
Lecture Notes on Random Variables and Stochastic Processes

This lecture notes mainly follows Chapter 1-7 of the book Foundations of Modern Probability
by Olav Kallenberg. We will omit some parts.

1 Elements of Measure Theory

We begin with elementary notation of set theory. We use union A ∪ B or
⋃
αAα, intersection

A ∩ B or
⋂
αAα, difference A \ B = {x ∈ A : x 6∈ B}, and symmetric difference A∆B =

(A \ B) ∪ (B \ A). A partition of a set A is a family At ⊂ A, t ∈ T , such that A =
⋃
tAt, and

for any t1 6= t2, At1 ∩ At2 = ∅. If a whole space Ω is fixed and contains all relative sets, the
complement Ac is Ω \A. Recall that

A ∩
(⋃

α

Bα

)
=
⋃
α

(A ∩Bα), A ∪
(⋂

α

Bα

)
=
⋂
α

(A ∪Bα)

(⋃
α

Aα

)c
=
⋂
α

Acα,
(⋂

α

Aα

)c
=
⋃
α

Acα.

A σ-algebra or σ-field in a nonempty set Ω is defined as a collection of A of subsets of Ω
such that

1. ∅,Ω ∈ A,

2. A ∈ A implies that Ac ∈ A,

3. An ∈ A for all n ∈ N implies that
⋃
nAn ∈ A and

⋂
nAn ∈ A.

We may also say that a σ-algebra is a class of subsets, which contains the empty set and
the whole space, and is closed under complement, countable union and countable intersection.
There are two trivial examples of σ-algebras. First, {∅,Ω} is the smallest σ-algebra. Second,
the collection 2Ω of all subsets of Ω is the biggest σ-algebra.

A measurable space is a pair (Ω,A), where Ω is a nonempty set and A is a σ-algebra in Ω.
Every element of A is called a measurable set.

We observe that if Aα, α ∈ A, is a family of σ-algebras in Ω, then
⋂
αAα is a σ-algebra in

Ω. We use this fact to define the σ-algebra generated by a collection of sets. Let C ⊂ 2Ω, i.e.,
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C is a collection of subsets of Ω. Let M(C) be the set of all σ-algebra A in Ω such that C ⊂ A.
We define

σ(C) =
⋂

A∈M(C)

A.

Then

1. σ(C) ⊃ C as A ⊃ C for every A ∈M(C).

2. σ(C) is a σ-algebra in Ω as it is the intersection of a collection of σ-algebras in Ω.

These two properties imply that σ(C) ∈ M(C), and so is the smallest σ-algebra in Ω that
contains C. We call σ(C) the σ-algebra generated by C. There are no simple expressions of σ(C)
in terms of union, intersection, and complement of elements of C.

If S is a topological space, then the Borel σ-algebra B(S) on S is the σ-algebra generated
by the topology of S, i.e., the collection of open subsets of S. Thus, a topological space is also
viewed as a measurable space. We write B for B(R).

Besides σ-algebras, the following notation will be useful for us.

1. A π-system C in Ω is a class of subsets of Ω, which is closed under finite intersection, i.e.,
A,B ∈ C implies that A ∩B ∈ C.

2. A λ-system D in Ω is a class of subsets of Ω, which contains Ω, and is closed under proper
difference and increasing limits. The former means that A,B ∈ D and A ⊃ B implies
that A \B ∈ D. The latter means that if A1 ⊂ A2 ⊂ A2 ⊂ · · · ∈ D, then

⋃
nAn ∈ D.

It is clear that A is a σ-algebra if and only if it is both a π-system and a λ-system. If E ⊂ 2Ω,
we may similarly define the π-system π(E) and the λ-system λ(E) generated by E , respectively.

The following monotone class theorem is very useful. An application of this result is called
a monotone class argument.

Theorem 1.1. If C is a π-system, then σ(C) = λ(C).

Proof. Since a σ-algebra containing C is also a λ-system containing C, we have λ(C) ⊂ σ(C).
We need to show that σ(C) ⊂ λ(C). It suffices to show that λ(C) is a σ-algebra. Since it is
already a λ-system, we only need to show that it is a π-system. This means we need to show
that, if A,B ∈ λ(C), then A ∩B ∈ λ(C).

At the beginning, since C is a π-system, we know that if A,B ∈ C, then A ∩B ∈ C ⊂ λ(C).
Now we show that

A ∈ C and B ∈ λ(C) implies that A ∩B ∈ λ(C). (1.1)

We prove this statement in an indirect way. Fix A ∈ C. Consider the set

SA := {B ⊂ Ω : A ∩B ∈ λ(C)}.

