = p + /oy, we get

)2
! /e_( 27 dx = L /6_92/26@,
2wo JR V2 Jr

and by Fubini’s theorem and using polar coordinate,

9 27 e’}
( / 6—y2/2dy) _ / / e 2V 2 rdy = / / e 2rdrdd
R RJR 0 0
o0

= 27r/ e Prdr = 27r(feT2/2)|8° = 27.
0

Using the same change of variable x = p + oy, we get

1 (z—p)? 1 2
E¢ = re 202 dr = —— +oy)e Y 124y = :
¢ 5 /R o /R (1 +oy) y=p
1 (z—p)? 1 2
E¢? = /:p2e 202 dx = / +oy)2e v /2g
¢ 570 e o R(u Y) y

1 2
_ 2 2_—y2/2
=p+o y“e dy.
\/27r/

Here we used that fR ye‘yQ/ 2dy = 0 because the integrand is odd. Thus,

1 2 1 2
var(¢) = 0 —— [ yPe Y Pdy =o*—— [ e ¥ 2dy = o2,
V2T / V2

where we used integration by parts: differentiating y and integrating ye‘yz/ 2,

We understand the degenerate distribution d, as a normal distribution N(u,0), which
does not have a A-density. In this case it trivially holds that E¢ = p and var(¢) = 0. If
Law(¢) = N(p, 0%), then for any a,b € R, Law(a¢ + b) = N(au + b, a’a?).

Exercise . Prove the following

(i) The binomial distribution B(n,p) is the n-th convolution power of the Bernoulli distri-
bution B(p), i.e.,

B(p) * ---* B(p) = B(n,p).

n copies
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(ii) The Poisson distributions satisfy that for any A;, A2 > 0,
Pois(\1) * Pois(A\2) = Pois(A1 + A2).
(iii) The normal distributions satisfy that for any pq, uo € R and vy, vy > 0,
N(p1,v1) * N(pz, v2) = N(p1 + p2, v1 + v2).

Example . There exists a probability measure on R, which is not a combination of a discrete
distribution and a continuous distribution. Consider the Cantor 1/3 set:

C:{Zg—z:ane{O,Q},neN}.
n=1

It is Borel isomorphic to the product space {0,2}>°. Let f : {0,2}*° — C be the bijective
measurable map
“a
n
Fl(amnen) = D2 52,
n=1
Let 1 = £(80+02) be a probability measure on {0,2}. We have known that the product measure
> exists on {0,2}°°. The pushforward measure f,u> is a probability measure on C. Then
feu(C¢) = 0. We know that \(C) = 0. So f.u®> L X\. We also see that f,u has no point
mass, i.e., there does not exist x € C' such that f.u*>°({x}) > 0, because > has no point mass.

Exercise . Let i1 = 5(Jp + 61) be a probability measure on {0,1}. Let f : {0,1}° — [0,1] be
defined by

F((@n)ner) = > 5.

n=1

Prove that f is measurable, and f,u> = A(- N[0, 1]).

We now define and study the notation of independence. The events A;, t € T, are said to
be (mutually) independent (w.r.t. P) if for any distinct indices t1,...,t, € T,

P[ﬁ Ay] = f[ PA,,. (2.2)
k=1 k=1

We say that a class of families C¢, t € T, are independent, if when we pick an A; in every Ci,
then Ay, t € T, are independent. We do not require the independence between events in the
same family C;. The random elements (¢, t € T', are said to be independent if the independence
holds for the generated o-algebras o((;), t € T.

Lemma 2.10 (Strengthened version). For each t € T, let (; be a random element in a mea-
surable space (S;, Sy). Let ( = (¢ =t € T) be a random element in [[,cq Se. Then (, t € T,
are independent iff

Law(¢) = | [ Law().

teT
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Proof. This is a strengthened version of Lemma 2.10 of the textbook, which assumes that T is
finite. We leave the proof as an exercise. O

Corollary . Let T be an arbitrary index set. Suppose for eacht € T, piy is a probability measure
on a Borel space (Sy, St). Then there is a probability space (2, A,P), and an independent family
of random elements (;, t € T', defined on it such that Law((;) = u¢ for each t.

Proof. We have shown that the product measure [],cq e on ([T,ep Sts [T;eq St) exists. Let
(A P) = (IT;er St [Lier St> Tlver 11¢). For each t € T, let the random element (; : Q — S
be the projection map ;3. Then the random element ¢ = (¢; : t € T) from  to [[,cp St = Q
is just the identity map. So Law((;) = (7))« [[ser s = pt, t € T, and Law(C) = [[;cp p2¢- By
Lemma 2.10, ;, t € T, are independent. O

Lemma 2.6. If the w-systems Cy, t € T, are independent, then so are the o-fields F; := o(Cy),
teT.

Proof. We need to show that for any distinct indices t1,...,t, € T, and any A;, € Fy,,
1 <k <n, holds. By assumption, it is true if A;, € C;,, 1 < k < n. By a monotone
class argument, we may first weaken the assumption on A;, from A; € C;, to Ay, € F,, and
then weaken the assumption on Ay, from A, € Cy, to Ay, € Fi,. Repeating the argument until
we weaken the assumptions of all A;, from A;, € C;, to Ay, € Fy.. Then we get the desired
equality. O

Corollary 2.7. Let F;, t € T, be independent o-algebras. Let Rs, s € S, be a partition of T.
Then the o-algebras Fy = Vier, Fi := 0(User, Ft), s € S, are independent.

Proof. For each s € S, let Cs denote the set of all finite intersections of sets in UtE R. Fi. Then
each Cy is a m-system, and it is straightforward to check that Cs, s € S, are independent. By
Lemma 2.6, we have F, = 0(Cs), s € S, are independent. O

Pairwise independence between two objects A and B will be denoted by Al B. In gen-
eral, pairwise independence between all pairs of A;, t € T, say, does not imply the (total)
independence of the group A, t € T.

Lemma 2.8. The o-algebras F1,Fa, ... are independent iff Vy<pFi L Fni1 for all n.

Proof. The “only if” part follows from Corollary 2.7. For the “if” part, it suffices to show
that for any n € N and Ay € Fi, 1 < k < n, we have P(,_; Ay = [[;_; PA;. This follows
from induction and the fact that P(;_, Ay = PA, - IP’ﬂZ;i Ay, because Fp, Il Vi<n—1 Fk, and
NrZi Ak € Vicn-1Fk. O

A o-algebra F C A is called (P-)trivial if for any A € F, PA € {0,1}.

Lemma 2.9. (i) A o-algebra F C A is trivial iff FALF. (i) If F is trivial, and ¢ is an
F-measurable random element in a separable metric space S, then  is a.s. constant.
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Proof. (i) First suppose F is trivial. Let A,B € F. Then PA and PB equal to 0 or 1. If
PA = 0, then since AN B C A, we have P[AN B] = 0 = PA - PB. Similarly, if PB = 0,
then P[A N B] = PA - PB. Now suppose PA = PB = 1. Then PA® = PB¢ = 0. Thus,
P[A°U B =0. SoP[ANB] =1-P[(ANB)?| =1-P[A°U B®] = 1. If FIF, then for any
A€ F,PA=P(AN A) = (PA)?, which implies that PA € {0,1}, and so F is trivial.

(ii) Suppose F is trivial. For each n € N, we may partition S into mutually disjoint
countably many Borel sets B,, j of diameter < 1/n. Fix n € N. Since P[( € B, ;| € {0,1} for
each j, and (By, ;) is a partition of S, there is j, such that P[¢ € By, ;,] = 1. So there is a null
event N, such that ( € B, ;, on N. Let N =J,, N,. Then N is a null set, and ¢ € (,, Bnj.
on N°¢. Since diam(B,, j,) < 1/n for all n, ¢ is a constant on N°. O

Lemma 2.11. Let ¢ and n be independent random elements in measurable spaces S and T,
and let f : S xT — R be measurable. If f > 0, then Ef(¢,n) = E[E[f(s,n)]|s=¢]. Here
the RHS means that we first fix s € S and integrate the random wvariable f(s,n), which is
a measurable function in s € S by Lemma 1.38; then we compose it with ( to get a random
variable, and integrate it. If we do not assume that f > 0, but assume that either E|f({,n)| < oo
or E[E[f(s,n)]|s=¢] < oo, then the equality also holds.

Proof. This lemma essentially follows from Fubini’s theorem. We now only work on the case
that f > 0. Let p and v be the laws of ¢ and 7, respectively. Since (17, by Lemma 2.10,
Law(¢,n) = p X v. By Fubini’s theorem,

Eﬂam:/j@wuxwwﬂw:/pw@/fwwwﬁ>

= 5[ [ 15, 00(d0)]] = EBLS (5, ]l
The case without assuming f > 0 follows from linearity. O
Corollary . For independent random variables (1,...,Cp,
1. (i) if Gy e vy G € LY, then By G = [1he; ECk;
2. (ii) if 1,y G € L2, then var(3p_y Ce) = dopey var(Ce).

Proof. By induction and Corollary 2.7, it suffices to prove the case n = 2. Suppose (1l 7n. To
prove E¢n = ECEn, we apply Lemma 2.11 with f(z,y) = xy. For the variance, we note that

var(¢ + 1) — (var(¢) + var(n)) = 2cov(¢,n) = 2E(¢ — EC)(n — En) = 2E(¢ — EQ)E(n — En) = 0,
where the second equality holds because ¢ — EC_ILn — En. So var(¢ +n) = var(¢) + var(n). O

Corollary 2.12. Let (,n be independent random elements in a measurable group. Then Law({+
n) = Law(() * Law(n).
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Proof. By Lemma 2.10, Law(({,n) = Law(¢) x Law(n). So Law (¢ +7) equals the pushforward of
Law(¢) xLaw(n) under the map (z,y) — xy, which is the convolution of Law({) and Law(n). O

By an exercise, if (3,...,(, are independent random variables with Bernoulli distribution
B(p), then (3 +- - -+, has the binomial distribution B(n, p). Suppose ¢; and (3 are independent
random variables. If they have Poisson distributions Pois(A1) and Pois()A2), respectively, then
(1 + (2 has Poisson distributions Pois(A; + A2). If they have Normal distributions N(u1,v1) and
N(p2, v2), respectively, then ¢; + (2 has Normal distributions N(u1 + 2, v1 + v2).

We now study some zero-one laws. Given a sequence of o-algebras Fi, Fa, ..., the associated
tail o-algebra is defined by
T=V F=o(lJ Fn)-
n k>n n k>n
Example . Suppose (1,(2... is a sequence of random variables, and F,, = o((,) for each n.

Let T be the tail o-algebra. Then

(i) The set A; of w € Q such that lim,, (;,(w) converges is measurable w.r.t. 7.
(ii

) The set Ay of w €  such that ) (,(w) converges is measurable w.r.t. 7.
(iii) The set of w € O such that 1 >°7_; (x(w) converges is measurable w.r.t. 7.

)

)

(iv) If we define n; = lim,, (;, on Aj, then 7y is A} N T-measurable.
(v) If we define 2 = >, (n on Ay, then 72 may not be A N T-measurable.

(vi) If we define n3 = lim,, % > p—1 Gk on Ag, then n3 is A3 N T-measurable.

Theorem 2.13 (Kolmogorov’s zero-one law). Let Fi, Fa,... be independent o-algebras in A.
Then the associated tail o-algebra is trivial.

Proof. For n € N, define 7, = \/;o,, Fx- Then T = (), T,. By Corollary 2.7, for any n,
Fiy..yFn, Tn are independent. Since T C T,, T, F1,-..,Fn are independent for all n. Then
we conclude that, 7, Fi, Fa, ... are independent. By Corollary 2.7 again, we get T_IL\/>2 | F.
Since T C /52y Fn, we get T_1LT. By Lemma 2.9 (i), 7 is trivial. O

Corollary 2.14. Let (i,(2,... be independent random variables. Let S, = >}, (e, n € N.
Then each of the sequences (Cn), (Sn) and (LS,) is either a.s. convergent or a.s. divergent. If
(Co) or (£S,) a.s. converges, then the limit is a.s. constant.

There is another zero-one law, which works best for the sum of independent and identically
distributed (i.i.d.) sequences of random vectors.

A bijective map p : N — N is called a finite permutation of N if there is N such that p, = n
for n > N. A finite permutation p of N induces a bijective map T}, : S — S given by
Tp(s1,52,...) = (Spy,Spgy---). A set I C S is called symmetric if Tp_ll = [ for all finite
permutation p of N. Let (5,S) be a measurable space. Then for every p, Z, := {I € 57
Tp_ll = I} is a o-algebra. So the set of symmetric I € S form a o-algebra 7 = ﬂp 1,, which

is called the permutation invariant o-algebra in S°°.
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Example . Suppose G is an Abelian measurable group (e.g. R%). Let B C G be measurable.
Then the set

n
Ep ={(v1,v2,...) €G: ka € B for infinitely many n}
k=1
belongs to the permutation invariant o-algebra.

Theorem 2.15 (Hewitt-Savage zero-one law). Let (1,(2,... be an i.i.d. sequence of random
elements in a measurable space (S,5), and let ¢ = (¢1,...,Cn). Let T be the permutation
mvariant o-algebra in S, Then ¢~YT is trivial.

Lemma 2.16. Given any o-algebras F1 C Fo C --- in S, a probability measure p on VoJFy,
and a set A € V. JFy, there exist a sequence Ay, As,--- € |JF, with u(A,AA) — 0.

Proof. Let D denote the set of A € V,F, with the stated property. Then D is a A-system
containing the m-system C := |JF,. Here we use the fact that u(AAB) = |14 — 1p|[i. By
monotone class theorem, D contains o(C) = V,,F,. O

Proof of Theorem 2.15. Let p =Po(~!. Set F,, = S" x % n e N. Note that F; C Fp C

and Vp,F,, = S° D Z. For any I € Z, by Lemma 2.16 there is a sequence I;, of the form Bj, x SOO
with B, € §" such that pu(I,AI) — 0, and so plp, — pl. Writing I, = S™ x B, x §°°, then by
the symmetry of u and I, we have ul, = pul, and u(I AT) = p(I, AI) — 0. Hence

1((In N L)AI) < p(InAI) + p(I,AI) — 0
because (AN B)AC C (AAC) U (BAC). So u(I, N1,) — pl. By independence of ¢, we have

w(In N 1) =P[(Cr, ..., Cn) € By (Cogts -5 Con) € Bu] = P[(C1, ..., Cn) € Bnl? = u(In)?.
So p(I, N I,) = pu(I)2. Then we get ul = (uI)? and so ul € {0,1}. O

Corollary 2.17. Let (i, o, ... be i.i.d. random vectors in R%, and put S, = (1 +---+C,. Then
for any B € B(R?), P{S, € B i.o.} =0 or 1.

Note that Kolmogorov’s zero-one law does not apply here because {S,, € B i.0.} is not a
tail event.

The sequence (S,) is called a random walk on R?. For a more specific example, we may
consider the case that every (; has the distribution

1 d
ﬁ Z Z 50'€j )

oe{+,~-}J=1

where e; is the vector in R? whose j-th component is 1 and all other components are 0. In
this case (S,) is called a simple random walk on Z¢. By Corollary 2.17, for every vy € Z,
P{S, = vy i.0.} = 0 or 1. By translation invariance of Z%, one easily see that the value of
P{S,, = vg i.0.} depends only on d. If the value is 1, the random walk is called recurrent; if the
value is 0, the random walk is called transient. It turns out (not easy!) that, when d < 2, the
random walk is recurrent, and when d > 3, the random walk is transient.
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Theorem 2.18 (Borel-Cantelli lemma). Let Ay, As,--- € A. Then ), PA, < oo implies that
P[A,, i.0.] =0, and when the A, are independent, P[A, i.0.] = 0 implies that ), PA, < oco.

Proof. We have proved the first assertion. Now suppose A,, are independent. Then A¢, are also
independent. For any n < N € N,

N N N
1-P | J An =P [ 45, = [] 1 -PA4,,).
Letting N — oo, we get
1-P ) An =[] (1 - PA,).

If P[A, i.0.] =0, then there is n such that 1 —PJ;_, A, > 0, which implies by calculus that
Yo PA,, < o0, and so ), PA, < cc. O

For x = (x1,...,24) and y = (y1,...,94) in R?, we write < y (resp. z < y) if 2 < yi
(resp. o1, < yi) for all 1 <k < d. For x < y € RY, we define

d d

(—ooyl = {zeR:z <y} = [[(~ooum) (2y) = (z € R 12 < = <y} = [ (wn, .
k=1 k=1

For a random vector ¢ in R, we define the associated distribution function F by
F(z) = P[¢; < 2,1 < j < d] = Law(C)(o0, a].
By a monotone argument, we get

Lemma 2.3. Two random vectors in R? have the same distribution iff they have the same
distribution function.

We may use F' to calculate u(x,y]. For d =1, u(x,y] = F(y) — F(z). For d > 2, we need
an inclusion-exclusion argument.

Exercise . Prove that for any z < y € R%,

playl = Y (FDPIFES), (2.3)

Sc{1,...,d}
where z° € R? such that z,f =a,if k€ S and z,f =y ifke&s.
Then F satisfies the following properties.
(i) F(x,y] >0 for every x < y € R where we define F(x,y] to be the RHS of .

(ii) F is right-continuous in the sense that lim,, F(z) = F(y) for any y € RY, where z | y
means that z >y, and xp — yi for all 1 < k <d.
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(iil) limpmin g, ——o0 F'(z) = 0.
(iv) limpinz,—oo F'(z) = 1.
Here (ii)-(iv) follow from the continuity of ;1 and the fact that pu(R?) = 1.

Theorem 2.25-2.26. If F' satisfies (i-iii), then it is the distribution function of some o-finite
measure u on R, If F also satisfies (iv), then u is a probability measure.

Proof. We define a ring R on R? to be the class of disjoint unions of sets of the form (x, ] for
r <y € R% Define u : R — R, such that if A has a disjoint union expression U;-nzl(:cj 7],
then

pA=> F(a/,y].
7j=1

Such p is well defined and satisfies finitely additivity. We then show that u is a pre-measure.
Suppose A1 D Az D --- € R with pA, > ¢ > 0 for all n. We need to show that [, A, # 0. For
every n € N, we may choose A/, € R such that A, C A, and u(4,\ 4,) < 3=+ Here we use the
fact that if 2" | = < y, then F(2",y| — F(z,y], which follows from the right-continuity of F'.

Let A” = Ain---NA,. Then A” C A, for each n, and A] D A} D ---. Since 4, \ A? C
Ur—1(Ax \ AL), we get p(An \ A7) < 30 (A \ AL) < D05_; 5% < & From pA, > ¢ we get
pA” >0, and so A # (). Since each A” is compact and A} D A% O ---, we get (), A” # 0,
which together with A” C A,, implies that ), A, # 0. So u is a pre-measure on R. We may
then use Carathéodory extension theorem to extend p to a measure on R%. It is o-finite because
p(x,z +1] < oo for every z € Z4, where 1 = (1,...,1).

By (iii) we have, for every y € R?,

Fly)= lim  Fz,yl= lim p(e,y] = p(-o0,y.

min zx——00 min zp——00
So F'is the distribution function of . If (iv) holds, then

pRY = lim p(—o0, (n,...,n)] = lim F(n,...,n) =1,

n—oo n—oo

which implies that p is a probability measure. O

Exercise . Problems 4, 5, 8, 12 of Exercises of Chapter 2.

3 Random Sequences, Series, and Averages

We still fix a probability space (€2,.4,P), and assume that all random elements are defined on
this space. We will study several different concepts of convergence of random variables: almost

. . P e
sure convergence, (, — ¢ a.s., convergence in probability, ¢, — (, convergence in distribution,

d .
Cn — ¢, and convergence in LP.
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Definition . Let ¢, (1,(2,... be random elements in a metric space (.5, p).

(i) We say that ¢, converges almost surely to ¢, and write (,, — ( a.s., if there is a null event
N such that p(¢,(w),((w)) — 0 for every w € Q\ N.

(ii) We say that (, converges in probability to ¢, and write (, LA ¢, if for every ¢ > 0,
limp, 00 P{p(Gn, ¢) > €} = 0.

(iii) We say that ¢, converges in distribution to ¢, and write ¢, 4 ¢, if for every f € Cp(S,R),
the space of bounded real-valued continuous functions on S, we have Ef((,) — Ef(().

(iv) In the case that S = R, we say that (,, converges to ¢ in LP for some p > 0, if {, (1, (2, €
LP and [|¢n = C[lp = (El¢n — ¢[P)V/P — 0.

Lemma 3.1 (Chebyshev inequality). For any measurable ¢ : Q@ — Ry and r > 0,
P(C2 1) < G
Proof. Since ¢ > rlgcs,y, we get B¢ > E(rlyes,y) = rP{( > r}. O
Exercise . Prove that ¢, — ¢ in LP for some p > 0 implies that (, LA C.
Lemma . For (,(1,(s,... in the above definition, C, LN Ciff E[L A p(Cn, ¢)] — 0.
Proof. For every ¢ € (0,1), from €1{p((n,() > e} < 1A p(¢n, Q) < 1{p((n, () > €} + €, we get
eP{p(Cn, ) > e} SE[1 A p(Cn: Q)] < P{p(Cn; ¢) > €} + €.
These inequalities imply the equivalence. O
Remark . The lemma means that the convergence in probability is determined by a metric
pv (¢ m) = E[LA p(¢,n)]-
This is in general not true for almost surely convergence

Lemma 3.2 (subsequence criterion). Let (,(1,C2,... be as before. Then (, L C iff every
subsequence N' C N has a further subsequence N" C N’ such that (, — ¢ a.s. along N”. In
particular, the almost sure convergence implies the convergence in probability.

Proof. Suppose ¢, L ¢. Then E[1 A p(¢n,¢)] — 0 by the above lemma. Suppose N’ C N.
Then E[1 A p(¢n, ¢)] — 0 along N’. We may then choose a subsequence N” C N’ such that
> nen E[1A p(¢n, ()] < oo. By monotone convergence theorem, we get

E[ > 1A p(¢n, Q)] < o0,

neN"
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which implies that a.s. >, v 1A p(¢n, () < 00. So a.s. ¢, — ¢ along N”. On the other hand,

suppose (p 7F4)> ¢. Then E[1 A p(¢n,€)] # 0. So there is € > 0 and a subsequence N’ C N such
that E[1 A p(¢n, ()] > € for any n € N'. It there is a further subsequence N” C N’ such that
Cn — € a.s. along N’ then since 1 A p((,,() — 0 a.s. along N”, by dominated convergence
theorem, E[1 A p((n, ¢)] — 0 along N”, which is a contradiction.

Finally, if ¢, — ( a.s. then for any N’ C N, (, — ¢ a.s. along N'. So we get (, LA C. O

Remark . From Lemma 3.2, we see that the condition that ¢, — ¢ a.s. in dominated conver-

gence theorem can be further weakened to ¢, LN ¢. This means that if ¢, — P, |(,| < n for
all n, and En < oo, then E(, — EC.

Example . We may find a sequence of random variables ¢, on ([0, 1], \) such that ¢, L 0 but
(n does not a.s. converge to 0. In fact, we may choose (,, = 14, , where

AL =1[0,1], Ay =1[0,1/2), As=[1/2,1],

Ag= (014, As=[1/4,2/4], Ag=[2/4,3/4], A;=[3/4,1],...
The general formula is: for 28 <n < 2M1 1 ¢ = Lin i1y We observe that ||(,||1 = 27F
2 T2

if 28 < < 281 —1. S0 ¢, — 0 in L', which implies that ¢, Bo. However, for every t € [0, 1],
there are infinitely many n such that ¢, (¢t) — 1. So (, does not a.s. tend to 0.

Lemma 3.3. Let S and T be two metric spaces. Suppose (, L CmS,and f: S =T be
continuous. If ¢, LN ¢ in S, then f((n) L f(€)inT.

Proof. By Lemma 3.2, every subsequence N’ C N contains a further subsequence N” C N’
such that ¢, — ¢ a.s. in S along N”. By the continuity of f, we see that f((,) — f(¢) a.s. in

T along N”. Thus, by Lemma 3.2 f((n) = f(¢) in T. O

Corollary 3.5. Let (,(1,(2,... andn,n1,n2,... be random variables with (, LN ¢ and ny LN 7.

Then alp+bn, — al+bn for any a,b € R and (,n, — ¢n. Furthermore, ¢, /1y, LN ¢/n whenever
Nn and 1 do not take value zero.

Proof. From (, LA ¢ and n, LA n we get (Cn, 1) LA (¢,m). We may then apply Lemma 3.3 to
continuous functions R? > (z,y) — az +by € R, R? 3 (x,y) — zy, and R x (R\ {0}) > (z,y) —
x/y, respectively. O

Definition . For random elements (1, (2,... in a metric space (S, p), we say that ({,) is a
Cauchy sequence in probability if for any € > 0, P{p((n,(m) > €} — 0 as n,m — oo. Using a
similar argument as before, we can show that this is equivalent to that E[1 A p((pn, (m)] — 0 as
n,m — 00.
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If ¢, LN ¢, then E[1Ap((p, ¢)] — 0 asn — oo. By triangle inequality, we get E[1Ap((pn, Gn)] —
0 as n,m — oo, which implies that ((,) is a Cauchy sequence in probability. The converse is
true if (S, p) is complete. This is the lemma below.

Lemma 3.6. If (S, p) is complete, then ((,) is a Cauchy sequence in probability iff ¢, LN ¢ for
some random element  in S.

Proof. We have proved the “if” part. Now we prove the “only if” part. Assume that ((,) is
a Cauchy sequence in probability. We may choose a subsequence (ny) of N such that E[1 A
P(Cags Gy )] < 27F for all k € N. Then we have

E[Z IA IO(an?an+1)] S szk < 00,
k k

which implies that a.s. >, 1 A p(Cuy, Grgyr) < 00, and 50 Yy p(Gays Goy ) < 00. So almost
surely (¢, ) is a Cauchy sequence in S. By the completeness of S, there is a random element (

in S such that a.s. ¢,, — ¢. Thus, E[1 A p((n,,¢)] = 0 as k — co. To see that ¢, LN ¢, write

E[1A p(Cm, O] < E[LA p(Cny, O +E[LA (G Gy )]s

and use the convergence of the RHS to 0 as m, k — oo. O

This lemma shows that the space of random elements on S with metric py(¢,n) = E[1 A
p(¢,m)] is complete when S is complete.

Lemma 3.7. The convergence in probability implies the convergence in distribution.

Proof. Suppose (, LN ¢in S, and f € Cp(S). Then f(() LN f(¢) by Lemma 3.3. By monotone
convergence theorem (for convergence in probability), we have Ef(¢,) — Ef(¢). So ¢, 4 ¢. O

Definition . Let u, u1, p2, ... be probability measures on a metric space (S, p). We say that
pin converges weakly to p, and write p, — p, if for any f € Cy(S,R), pinf — pf.

Remark . By Lemma 1.22, Ef({) = Law(¢)f. So ¢, 4 ¢ iff Law((,) — Law(¢). This means
that the convergence in distribution depends only on the distributions of ¢ and ¢, (and not on
the exact value of (,(w) and ((w)).

Lemma 3.25 (Portmanteau). For any probability measures i, i1,..., [, on a metric space
(S, p), these conditions are equivalent:

(i) pin = p;
(i) liminf,, u,G > puG for any open set G C S;

(i4i) limsup,, unF' < pF' for any closed set F' C S;
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(iv) limy, p, B = puB for any B € B(S) with ndB = 0.
A set B satisfying the condition in (iv) is called a p-continuity set.

Example . Suppose (z,) is a sequence in S and z,, — 29 € S. Then we have §,, — Oz
because for any f € C,
5zn = f(xn) — f(xO) = 5:cof'

Suppose G C S is open, and zy € 9G, then we can find a sequence (z,,) in G such that x,, — xg.
Then 0,,G = 0 but §,, G =1 for each n. So we do not get a strict inequality in (ii).

Proof. Assume (i), and fix an open set G C S. Let fp,(z) = 1 A (mp(z,G%)), m € N. Then
fm € Cy(9) and f,,, T 1g. For each m, by p, 5w, we have pfm = limy, fin frn < liminf, @, G.
Sending m — oo and using monotone convergence, we then get (ii). The equivalence between
(ii) and (iii) are clear from taking complements. Now assume (ii) and (iii). For any B € B,

puB° < liminf p, B° < liminf j,, B < limsup B < limsup B < uB.
n n n n

If n0B = 0, then uB = uB° = pB, and (iv) follows.

Assume (iv), and fix a closed set FF C S. Write F* = {s € S : p(s,F) < ¢}. Then the
sets OF° C {s € S: p(s,F) = €}, € > 0, are disjoint. So there are at most countably many
€ > 0 such that u0F¢ = 0. We can find a positive sequence ¢,, — 0 such that for every m,
uOFe™ = 0. So puFem = lim, p, F* > limsup,, u, F'. Sending m — oo, we get (iii). Finally,
assume (ii) and let f: S — Ry be continuous. By Lemma 2.4 and Fatou’s lemma,

[e.9]

pf = / pl{f >thdt < / lim inf p, { f > t}dt < liminf/ pn{f > t}dt = liminf p, f.
Suppose now f € Cp(S) and |f| < ¢. Applying the above formula to ¢ + f, we get ¢ £ uf <
liminf, (¢ £ u,f), which implies lim,, p,, f = pf, i.e., (i) holds. O

Exercise . Let u, i1, ti, . .. be probability measures on R%. Let F, Fy, F, ... be their distri-
bution functions. Prove that p, — p iff for any continuity point = of F, Fy,(x) — F(z).

Definition . A family of probability measures u;, t € T, on a topological space S is called
tight, if for any € > 0, there is a compact set K C S such that u (S \ K) < e for any t € T.

Suppose (S, p) is a metric space. For x € S and € > 0, let B(z,e) = {y € S: p(z,y) < &}.
For AC S and € > 0, let

A® = U B(z,e) ={y € S:p(y,A) <e}.
z€A

We now state some results about weak convergence without proofs.

Theorem 14.3 (Prokhorov’s theorem). Let (S, p) be a separable metric space. Then
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(i) The Prokhorov metric ps on the space P(S) defined by
pe(p,v) =inf{e > 0: puA <vA*+e and vA < pA® + ¢ for any A € B(S)}

is a metric such that the weak convergence of probability measures on S is equivalent to
the convergence w.r.t. the Prokhorov metric.

(ii) A tight family is relatively sequential compact w.r.t the weak convergence, i.e., every se-
quence in the family contains a weak convergent subsequence.

(iii) If S is complete, then (P(S), p«) is complete and every relatively compact subset of P(S)
is a tight family.

This lemma tells us that the weak convergence is induced by some explicitly defined metric,
and if S is complete, then the a tight family is equivalent to a relatively compact set w.r.t. weak
convergence.

In the case that S = R%, we sketch a proof of (ii) as follows. Suppose p1, pg, . .. is a sequence
of probability measures on R?. Let F}, Fs, ... be the distribution functions. Since 0 < F), < 1,
for every x € Q¢, (F,(z)) contains a convergent subsequence. By a diagonal argument_and
passing to a subsequence, we may assume that (F,(z)) converges for each z € Q7. Let F(x),
x € Q%, be the limit function. Such F is non-decreasing on Q?. We use F' to define a function
F on R? such that F(z) = limgas,, |, F(y), = € R%. Then F is non-decreasing and right-
continuous, and F,,(x) — F(z) for each continuity point = of F. If {u,} is tight, then F' is the
distribution function of some probability measure y, which is the weak limit of .

To understand the Prokhorov metric, suppose X and Y are two random elements in S
defined on the same probability space (€2, .4, P) such that

P{p(X,Y)>c} <e. (3.1)

Then it is straightforward to check that p,(Law(X),Law(Y)) < e. The converse is not true,
but we have the following coupling theorem, whose proof is omitted.

Theorem (coupling theorem). If p.(pu,v) < €, then there are a probability space (2, A,P) and
two random elements X,Y in S defined on Q such that Law(X) = p, Law(Y) = v, and
holds.

From Lemma 3.7, ¢, LA ¢ implies that Law(¢,) — Law(¢) and ¢ 4 (. We have a converse
statement in the following sense. We omit its proof.

Theorem 3.30 (Skorokhod’s representation theorem). Let p, pu1, pi2, . . . be probability measures
on a separable metric space (S,p). Then there exist a probability space (2, A,P) and random
elements C,(1,C2,... in S defined on Q such that Law(() = u, Law((,) = pn, and §, — ¢
pointwise.

Exercise . Suppose (, 4 ¢ and Law(() is a point mass. Prove that (, LA C.
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There are other types of convergence of measures, such as the strong convergence: p,A —
uA for every A € A, and an even stronger convergence: the total variation convergence:

|t — pol|Tv := 2 sup |pA — vA| — 0.
AcA

They are stronger than the weak convergence, but do not rely on the topology of S.

Example . Let S be a metric space. Let (z,,) be a sequence in S that converges to xy. Suppose
xn # xo for all n. Then 0, converges to d,, weakly but not strongly. If we take A = {z¢},
then 6., A = 0 for all n but §,,A4 = 1.

Exercise . Let p, 1, p2,... be probability measures on a measurable space S. Let v be a
finite measure on S such that p < v and p, < v for all n. Such v always exists, e.g., let
v=np+Y,45. Let f=du/dvand f, = dun/dv. Then f,f, € L'(v); pn — p in total

variation iff f, — f in L'(v); and pu, — u strongly iff f, — f weakly in L(v), i.e., for any
ge L™, [ fogdv — [ fgdv.

We now introduce a new concept: wuniformly integrability, which plays an important role
in the theory of martingales. To motivate the definition, we observe that if ¢ € L!, then by
dominated convergence theorem, E[1¢>r(] — 0 as R — oo.

Definition . A family of random variables (;, t € T, is called uniformly integrable, if

li E[1 =0.
A SUPE(Lig, > rl]

The previous observation shows that any finite set of integrable random variables is uni-
formly integrable. The uniformly integrability depends only on the distributions of the random
variables, and is stronger than the tightness of the distributions.

Exercise . For t € T, let {; be a random variable with distribution p, and let p; ,, = P[|(;| > n].
Prove that (;, t € T, is uniformly integrable iff ) p;, converges uniformly in ¢ € T, which
then implies that the family u;, t € T, is tight.

Exercise . Prove that a sequence (1, (s, - € L' is uniformly integrable iff

lim limsup/ |G |dP = 0.
{Ién >R}

R—0c0 p—oo

Lemma . If for some p > 1, {¢; : t € T} is LP-bounded, i.e., there is C < oo such that
ICellp < C forallt € T, then ¢, t € T, is uniformly integrable.

Proof. To see this, note that

[ gaies [ (al/Ry il < RIPEGE = RUPIGI, < BIvOn
{I&|> R} {I¢c|>R}
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The lemma does not hold for p = 1. For example, if ¢, = nlj /), n € N, are defined on
([0,1], A), then ||Gx[l1 = 1 for all n, but for any R > 0, E[1)¢,|>rC] = 1if n > R.

Lemma 3.10. The random variables (;, t € T, are uniformly integrable iff they are L'-bounded,
and

lim supE[14 — 0. 3.2
Py Oie [LalGel] (32)
Proof. Suppose (;, t € T, are uniformly integrable. Then

E[14[G|] < RPA + E[1),1>RrIGt]-

For any ¢ > 0, we may choose R > 0 such that E[1¢,>g|(|] < /2 for all t € T. Thus, if
PA < ¢/(2R), then E[14|(|] < € for all t € T. To get the L'-boundedness, we take A = Q and
take R to be sufficiently big in the displayed formula.

Suppose now (;, t € T, are L'-bounded, and holds. By Chebyshev’s inequality we get

1
P{IGt] = R} < msup [[Gefly = 0, R — oo,
teT

which together with (3.2]) implies the uniformly integrability. O

Exercise . Let (5, s € S, and n, t € T, be two uniformly integrable families of random
variables. Then |(s| + |n¢], (s,t) € S x T, are also uniformly integrable.

Proposition 3.12. Fizp > 0. Suppose (1,(a,- -+ € LP are such that |(,|P, n € N, are uniformly
integrable. Suppose (, LN (. Then ¢, — (¢ in LP.

Proof. By Fatou’s lemma and the L!-boundedness of |(,|P (by Lemma 3.10), we have

E|¢|P < liminf E|(,|P < occ.
n

So ¢ € LP. Since |¢, — C[P < 2P(|Gu|P + [C|P), by the exercise above, |, — ¢|P, n € N, are also
uniformly integrable. Fix £ > 0. Then

E[|¢n — ¢IP] < 8 + E[1q¢,—¢|ze} |G — ¢IP]-

Since ¢, LN ¢, as n — 00, P{[(, — (| > €} — 0, which implies E[1{¢, _¢|>}|¢n — ¢[P] = 0 by
Lemma 3.10. Sending n — oo, we get limsup,, E[|(;, — (|P] < P. Since this holds for any € > 0,
we get E[|¢, — ([P] = 0. So {, — ¢ in LP. O

Theorem 3.23 (strong law of large numbers). Let ¢, (1, (o, ... be i.i.d. random variables with
E[¢| < co. Let Sy =>}_; (k. Then a.s. 1S, — E(.

We are not going to prove the theorem following the approach of the textbook (Proposition
3.14, Lemma 3.15, Lemma 3.16, Theorem 3.17, Theorem 3.18, Lemma 3.19, Lemma 3.20,
Lemma 3.21, Corollary 3.22). Instead, we give elementary proofs of some weaker results, and
postpone the proof of Theorem 3.23 to the chapter of martingales.
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Theorem (weak law of large numbers for L?). In the setup of Theorem 3.23, if ¢ € L2, then
1, LEC.

Proof. By subtracting E( from (,, n € N, we may assume that E¢ = 0. Since (1,(2,... are
independent,

Ie~, 27 1 a 1 o 1
EH— g Cj‘ ] =— Var< g Cj) =— E var((;) = — var(().
J=1 J=1 J=1
By Chebyshev inequality, for any & > 0,

SEESEREE iy E -

as m — 00. 80%2?21(]'30. O
Theorem (strong law of large numbers for L*). Theorem 3.23 holds if ¢ € L*.

Proof. We again assume that E¢ = 0. We have

E [(fSn)ﬂ == ). EGiGnGsl-

1<51,52.98,Ja<n
If for some s € {1,2,3,4}, js & {ji : t # s}, then by independence of (j,(2,... and that
E¢j, = 0, we get
EGj,GraGiGia) = EGE[] [ ¢ = 0.
t#s
Thus,

Iem \4 L n ., 12 9o 1 4 6n—1)_ o5 6 4

E[(EZCJ) }:HZECJ'+E Z Egj(kZEEC +T(EC) SEEC'
J=1 J=1 1<j<k<n

In the last inequality, we used (E¢?)? < E¢*. So for any e > 0, by Chebyshev inequality,

- < dof(1) ] < 5%

Since ), %1%4 < 00, by Borel-Cantelli lemma, a.s. there is a random N such that for n > N,

|%Sn| < &. This implies that %Z?Zl ¢ — 0 as. O

s

Exercise . Problems 4, 5, 6, 8, 11, of Exercises of Chapter 3.
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4 Characteristic Functions and Classical Limit Theorems

Suppose ¢ is a random vector in R? with distribution p, the associated characteristic function
1 is given by

a(t) = /em,u(dx) =Ee®, teRY, (4.1)

where tz denotes the inner product t1z1+- - - +tqzg. The function = — €"* is integrable because
|e®®| = 1. In the language of Analysis, /i is the Fourier transform of y. If p is a distribution on
le_, ie., ;L]Rfl,_ = 1, then the Laplace transform p is defined by

a(t) = /e_mu(dm) =Fe ¥, te Ri.
t

The function x — e™** is integrable because 0 < e ¥ <1 as tz > 0. Finally, for a distribution
won Zi ={0,1,2,...}, the generating function v is defined by

P(s) = ZS”IP’{C =n} =Es*, sel0,1].
n=0

Formally, 11(u) = pi(iu) and u(t) = p(—it), p(u) = (e™™) and ¥ (s) = u(—logs). We will focus
on characteristic functions. Many results also apply to Laplace transforms and generating
functions with similar proofs.

We first list some simple properties of characteristic functions.