Then
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1. C ⊂ SA,

2. SA is a λ-system.

To check the second claim, we note that

1. Ω ∈ SA because Ω ∩A = A;

2. If B1 ⊃ B2 ∈ SA, then B1∩A ⊃ B2∩A, and so (B1 \B2)\A = (B1∩A)\(B2∩A) ∈ Λ(C).
Thus, B1 \B2 ∈ SA;

3. If B1 ⊂ B2 ⊂ B3 ⊂ · · · ∈ SA, then B1 ∩ A ⊂ B2 ∩ A ⊂ B3 ∩ A ⊂ · · · ∈ Λ(C). So⋃
Bn ∩A =

⋃
(Bn ∩A) ∈ Λ(C), which implies that

⋃
Bn ∈ SA.

This means that SA is a λ-system that contains C. So SA contains λ(C). This finishes the proof
of (1.1).

Next we show that

A ∈ λ(C) and B ∈ λ(C) implies that A ∩ B ∈ λ(C).

This is enough to conclude that λ(C) is a π-system. For the proof, for any A ∈ λ(C), we define
SA by the same way as before. By (1.1, SA contains C. The argument in the last paragraph
shows that SA is a λ-system. So SA contains λ(C), and the proof is complete.

For any family of spaces Ωt, t ∈ T , the Cartesian product
∏
t Ωt is the class of all collections

(ωt : t ∈ T ), where ωt ∈ Ωt for all t ∈ T . When T = {1, . . . , n} or T = N = {1, 2, . . . }, we write
the product space as Ω1 × · · · × Ωn and Ω1 × Ω2 × · · · . If all Ωt = Ω, we use the notation ΩT ,
Ωn, or Ω∞.

If each Ωt is equipped with a σ-algebra At, then we introduce the product σ-algebra
∏
tAt

as the σ-algebra in
∏
t Ωt generated by the class of cylinder sets

{At ×
∏
s 6=t

Ωs = {(ωs : s ∈ T ) : ωt ∈ At and ωs ∈ Ωs for s 6= t} : t ∈ T,A ∈ At}. (1.2)

We call (
∏
t Ωt,

∏
tAt) the product of the measurable spaces (Ωt,At), t ∈ T . In special cases,

we use the symbols A1 × · · ·An, A1 ×A2 × · · · , AT , An, A∞.
In Topology, one may define product of topological space, which is also a topological space.

A natural question to ask is whether the Borel σ-algebra generated by the product topology
agrees with the product of the Borel σ-algebra generated by each topology. The answer is Yes if
we only consider a countable product and each space is a separable metric space. A topological
space is called separable if it contains a countable dense set.

Lemma 1.2. Let S1, S2, . . . be separable metric spaces. Then

B(S1 × S2 × · · · ) = B(S1)× B(S2)× · · · .

We remark that the product on the left is about topological spaces, and the product on the right
is about measurable spaces. For example, since R is a separable metric space, B(Rn) = Bn.

3



Proof. Let Tn denote the topology in Sn. Then σ(Tn) = B(Sn). Let

Cnσ = {An ×
∏
m 6=n

Sm : An ∈ B(Sn)}, CnT = {An ×
∏
m 6=n

Sm : An ∈ Tn}, n ∈ N;

Cσ =
⋃
n Cnσ and CT =

⋃
n CnT . By definition of product σ-algebra,

B(S1)× B(S2)× · · · = σ(Cσ).

On the other hand, the product topology on S1×S2×· · · is the topology generated by CT . We
denote it by T (CT ). Thus, the Borel σ-algebra on the product space is

B(S1 × S2 × · · · ) = σ(T (CT )).

It remains to show that σ(Cσ) = σ(T (CT )). It is easy to show that Cnσ = σ(CnT ) for each n.
So

σ(Cσ) = σ(
⋃
n

Cnσ ) ⊂ σ(
⋃
n

σ(CnT )) = σ(
⋃
n

CnT ) = σ(CT ) ⊂ σ(T (CT )).

For the other direction, we use the fact that each Tn has a countable base, i.e., there is a
countable set T ′n ⊂ Tn such that each element of Tn can be expressed as a union of some elements
of T ′n. To construct T ′n, let An be a countable dense subset of Sn (because Sn is separable), and
let

T ′n = {{w ∈ Sn : dist(w, z) < q} : z ∈ An, q ∈ Q+}.