(i) If ¢ is the characteristic function for ¢, then for any a € R and b € R, the characteristic
function for a¢ + b is e ¢(at).

(ii) If ¢1, ..., ¢n are characteristic functions for independent (1, ..., (,, then the characteristic
function for {1 + -+ (, is H?Zl ¢;(t). We used the fact that /61, . e are indepen-
dent. Thus, if (1,...,(, are i.i.d. with characteristic function ¢, and S, = Y ;_; (s, then
the characteristic function for 15, is ¢(t/n)".

(iii) For any characteristic function ¢, ¢(0) = 1 and for any t € R%, |¢(t)| < 1 and ¢(—t) = ¢(t),
where the bar stands for the complex conjugate. Here we use the inequality |Ef| < E|f|
for complex random variable f and the equality ei® = e~%%,

(iv) ¢ is uniformly integrable. Here we use that |e?1® — e27| = |e/(t1—12)2 _ 1| < 2 A (|t — s]|z|)
and dominated convergence theorem.

(v) If p, converges weakly to p with associated characteristic functions ¢, and ¢, then for
any t € R ¢,(t) — ¢(t). Here we used the fact that, for any t € R? z — €¥* is a
bounded and continuous.
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(vi) In the case d = 1, if E|¢|™ < oo for some n € N, then ¢ is n-times continuously dif-

ferentiable, ¢(™ is bounded and uniformly continuous, and ¢ (0) = "E¢". To see
this is true, we may formally differentiate w.r.t. t and get ¢/(t) = Elize™®]. If
we continue differentiation, then we get ¢ (t) = E[(iz)*e™*] for all k € N. In gen-
eral, this equalities may not hold. In fact, (iz)¥e™® may not be integrable. How-
ever, if E|¢|® < oo for some n € N, then for any 0 < k < n and t € RY, (i¢)Fei’
is integrable, and we may define ¢/*l(t) = E[(i¢)*¢™¢], 0 < k < n. Here ¢l = ¢.
Since |(iz)Fe’® — (iz)*e*| < |z[F(2 A |s — t]|z]), by DCT, we see that ¢l is uni-
formly continuous for each 0 < k < n. By Fubini Theorem, for 1 < k£ < n and
a <beR, f: oM (t) = ¢ln=U(b) — ¢lF=U(a). Thus, ¢ is the derivative of @lF—1.,
So ¢™M(t) = ¢l (t) = E[(i¢)Fe*]. Taking t = 0, we get ¢(™(0) = E[(i¢)*] = i*E[¢¥].

The following theorem is important for us.

Theorem 4.3. For probability measures p, i1, i, ... on R pn, > p iff fin — [ pointwise iff
Iy, — b uniformly on every bounded set.

That p, — p implies that 7i,, — i pointwise is Property (v) above. We postpone the proof
to the end of this chapter. This theorem in particular implies that i determines .

Example . (i) If u is the degeneracy distribution d,,, then i(t) = e?t®o,

(vi)

(vii)

If 41 is the Bernoulli distribution B(p), then fi(t) = pe’! + (1 — p)e¥ = 1 — p + pet.

If 1 is the binomial distribution B(n,p), since it is the n-th convolution power of the
Bernoulli distribution B(p), we get 7i(t) = (1 — p + pe)™.

If u is the geometric distribution Geom(p), then

[e.e]
() = 1 — )1y eith _ pe _
i(t) kZ_l( e =

it

If 41 is the Poisson distribution Pois()), then

If 1t is the uniform distribution Ula, b], then

b o
i = | ity — 0 =
a

b—a ith — ita

If 11 is the exponential distribution Exp(\), then

A
A —it

wu(t) :/ Ae el g —
0

53



(viii) If p is the normal distribution N(a,o?), then

oo z—a)? . oo 2
ﬁ(t)Z/ = e_(%?)emdx:/ ! e~ 7 etlatan) gy

—o V21O —oo V2T

2y [ 1 L(y—ito)? 2212 +iat
— o~ Gt tia / 675(y71 o) dy=e" 7 +iat
—co V2T
Here the last equality follows from contour integral in complex analysis. The statement
2
holds true even if o = 0. When g is N(0, 1), the characteristic function is e 7.

We now study some applications of Theorem 4.3.

Theorem (weak law of large numbers for L'). Let ¢,(1,(a,... be an i.i.d. sequence random
variables in L'. Let S, = > j=1Gj- Then 1s, LN EC.

Proof. Let ¢ be the characteristic function for (. Since ¢ € L', ¢ € C!, ¢(0) = 1 and
¢/(0) = iE(. The characteristic function for 15, is ¢(t/n)™ = exp(nlog ¢(t/n)), which tends
to exp(t%(log d)|o) = €' (0/90) = EC 35— o0, Since € is the characteristic function

for 6g¢, by Theorem 3.4, Law(1S,,) = dgc. So 15, 5 E¢. 0
Proposition 4.9 (central limit theorem). Let ¢, (1, o, ... be i.i.d. random variables in L? with
E¢ =0 and EC* = 1. Let S, = 7, (j. Then Law(n™/25,) SN(0,1).

Proof. Let ¢ be the characteristic function for ¢. Since ¢ € L%, we have ¢ € C?, ¢(0) =
1, ¢'(0) = iE¢ = 0, and ¢”(0) = —E¢? = —1. The characteristic function for n=1/25,, is
P(n=1/2t)™ = exp(nlog ¢(t/n'/?)). By Taylor theorem, as n — oo,

¢ t? 1
)y =1- = -
A ) =1 g +ol)
which implies that
t t2 1
—)=——+o0(—).

log ¢( NG 5, ol

So we have ,
o(n~ 20" = exp(nlog ¢(t/n'/?)) — e_%, as n — 0o.

2

Since e~ 7 is the characteristic function for N(0,1). The proof is complete by Theorem 4.3. [

Theorem (Poisson limit theorem). For any A > 0, as n — oo, the binomial distributions
B(n,\/n) tend weakly to the Poisson distribution Pois(\).

Proof. The characteristic function for B(n, A\/n) is

bn = (1 —N/n+ X ne)* — AN as = oo,

Since e~ is the characteristic function for Pois()), the proof is done. t
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The rest of this chapter is devoted to the proof of Theorem 4.3. Recall the definition of
tightness: a family of probability measures p, t € T', on a topological space S is tight if for
any € > 0, there is a compact set K C S such that ;K¢ < ¢ for all t € T. When S = R¢,
this is equivalent to lim, oo sup;ep pe{z : |2| > r} = 0. If, in addition, 7" = N, this is further
equivalent to lim, o limsup,, pn{x : |x| > r} = 0.

Lemma 3.8. A weakly convergent sequence of probability measures on R? is tight.
This is a special case of Prokhorov Theorem. But we can now give a direct proof.

Proof. For any r > 1, we define a bounded continuous function f. on R? by f.(xz) = 0 if
|| <r—1, fr(z)=1if || >r, and f.(x) =|z| — (r—1) if r — 1 < |z| <r. Then

limsup o {a : [¢] > 1} < limp,fy = pfy < pfas |2 > 7 — 1},
n n

Here the RHS tends to 0 as 7 — co. So lim,_, limsup,, un{z : |z| > r} =0. O

Lemma 3.9. Let (1,(a,... be random vectors in RY with laws py, pa, . ... Then {u,} is tight
iff cnln 5o for any constants c1,ca,--- > 0 with ¢, — 0.

Proof. First assume that {u,} is tight. Let ¢, — 0. Fix any r,e > 0. We note that |c,r| < e
for all but finitely many n. So |¢,(,| > € implies |(,| > r for all but finitely many n. So we get

lim sup P{|c,,(n| > ¢} < limsup P{|(,| > 7}
Here the RHS tends to 0 as r — oo, and the LHS does not depend on r. So lim sup P{|c,(,| >

e} < 0, which implies that limP{|c,(,| > €} = 0. Since this holds for any ¢ > 0, we get

cnCn g 0.

If {y,} is not tight. Then we can find g9 > 0 and a subsequence (fp, ) such that P[|(,, | >
k] > o for all k. We may then find ¢, c,--- > 0 with ¢, — 0 such that ¢,, = % Then
P[|cn,. Cni | = 1] > o for all k, which implies that ¢, (, does not converge to 0 in probability. []

Lemma 4.1. For any probability measure pn on R and r > 0, we have
r 2/r
plas ol 2 rh < 3 [ - ae)dn (42)

—-2/r

Proof. Let ¢ > 0. By Fubini Theorem and straightforward calculation,

/( ))dt = /C/ 1 — ) p(de)dt = //C (1 — e"™)dtp(dzx)

= /R (t — e,m) ‘t:C p(dx) = QC/R (1 - Sin(cx)),u(dm) > cp{x :|ex| > 2},

(24 t=—c CT

where the last step follows from sinz < 1 < x/2 for x > 2. Letting ¢ = %, we get 1} O
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Remark . For 1 < k < d, let e, € R% be the vector whose k-th coordinate is 1 and other
coordinates are 0; let 7, be the projection = — x, = epz from R? to R. For a probability
measure g on R? and 1 < k < d, let u* = (m3).p. Then we get

ik (t) = / " (dw) = / e pu(dr) = / Ry (dr) = fitey), 1<k <d.
R R4 R4

By Lemma 4.1, we have

" d
p(RE\ [=5,0]%) < Zﬂ{x eRY: |og| > 6} = Zﬂk{$ ER:|z| > 5}
k=1 Pt
d 5 2/6 . B d 5 2/5 )
<33 [, 0= A= >3 [, a=te 3)

Lemma 4.2. A family {ua} of probability measures on R? is tight iff {fia} is equicontinuous
at 0, and then {fia} is uniformly equicontinuous on R,

Proof. Note that {jus} is tight iff puq(R?\ [-r,r]%) — 0 as r — oo, uniformly in a. First,

Eé;r(l — fa(teg))dt — 0 as

suppose {fi} is equicontinuous at 0. Then for each 1 <k < d, §
r — 0o, uniformly in a. By (4.3) we see that {u,} is tight.

Next, suppose {pq} is tight. Let {, be a random vector with law p,. We compute that for
s,t € RY,

fia(s) = fia ()] = Ele ™% — 1] <E[|(s — 1)¢al A 2].
By Lemma 3.9, for any sequence (oy,) of indices and any two sequences (s,,) and (¢,,) in R? with
|sn, — tn| — 0, we get (sp, — tn)Cn L 0, which implies by DCT that E[|(sn — tn)Can| A 2] = 0,

and so by the above formula, |fia, (Sn) — Ha,, (tn)| — 0. This shows that {fi,} is uniformly
equicontinuous on R?, and in particular is equicontinuous at 0. ]

We also need the following approximation lemma from Analysis.

Lemma 4.4 (Stone-Weierstrass approximation). Every continuous function f : RY — R with
period 21 in each coordinate admits a uniform approzimation by linear combinations of e,

k ezt

Proof. We first consider the case d = 1. In this case f has a Fourier series ), a, e where
an = 5= [ f(z)e”"™*dz. The truncated series Zi:[:_ ~ @ne™® is a linear combinations of ¢,
n € Z, but may not converge uniformly to f.

The approximation sequence is constructed as follows. Let N € N. Let hy(x) be the sum

of the finite geometric series

N-1
hN(l’) — ei(lfN)x/Q + ez'(?)fN)gﬁ/Q I 6'L'(N73):E/2 + ei(Nfl):r/Q — ei(lfN)x/Q Z eikx.
k=0
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It has ratio €, the leading term ¢/0=N)*/2 and the ending term e/¥=12/2 We observe that

. . . . iNx/2 —iNxz/2 i
€2 (x) — e Py () = N2 — emINE2 and so hy(r) = ot o )

Calculating hy (x)? using the series expression, we get

Sin2(N$/2) _ _i(1-N)z = ik = imz\ _ i(lfN)x2N72 ikx
sin?(z/2) — (Ze )(Ze )-e Z Z €

n=0 m=0 k=0 0<n,m<N—-1ln+m=k
A 2N -2 A N-1 y
=N NN = IN = 1= k)™ = Y (N = |j])e™.
k=0 j=1-N
N n N inac sin?(Nx sin?(Nx
Let p&V) = (1- | ‘) Then Z b( ) = ]\fsn(lfN(m//Z)) We define gy (x) = an(lfN(x//?) Then
gy >0, and o~ f gn(z dx—b()
Let L )
In(@) = — f(:r —y)gn(y)dy = f( Jgn (@ — y)dy

2 %

_ Z o (N) zn(ac y)dy _ Zan zna:'

So fn is a linear combination of em, k € Z. To see that fy — f uniformly, we compute

@) = @)l = o= [ G =0 = feDawtias] < o= [ 156 =) - 1oy

1 /0 1
=% ), [f(z —y) = fl@)lgn (y)dy + o SRR |f(z —y) = f(x)lgn(y)dy
< s |f@) - f 20 5 [ ox(v)dy. (4.4)
|x—z|§5 i [_7‘—77@\[_676]

We note that for any fixed § € (0,7), 5 f[,,r A \[=5,6] gn(y)dy — 0 as N — oo because

1
sup gNy) € ———5———.
ye[—m,m]\[~5,] ) N sin®(6/2)

Given any € > 0, we may first choose § € (0, 7) such that sup|,_. <5 |f(2) — f(2)| < §, and then
choose Ny such that for N > Np, the second term of (4.4)) is also less than §.

For general dimension d, we let g](\?) (x) = Hizl gn (k). Then gg\c,l) > 0, is a linear combina-
tion of e** k€ Z%, and satisfies ﬁ f[—mr}d g%) (y)dy = 1. Let

1

1
In(z) = @n)i /{md fla— )\ (y)dy = @y /[m]d FW)gi) (& —y)dy.
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Then each fy is a linear combination of ¢?** k€ Z?. A similar computation with [—§,]? and
[—7,7]% in place of [—6, 8] and [—, 7] shows that

[In(@) = fl@)] < sup  |f(z) = f(2)]+

2| £l o
max, |z —z| <6 (2m) J i ma\ 6,604

N (y)dy.

To conclude that f,, — f uniformly, we need to show that for any ¢ € (0, ),
/ g](\‘,i) (y)dy — 0, as N — oo. (4.5)
[, \[6,9]

Now we do not have sup,c[_r xja\[—s,6) ggv)(y) — 0 as N — oco. However, if we let Uy = {z €
[—m, 7] : |zg| > 6}, 1 < k < d, then the LHS of (4.5) is

d-1 d(2m)
< Z/ y)dy = d(/[_m gn(y)dy) '/[_M]\[_m NIy < G E 57

So we get (4.5) and conclude the proof. O

Proof of Theorem 4.3. If j, ~» u, then for each t — R? since & — €"* is bounded and
continuous on R%, we get fi,(t) — fi(t). By Lemma 3.8, {j,} is tight. By Lemma 4.2, {fi,} is
uniformly equicontinuous on R%. So i, — [i uniformly on every bounded set.

Suppose now fi, — i pointwise. By (4.3) we have

2/r 2/7‘

(1 — Jin(tey))dt = Z / fi(ter))dt,

2/r

hmsupun(]Ri \ [=r,7] )<hmsupz /

2/r

where the equality follows from DCT. Since [ is continuous at 0, the RHS tends to 0 as » — oo,
which shows that {u,} is tight.

Given any € > 0, we may then choose r > 0 so large such that p,{|z| > r} < e for each n
and p{|z| > r} <e. Now fix f € Cy(R?). We need to show that pu,f — uf. By the definition
of i, and i, we know this is true if f is of the form x — e* for some t € R?, or is a linear
combination of such functions. Let m = || f||, the supernorm of f. Let h € C(R?) be such that
0<h<1, h=1on{lz|] <7}, and h =0 on R\ (—7ar,7r)% Then ||hf|| < m, hf agrees
with f in {|z| < r}, and vanishes outside (—mr,77r)%. So we may extend hf from (—mr,7r)? to
fe C(R%), which has period 277 in each coordinate. Then f agrees with f on {|z| < r}, and
£l = ||hf]| <m. By Lemma 4.4 there exists some linear combination g of etkz/r ke 74, such
that || f — g|| < e. By earlier discussion, pu,g — png. For any n € N,

linf = pngl < poflz] >} f = fIl +|f = gll < 2me + ¢,

and similarly for p. Thus,

lnf — pf| < lpng — pgl +2(2m +1)e, neN.
Letting n — oo and then ¢ — 0, we get p, f — uf. Since f € Cy is arbitrary, we get i, — p. O

Exercise . Problems 6, 14 of Exercises of Chapter 4.
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5 Conditioning and Disintegration

We now study conditioning. We still fix a probability space (€2, A, P). Suppose B € A is such
that PB > 0. We may then define a conditional probability

P[AN B

PIAIB) = ~ 55

Ac A
It is easy to see that P[-|B] is a probability measure on (2,.4). The expectation w.r.t. this
probability measure is then given by

E[15(]

ELCIB] = gy

We want to extend the above concept and define conditional expectation E[-|F], where F
is a sub-cg-algebra of A. To motivate the definition, we suppose B, ..., B, is a measurable
partition of Q such that P[By] > 0 for each 1 < k < n. They together generate a sub-c-algebra
Fp, each element is a union of some Bj’s. Given an integrable random variable {, consider its
conditional expectation given By, we get n real values E[¢|B1],...,E[¢|B,]. We now define a
new random variable (p on 2 by

(8 =Y E[(|Bi1g,. (5.1)
k=1
Then (p is Fp-measurable, and for any By,
E[1p,(p] = E[(|Bx]P[By] = E[1p,(].
Since every A € Fp is a disjoint union of some By’s, we get
E[1a(B] = E[14(], VA€ Fp (5.2)

On the other hand, suppose (p is an Fp-measurable random variable and satisfies . Then
(p takes constant value on each By, and so can be expressed as ) _; cx1p, for some cy,...,c, €
R. Taking A = By, in (5.2)), we get ¢;P[By] = E[1p,(], which implies that ¢; = E[¢|By]. So (g
is given by , and we can reveal E[(|By] for each k from (p.

Definition . For a sub-o-algebra F of A and ¢ € L'(A,P), we use E[¢|F] or EF ¢ to denote an
element n € L'(F,P), which satisfies that

E[14¢] = E[1a5]), VA€ F. (5.3)

For A € A, we define PX A = P[A|F] as E[14|F]. If 5 is a random element, then we define
E[¢|n] = E"C as E[¢|o(n)], and define P[A[n] = P"A as E[1a|o(n)].
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Theorem 5.1, Part I. The E7 ¢ as in the definition always exists and is a.s. unique. Moreover,
the map ¢ — E7( is a bounded linear map from L*(A) to L*(F) with |[E7¢|ly < |[<|l1, and if
¢ >0 then a.s. EF¢ > 0.

Proof. We may define a signed measure v on (2, A) by dv = (dP. Then v < P on A, and
so we also have v < P on F. Applying Radon-Nikodym Theorem to P and v on ({2, F), we
get an F-measurable random variable 7, which is integrable w.r.t. P, such that dv = ndP on
F. Let A € F. From dv = ndP on F, we get E[14n] = v(A). From dv = (dP on A, we get
E[14¢] = v(A). Thus, E[147] = E[14¢]. So we get the existence of EF (.

Now suppose another F-measurable random variable 1’ satisfies E[147'] = E[14(] for any
A € F. Then n and 1’ are both F-measurable, and for any A € F, E[147] = E[14¢] = E[147].
So ' = n a.s., and we get the a.s. uniqueness of EZ¢. In particular, we see that EZ( is a

uniquely defined element in L!(F).

If ¢ > 0, then the above v is a positive measure, which implies that the Radon-Nikodym
derivative dv/dP = EX ¢ on F is a.s. nonnegative.

To see that the map ¢ — E*( is linear, let (,n € L'(A) and a,b € R. Let ¢/ = E7¢ and
n' =E7 7. Then for any A € F, we have

E[14(a¢ +bn)] = aB[14C] + DE[14n] = aB[14C"] + bE[1an] = E[1a(ac + b1)].