It is easy to check that T ′n satisfies the desired property. We may use T ′n to construct a countable
basis of the topology in S1 × S2 × · · · , namely

A1 ×A2 × · · · ×Am × Sm+1 × Sm+1 × · · · ,

where m ∈ N and Aj ∈ T ′j for 1 ≤ j ≤ m. Every element of the countable basis belongs to
σ(Cσ). Since every open set in S1 × S2 × · · · is a countable union of elements in the basis, we
have T (CT ) ⊂ σ(Cσ). Thus, σ(T (CT )) ⊂ σ(Cσ). The proof is then complete.

Let S and T be two nonempty sets. A point mapping f : S → T induces two set mappings
f : 2S → 2T and f−1 : 2T → 2S such that

fA = {f(x) : x ∈ A}, f−1B = {x ∈ S : f(x) ∈ B}

for A ⊂ S and B ⊂ T . Note that for the definition of f−1 we do not need f to be surjective or
injective. Then we have

f−1Bc = (f−1B)c, f−1
⋃
t

Bt =
⋃
t

f−1Bt, f−1
⋂
t

Bt =
⋂
t

f−1Bt. (1.3)

For a class C ⊂ 2T , we define
f−1C = {f−1B : B ∈ C}.
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Lemma 1.3. Let S and T be σ-algebras in S and T , respectively. Then f−1T is a σ-algebra
in S and {B ⊂ T : f−1B ∈ S} is a σ-algebra in T .

Proof. It follows directly from (1.3).

In the setup of Lemma 1.3, we call f−1T , denoted by σ(f), the σ-algebra induced or gen-
erated by f ; and if f−1T ⊂ S, then we say that f is S/T -measurable or simply measurable if
S and T are fixed. Note that σ(f) is the smallest σ-algebra in S w.r.t. which f is measurable.

Lemma 1.4. If C ⊂ 2T satisfies that T = σ(C), then f−1T ⊂ S if and only if f−1(C) ⊂ S.

Proof. Clearly f−1T ⊂ S implies that f−1(C) ⊂ S. On the other hand, if f−1(C) ⊂ S then
by Lemma 1.3, the class of sets B ⊂ T such that f−1(B) ∈ S is a σ-algebra in T . Such class
contains C by assumption, and so it contains σ(C) = T . Thus, we get f−1T ⊂ S.

Lemma 1.5. If f : S → T is a continuous mapping between two topological spaces, then f is
measurable with respect to the Borel σ-algebras B(S) and B(T ).

Proof. Let TS and TT be the topologies in S and T , respectively. Then B(S) = σ(TS) and
B(T ) = σ(TT ). By continuity of f , f−1TT ⊂ TS ⊂ B(S). By Lemma 1.4, f−1B(T ) ⊂ B(S).

Let C ⊂ 2S and A ⊂ S. We define

A ∩ C = {A ∩B : B ∈ C} ⊂ 2A.

It is clear that if C is a σ-algebra in S, then A ∩ C is a σ-algebra in A. We then call (A,A ∩ C)
a (measurable) subspace of (S, C). This definition mimics that of topological subspaces.

Lemma 1.6 (slight variation). If A ⊂ S and C ⊂ 2S, then σA(A ∩ C) = A ∩ σS(C). Here we
use σA(·) (resp. σS(·)) to denote the σ-algebra in A (resp. S) generated by some class.

Proof. Since C ⊂ σS(C), A ∩ C ⊂ A ∩ σS(C). Since the RHS is a σ-algebra in A, we get
σA(A ∩ C) ⊂ A ∩ σS(C). To prove the other direction, let S denote the class of B ⊂ S such
that A ∩ B ∈ σA(A ∩ C). Then S contains C and A ∩ S ⊂ σA(A ∩ C). Since σA(A ∩ C)
is a σ-algebra in A, it is easy to see that S is a σ-algebra in S. Thus, S ⊃ σS(C), and so
A ∩ σS(C) ⊂ σA(A ∩ C).

Suppose (S, C) is a topological space, and A ⊂ S. Then A is a topological subspace with
topology A∩C. By Lemma 1.6, B(A) = A∩B(S), and so A is also a measurable subspace of S.

Lemma 1.7 (composition). For three measurable spaces (S, S), (T, T ), and (U,U), and two
measurable mappings f : S → T and g : T → U , the composition g ◦ f : S → U is measurable.

Proof. We have (g ◦ f)−1U = f−1g−1U ⊂ f−1T ⊂ S.

Lemma 1.8. Let (Ω,A) and (St, St), t ∈ T . be measurable spaces. Let U ⊂
∏
t St and

f : Ω → U . Then f is U ∩
∏
t St-measurable if and only if for each t ∈ T , ft := πt ◦ f is

St-measurable, where πt :
∏
r Sr → St is the t-th coordinate map.
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Proof. Suppose f is U ∩
∏
t St-measurable. Fix t ∈ T and B ∈ St. We have

f−1
t B = f−1(B ×

∏
s 6=t

Ss) = f−1(U ∩ (B ×
∏
s 6=t

Ss)) ∈ A.

So ft is St-measurable. Now suppose each ft is St-measurable. Then for each cylinder set in
ST of the form B ×

∏
s 6=t Ss, B ∈ St, we have f−1(B ×

∏
s 6=t Ss) = f−1

t B ∈ A. Since the class

of such cylinder sets generates the σ-algebra
∏
t St, by Lemma 1.4, f−1

∏
t St ⊂ A. Thus, f is∏

t St-measurable if we treat it as a function from Ω to
∏
t St. For any A ∈ U ∩

∏
t St, there is

B ∈
∏
t St such that A = U ∩B. Then f−1A = f−1B ∈ A. So f is U ∩

∏
t St-measurable.

Recall that σ(f) = f−1
∏
t St and σ(ft) = f−1

t , t ∈ T , are the σ-algebras in Ω induced by f
and ft, respectively. Let

σ(ft : t ∈ T ) = σ(
⋃
t∈T

σ(ft)),

and we call it the σ-algebra generated by ft, t ∈ T .

Corollary . σ(f) = σ(ft : t ∈ T ).

Proof. This follows immediately from Lemma 1.8. We leave it as an exercise.

We use the following symbols:

R+ = [0,∞), R = [−∞,∞], R+ = [0,∞].

The latter two spaces have Borel σ-algebras

B(R) = σ(B, {∞}, {−∞}), B(R+) = σ(B(R+), {∞}).

We now fix a measurable space (Ω,A). A function f from Ω into an interval I ⊂ R is
measurable if and only if for any x ∈ I, {ω : f(ω) ≤ x} is measurable. This follows from
Lemma 1.4 and the fact that the class (−∞, x]∩ I, x ∈ I, generates the σ-algebra B(I) = I ∩B.
We will often write {f ≤ x} for {ω : f(ω) ≤ x}. The inequality ≤ x may be replaced by < x,
≥ x, or > x. The statements also hold for I = R or R+.

Lemma 1.9. For any sequence of measurable functions f1, f2, . . . from (Ω,A) into R, supn fn,
infn fn, lim sup fn and lim inf fn are also measurable.

Proof. We use the equalities

{sup
n
fn ≤ x} =

⋂
n

{fn ≤ x}, {inf
n
fn ≥ x} =

⋂
n

{fn ≥ x},

lim sup fn = inf
n

sup
m≥n

fm, lim inf fn = sup
n

inf
m≥n

fm.
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This lemma in particular implies that the limit of measurable functions (if it exists pointwise)
is measurable. This statement also holds for a general metric space.

Lemma 1.10. Let f1, f2, . . . be measurable functions from (Ω,A) into some metric space (S, ρ).
Then

(i) If fn → f , then f is measurable.

(ii) If (S, ρ) is separable and complete, then {ω : lim fn(ω) converges} is measurable.

Proof. (i) If fn → f , then for any continuous function g : S → R, we have g ◦ fn → g ◦ f . So
g ◦ f from Ω to R is measurable by Lemmas 1.5, 1.7 and 1.9. Fixing an open set G ⊂ S. We
may choose some continuous functions gn : S → R+ such that gn ↑ 1G. In fact, we may let

gn(s) = min{1, nρ(s,Gc)},

where ρ(s,Gc) = inf{ρ(s, t) : t ∈ Gc} is the distance from s to Gc, which is continuous in s
by the triangle inequality. Since each gn ◦ f is measurable, 1G ◦ f = 1f−1G is measurable. So
f−1(G) is measurable for every open set G. By Lemma 1.4, f is measurable.