So we get Ela + bn|F] = aE7 ¢ + bE .
To see that [E”¢|ly < [[¢[1, we write ¢ = ¢4 —¢_ such that ¢x > 0 and [[¢[l1 = [|¢t 1 +/[¢- |1
Let ¢, = EF ¢y > 0. ThenE]’.C:Cﬁr—C’_,andso

IEZCll < lI¢h Nl + lI¢E Il = E[¢Y] + EI¢L) = ElG] +E[C-] = Gl + lIc- Il = lI¢].
O

We refer to the property as the averaging property; to the property that ¢ > 0 implies
E[¢|F] > 0 as positivity; to the property that ¢ + E7( is a linear map as linearity; and to the
property that ||[EZ¢|; < ||¢|l1 as L'-contractivity. Note that if we take A = Q in , then we
get E[(] = E[E[¢|F]]. When F is generated by a partition {By,..., By}, we get the well-known
formula E[¢] = ", P[Bx|E[C| Bl

Since EZ ¢ is only a.s. unique, any formula involves conditional expectation only holds almost
surely no matter whether or not we use the phrase “a.s.”.

For any A € A, since 0 < 14 < 1, we have 0 <P A < 1. Since 1o = 1 and 15 = 0, we get
a.s. PXQ =1 and P7() = 0.

Remark . There are two trivial cases. If F = A, since ¢ is .A-measurable, we get EA¢ = (. If
F ={Q,0}, then E[|{f,0}] is a constant, which equals E[(].

Remark . If (ILF, then EF¢ = E¢. In fact, for any A € F, since 14 1L, we have E[14(] =
E[14)E¢ = E[14E(]. Since EC is F-measurable, we get E¥( = E(.
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Remark . We have a.s. E/¢ = ¢ iff ¢ is FP-measurable, where F¥ is the P-completion of F.
If ¢ is FP-measurable, then there is an F-measurable random variable ¢’ such that a.s. ¢’ = (.
So for any A € F, [,('dP = [, (dP, which implies that a.s. E*( = ¢’ = (. On the other
hand, if a.s. EX¢ = ¢, we take ¢/ = EF¢. Then ¢’ is F-measurable and a.s. (' = ¢. So ( is
FF-measurable.

Example . Suppose Fp is generated by a measurable partition {By,..., B,} of Q. Now we
do not assume that P[B;] > 0 for every k. Since EFB( is Fp-measurable, it is constant, say
ck, on each By. From E[1p E72(] = E[1p,(] we get cxP[By] = E[15,(]. So if P[By] > 0, then
cr, = E[¢|By]; if P[By] = 0, then ¢ can be any number. The choice of ¢; does not affect the a.s.
uniqueness of E[¢|Fp].

Theorem 5.1, Part II. We use the setup as before.
(i) If € L=, then X ¢ € L™, and |E7(|lce < [I¢]0o-
(ii) Forp € (1,00), if ¢ € LP, then EF( € LP and |[E7C||, < [/¢]l,-
(i) If G C F is another o-algebra, then EYEF( = E9¢.
(iv) If 0 < G 1 ¢ € LY, then E[¢a|F] T E[C]F].
Proof. (i) Let M = ||(||cc, then a.s. M £ ¢ > 0, which implies that a.s.
0<ET[M+(]=M+E"C

Soas. —M <EF¢ <M, ie., |E|loc <M = ||{ -

(ii) Since the map E” is a contraction from L!(A) to L'(F), and a contraction from L>(A)
to L*°(F), by Marcinkiewicz interpolation theorem, it is also a contraction from LP(A) to LP(F)

for any p € [1,00]. This result also follows from Jensen’s inequality below.
(iii) Let ¢/ = EF¢ and ¢ = E9¢’. Then ¢” is G-measurable, and for any A € G,

E[IAC”] = E[lAC/] = ]E[IAC.

So we get (" = E9¢.
(iv) From 0 < (1 < (o < --- < (¢ we get a.s.

0 <E[Q|F] < E[G|F] < --- <E[¢]F].

Let ¢! = limy 00 E[¢4|F]. Then (' is F-measurable and a.s. ¢/ < E[(|F]. By Monotone
convergence theorem and the averaging property,

E[() = lim E[E[G,|F] = lim E[G,] = E[(] = E[E(|F]).

This equality together with a.s. ¢ < E[(|F] implies that a.s. E[(|F] = (' = limy, 00 E[(u|F]. O
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We refer to (i) and (ii) as the L*-contractivity and LP-contractivity, to (iii) as the chain
rule, and to (iv) as the monotone convergence property.

Theorem 5.2, Part III. (i) Let ¢ € L'(A) and let n be an F-measurable random variable
such that n¢ € L*(A). Then nE[¢|F] € L}(F) and

E[n¢|F] = nE7¢. (5.4)

(ii) Let p,q € [1,00] be such that % —I—% = 1. Letn € LP(A) and ¢ € LI(A). Then (E'n,
nEF ¢, and B CETn are all integrable, and have the same expectation, i.e.,

E[(E” 7] = EE” (] = E[E” CE 7). (5.5)

Proof. (i) We first assume that 7 is an F-measurable simple random variable. Then there are
Ai,..., A, € Fand cy,...,c, € Rsuch that n = > }_ cxla,. Then nEF¢ € L'(F) because 7
is bounded and E¥ ¢ € L'(F). Moreover, for any A € F,

E[14nE"(] = E[Z cxlana, B¢ = Z ckE[1an4,¢] = E[Land].
=1 =1

So we get . Next, we assume that {,n > 0, but do not assume that 7 is simple. Then we
can find a sequence of nonnegative F-measurable simple random variables (n,) with 7, T 7.
For each n, we have n,E¥¢ € L'(F) and E[n,¢|F] = n,EF¢. Since n,¢ 1 n¢, and n¢ € L'(A),
we get,

E[nc|F] = lim E[n,¢|F] = limn,E[C|F] = nE[(|F].

So we again get . Finally, we do not assume that ¢,n > 0. We may write ( = (4 — (_
and n = ny — n—. Then for any 01,00 € {+,—}, from |n,,| < || and |(s,| < [(] we get
N6,Coy € LY(A). The previous result implies that holds for 7, and (,,. Using the
linearity, we get for n and (.

(ii) Since n € LP(A) and ¢ € LI(A), we get En € LP(F) by LP-contractivity of EZ
and then (E7n € L'(A) by Hélder’s inequality. Applying (i) with E[n|F] in place of 1, we get
E[CEFn|F] = EF (E7 7. Symmetrically, we get E[nE” (| F] = E[n|F]E[¢|F]. Taking expectation,
we get . O

We refer to (i) as the pull-out property, and to (ii) as the self-adjointness. From (ii) we see
that, for 1 < p < oo, the adjoint operator of the conditional expectation EX : LP(A) — LP(F)
is the conditional expectation EZ : LY(A) — L9(F). When p = 2, EF : L?(A) — L?(F) is in
fact the orthogonal projection onto L?(F).

Lemma 5.2 (local property). Let F and G be two sub-o-algebras of A. Let (,n be two integrable
random variables. Suppose there is A € F NG such that ANF = ANG and a.s. ( =n on A.
Then a.s. 7 ¢ =E9n on A.
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Proof. Since A € FNGand ANF = ANG, both lAEfC and 1AEg77 are F N G-measurable.
For any B € F NG, by the averaging property and that a.s. { =7 on A,

E[1514E7¢] = E[14nsE¢] = E[14n5¢] = E[14npn] = E[1514E7).
Since this holds for any B € FNG, we get a.s. 14E7¢ = 14E%. So we get the conclusion. [

Lemma 5.5 (uniformly integrability, Doob). For any ¢ € L', the family EX ¢, where F is any
sub-o-algebra of A, are uniformly integrable.

Proof. By the L'-contractivity, {E7(} is L'-bounded. In order to show that it is uniformly
integrable, by Lemma 3.10, it suffices to show that E[14E7¢] — 0 as A € A and PA — 0,
uniformly in F. So we need to show that if Fi, Fa, ... are sub-o-algebras of A, and A1, As,--- €
A satisfy PA, — 0, then E[14, EE’"(] — 0. By the self-adjointness, Since ¢ € L' and
14, € L™,

E[14,E7"¢] = E[CE " [14,]].

n

Since E[E"[14,]] = PA, — 0, we know that E¥#[14 ] — 0 in L!. So E"»[1,,] 5 0. Thus,

CEFn[14,] Bo. By dominated convergence theorem (for convergence in probability), we get
E[¢CE7"[14,]] — 0, as desired. O

We are going to use conditional expectation to define conditional distribution (or law).
Suppose F is a sub-c-algebra of A, and ¢ is a random element in a measurable space (S, S).
For every A € S, P7[¢ € A] is an element in L'(F), which satisfies a.s. 0 < P7[¢ € A] < 1,
PF[¢ € S] =1, and P7[¢ € §)] = 0. Suppose for each A € S, we choose a representative, say
Ca, of PF[¢ € A]. Such (4 is an F-measurable random variable. We may choose (4 such that
0<¢a<1,¢s=1,and (3 =0. Consider the map v : Q x S — [0,1] defined by

v(w, A) = Ca(w).
We find that, for any A € S, v(-, A) is an F-measurable random variable. On the other hand,
by the linearity and monotone convergence property of conditional expectation, we have

a.s. v(-,A) = Z v(-, A,), if Ais a disjoint union of Ay, Ay, -+ € S.
n=1

This means that there is an exceptional event N depending on Aj, As,... with PN = 0 such
that

o
p(w, A) = Z v(w,A,), YweQ\N. (5.6)

n=1
Since there are uncountably many such sequences, in general, we may not be able to find a
common exceptional null set, which is an F-measurable set N with PN = 0, such that (5.6

holds for any A, A, As,--- € A such that A is a disjoint union of Ay, As,.... However if;such
N does exist, we may modify the value of each (4 as follows. Pick sg € S. For every A € S, we
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do not change the value of (4 on 2\ N, but for w € N, we now define {4(w) = 14(s0) = ds,A.
Then the new (4 are still representatives of P/[¢ € A], and (5.6) holds true for all w € Q. So
we find that v is a probability kernel from (2, F) to (.5, 5).

Definition . Suppose v is a probability kernel from (€2, F) to (.5, S) and satisfies that for any
AcS, as.
P7[¢ € A] = v(-, A).

Then v is called a (regular) conditional distribution (or law) of ¢, given . When such v exists,
we write it as Law(C|F) or Law” (¢).

A conditional law is convenient for us. Suppose further that n is a random element in
another measurable space (T, T). We may then consider conditional law of ¢ given o (7). If such
a conditional law v exits, then it is a probability kernel from (€2, o(n)) to (S, S). Recall that, for
any probability kernel u from (T, T) to (S,S), (w, A) = p(n(w), A) is a probability kernel from
(Q,0(n)) to (S,S). Tt is desirable to have a probability kernel p such that v(w, A) = p(n(w), A).

Then for any A € S, we have
PU[C € A] = pu(n, A), as. (5.7)

When such p exists, we then have the existence of Law({|n), which equals (7, ). The following
theorem concerns the existence of such kernel.

Theorem 5.3. Let (S,S) and (T,T) be two measurable spaces, where S is a Borel space. Let
¢ and n be two random elements in S and T, respectively. Then there is a probability kernel
w from (T,T) to (S,S) such that for any A € S, holds. Moreover, such p is Law(n)-a.s.
unique, which means that if another yi' satisfies the same property, then there exists N € T with
Pon !N =0 such that ' = p on (T \ N) x S.

Corollary . If ¢ is a random element in a Borel space (S, S), then for any sub-o-algebra F of
A, the conditional law Law((|F) exists and is a.s. unique.

Proof of the corollary. Take (T, T) = (2, F). Let :  — € be the identity. Since F C A, 7 is
A/ F-measurable. We have Law(n) = P and o(n) = F. By Theorem 5.3, there is a probability
kernel ;1 from (9, F) to (S, 9) such that for any A € S, a.s. PF[¢ € A] = P"[¢ € A] = u(n, A) =
wu(-, A). So = Law((|F). By Theorem 5.3, such p is Law(n)-a.s. unique. Since Law(n) = P,
such p is a.s. unique. O

Proof of Theorem 5.3. We may assume that S € B(R). Then ( is a random variable. For every
r € Q, we consider a representative of P[¢ < r|n|, which is an n-measurable random variable
taking values in [0,1]. By Lemma 1.13, for each r € Q, there is a random variable f, defined
on T such that

a.s. PT¢ <r]= f.(n). (5.8)

For any 1,7y € Q with 71 < rg, by positivity we have a.s. f,, (n) < fr,(n), which implies
that Pon~!-a.s. f., < f.,. By monotone convergence property, we have a.s. lim,, 1 fn(n) =1
and lim,, o f-n(n) = 0. Thus, Pon~!-a.s. limzs, i00 fn = 1 and limzs, s oo f = 0. Since
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there are at most countably many pairs (ry,re) with r1,7e € Q, we may find N € T with
Pp~'N = 0 such that for t € T\ N, Q > r — f.(t) is increasing, and limzs, 5400 fn(t) = 1
and limzs, oo fn(t) = 0. Then we get limgs, 400 fr(t) = 1 and limgs,——oo fr(t) = 0 for
t € T\ N. We define a measurable function F': T'x R — [0, 1] such that

o inf@9r>x fT (t), t 6 T \ N,
F(t’ x) o { 1[0700)(1’), te N.

Then for every t € T', F'(t,-) is increasing and right continuous and satisfies lim;_, o F'(t,2) =1
and lim, ,  F(t,z) = 0, and so is a distribution of some probability measure m(t,-) on R
(when t € N, m(t,-) = dp by the construction). From the measurability of F', we see that for
any x € R, t — m(t, (—o0, z]) is T-measurable. Using a monotone class argument, we conclude
that m is a probability kernel from 7" to R.

By and the monotone convergence property of conditional expectation, for any = € R,
a.s.

m(n, (—o0,2]) = F(n,z) = _inf PI[¢ < r] = PI[C € (—o00,a].

Qar>z

Using a monotone class argument based on the a.s. monotone convergence property, we may
extend the last relation to

m(n, B) =P"¢ € B] as. VB € B(R). (5.9)

In particular, we have a.s. m(n, S¢) = 0, i.e., Pon~tas. m(-,S¢) = 0. Taking sop € S, (5.9)
remains true if m is replaced by the kernel p from 7" to S defined by

| mf(t,-), if m(t, S =0;
ult, ) = { Ser it m(t,S¢) > 0.

Such p is what we need. If there is another probability kernel i/ from T to S with the stated
property, then for any r € Q, a.s.

pu(n, (—oo,r]) =P"¢ < r] = p/(n, (—o0,7]).

Since Q is countable, we can exchange “for any r € Q” with “a.s.”. A monotone class argument
yields a.s. u(n, ) = p/(n,-), and so Pon~t-as. p =y O

There are two trivial cases. If 7 = {Q,0}, then a probability kernel from (€, F) to (S, S)
is just a probability measure on (S,S). In this case, the conditional law Law((|F) agrees with
Law((), which is often referred as the unconditional law of ¢. Another trivial case is F = A.

Exercise . Find the conditional law Law((|.A).
Recall that if f: S — R is measurable such that E|f({)| < oo, then

Ef(C) = /S £(s) Law(¢) (ds).

The following theorem extends this equality to conditional laws.
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Theorem 5.4 (disintegration). Let ¢ and n be random elements in measurable spaces (S, S) and
(T,T), respectively. Let F C A be a o-field such that n is F-measurable. Suppose Law(C|F)
exists. Let f be a measurable function on S x T such that E|f(¢,n)| < oco. Then for a.s.
w e Q, s f(s,n(w)) is integrable w.r.t. Law(¢|F)(w, ), w — [ f(s,n(w))Law({|F)(w, ds) is
F-measurable, and equals E[f(¢,n)|F](w). In short, this means a.s.

BI(Gn)IF] = [ £, Law(clF)(ds) (5.10)
Integrating (5.10), we get the commonly used formula
E[f(C,m) = E / £ (s, ) Law(C|F)(ds). (5.11)
When 7 disappears, becomes E[f = [ f(s) Law(C|F)(ds).

Proof. 'We first prove (5.11). We write v for Law((|F). First, suppose f = 1pxc, where B € S
and C € T. Then [ f(s,n)v(ds) = 1,ccvB is F-measurable because n € F. By n € F and the
pull-out property of conditional expectation,

ELf(¢,n)] = EE” [ plyec]] = E[lyccP?[C € B]) = E[l,ccvB] = / f(s, myw(ds).

So we proved (j5.11)) for f = 1px¢. By a monotone class argument, we then conclude that, if f
is an indicator function, then [ f(s,n)r(ds) is F-measurable and (5.11)) holds. Using linearity

and monotone convergence, we see that the measurability and (5.11]) holds for any measurable
function f > 0. In particular, if Ef(¢,n) < oo, we find that a.s. [ f(s,n)v(ds) < co. So
s+ f(s,n) is a.s. integrable w.r.t v, and the measurability holds outside a null set on which
[ F(s,m(ds) = oc.

We now return to (5.10). Fix a measurable f : S x T — R4 with Ef({,n) < oo, and let
A € F. Then na := (n,14) is an F-measurable random element in 7" x {0,1}. Note that

14f(¢,n) can be expressed as f(¢,na) such that f(s,(t,1)) = f(s,t) and f(s, (t,0)) = 0. Such
[ is S x (T x {0,1})-measurable. Applying (5 with 7' x {0,1} in place of T', 4 in place of

n, and f in place of f, we get

E[LAf(C,m)] = E[F(C, na)] / Fls,ma)(ds) = E[Ls / f(s.m)v(ds)]

Since [ f(s,n)v(ds) is F-measurable, we get (5.10) for f > 0. The general result follows by
taking differences. O

Remark . For two random elements ¢ and 7 in T" and S, respectively, if Law({|n) exists and is
expressed by u(n,-) for a probability kernel p from T to S, then we may recover the Law((,n)
using p and v := Law(n). For any A € S x T, applying (5.11) to F = o(n) and f = 14, we get

P[(¢,m) € A] ZE/SlA(Sm)u(mdS) Z/TV(dt)/SlA(SJ)u(t,dS)-
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Thus, ¥ ® p as a probability measure on T x S is the law of (n, ). When (71, p is the constant
Law(¢), and v ® p is just the product measure Law(n) x Law(().

Example . Suppose ¢ and 7 are two random variables such that the law of ({,n) is absolutely
continuous w.r.t. the Lebesgue measure on R?, and the Radon-Nikodym derivative is f. Define
fopon R by fi(y) = Jg f(z,y)dx € [0,00]. Then f, is the density of the law of 7 against the
Lebesgue measure on R because for any B € B,

P[y € B] = P[(¢,n) € R x B] = /dy/d:cfwy /fn

So Law(n)-a.s. f, € (0,00). Now we define a probability kernel x from R to R such that for
yeRand A € B, if f,(y) € (0,00), then

1
wy, A) = fn(y)/Af(x,y)dw

and otherwise, pn(y, A) = dp(A). This means that for Law(n)-a.s. all y, u(y,-) has a density,

which is }}(( )), w.r.t. the Lebesgue measure. The choice of u(y,-) when f,(y) € {0,00} is not

important. We claim that Law({|n) = u(n,-). To see this, note that for any A, B € B, letting
B'=Bn f;l((O,oo)), we get

f(z,y)
A fn(y)

E1,eplccal = E[lcplceca] = /B//Af(a:,y)d:vdy = /B/ In(y) dxdy

= [ 5wty Ady = Bl1rn(n. A)] = ElLon(n. A))

For a fixed A € B, since the above formula holds for any B € B, we get a.s. P[¢ € A|n] = u(n, A).
Since this holds for any A € B, we get Law(¢|n) = u(n,-).

Corollary (Jensen’s inequality for conditional expectation). Let { be an integrable random
variable. Let F C A be a o-algebra. Let f : R — R be convex such that f(() is integrable. Then

E[f(OIF] = f(E[C|F]).
Proof. Applying and using the unconditional Jensen’s inequality, we get
BIF(Q)1F] = [ () Law(¢|F)(ds) = 7 [ sLaw(l7)(ds)) = F(ELCIF))

O

Applying this Jensen’s inequality to f(x) = |z|P, p € (1,00), we see that for ( € LP,
E[|¢[P] > E[|E[¢|F]P], and so we again get the LP-contractivity ||E[¢|F]|l, < ||<]lp-
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We now define conditional independence. For sub-o-algebras G, Fi,...,F, of A, we say
that Fi,...,F, are conditionally independent, given G, if

n n
Pg[ N Bk} =[[®°Bi] as., BieFi, 1<k<n.
k=1 k=1

If (Fi)ter is an infinite family of sub-o-algebras of A, we say that they are conditionally inde-
pendent, given G, if the same property holds for every finite subcollection F3,, ..., F:,. Condi-
tional independence involving events A; or random elements (¢, t € T, is defined as before in
terms of the induced o-algebras o(A;) and o(¢;). We use 1l g to denote pairwise conditional
independence, given G.

If ¢ is G-measurable, then for any PY[¢ € A] = 1¢ca, and so ¢ is conditionally independent
of any 7 C A, given G. If F4, t € T, are all independent of G, then for any B € \/,.r Ft,
PY[B] = P[B], and so F;, t € T, are conditionally independent, given G, iff F;, t € T, are
unconditionally independent.

Proposition 5.6 (conditional independence, Doob). Let F,G,H be sub-o-algebras of A. Then
F A gH iff
P[H|F,G] = P[H|G] a.s., VH € H. (5.12)

Proof. Assuming ([5.12)) and using the chain rule and pull-out properties, we get for any F' € F
and H € H,
PY[F N H] = E[E7V9[1p1y]] = E9[1,E7 V91 y]]

= E9[1P[H|F,G)] = E7[1xP[H|G)] = PY[H]P[F],
which shows that F_ Il gH. Conversely, if F Il gH, then for any '€ F, G € G, and H € H,
E[1pngPYH] = E[E[1716E[14]]] = E[1gEY [15]E9[1£]]
= E[1PY[H|PY[F]) = E[1cPY[F N H]] = E[PY[G N F N H]] = P[FNG N H].
By a monotone class argument, we get that for any A € FV G,
E[14PYH] = P[AN H].
Since PYH is F V G-measurable, we get . O

From now on, for every sub-c-algebra F of A, we use F to denote the completion of F
w.r.t. P.

Corollary 5.7. Let F,G,H be sub-o-algebras of A. Then
(i) FAUgH iff FAg(G, H);
(i) FUgF iff F CG.
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Proof. (i) By Proposition 5.6, both relations are equivalent to
P[F|G,H] = P[F|G] a.s., VF e F.
(ii) If 1 gF, then by Proposition 5.6, for any F' € F,
a.s. 1p = P[F|F,G] = P[F|G],
which implies that F € G. So F C G. On the other hand, if 7 C G, then for any F € F,

as. P[F|G] = P[F|G] = 17 = P[F|F, ).

Using Proposition 5.6 again, we get F Il g F. O

Proposition 5.8 (chain rule). Let G, H, F1, Fa,... be sub-o-algebras of A. Then the following
conditions are equivalent.

(Z) Hj_g(./_'.l,fé, . .),’
(ZZ) HJ_Lg7.7.‘17.._’]:nfn+1 fO?” all n Z 0.

Proof. If (i) holds, then for any n > 0, H 1l g(Fi,...,F,). By Proposition 5.6, for any H € H
and n > 0, a.s.

P[H|gvfl7"'7fn] :P[H‘g] :P[H’gaflw--afmfn—&-l]y

which implies (ii) by Proposition 5.6.
Suppose (ii) holds. By Proposition 5.6, for any H € H and n > 0, a.s.

PH|G, Fi,...,Fn] =PH|G, Fi,...,Fn, Fni1l
When n = 0, this means a.s. P[H|G] = P[H|G, F1]. Thus, for any m > 1, a.s.
PIH|G] = P[H|G, F1,...,Fm].

So by Proposition 5.6,
/HJ_Lg(fl,...,fm), mZ 1.

By a monotone class argument, we get (i). O
Remark . Taking G = {Q,0}, we find that H Il (F1, Fo,...) iff HA 5 7 Fpy1 foralln > 0.

Exercise . Do Problems 1, 2, 4, 5, 7, 8 in Chapter 5. Note that Problems 4,5 define EZ ¢ for
any R, -valued random variable (may not be integrable); Problems 7,8 extend Fatou’s lemma
and dominated convergence theorem to conditional expectation.
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6 Filtration and Stopping Times

Consider a measurable space (2, A). Let T C R be an index set. A filtration on 7" is an
increasing family of o-algebras F; C A, t € T. This means that s < t € T implies that F; C F;.
We understand F; as the knowledge at the time ¢ with the memory of the past being kept. The
increasingness of F; reflects the arrow of time. From now on, we use F to denote a filtration
rather than a o-algebra. Let (S,S) be a measurable space. An S-valued stochastic process
X with index T is a family of measurable mappings Xz, ¢ € T, from Q to S. It is called
F-adapted if X; is Fy-measurable for every t € T. If we start with X = (Xy);er, and define
Fr=0(Xs:8<t),t €T, then F = (F) is called the filtration induced by X. It is the smallest
filtration to which X is adapted.

Given a filtration F = (Fy)er, a random variable 7 taking values in T'U {sup 7'} is called
an F-stopping time or F-optional time if for any t € T, {7 <t} = {w € Q: 7(w) < t} € F.
Intuitively, 7 is a stopping time means that we can determine whether 7 happens using only
the knowledge of the past.

Exercise . Show that if 7" is countable, then 7 is an F-stopping time iff {7 =t} € F;, vt € T.

Exercise . Show that the supremum of a sequence of F-stopping times is an F-stopping time,
and the minimum of finitely many F-stopping times is an F-stopping time. We will see that
the infimum of a sequence of F-stopping times may not be an F-stopping time.

Example . Suppose (2, F,P) is a probability space, and (3, (2, ... is an i.i.d. sequence of ran-
dom variables with Bernoulli distribution B(1/2). Let F = (F,)nen be the filtration generated
by ¢ = ((n). Let X, = > 31 Gk, n € N. Then X = (X,,)nen is an F-adapted process. Let
N € N. Let 7 be the first n such that X,, = N; if such time does not exist, we set 7y = oc.
Then 7y is an F-stopping time because for any n € N,

n

{rv <n} = [ J{Xe =N} e
k=1

On the other hand, let o be the last n such that X,, = N; and when such time does not exist,
let oy = co. Then oy is not a stopping time because

{on =n} ={Xp = N} N {Cn+1 =1} € Fppa \ Fn.

Intuitively, o is not a stopping time because we need future information to determine whether
it happens.

For an F-stopping time 7, we define
Fr={Ac A: An{r <t} e R,VteT}.

It is easy to see that F; is a o-algebra. We understand F; as the knowledge at the random
time 7.
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Exercise . Show that for any fixed ¢ty € T, the constant time 7 = ty is an F-stopping time,
and the o-algebra F; associated with such 7 agrees with the F3,. Thus, 7 and F; naturally
extend ¢t and F; for deterministic times ¢t € T'.

Lemma 6.1. For any F-stopping times o and T, we have

(i) T is Fr-measurable;

(i) Fo N{o <7} C Fopr = Fo NFr C Fr.

(i) Fo N{o =1} =F,N{oc=1}.

() {o <7},{oc <7}, {oc =7} F,NF;.

(v) If o < 7, then Fy C Fr.
Proof. Let A € F,. Then for any t € T,

An{fo<t}h)n{r<t}=An{o<thn{r <t}n{o At <7 At}

Since A € F,, AN{o <t} € F;. Since 7 is an F-stopping time, {7 < t} € F;. Since o At takes
values in T'N (—oo,t], and for s € T N (—o0,t], if s < t, {o Nt < s} ={o <s} e Fs CF;and
ifs=t, {oNt<s}=Q¢cF. SooAtis Fi-measurable. Similarly, 7 A ¢ is F;-measurable. So
{o ANt < T At} € F. Thus, (An{oc <7})N{r <t} € F. Since this holds for any t € T, we
get AN{o <1} € F;. Thus,

Fon{o <7} CFr (6.1)

If o <7, then {0 < 7} = Q, and we get F, C F, from (6.1). So we proved (v). Since
o AT < o,T1, by (v) we get Fonr C Fo N Fr. On the other hand, if A € F, N F;, then from

An{font<ti=An{o<thuAn{r<t}) e F, teT,

we get A € Fopr. S0 Fo N Fr C Fopr. Thus, Forr = Fo N Fr. From we get F, N{o <
T} C Fo N Fr = Fopr, which is (ii).

Taking A = Q € F, in (6.1), we get {c < 7} € F, N F;. Swapping o and 7, we get
{o<rt={r<o}ce FoNF;. Thus, {o =7} ={o <7} \{o <7} € F,NFr. So we get (iv).

Since by (ii) Fo N{o < 7} C Fr, and by (iv) {o =7} € Fo N F;, we get F,N{o =7} C
F-N{o =7}. Swapping o and 7, we get Fr N{oc =71} C F, N{o =7}. So (iii) holds.

Finally, since 7 takes values in T'U {supT'}, to prove (i) that 7 is F,-measurable, it suffices
to show that for any ¢t € T, {7 <t} € F,. This follows from (iv) since any deterministic time ¢
is an JF-stopping time. O

Suppose now T'= R, = [0,00). For a filtration F on R, we define a new filtration F* by
Fir = Nyst Fus t > 0. We understand F," as the knowledge at an infinitesimal time after ¢. It
is clear that for 0 <t < wu, Ff; C .7-? C Fy. We may not have F; = ]-"f.
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Example . Let Q be the space left-continuous Z,-valued increasing functions defined on R
with initial value 0. For ¢ > 0, let m; : @ — Z4 be the map w — w(t). Let F = (Ft)e>0
be the filtration such that 7, = o(ms : 0 < s < t). Fix tp > 0. Let A;, denote the set of
w €  which are continuous at t9. Then A;, € .7:;3 \ Fi,- In fact, Ay = {th = T, }, where

Tyt (w) := limy, w(t). For any to > 0, m, € F, C Fy. For any u > to, we may pick a
sequence (t,) in (tg,u] with ¢, | to. Then 7T;g = lim,, m;, € F,. Since this holds for any u > to,
T € Musty Fu = Fo- Thus, Ay = {m} =m,} € Fy.

Next, we show that A;, & Fi,. We define an equivalence relation “=;” on € such that
w1 &, wo iff wy and wy agree on [0,%p]. Let Gy, be the family of all subsets of Q which are
unions of the equivalence classes w.r.t. =;,. Then G;, is a o-algebra, and 7; € Gy, for 0 <t < tp,.
Thus, Fi, C Gi,. We see that Ay, & Gy, because for any w; € A, we may define wa € '\ Ay,

by wa(t) = wi(t) for 0 <t <ty and wa(t) = wi(t) + 1 for t > tg. Thus, Az, & Fiy-

We say that F is right-continuous if 7 = F. This means that the knowledge at time ¢ is
the same as the knowledge at the time t + o(1). In particular, F* is right-continuous because

F =" =NNF=F=F"
u>t u>tv>u v>t

We call F* the right-continuation of F. A random time 7 : Q — [0, 00] is called a weak F-
stopping time if for any ¢t > 0, {7 < ¢t} € F;. In this case, for any h > 0, 7+ h is an F-stopping
time because for any ¢t > 0, when t < h, {7 + h <t} =0 € F;, and when ¢t > h, we may take a
sequence (ty,) in (t — h,t) with ¢, | t — h, and get

{r+h<ty={r<t—h}=({r<t}€F,

where the last relation holds because {7 < t,,} € F;,, C F; as t,, < t. So for each h > 0, we may
define a o-algebra Fr4p. If 0 < hy < ho, from 7+ hy < 7+ ha we get Frip, C Frip,. We now
define Fr = (;,50 Fr+h, Which is also a sub-o-algebra of A.

Lemma 6.2. A random time 7 is a weak F-stopping time iff it is an FT-stopping time, in
which case
Fry=F={Ac A: An{r <t} € F,Vt > 0}.

Proof. For any t > 0 and u > t, we note that

{fr<tt= () {r<rh {r<ty= |J {r<rh

reQN(t,ul reQ4+n(0,¢t)

If An{r <r}eF! forall r >0, then for ¢ > 0,

An{r<t}= |J An{r<rher
reQN(0,t)
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because for r < t, F;F C F;. On the other hand, if AN{r < r} € F, for all » > 0, then for
t>0and u>t,
An{r<t}= (] An{r<r}) eF.

reQiN(t,u)

Since this holds for any u > t, we get AN {r <t} € F;". So we have proved the first assertion
by taking A = 2. For general A € A, this shows that 77 = {A € A: An{r < t} € F,Vt > 0}.

By the definition of Fry, A € Fry iff A € F.4p, for each h > 0, i.e., AN{r+h <t} € F; for
eacht > 0 and h > 0. Since {7+ h < t} = () when h > t, the above relation is further equivalent
to that AN{r <t—h} € F for any ¢t > h > 0, which by a change of variable (s =t — h) is
equivalent to AN {7 < s} € Fsyp for any s > 0 and h > 0, and hence to AN {r < s} € F; for
all s >0, ie., Ae Fr. Thus, Frip = FI. O

Note that if F is right-continuous, then a weak F-stopping time is an F-stopping time, and
there is no difference between F,; and F.. Intuitively, 7 is a weak F-stopping time means that
we can determine that 7 happens using the information of the past and a tiny bit of future.

Lemma 6.3. Let 71, 72,... be weak F-stopping times. Then T := inf{7,} is also a weak F-
stopping time, and Fry =,, Frot-

Proof. We see that for any t > 0 and A € A,

Anfr<ty=An|J{m <t} =JAn{m <t} (6.2)

Taking A = (2, we see that 7 is a weak F-stopping time. By Lemma 6.1, Fry C (), Fr,+. If
A €, Fro+, then by Lemma 6.2, An{7, <t} € F; for each n, and so by (6.2), AN{r < t} € F,
which implies that A € F-,. So we get Fr =), Fr,+- O

Note that if F is right-continuous, this lemma tells us that the infimum of a sequence of
F-stopping times is an F-stopping time. This is not true in general. The lemma below shows
another reason that a right-continuous filtration is useful.

IfT =Ry or Z,, for a set B C S, we may define the hitting time

g =inf{t € T,t > 0: X, € B}.

As usual, we set inf ) = co by convention. The following result helps us to decide whether 73
is a stopping time.

Lemma 6.6. Fix a filtration F on T = Ry or Z,, let X be an F-adapted process on T with
values in a measurable space S, and let B C S. Then we have the following

(i) If T = Z+ and B is measurable, T is an F-stopping time.
(i) If T = R4, S is a metric space, B is closed, and X is continuous, then Tp is a weak

F-stopping time.
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(i) If T =Ry, S is a topological space, B is open, and X is right- or left- continuous, then
T s a weak F-stopping time.

In particular, in (i) and (iii), if F is right-continuous, then Tp is an F-stopping time.
Proof. (i) For any n € Z.,

{rg <n}=|J{XxeB}e Fu
k=1

since for every k < n, {Xj € B} € F, C Fy,. So 7p is an F-stopping time.
Suppose now T'= R... Let ¢y > 0. By the definition of 75,

{re<toy= |J xveBy=J U {xeB}

0<t<tg neN te[%o,(l—%)to]

(ii) If S is a metric space, B is closed and X is continuous, then for any n € N,

U wes=N U (xB<)

te[,(1-Lyto) mEN gelfo (1 1))

-N U wxn<y

mEN reQ[22,(1- 1 )to]

Thus, for any tg > 0,

m<i=UJN U ExBm<)

neNmeN rEQﬂ[fo,(l—%)to]

1
n

Since for any n,m € Nand r € QN [2, (1 - 1)to], {p(X,,B) < L} € F, C F,, and the above
formula involves only countable union and countable intersection, we set {Tp < to} € Fy,.
(iii) If B is open and X is right-continuous or left-continuous, then for any ¢y > 0,

{rs<to}= |J {XxxeB}= |J {X.eB}eF,
te(0,to) reQN(0,to)

So we again conclude that 75 is a weak F-stopping time. O

Remark . If we now define 75 = inf{t > 0 : X; € B}, the above theorem still holds. If T" = Z
and o is an F-stopping time, then 7 := inf{t > o : X; € B} is a stopping time. For the latter
statement, we note that for any u € Z,,

{r<u}= |J {e<t}n{XieB} e F.
0<t<u
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Lemma 6.4 (discrete approximation). For any weak F stopping time T, there exists a sequence
of countably valued F-stopping times (7,) with 7, | T.

Proof. Let 7, = 27"[2"7 + 1]. This means that if & < 7 < %t for some k € Z>, then

277.
T = % Then 7, takes values in 27”N and 7,, | 7. To see that each 7, is an F-stopping time,

we note that for any ¢t > 0, there is kg € Z>¢ such that ]2"’—2 <t< % Then 7, < t iff 7, < ko

271
iff 7 € [2%, %) for some k € Z with k+ 1 < kg, which is equivalent to that 7 < 12“—2. Since T is
a weak F-stopping time, we get {1, <t} = {17 < %} € Fry C Fr. O

27‘1

The definition of F-adaptedness does not imply the joint measurability (¢,w) — Xi(w).
Now we introduce a stronger concept.

Definition . Let F be a filtration on R;. An S-valued process X on Ry is called F-
progressively measurable or simply progressive if for any ¢y € Ry, the map

Q% [0,t0] 3 (w,t) = Xi(w) € S
is Fy, x B[0,tp]-measurable. A set A € 2 x Ry is called F-progressive if 14 is F-progressive.

Exercise . Show that (i) an F-progressive process is F-adapted; (ii) the class of all F-
progressive sets form a o-algebra, denoted by P; and (iii) a stochastic process X on Ry is
F-progressive iff it is measurable w.r.t. P.

Lemma . A left- or right-continuous adapted process is progressive.

Proof. Let X be a left- or right-continuous adapted process. We need to show that for any
to > 0, (w,t) — Xi(w) is Fy, x B[0,tp]-measurable. Let ¢ty > 0. It suffices to construct a
sequence of functions X™ : Q x [0,%p] — S such that each X" is F;, x B|0, to]-measurable, and
X" — X pointwise on Q x [0,%9]. If X is left-continuous, we define X"™(w,t) = X (w, & t0) if

) 2”
2%750 <t< k;;l to for some k € Z. If X is right-continuous, we define X" (w,t) = X (w, %to) if

Q%to <t< %to for some k € Z with k < 2™; and X" (w,t9) = X (w, tp). From the adaptedness
of X, we see that in both cases, X" is Fy, x B|0, to]-measurable. The pointwise convergence of
X" — X follows from the left- or right-continuity of X. O

It is useful to have a progressive process for the following reasons.

Lemma 6.5. Fiz a filtration with index T. Let T be a T-valued F-stopping time. Let X be an
F-adapted process on T with values in a measurable space (S,S). Then X, : w > Xrw)(w) is
Fr-measurable in the following two cases.

(i) T is countable;

(i) T = R4 and X is progressive.
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Proof. To prove that X is F-measurable, we need to show that for any B € B(S) and ¢ty € T,
{X; e B}n{r <tp} € F,. Note that

{X; e B}n{r <to} ={Xrat, € B} N {1 <to};

{Xont, € B} = ({Xr e B} n{r <to}) U({Xy, € B} N {to <7}).

Since X is F-adapted, {X; € B} N {7 < to} € F, iff {X;n, € B} € Fi,. Note that 7 A tp is
an F-stopping time bounded above by 3. So it suffices to show that for any F-stopping time
o bounded above by ty, X, is F;,-measurable.

(i) Since o takes values in {t € T': t < g}, we have

{X,eB}= |J ({XieBIn{o=t})eF,

teT:t<tg

because T is countable, and for ¢ € T with t < to, {X; € B},{oc =t} € F; C Fy,.

(ii) Now o takes values in [0,%]. The we write X, = X' o), where X' is the restriction
of X to Q x [0,tp], and ¥ : Q — Q x [0, 0] is given by w +— (w,o(w)). Since X is progressive,
X' is Fy, x B[0, to]-measurable. In order to show that X, is F; -measurable, it suffices to show
that ¢ is Fy,/(Fy, x BJ0, tp])-measurable. This holds because for any B € F, and t € [0, o],
v HB x [0,t]) = BN{o <t} € Fy. O

Let P be a probability measure on (£2,.4) and we work on the probability space (€2, A, P).
For any o-algebra G C A, we use G to denote the completion of G, and say that G is complete
if G = G. A filtration () is called complete if every F; is complete. Given any filtration
F = (F), its completion is the filtration (F;). Suppose now T = R, and F is a filtration on
R,. We get two filtration extensions of F: one is its completion (F;), the other is its right-
continuation (F;"). The following lemma tells us that the right-continuation of the completion
agrees with the completion of the right-continuation.

Lemma 6.8. For any filtration F on Ry, we have
Fr=F, vt>o0.

Proof. Since F;, C F, for all t > 0, we have F;} = Nust Fu C ﬂu>t‘fu = .f:r for all ¢ > 0.
Since every F; is complete, every 7: is also complete. So .7-"7; C .T;L , t>0.

We now prove the opposite direction. Let A € 7? for some t > 0. Then A € F, for every
u > t. By Lemma 1.25, for each u > ¢, there is 4,, € F,, such that PJAAA,] = 0. Choose u,, | t
and define A’ = limsup 4,,, € F; . Then P[AAA'] <> P[AAA,,] =0. So 4 € }TJF Thus,
FcF O

The common filtration (]—TJF) = (.f:r ) is both complete and right-continuous, and is called
the (usual) augmentation of F.

Exercise . Do problems 2 and 4 in Chapter 6.
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7 Martingales

Definition . Let F be a filtration with index set 7' C R. Let X = (X;)ier be an F-adapted
process of integrable random variables. If for any s,t € T with s < t, we have

Xs = E[X¢|F] a.s., (7.1)

then we say that X is an F-martingale. If holds with “<” (resp. “>") in place of “=" for all
s <t €T,then X is called an F-submartingale (resp. F-supermartingale). If X = (X!,..., X%)
is a process on T in R?, we say that X is an F-vector martingale if for every 1 < k < d, X* is
an F-martingale.

Facts: X is an F-martingale iff it is both an F-submartingale and an F-supermartingale;
X is an F-supermartingale iff —X is an F-submartingale; and a linear combination of F-
martingales is also an F-martingale. We have some freedom to choose the filtration.

Exercise . Prove that if X is an F-martingale (resp. supermartingale or submartingale), then
it is also a martingale (resp. supermartingale or submartingale) w.r.t. (i) the completion of F;
(ii) the filtration induced by X.

Example . Let the filtration F be given. Let ¢ be an integrable random variable. Let X; =
E[¢|F:], t € T. Then X is an F-martingale because for any s <t € T, by chain rule,

E[X:|Fs] = E[E[C|F]|Fs] = E[C|F] = X,
By Lemma 5.5, X is uniformly integrable, and so is L'-bounded.

For a process X on Z,, we define AX,, = X,, — X,,—1, n € N.

Exercise . For an F-adapted process X on Z., prove that X is an F-martingale (resp. super-
martingale or submartingale) iff a.s. E[AX,,|F,—1] = 0 (resp. > 0 or < 0) for all n € N.

Example . Let (;,(2,... be a sequence of independent integrable random variables. For
neZy,let X, =3 (G and F, =0(( : 1 <k <n). Then F = (F,) is a filtration, and
X = (X,) is F-adapted. For n € N| since AX,, = (, ILF,—1, we get a,s. E[AX,|F—1] = E[(].
Thus, X is a martingale (resp. submartingale or supermartingale) if E¢,, = 0 (resp. > 0 or < 0)
for all n € N. If Law({,) = (61 4+ 0_1), X is a random walk on Z.

A martingale on Z; may be thought of as a gambler’s balance history, who always plays
fair games.

Definition . For a filtration F on Z,, a process A = (A, )n>0 is called F-predictable if Ag =0,
and for n € N, A, € F,_1.

We use this name because we know the value of A,, at the time n—1. Note that a predictable
process must be adapted.
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Lemma 6.10. For a filtration F on Z., every F-predictable process X can be expressed as the
sum M+ A, where M is an F-martingale and A is F-predictable, and such decomposition is a.s.
unique. Moreover X is a submartingale (resp. supermartingale) iff the A in the decomposition
is a.s. increasing (resp. decreasing).

The decomposition X = M + A is called the Doob’s decomposition.

Proof. Define the process A by
n
Ap =) E[AX|Fia], n>0.
k=1
Then Ay = 0 and for n > 1, A4, is F,_1-adapted and AA, = E[AX,|F,—1]. So A is F-
predictable. Let M = X — A. Then M is also an F-adapted process, and for n > 1, a.s.

E[AM,|Fp_1] = E[AX, — AA,|Fn1] = E[AX,|Faoi] — A4, =0.

So M is an F-martingale. So we get the existence of Doob’s decomposition. Suppose there is
another such decomposition M’ + A’, then Y := M — M’ = A’ — A is both F-martingale and
F-predictable, and has the initial value Yy = 0. So for any n € N, a.s. Y,, = E[Y,|F—1] = Y—1.
We then get a.s. ¥, =0 for all n € N. So we get the a.s. uniqueness of Doob’s decomposition.
Moreover, X is a submartingale iff a.s. E[AX,|F,—1] = AA, > 0 for each n > 1, which
is equivalent to that a.s. A, is increasing. Similarly, X is a supermartingale iff a.s. A, is
decreasing. O

Lemma 6.11. Let M be a martingale in R®. Let f : R = R be a convex function. Suppose
X = f(My) is integrable for every t. Then X is a submartingale. The statement remains true
if M is a submartingale, and f : R — R is convexr and increasing.

Proof. The statements follows from Jensen’s inequality for conditional expectation. The first
one holds because

E[Xt’fs] = E[f(Mt”Fs] > f(E[Mt’]:s]) = f(Ms> = XS7 s<tel.
The second one holds because
E[X1|]:s] = E[f(Mt)‘Fs] > f(E[Mt|JT:s]) > f(Ms) = Xs: s<tel.
]

We say that X is an LP-process if X; € LP for each t € T. We say X is LP-bounded if || X¢||p,
t € T, is bounded. If M is an LP-martingale, p € [1,00), applying Lemma 6.11 to f(z) = |z|?,
we see that |M|P is a submartingale.

Applying Lemma 6.11 to f(x) = V0, we see that if X is a submartingale, then the process
X;r = X; VO, t €T, is also a submartingale.

We say that an F-stopping time 7 is bounded if there is a deterministic time u € T such
that a.s. 7 < u. The following theorem generalizes the equality E[M;|Fs] = My to stopping
times.
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Theorem 6.12 (Optional Stopping Theorem). Let M be a martingale on some index set T
with filtration F. Let o and T be two F-stopping times taking countably many values. Suppose
7 15 bounded. Then M, and Ma; are integrable, and a.s.

E[MT’fG'] = MO’/\’T'
In particular, if a.s. o < T are both bounded, then a.s. E[M;|F,] = M, and so E[M;] = E[M,].

Proof. Suppose u € T satisfies that a.s. 7 < u. By Lemmas 5.2 (local property) and 6.1 (F-
agrees with F; on {7 = t}), for any t € T with t < u, a.s.

E[M,|F;] = E[M,|F:] = M; on {1 =t}.

Since 7 takes countably many values, we get a.s. E[M,|F;] = M, and so M; is integrable. Since
o A T is also an F-stopping time bounded by u taking countably many values, M, is also
integrable, and a.s.

MO’/\T = E[Muw—"cr/\'r] = E[E[Mu|fT]|fU/\T] = E[M7|f0/\"']'

It remains to show that a.s. E[M,|F,| = E[M;|Fsrr]. Since F, agrees with Fyrr on {o =
o A1} = {o < 7}, by Lemma 5.2, a.s. E[M;|F,] = E[M;|Fsn-] on {o < 7}. Since F;r N
{r <o} C F, and M, is F,-measurable, by Lemma 5.2, a.s. E[M,|F,] = M, on {1 < o}.
Since Fr N {1 < o} = FrN{r < o A7} C Fopr, by Lemma 5.2, a.s. E[M,|F,] = M; on
{r < o}. thus, as. E[M.|F,| = E[M;|Fsar-] on {r < o}. Combining this with that a.s.
E[M:|Fs] = E[M;|Foprr] on {o < 7}, we get a.s. E[M,|F,] = E[M;|Fonrr], as desired. O

Exercise . Prove that if T = Z4 or finite, and X is a submartingale (resp. supermartingale),
then for o, 7 in the theorem, we have a.s. E[X;|F,] — Xoar > 0 (resp. < 0). Hint: Use Doob’s
decomposition.

Example . The condition on 7 can not be removed. Suppose (1,(s,... is a sequence of i.i.d.
random variables with common distribution %((51 +6-1). Forn € Zy, let X,, = > }p_; 287 1¢.
Then X is a martingale. Let 7 = inf{n € N : (;, = 1}. Then 7 is a stopping time, and a.s. takes
values in N. In fact,

P[T:oo]:IP’[ﬂ{T>N}]: lim P{¢, = -1,1<n<N}= lim 27V =0.
NeN N—oo N—o0

We observe that for any N € N, when 7 = N, X, = i\;l(—l)Z”_l +2N-1 = 1. Thus,
E[X;] = 1. But since Xy =0, E[X] = 0 # E[X].

This example describes the balance history of a gambler, who bids one dollar on the first
day, doubles his bid on every next day, and stops whenever he wins. In reality, a gambler can
not win money with this game because he does not have infinite amount of money to bid.

Lemma 6.13 (Martingale Criterion). Let M be an integrable adapted process on some index
set T w.r.t. a filtration F. Then M is an F-martingale iff for any two T-valued F-stopping
times o and T taking at most two values, we have E[M,] = E[M.].

79



Proof. The only if part follows from Theorem 6.12. For the if part, let s <t € T. Let A € F;.
Then 7 := s1 4 +t14c is an F-stopping time because for any u € T, if u > ¢, {7 < u} = Q € Fy;
ifs<u<t, {r<u}=A¢€FsCFyandifu<s, {r <u}=0¢€ F, By the assumption, we
have

0= EM, — EM, = EM, — E[14M,] — E[14cM;] = E[14(M; — M,)].

Since this holds for any A € F;, we get a.s. E[M; — M| Fs] = 0. So M is an F-martingale. [

Corollary 6.14 (Martingale Transforms). Let M be a martingale on some index set T with
filtration F. Fix a stopping time T that takes countably many values, and let n be a bounded,
F--measurable random variable. Then the process Ny = n(My— Myar) is again an F-martingale.

Taking n = 1, from Corollary 6.14 we see that if M is an F-martingale, and if 7 is a bounded
F-stopping time taking countably many values, then the stopped process

MtT = TALs t c T,
is also an F-martingale.

Proof. Fix t € T. By Optional Stopping Theorem, M; — M, is Fy-measurable and integrable.
Since 7 is bounded, N; is also bounded. Since Ny = 0 on {t < 7}, we may rewrite NV; as
Ny = 1gr<yn(My — Mipr). Since ) is Fr-measurable, by Lemma 6.1, 1¢,<,7 is Fi-measurable.
So N is Fy-measurable. Thus, NV is F-adapted.

Let 0 be any T-valued F-stopping time taking at most two values. By the pull-out property
and Optional Stopping Theorem,

E[NULFT] = nE[M0|fT] - UE[MG/\T‘]:T] = nMopr — nMonr = 0.
So E[N,]| = 0. Since this holds for all such o, by Lemma 6.13, N is an F-martingale. O

Proposition 6.15 (maximum inequalities). Let X be a submartingale on some countable index
set T. Then for anyr >0 andu e T,

rP[ sup X;>7] <E[1{ sup X;>r}X,] <EX], (7.2)
teT:t<u teT:t<u
rP[sup | X¢| > r] < 3sup E|Xq|. (7.3)
teT teT

Proof. We first assume that 7" is finite. Then we may assume that 7' = {0,1,2,...,n}. Define
T =uAinf{t: Xy > r} and B = {maxy<, X; > r}. Then 7 is a stopping time bounded by u,
and B € F; because for tog € T, if tg > u, then BN {7 <t} = B € F, C Fy,; and if ty < u,
then BN {7 < to} = {maxi<t, Xy > r} € F,. By Optional Stopping Theorem, E[X,|F;] > X;.
Since X, >ron B and X/ = X, V0 > 15X, we get

EX) > E[15X,] > E[15X,] > rPB,
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which proves ([7.2) in the case that T is finite.
Let M + A be the Doob decomposition of X. Then A is non-negative and increasing. So
M < X. Applying (7.2) to —M, which is a martingale and hence a submartingale, we get

Pl min Xy < —r] <7P[ min M; < —r| =P M
P, X <~ <Pl gpin Mo < —r] =Pl sup (=04) > ]

< E[(-M,)"] = E[M;] - E[M,] < E[X,]] - E[Mo] = E[X,]] — E[Xo] < E[|X,] + E[| Xo]].

u
Since {max;<,, |X¢| > r} = {max;<, Xy > r} U{mins<, X; < —r}, combining the above formula
with and taking supremum over u € T' proves in the case that T is finite.
For a countable index set T', there is an increasing sequence of finite index sets T3, such that
T =T, and u € T, for each n. From the last paragraph, for each n € N,

rP[ sup Xy >7r] <E[1{ sup X;>r}X,]<EX]; (7.4)
teTy t<u teln t<u
rP[sup | X;| > r] < 3 sup E| Xy (7.5)
teTy teTn

We have sup;cp.p<,, Xt = limy, supyer, 1<y Xt, 50 H{sUbser, 1<y Xt > 7} — 1{SUPreriicy Xt > 7}

and 1{supscr, 1<, | X¢| > 7} = 1{supsery<, | X¢| > r}. By sending n — oo in (7.4)) and (7.5)
and using DCT, we get ([7.2)) in the general case. O

For a process X on some index set T', we define the process X* = (X} )ier by

X/ = sup |Xs|, teT.
seT:s<t

Let X, = supser | X¢|.

Proposition 6.16 (Doob’s norm inequality). Let M be a martingale on some countable index
set T. Let p,q > 1 satisfyp~' +q¢ ' =1. Then

My < ql| Myllp, teT.

Proof. If || My||, = oo, the inequality is trivial. If || M;|| = 0, the for any s € T' with s < ¢, a.s.
M, = E[M,;|Fs] = 0. Since T is countable, we get a.s. M; = 0. The inequality is also trivial.
Now assume 0 < ||My||, < co. Applying Proposition 6.15 to the submartingale |M|, we get
for any r > 0,
rP[M; > ] < E[L{M; > r}|M,|].

Note that ¢ = z%' By Lemma 2.4 and Holder’s inequality,

[e.9]

o.9]
1247 = BQE P =p [P > i tdr < p [T BLOE > )M R
0 0

Mf
= 7|1 /0 2y | = BIM|(MF V) < allMillp | (VP g = all Ml 1057 57"
Let both sides be divided by || M} Hgfl, we get the inequality again. O
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Definition . For a real valued process X on T, and a < b € R, an [a, b]-upcrossing interval of
X is [s,t] such that s <t €T, Xy < aand X; > b. For t € T, the number of [a, b]-upcrossings
of X up to ¢, denoted by Nf; (t), is the supremum of n € Z, such that there exist n mutually
disjoint [a, b]-upcrossing intervals of X contained in (—oo,¢]. This number could be 0 or co.

Lemma 6.17 (upcrossing inequality). Let X be a submartingale on a countable index set T.

Then
E[(Xto — a) vV 0]

b—a ’
Proof. Let V; = (Xy —a) V0. By Lemma 6.11, Y is a submartingale. We see that [s,t] is an
[a, b]-upcrossing of X iff [s,?] is an [0, b — a]-upcrossing of Y. Thus, we may assume that X > 0
and a = 0. First assume that T is finite. Then we may assume that "= {0,1,..., N}. In the

end we will use the idea in the proof of Proposition 6.15 to extend the result to the general T'.
Define 19 = 0,

EN?(to) < to€T, a<beR.

on=toNInf{t >7,_1: X, =0}, 7, =toANinf{t >0, : Xy >0}, neN

Then all 0, and 7,, are stopping times satisfying 70 < o1y <7 < --- <tp; if 0y < to, Xo,, = 0;
if 7, < to, X5, > b; and Ng(tg) is the biggest n such that o, < tgp and X, > b (*).
Fix ng € N. Since X is a submartingale and X > 0, we have

E[Xy] 2 E[Xr,,] 2 E[Xr, ] — E[X] = Y (E[X.,] - E[Xo,]) + ) (E[Xo,] - E[Xr,_,])
k=1 k=1
2 Z(]E[XT}J - E[Xak]) = ZE[XTk - Xffk]'
k=1 k=1

We have X, > X, for each k because if 0}, = g, then X, = X;;, = X,,, and if o, = tg, then
Xy, =0 < X, If No(t9) > k, then X, =0 and X,, > b. So we have

no 0o
E[Xy] > > E[linoe)smb =b > PINI(to) > K.
k=1 k=1
Since this inequality holds for any ng € N, we get E[X;] > Y7, P[N2(tg) > k] = bE[N2(to)].
So we finish the proof in the case that T is finite.
For the general case, we may find an increasing sequence of finite sets 7, such that tg € T,
for each n and T = |J,, T),. Let NY(T,,,to) denote the number of [a, b]-upcrossings of X on T,
up to to. Then NY(Ty,,to) T N2(tg), and we have the upper bound for each N?(T},,to), which
does not depend on n. Then we finish the proof in the general case by letting n — oo. O

Exercise . Prove the statement (*) in the proof of Lemma 6.17.

Theorem 6.18 (Doob’s regularization theorem). Let X be an L'-bounded submartingale on
some index set T. Then for every monotone sequence (t,) in T, a.s. Xy, converges.
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Proof. Since the statement concerns only on X;, , n € N, we may assume that 7' = {t,, : n € N}.
So T is countable. Suppose || X¢||1 < m for all t € T. By Proposition 6.15, for any r > 0,
Plsup;er | X¢| > r] < ™, which implies that a.s. X is bounded on 7T'. Let the exceptional event
be Ey. By Lemma 6.17, for any t € T and a,b € Q with a < b,

E[(X = @) VO] _ X —alli _ [Xells+]a] _ m+]al

EN®(t) < .
o) < b—a - b—a b—a ~ b—a

Let T > t, 1 supT, we get EN’(supT) < 7?:‘;'. So a.s. N2(supT) < oco. Let the exceptional
event be E,p. For an increasing or decreasing sequence () in T, if (X;,) diverges then either
X is unbounded or limsup X;, > liminf X; . In the latter case, we can find a,b € Q such that
limsup X;, > b > a > liminf X, , which implies that there are infinitely many [a, b]-upcrossings
of X. Thus,

{(Xy,) diverges} C EgU | ) Eap.

a<beqQ

Since the RHS is a null set, we get a.s. X;, converges. O

A martingale M is said to be closed if w = supT € T'. In this case, clearly M; = E[M,|F}]
forallt € T. If supT ¢ T, we say that M is closable if it can be extended to a martingale on
T =TU{supT}. If M; = E[¢|F;] for some ¢ € L', we may clearly choose M, = (.

Theorem 6.21. For a martingale M on an index set T such that supT & T, the following are
equivalent:

(i) M is uniformly integrable, i.e., {My : t € T'} is uniformly integrable;
(ii) M is closeable, i.e., there is ( € L' such that My = E[(|F;] for allt € T;
(iii) M is convergent at supT, i.e., as T >t T supT, M; converges in L.

Proof. By Lemma 5.5, (ii) implies (i). Now assume (i). Then M is L'-bounded. If T > ¢, 1
sup T, by Theorem 6.18, a.s. M;, converges. By Proposition 3.12, M;, converges in L'. Since
this holds for any such sequence (t,,), the limit does not depend on (t,). In fact, for any two
increasing sequences (t,,) and (¢/,) in T' that tend to sup7 we may construct an increasing
sequence (t) in T tending to sup 7" such that (¢,,) and (/) are both subsequences of (¢/). Then
My, converges in L', which is the common limit of (My,) and (My ). So we conclude that M,
converges in L' as T > ¢ 1 sup7. Finally, assume (iii). Let ¢ € L' be the L!-limit of M; as
t 1 T. For any u,t € T with u > ¢, we have E[M,|F;] = M;. Since M, — ¢ in L' as u — sup T,
by L'-contractivity of E”t, we get E[(|F;] = M;. So M is closeable. O

Corollary 6.22. Letp € (1,00). Let M be a martingale on an index set T not bounded above.
Then M is LP-bounded iff My converges in LP as T >t — oo.
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Proof. If My converges in L, then by the increasingness of || M;||,, M is LP bounded. If M is
LP-bounded, then M is uniformly integrable. Let (¢,) be a sequence in T' with t, — oco. By
Theorem 6.18, a.s. M;, converges. By Proposition 6.16, || sup,er [Mi|[lp < ;25 super [Millp <
o0o. So |M|P is also uniformly integrable. By Proposition 3.12, M; converges in LP. By
mixing sequences we see that the limit does not depend on (¢,). So M; converges in LP as
T>t— oo. U

Theorem 6.23. Let ( € L'. Let F be a filtration on T. Let (t,) be a monotone sequence in
T. Then E[(|F,] converges a.s. and in L'. If (t,) is increasing, the limit is E[C|\/,, F,]; and
if (tn) is decreasing, the limit is E[C|(,, Ft.]-

Proof. Let My = E[¢|F], t € T. Then M is a uniformly integrable F-martingale, and so is L!-
bounded. By Theorems 6.18 and Lemma 3.12, M;,, converges a.s. and in L*. Let n = lim sup M,
be the limit.

If (¢,) is increasing, then 7 is \/, F,-measurable. Let A € |J,, F3,. Then there is ng such
that for n > ng, A € F;,, which implies that E[14¢] = E[14M,,]. Since M;, — nin L', we get
E[14(] = E[147]. By a monotone class argument, we then conclude that this equality holds for
any A €\, F,. So we get n =E[C|V,, Fi.]-

If (t,) is decreasing, then 7 is [),, F¢,-measurable. Let A € (), F,. Then for any n, E[14(] =
E[14M,,]. Since My, — 1 in L, we get E[14¢] = E[147]. So we get n = E[¢|,, Ft.]- O

Theorem (Law of large numbers). Let (1,(a,... be an i.i.d. sequence of integrable random
variables. Let Sy, = > _1 (e, n € N. Then %Sn converges a.s. and in L' to EC.

Proof. For n € N, let F_,, = 0(S, : m > n). Then it is clear that F = (F_,,) is a filtration on
—N. Let n € N. By the i.i.d. property of ((,), for any k < n, (Cx, Sn, Sn+1,--.) has the same
distribution as (C1, Sn, Sp+1, - - - ). So E[(x|F_n] = E[C1|F_-p], 1 <k < n. Thus,

k=1

By Theorem 6.23, %Sn converges a.s. and in L'. By Kolmogorov’s zero-one law, the limit is
a.s. constant. Since E[%Sn] = E(; for every n, the constant must be E(;. O

Most of the theorems we studied require that the index set T' to be countable. In order to
extend the theory to martingales on R, we will assume that the processes are right-continuous.
For such a process X, we may use X|g, to recover the whole X.

Lemma 6.28. Let X be a submartingale on an index set {tso,- - ,to,t1} with t; > t9 > -+ >
too. Then (Xy,) is uniformly integrable and converges a.s. and in L.

Proof. For every n € N, let a,, = E[ X}, |F4,,,] — X4, > 0, which is 7, ,-measurable. Then

> Ean =) (EX;, —EX,,,,) =EX;, - limEX,, <EX;, —EX; < .
n

n
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So as. »  an < oco. Note that {d a, = oo} € [, Ft,. Define A; , n € N, such that
A, = D gspar on Yy ap < oo} and A, = 0 on {) ; ap = oo}. Then each Ay, is Fy,-
measurable. Let M, = X;, — A;,. Then M is a martingale on {t,, : n € N} because

E[My, — My, | F, 0] = E[Xy, — Xo, ) — anlF, ] = 0.

It is uniformly integrable since it is closable by M;,. The process A is also uniformly integrable
because sup,, |A4¢, | = A, and EA;, = Y Ea, < co. So {X;, : n € N} is uniformly integrable.
By the definition of A, A;, — 0. By Theorem 6.18, M;, a.s. converges. Thus, a.s. Xy, converges.
By Theorem 3.12, X;, converges in L'. ]

Theorem 6.29. Let X be an F-submartingale on Ry. Suppose both X and F are right-
continuous. Then for any two stopping times o, 7 with T being bounded, we have a.s.

E[X,|F,] > Xonr (7.6)

If X is an F-supermartingale, then by applying the theorem to —X, we get E[X,|F,] <
Xonr. If X is an F-martingale, then since it is both a submartingale and a supermartingale,
the equality in (7.6 holds.

Proof. For n € N, let 7, = 27"[2"7 + 1] and 0, = 27"[2"0 + 1]. Then (7,) and (o,) are
stopping times with 7, | 7 and o, | o. Since each 7,, and o,, take countably many values, by
Optional Stopping Theorem we have learned, we have a.s.

E[X:, | o] 2> Xrunom, myn €N (7.7)

Fix n € N. Since F is right-continuous, F, = (),, Fs,,- By Theorem 6.23, as m — oo,
E[X,, |Fs, ] — E[X,,|F,] a.s. and in L. Since X is right-continuous, X, ro,, — Xr Ao aS
m — oco. Sending m — oo in ([7.7]), we get a.s.

E[XTn”FU] Z X’Tn/\a'u n e N (78)

From this inequality, we see that (Xy,...,X,,, X;) is a submartingale w.r.t. the filtration
(Foy-- > Fry, Fr). By Lemma 6.28, (X, ) converges a.s. and in L. Since 7, | 7, the limit is
X; by the right-continuity of X. Sending n — oo in ([7.8)), we get ([7.6]). O

Finally, we discuss the existence of a right-continuous version of a sub-martingale on R,.
Given a process X on T, we say that another process X’ on T is a version of X if for any t € T,
a.s. X; = X;. This in general is weaker than the condition that a.s. X; = X; for any t € T, in
which case we say that X and X’ are indistinguishable. Suppose F is a complete filtration on
T. If X is F-adapted, then any version of X is also F-adapted. If X is an F-martingale (or
submartingale), then any version of X is also an F-martingale (or submartingale).

A process X on R} is called rcll (right-continuous with left-hand limits, also called Cadlag)
if for every w € Q and t9 > 0, limy )4, Xi(w) = X4, (w), and when tg > 0, limy4, X;(w) converges.
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Theorem 6.27. Let F be a right-continuous and complete filtration on Ry. Let X be an
F-submartingale. Suppose t — EX; is right-continuous. Then X has an rcll version. In
particular, if X is an F-martingale, then an rcll version of X exists.

Proof. Let Y = X|g,. By Proposition 6.15, for any n € N, a.s. Y is bounded on Q4 N [0, n].
By upcrossing inequality (Lemma 6.17), for any n € N and a < b € Q, the number of [a, b]-
upcrossings of Y before n is a.s. finite. Thus there is N € A with PN = 0 such that for w € N¢,
for any n € N and a < b € Q, Y;(w) is bounded on Q4 N [0,¢], and Q4 > ¢ — Yi(w) has
finitely many [a, b]-upcrossings before n. Thus, for w € Q \ N, and any bounded increasing or
decreasing sequence (t,) in Q4, Y}, (w) converges. Let w € Q\ N and ¢t € R,. We may choose
a sequence (t,) in Q4 with ¢, | ¢. Then limY;, (w) converges. By a limit argument we see that
the limit does not depend on (t,). Thus, limg, 544, Y7 converges. Define a process Z on R
such that if w € Q\ IV, then for any ¢y € R, we define Z; (w) = limg, 5414, Y;(w); and if w € N,
then Z;(w) =0 for all ¢t € Ry. It is clear that Z is an rcll. (Exercise)

Since F is right-continuous and complete, and PN = 0, Z is F-adapted. Let ¢ > 0. Let
(tn) be a sequence in Q with ¢, | t. By Lemma 6.28, (Y;, ) converges in L' to Z;. Since a.s.
E[Y;, | Fi] = E[Xy, | F] > Xy, we get a.s. Z; = E[Z;|F;] > X;. By the right-continuity of EXy,
EZ, =limEY;, =limEX;, = EX;. This together with a.s. Z; > X, implies a.s. Z; = X;. So Z
is a version of X. O

Example . The most important example of continuous martingale is Brownian motion, which
is also a Markov process. We will learn its construction in the next chapter.

Example . Suppose X, X1, Xo,... is a random walk on Z. We extend X to a process Y on
Ry such that Y; = X4 for ¢ > 0. Then Y is a right-continuous martingale on R, and has no
continuous version.

Exercise . Do problems 13, 15, 17, 19 of Chapter 6.

8 Markov Processes

Definition . Let (S,S) be a Borel space. An S-valued F-adapted process X on T is called an
F-Markov process if for any u >t € T, a.s.

Law (X |F:) = Law (X, | X¢).
By Theorem 5.3, the Markov property is equivalent to that, for any A € S, a.s.
PIX, € A|F] =P[X, € A|Xy].
By Proposition 5.6, the Markov property is equivalent to that

XuJLXt.Ft, \V/U Z t e T.
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Exercise . Prove that if X is an F-Markov process, then it is also a Markov process w.r.t. (i)
the completion of F; and (ii) the filtration induced by F.

Lemma 7.1. If X is an F-Markov process on T, then for anyt € T,
ftJ_LXt{Xu U > t})

and
{Xs s <thllx {Xu:u>t}

The last relation means that given the present, the future is independent of the past.

Proof. Let t =tg <t; <ty <---€T. Then Law(Xy,,,|F,) = Law(Xy, ., | Xy, ). Since
O'(th) C J(Xt0> e ,th) C O'(]:t,XtO, .. .,th) C ftn,

we get Law(Xy, . |X;,) = Law(X;
plies by Proposition 5.6 that

|Xt0, e ,th) = LaW(Xt ’ft, Xtm . ,th), which im-

n+1 n+1

‘FtJ-LXtO,th,...,th th+1’ n = 07
which further implies by Proposition 5.8 that
Fill x, (Xpy, Xpgs o).

By a monotone class argument, we get F; |l y,{X, : u > t}. The last formula holds because X
is F-adapted. ]

By Theorem 5.3, for any t < u € T, there is a probability kernel s, from S to S (we now
call it a kernel on S) such that for any A € S, a.s.

P[Xu € A|]:t] = ,ufqu(Xt,A).

Such fiz,, is Law (X}¢)-a.s. unique, and is called a transition kernel. When t = u, P[X; € A|F] =
14(X;) = dx,A. So we may choose fig; to be py(s,A) = 654 for s € S and A € S. Let
vy = Law(Xy), t € T.

Proposition 7.2. Letty <ty <---t, € T. We have
LaW(tha s ath|]:t0) = (Nto,h @ Mty ,tg @ - & :UJtn—Ltn)(Xtoa '); (8'1)

LaW(Xtu s 7th) = Vot by © Mgyt @ @ fty_y ity (8'2)

Corollary 7.3. For any s <t <u €T, vsfist = Vi, and Vs-a.5. [Lsy = s tfbtu-
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Recall that for kernels p1,...,un, on S, 1 ® -+ ® uy, is a probability kernel from S to S™
such that for sp € S and A € §",

)50, ) = [pn(so.don) [a(ondsa) -+ [ n(onsidsa) Lator,e s
and pipo is a probability kernel from S to S defined by (u1p2)(s0, A) = (u1 ® p2)(so, S x A)

for sp € S and A € S. If, in addition, v is a probability measure on S, then vy ® -+ ® py, is a
probability measure on S™ such that for A € ",

i1+ ) A= [ v(dso) -+ © )50, )
If f:S™ — R4 is measurable, then

o) f = [vidso) [ mnso,dsr) [malsrdse) o+ [ mlosnsidsn) flssse o).

Exercise . Prove that for a probability measure v on S and kernels pq, po, 3 on .S, we have
the associative law: (vp1)pe = v(pipe) and (pype)us = w1 (peps).

Proof of Proposition 7.2. Let f : S™ — R be a bounded measurable function. By Theorem 5.4,

E[f(th, e ,th)’ftn_l] = /f(th, e 7th_173n) LaW(th|ftn_1)(dSn)

= /utnhtn (thflvdsn)f(th ) thfw Sn)'

Note that we replace the X;, by s, and integrate against ps, 4, (Xt ,,dsy). Since the RHS

of the above formula is a bounded measurable function composed with Xy ,...,X;, ,, by
conditioning it further on F;,_, and using a similar argument, we get
E[f(th? s 7th)|ftn—2:| =
/Iu’tn27tn1 (thfza dsn—l) /Mtnlﬂfn (Sn—lv dsn)f(thv s 7th727 Sn—1, Sn)'
Iterating this argument, we get
E[f (X X0, 1P
://UJtO,tl(XtO?Sl)//’Ltlth(Sl’ds2)'“/:utn17tn(sn17d8n)f(817“'75n)‘
Setting f =14 for A€ S", we get 1) Taking expectation, we then get 1j O
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Proof of Corollary 7.3. Taking n = 1, tg = s and t; = t in (8.2)), we find that for any A € S,
A = Law(X;)(A) = (Vsusﬂg)A; So vy = vspsy. Takingn =2, tg = s, t1 =t, and to = v in
(8.1)), we find that for any A € S, a.s.

psu(Xs, A) = Law(X, | Fs) (-, A) = Law(Xy, X, | Fs) (-, S x A)
= (ﬂs,t ® Mt,u)(Xsa A) = (MS,tMt,u)(XSa A)
Thus, a.s. fisu(Xs, ) = (stpttn)(Xs, ), which implies that ve-a.s. fisq = fistflt - O

We call the equalities
Hsu = MHs,tbtu, Vs<t<ueT,

the Chapman-Kolmogorov relation.

Theorem 7.4. Let (S,S) be a Borel space. Let T C R be an index set such that min T exists.
Suppose psi, s <t €T, is a family of kernels on S that satisfies the Chapman-Kolmogorov
relation. Then for any probability measure v on S, there is an S-valued Markov process X on
T with transition kernel pg; and initial distribution Law(Xmint) = V.

Proof. We define v; for t € T such that if t = tg = minT', vy, = v; and if £ > tg, vy = v, . By
the associative law we see that for t1 < to € T, v4, = vy, [ty to-
Let T denote the family of nonempty subsets of T. For each A = {t; < --- < t,} € T,

we define vn = vy, iy, 4, ® -+ @ pu,, 11, as a probability measure on S*. We now show that

the family {vp : A € T} is consistent, i.e., for any A1 C Ag, 722 py, = vy, where w820 s

the projection from S™2 onto SA1. It suffices to prove it in the case that |Ay \ Aq| = 1. Write
Ay ={t; < -+ <ty}. Fix 1 <k <n. We need to show that, if Ay = Ay \ {¢x}, then for any
BeS"", with By, defined by

Br ={(s1,---,80) €S™: (51, +,Sk—1,Sk+1,---,5n) € B},

we have vy, By = vp, B. Recall that

Vn, By, = /th(dsl)/utl,tz(shdsz)"'/Mtn1,tn(8n—1yd8n)1Bk(51,-'-78n)

If k=n,

VAQBTL - /th (dSl) e /Mtn_z,tn_l(sn—Qa dsn—l) /th—lytn (Sn—17 dSn)lB(Sl, ceey sn—l)

= /Vsl (dSl) . '//’Ltn27tnl(8n_2’ dSn_l)lB(Sl, . 7311—1) = VAlB-

If k£ =1, using vy, e, 4, = fit,, We get
VAQBl - /th (dsl) /Mt1,t2 (817 d82) te ‘/Mtn_1,tn(8n—17 ds’n)lB(527 ... 7Sn)
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:/Vt2(d82)"'/Mtn_htn(Sn_l,dSn)lB(SQ,...,Sn) =y, B.

If 2 <k <n—1, then using g, t, Mty tysy = Mt tpsr> W get
VAQBk - /Vt1 (dSl) /,utl,tz (Sl)dSQ) o '//"Ltk—lytk (Sk—17 dSk) /Mtk,tk+1(8k7 d5k+1) e

"'/Mtnl,tn(sn1,d8n)1B(81, o Sk—1,5k41, Sn)
:/th(d‘sl)/ﬂtl»tz(slvd82)'”/iutk1,tk+1(sk—1?d8k+1)'“

. -/,utn_l,tn(sn1,dsn)13(51, e e Sk—1,Sk+1,Sn) = Va, B.
So we proved the consistence. By Theorem 5.16, there is a probability measure vy on (ST, ?T)
such that for any A € JA“, W*T’AZ/T = vp. Define a probability space (Q2, A,P) by Q = ST, A = gT,
and P = vp. Let X be a process on T defined on  such that X;(w) = w(t), t € T. This means
that the whole process X as a map from  to S7 is the identity. Thus, Law(X) = P = vp, and
forany A = {t; < --- <tn} €T, Law(Xy,,..., Xy,) = 772 vp = vp. Taking n =1 and t; = to,
we get Law(Xy,) = v,y = v. Let F be the filtration on ) = ST induced by X. We now show
that X is an F-Markov process with transition kernel p;, t <u € T'.
Let t <u €T. Let A€ S. Taking t; < '-‘<tn:tandB€§n. Then

El¢x,, .. x)-1By 1 (x,ea}] = Vi, tnu(B X A)
- / vi, (dsi) / ityy (51, dsa) - / ot (Smets dsn) / it (s d5) 151, 50)La(52)
- / vy (ds1) / b g (51, ds2) - / eyt (St s )i aa(5s AVLE (51, 50)

= Elp,u(Xe, A)1p( Xy, -0, X)) = E[ly(x,, o x,) -1 By u(Xe, A))-

By a monotone class argument, we get a.s. P[X,, € A|F] = pu(X¢, A). So a.s. Law(X,|F;) =
e (X, -), as desired. O

The process X constructed in the above proof is called a canonical process.

Assume that S'is an Abelian measurable group. For a probability measure pon S and z € S,
we use = + p to denote the measure B — p(B — x). A kernel p on S is called homogeneous if
there is a probability measure v on S such that

wx,)=z+v, xS,

and we say that the kernel p is induced by the measure v. An S-valued Markov process with
homogeneous transition kernels is said to be space-homogeneous. We say that an S-valued
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process X has independent increments if for any times to < --- <'t,, Xy, and the increments
Xt — X4y, 1 < k < n, are mutually independent. Given a filtration 7 on 7', an F-adapted
process X is said to have F-independent increments if for any s <t € T, (X; — X)L Fs. The
latter condition is stronger because it implies that, for tg < -+t (Xp, Xp, — Xy, _;, 1 < j <
E—1)1.X; — X, forany 1 <k <n.

Proposition 7.5. An S-valued process X on T is a space-homogeneous F-Markov process if
and only if it has F-independent increments. Moreover, for each s < t € T, the transition
kernel sy is induced by the measure vsy = Law(X; — X;), and the family v satisfies that if
to<t1 <---<tp, €T, then vy 1, = Vigts * Vir,to ¥+ % Viyy_ 1 tn-

Proof. First suppose X has F-independent increments. Let t <u € T. From X, — X; Il F;, we
get Law (X, — X¢|F¢) = Law(X, — X¢). Since X; is Fi-measurable, we then get Law (X, |F;) =
X + Law(X, — X¢). So we find that X is an F-Markov process with the transition kernel ji; ,,
being the homogeneous kernel induced by Law(X, — X).

Next suppose X is an space-homogeneous F-Markov process with transition kernel s ,,. Let
t <wu € T. Then there is a probability measure v, on S such that Law(X,|F:) = pu(Xe, -) =
Xt + v1y. Then we get Law (X, — Xy|F) = vp,y. Since v, is a constant measure, we get
Xu — X3 ILF;. So X has F-independent increments.

Finally, if to <t < --- <t, € T, then since X;, — X;, ,, 1 < k < n, are independent, we
get Vigtn = Vtg,t1 """Vt _1,tn- ]

For a family of homogeneous kernels i, induced by the measures v;,, t < u € T, the
Chapman-Kolmogorov relation is equivalent to that v, = vgs * 14, for s <t <u e T.

In the case T = R, or Z,, we define time-homogeneous Markov process. A Markov process
with transition kernels s ¢, s <t € T, is called time-homogeneous if there is a family of kernels
pe, t € T, on S, such that psy = p—s for every s < ¢t € T. In this case, the Chapman-
Kolmogorov relation is equivalent to that

Wsiit = psyt, Vs, t€T. (8.3)

We call the family {p; : t € T'} satisfying a semigroup. If each p; has mean zero, then X
is a martingale because E[X,, — X¢|F;| = E[X,, — X¢| = [ zpy—¢(dz) =0 for u > t.
If a time-homogeneous Markov process is also space-homogeneous, then the kernels gy,
t € T, are induced by probability measures 14, t € T, on S, and the Chapman-Kolmogorov
relation is equivalent to that
Vs % Uy = Usyy, Vs, t€T. (8.4)

On the other hand, if the family 14, ¢ > 0, satisfies the above equality, by Theorem 7.4 we
may then construct a space-homogeneous and time-homogeneous Markov process on T with
transition kernels s ¢(x, ) = & + v4—s.

We have two families of probability measures {v; : ¢ > 0} on R that satisfy with
T = Ry. One is vy = N(0,t), the normal distribution with mean 0 and variance ¢, ¢ > 0, and
the corresponding Markov process is a Brownian motion. Since the 14 all have mean zero, a
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Brownian motion is a martingale. A Brownian motion has a continuous version. The other
example is v, = Pois(t), the Poisson distribution with parameter ¢, ¢ > 0, and the corresponding
Markov process is a Poisson process, which takes integer values and has an rcll version.

Fix a semigroup of kernels ¢, ¢ € T', on S. For each probability measure v on S, there is
a canonical process X with initial distribution v and transition kernels s = pp—s, s < t. We
use P, to denote the law of such X, which is a probability measure on S”. In the case that
v =0, for x € S, we write P, for Ps,.

Lemma 7.7. The measures P, © € S, form a probability kernel from S to ST, and for any
probability measure v on S, P, = ulP., i.e.,

P, A= / (P, A)v(dz), YAES'.

This lemma means that we may view P, as a mixture of P, x € S.

Proof. Both the measurability of x — P, A and the displayed formula are obvious for cylinder
sets of the form A = WXlB for a finite set A C T. The general case follows by a monotone class
argument. O

For t € T, define 6; : ST — ST by (6;w)s = 0445, s € T. If X is a process on T, then ;X is
the process Xy ., i.e., the part of X after ¢.

Proposition 7.9 (Strong Markov Property). Fiz a time-homogeneous Markov process X on
T = Ry or Z4, and let T be a stopping time taking countably many values. Then a.s. on
{r < o0}, Law(6.X|F;) = Px_.. Here we understand Px_ as the composition of the kernel P.
with the map X .

Proof. We first assume that 7 is a deterministic time ty. For sets of the form A = 77&1 e 1tn}B,
by Proposition 7.2 and time-homogeneity,

PO, X € A|lFi] = P[(Xtgttys -+ s Xtog+t,) € Bl F]
= (Hty ® pty—t; @+ @ ft,—t, ) ( Xy, B) = Px, A
By a monotone class argument, the above formula holds for any A € 57, So we get
Law (01, X |F,) = Px,, -

In the general case, suppose 7 takes values in the countable set C'. Then for any t € C'\ {0},
by Lemma 6.1, F; agrees with F; on {7 = t}; and by Lemma 5.2, Law(6;, X|F;) agrees with
Law(6:, X |F:) on {7 = t}, which is Px,. So for each t € C'\ {o0}, Law(6;, X |F>) = Px, = Px,
on {7 = t}. Since C is countable and {7 < oo} = J,c{7 = t}, we arrive at the conclusion. [

We say that a probability measure v is invariant for the semigroup puq, t € T, if vy = v for
every t € T. A process X on T is said to be stationary if for all t € T, 6, X 4 x.
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Lemma 7.11. Let X be a time-homogeneous Markov process on T with transition kernels ()
and initial distribution v. Then X is stationary iff v is invariant for (p).

Proof. If X is stationary, then for any t € T,
v = vy = Law(X;) = Law((6;X)o) = Law(Xj) = v.

So v is invariant for (y¢). On the other hand, suppose v is invariant for (u¢). Then Law(X;) =
vy =vuy = v for any t € T. By Proposition 7.2 and time-homogeneity, for any t; < --- <t, € T
and tg € T,

LaW(Xt0+t17 ce ’Xtothn) = Vig+t @ ity —tg @+ @ Mty —t,_4

=V @ Pty —ty @+ @ e, —t,_, = Law( Xy, ..., Xy,).
By a monotone class argument, we get 6y, X 4 x. O

For a time-homogeneous Markov processes, if 7' = Ry, it is called continuous-time; if
T =7, it is called discrete-time. In the latter case, the family u,, n € Z,, are determined
by the single kernel p1 as py, = py1---p1. When S is countable, it is called discrete-state or a
Markov chain.

From now on, let X = (X,),>0 be a discrete-time discrete-state Markov process. The
transition kernels u,, can be expressed by the square matrix p™ indexed by S, where

pg,yzﬂn(% {y})7 CU,yES.

n-+m

The equality pnpty, = pntm becomes the equality of matrix product: p"p™ = p
P =2 .cs Py pYy,. When n =0, p" is the identity matrix.
Let y € S. We consider the sequence of successive visits to y. Define Tg = 0. When 7/ is

defined, we define T;“ to be the first ¢ > 7,/ such that X; = y. When such ¢ does not exist,

we define T;”l = 00. Then we get an increasing sequence of stopping times (T;)nzo. We define

the occupation times

, l.e.,

o0
Ky =sup{n: 7, <oo} = Zl{XT; =y}, yeSs.

n=1

We define the hitting probabilities:
Tey = Px{Tyl < ool =Pylry > 1], z,y€S8.

Proposition 7.12. For any x,y € S and n € N,

Pylry > n] = Py[1) < o0] = rm/r;;l, (8.5)
Ty
Eulky] = —2 (8.6)
ey 1—ryy

Here if vy, = 1, then the fractal is understood as oo if vy, >0, and 0 if ryy = 0.
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Proof. By Strong Markov property, conditionally on .7-};, on the event {T; < o0}, the condi-

tional law of the process Xrny. is Py. We observe that T;H

process Xpn.. Thus,

— 7,/ agrees with the Tyl for the

Py [, < 00| Frm, 7, < 00] = IP’I[T;LH Ty < 00|Fpn, 7 < 00| = ]P)y[T?} < 00] =Ty 4.

Integrating this formula, we get

P, [ ;”1 < oo] = IP’J;[T; < oolryy, n>1

Since Py [r; < 00] = 1y, we get (8.5) by induction. Since Ey[ry] = Y07 Py[ky, > n], summing

(8.5) over n € N, we get (3.6). O

For z =y, we get Py[ky, > n] =7y, ., n€N. If r,, =1, then Py-a.s. k, = 0o, and we say
that the state y is recurrent. If ry, < 1, then Py-a.s. K, < 0o, and we say that the state y is
transient.

Proposition 7.13. If an invariant distribution v ezists, then any state x with v{z} > 0 is
recurrent.

Proof. By the invariance of v,

0<viz} = viylry,.

yes
Thus, by Proposition 7.12,

o= > viytrh. =D v{u} D vl = D v{yBylsa] = ) Vl{g}:j , 1

1—7Tps
n=1yes yeSs n=1 yes yeS LT

Then we must have r, , = 1, and so x is recurrent. ]

The period d,. of a state x is defined as the greatest common divisor of the set {n € N;pj; . >
0}, and we say that x is aperiodic if d;, = 1. When the set of n is empty, the period is understood
as oo.

Proposition 7.14. If x € S has period d < oo, then p”d > 0 for all but finitely many n.
Proof. Let F = {n € N:pi% > 0}. If n,m € F, then from
plrtmd = " prd prd > prd prd > 0,
yes

we get n+m € F. So (F,+) is a semigroup. From the definition of the period, F' has the greatest
common divisor 1. Thus, the group generated by F'is Z. Thus, there exist ni,...,ni € F and
Z1,...,2, € Z such that Z]‘ zjnj = 1. Let m = ny Zj |zj|nj. Any n > m can be expressed as
n=m+ hny +r, where h € Z, and r € {0,...,n; —1}. Then we have

n=hny+m+r=hn —I—nlz AL —i—r(z zinj) = hny + an(|zj\n1 +zjr) € F.
J J J
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Suppose X starts from a recurrent state z. Then X visits 2 at the times 0 = 70 < 7l <

72 < ---, which are all finite. The successive excursions of X from z are processes Y, n € Z,
of random finite lifetime, given by

V' = Xpngy, 0<t<7it—7m

Note that each Y starts from x and ends at x. Conversely, we may construct X from (Y™).

First, since the lifetime of Y™ equals 77! — 77 we can recover all 77 for X. Second, when 77"

is known, we may use Y™ to recover the path of X restricted to |7, T;H'l]

Proposition 7.15 (simplified version). The processes YO, Y1 Y2 ... are independent with
identical distribution.

Proof. Fix n € N. By strong Markov property, conditional on F;», the conditional law of the
process X, n . is the same as the unconditional law of X. Thus, X;n,. has the same law as
X, and is independent of F». Since 7l 71 s the first ¢+ > 1 such that Xeniy = x, and
Y™ = Xong. |[0 nt1_pn); WE See that Y™ Il Fon, and has the same law as Yy. So all Y™ have
the same law. Slnce Y™ concerns only the values of X before 77+, we see that Y™ is .FT;1+1—
measurable. From Y™ Il Frn, we then know Y?U(Y*:0<k<n-—1)forall n € N, which
implies that Y°, Y', Y2, ... are independent. O

Recall that r, , =P, [Tyl < o).

Lemma 7.17. Let = € S be recurrent, and define Cy, = {y € S;ryy > 0}. Then 1y, =1 for
ally,z € Cy , and all states in C are recurrent.

Proof. Suppose X starts from x. Let y € C,. By the strong Markov property, conditionally
on .7-}?} and the event that Tyl < 00, the probability that X returns to x after Tyl at some finite
time equals r, .. Thus the probability that X visits y and then returns to x is r; 7, .. Since
x is recurrent, this probability is just r;,. Since r;, > 0, we get r, ., = 1. Since 75,7y > 0,
there are m,n € N such that p ., py'; > 0. Then we have

[o¢] o0
Ey[ry] :ZP Xk =y] = Zpyy—ZPn+S+m_ZZZPZ,zp?wP3y
k=1

s=1zeSwesS

o0 o0
7 S m — T T S — 7 n —
> Dyl aPly = PyaPye Y Pea = PyaPyaEalra] = oo,
s=1 s=1

Thus, y is also recurrent. Since ry , = 1, we have z € C. From the above result we get 7, , = 1.
Let y,z € C;. From ry, = r, . = 1 and the strong Markov property, we know that, if X starts
from y, then it visits x, and then visits z after that time. So we get r, . = 1. O

We say that X is irreducible if r, , > 0 for any x,y € S.

Proposition 7.16. Let X be irreducible. Then
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(i) the states are either all recurrent or all transient;
(ii) all states have the same period;
(iii) if v is invariant, then v{x} >0 for all z € S.
If all states are recurrent/transient, then we say that X is recurrent/transient.

Proof. (i) By Lemma 7.17, if one state x is recurrent, then all states are recurrent since C; = S.
(ii) For any z,y € S, choose n,m € N with pi' ,py, > 0. Then for any h > 0,

n+h+m __ n . h m n h m
Py =Y D pE w2 Pyl o,
z€S weS

Y,y
so dylh. So we get dy|d,. Reversing the roles of x,y, we get d;|d,. Thus, d, = d,.

(iii) Fix z € S. Choose y € S with v{y} > 0 and n € N such that pj;, > 0. By invariance
of v, we have

For h = 0, we get py™ > 0. So d|(m +n). In general, pj . > 0 implies that pI't"*™ > 0, and

viz} = v{zpl, > viylp), > 0.

z€S
]

We may now state the basic ergodic theorem for irreducible Markov chains. Recall that for
any signed measure p, its total variation is ||u|Tv = 2supy |pA|. If X and Y are two random
elements with laws p and v, then ||u — v|jyv < 2P[X # Y.

Theorem 7.18. Let X be irreducible and aperiodic with state space I. Then exactly one of
these conditions holds:

(i) There exists a unique invariant distribution v; furthermore, v{i} > 0 for all i € I, and
for any distribution p on I,

lim [P, 0 6.t —P,|rv = 0. (8.7)

(ii) No invariant distribution exists, and

li = i, 7 € 1. .
Jim py; 0, Vi,je (8.8)

If X satisfies (i), then it is recurrent because for any = € S, from (8.7) we know that
P — v{xz} > 0, which implies that E,[r,] = > 72 pi , = oo. In this case we say that X is
positive recurrent. If X satisfies (ii), it may be recurrent or transient. If it is recurrent, then
we say that X is null recurrent.
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Lemma 7.19. Let X and Y be independent Markov chains on some countable state spaces I
and J, with transition matrices (p; ) and (g ), respectively. Then the pair (X,Y) is again
Markov with transition matrices r&j%(i,’j = pgi,q;ffj,. If X and Y are irreducible and aperiodic,
then so is (X,Y), and in that case (X,

for both X and 'Y .

9
Y') is recurrent whenever invariant distributions exist

Proof. Let FX = (FX) and FY = (F)) be the filtration induced by X and Y, respectively.
Define a new filtration F by F, = FX V FY for each n € Z;. Then both X and Y are
F-adapted, and so is the joint process (X,Y). Fix m > n € N. Then for every i € I and
-/

ied,

P(Xpm = |Fy ] = 0%, 5 PV =715 = a5

which is equivalent to that, for any A € X and B € F,,
P[AN{X,, =14} = E[lAp%:?,], PBN{Y,, =7} = ]E[qu;ZTjT,L].
Since X and Y are independent, the above formula is further equivalent to
PIC A {(Xom, Yin) = (7,3)}] = E[Lop a0, (8.9)

where C' = AN B. By a monotone class argument, we see that holds for any C' € F,. So
we get
So (X,Y) is a Markov process with transition matrices (TZ D j,)).

Suppose X and Y are irreducible and aperiodic. Fix 4,7’ € I and j,j’ € J. By Proposition
7.14, pi'y > 0 and ¢}, > 0 for all but finitely many n. So ra ) = i for all but
finitely many n. Thus, (X,Y) is irreducible and aperiodic. Finally, suppose p and v are

invariant distributions for X and Y, respectively. Then p X v is an invariant distribution for
(X,Y) because for any (i',5") € I x J,

(0 x {30} = plibdd'y = (3 ptitmis ) (3 vlibary)

iel jeJ

= > (xv{D)Irag..g)-
(i.j)elxJ
By Proposition 7.16, p{i},v{j} > 0 for any i € I and j € J. So (u x v){(4,5)} > 0 for every
(i,j) € I x J. By Proposition 7.13, (X,Y) is recurrent. O

Lemma 7.20. Let I be a countable set. Let u and v be probability measures on I. Let X
and Y be independent Markov chains on I with the same transition matrices (p}';) and initial
distributions p and v. Suppose that the Markov chain (X,Y) on I x I is irreducible and
recurrent. Then
lim |P, 06, —P,00, |ty = 0. (8.10)
n—oo
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Proof. For any n € N, Law(X,,1.) = P, 06, ! and Law(Y;,+.) = P, 06, 1. Let F be the filtration
induced by (X,Y). Let 7 = inf{n > 0: X,, = Y,,}, i.e., the first time that (X,Y’) reaches the
diagonal {(7,7) : ¢ € I'}. Then 7 is an stopping time. By assumption, (X,Y") is irreducible and
recurrent. Thus, 7 is a.s. finite.

From the strong Markov property of (X, }i), conditionally on F7, X;. has the same con-
ditional law as Y. Deﬁne another process X such that for n < 7, X,, = X, and for n > 7,
Xn =Y,. In other words, X follows X before > colliding with Y, and follows Y™ afterwards. Then
X’[o,r X|jo,r] 18 Fr-measurable, and Law(Xr.|F;) = Law(X;4.|F7). So we get

Law(X|(o,7, Xr1.) = Law(X (o7, Xr.)-

Since X is determined by X|jg ;) and X, in a measurable way, the above formula implies that
Law(X) = Law(X). Thus, P, 0 0;' = Law(X,.+.) = Law(X,,1.). Since P, 0 0;' = Law(Y;,+.),
and X, . = Y, 4. on the event {7 < n}, we get

IP, 06, —P, 06, v < 2P[r > n].
Since a.s. T < o0, we get [P, 00,1 — P, 06, |1v — 0. O

Lemma 7.21 (Existence). In the setting of Theorem 7.18, if fails, then an invariant
distribution exists.

Proof. Assume that 1' fails. Then there are ig,jo € I such that limsup Py, > 0. By a
diagonal argument, we may find a subsequence N’ C N such that for any j € I, Diy ; converges
to some ¢; € [0, 1] along N'. Moreover, we may choose N’ such that cj, > 0. Since }>; pj; ; =1
for every n, by Fatou’s lemma, Zj c; <1

Let X and Y be independent with the transition matrix p. By Lemma 7.19, (X,Y) is
an irreducible Markov chain on I? with transition matrix (i), i) = PPy I (X,Y) is
transient, then for any 4,5 € I,

OO>ZPZZ) XmY Zrm X)) Z(ij)Q’
n=1 n=1

which implies that (8.8) holds, which is a contradiction. So (X,Y) is recurrent. By Lemma
7.20, for any i, € I,

iy = P il < |IPio b, =Py 0 6, rv — 0.

Since pj; ; — ¢; along N, we get p}'; — c; along N’ for all 4,j € 1.
From the Chapman-Kolmogorov relation, we conclude that for any n,

prpﬂk ikt = Zp”pj wo bLEEL
Jjel jel
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Letting n — oo along N/, by Fatou’s lemma we get

. . n .
]&%é%ilio Zpi,jpj,k =z Z CiPjk>
jer Jel

and by dominated convergence theorem we get

o 7 — .. —_—
yom > " piDik = Y DijCk = Ck.
jeI jeI

Thus, ¢, > Zje[ c;jpj for every k € I. Summing over k, we get Y, ¢ on both sides since
> wPik = 1. So we must have ¢, = ng cjpjk for every k € I. Since cj, > 0, we get an
invariant distribution v with v{j} =¢;/> . ¢, j € I. O

Proof of Theorem 7.18. If no invariant distribution exists, then holds by Lemma 7.21.
Now let v be an invariant distribution. By Proposition 7.16, v{i} > 0 for all i € I. By Lemma
7.19, the Markov chain (X,Y’) in Lemma 7.20 is irreducible and recurrent, so holds for
any initial distributions p and v. If v is invariant, we get since P, 0§, ! =P, by Lemma

7.11. If / is also invariant, then yields P, = P, and so v/ = v. O
Theorem 7.22. For a Markov chain on I and states ©,7 € J with j aperiodic, we have
Pi[j < o0
. n __ -ty
nh—>ngopz’] N El [Tj] ’

Proof. First take ¢ = j. If j is transient, then p}; = 0 and E;7; = co. The equality holds
trivially. Suppose j is recurrent. If X starts from j, then it stays in C}, and the restriction of
X to Cj is a recurrent Markov chain by Lemma 7.17. Since j is aperiodic, X ]Cj is aperiodic by
Proposition 7.16. Thus, limy,_, p}; converges by Theorem 7.18.

Define L(n) = Y y_; 1x,=j, the number of times that X visits j before n. Then L is

increasing, L(0) = 0, and L(T]”) = n. Since 7! — T;L_17 n > 1, are mutually independent, by

J
the law of large numbers, a.s. % — E;7;. This statement holds even if E;7; = oo because

in that case for any M > 0, 77" > Sho M, where ¢M = M A (7‘}c - 7';“71), and we then get
n n L
liminf% > E;[¢M]. Letting M — oo, we then get % — 00. Thus, Pj-a.s. lim, s %
]Elej. For any n € Z;, we may find m € Zy such that 7" < n < T;”H. Then L(n) = m
L(n) m m 1

and == = € (W’ Zw]. Thus, % = & Since L(n) < n, by dominated convergence

J J
15 ok 1 1 1
theorem, > ), p;; = 7E;L(n) — B So we get p; — B

Now let ¢ # j. Using the strong Markov property and dominated convergence, we get

ﬁf:RWﬁ:ﬂ:owSmXﬁ:ﬂ:meSMW¢OX%q§:ﬂ

= Ei[1{r} <n}p};” Bulry < oo]

1 : n 1 __
] — Ei[l{Tj < OO} nll_}ngopjd] = Ei[Tj]
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