(ii) Since S is complete, lim fn(ω) converges if and only if (fn(ω)) is a Cauchy sequence in
S. Now

{ω : (fn(ω)) is Cauchy in S} =
⋂
m

⋃
N

⋂
n1≥N

⋂
n2≥N

{ω : ρ(fn1(ω), fn2(ω)) <
1

m
}.

This formula is another way to state that (fn(ω)) is a Cauchy sequence if and only if for any m ∈
N there exists N ∈ N such that for any n1, n2 ≥ N , ρ(fn1(ω), fn2(ω)) < 1

m . To prove that the set
on the RHS is measurable it suffices to show that for any m,n1, n2, {ω : ρ(fn1(ω), fn2(ω)) < 1

m}
is measurable. For that purpose, we use the fact that

(i) by Lemma 1.8, (fn1 , fn2) : Ω→ S2 is A/B(S)2-measurable;

(ii) the map S2 3 (s1, s2) 7→ ρ(s1, s2) ∈ R+ is continuous (follows easily from the triangle
inequality), and so by Lemma 1.5 is measurable w.r.t. B(S2);

(iii) by Lemma 1.2, B(S2) = B(S)2; (we use the separability of S here);

(iv) by Lemma 1.7, ρ(fn1 , fn2) : Ω→ R+ is A-measurable.

Lemma 1.12. For any measurable function f, g : (Ω,A)→ R and a, b ∈ R, af + bg and fg are
measurable. If, in addition, g does not take value 0, then f/g is measurable.

Proof. To prove the measurability of af + bg, we express af + bg as the composition of the map
(f, g) : Ω → R2 and the continuous function R2 3 (x, y) 7→ ax + by ∈ R. The proof for fg is
similar. For f/g, we express f/g as the composition of (f, g) : Ω→ R× (R \ {0}) and the the
continuous function R× (R \ {0}) 3 (x, y) 7→ x/y ∈ R.
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For any A ⊂ Ω, we define the associated indicator function 1A : Ω → R to be equal to 1
on A and to 0 on Ac. Sometimes we write 1A instead of 1A. It is clear that 1A is measurable
(w.r.t. A) if and only if A is a measurable set (w.r.t. A).

Linear combinations of indicator functions are called simple functions. Thus, a simple
function f : Ω→ R is of the form

f = c11A1 + · · · cn1An ,

where n ∈ N, A1, . . . , An ⊂ Ω and c1, . . . , cn ∈ R. Here we only allow finite sums. If
A1, . . . , An ∈ A, then f is A-measurable, and called a measurable simple function.

Lemma 1.11. For any measurable function f : (Ω,A) → R+, there exist a sequence of mea-
surable simple functions fn : (Ω,A)→ R+ such that fn ↑ f .

We use the following symbols from now on. For a, b ∈ R, we use a ∧ b and a ∨ b to denote
min{a, b} and max{a, b}, respectively. The symbols also extend to a1 ∧ · · · ∧ an, a1 ∨ · · · ∨ an,
∧tat, and ∨tat, where the latter two are alternative ways to write inft at and supt at.

For x ∈ R, we use bxc to denote the biggest integer n with n ≤ x, and use dxe to denote
the smallest integer n with n ≥ x. Then bxc and dxe are monotone increasing.

Proof. We let

fn =
b2n(f ∧ n)c

2n
, n ∈ N.

Then 0 ≤ fn ≤ f ∧ n. We se that fn is a simple measurable function because it takes values in
{ k2n : 0 ≤ k ≤ n2n},

f−1
n ({ k

2n
}) = {ω :

k

2n
≤ f(ω) <

k + 1

2n
}, 0 ≤ k < n2n, (1.4)

f−1
n ({n2n

2n
}) = {ω : n ≤ f(ω)},

and the sets on the RHS are all measurable. To see that (fn) is increasing in n, we use the
inequality

b2n(f ∧ n)c
2n

≤ b2
n(f ∧ (n+ 1))c

2n
≤ b2

n+1(f ∧ (n+ 1))c
2n+1

,

where the second “≤” follows from b2xc ≥ 2bxc. Finally, we show that fn → f pointwise.
Fix ω ∈ Ω. If f(ω) = ∞, then fn(ω) = n → f(ω). Suppose f(ω) < ∞. Let ε > 0. We
may choose N such that N > f(ω) and 1

2N
< ω. For n ≥ N , by (1.4), we get the inequality

|fn(ω)− f(ω)| ≤ 1
2n < ε.

We say that two measurable spaces (S, S) and (T, T ) are Borel isomorphic if there is a
bijection f : S → T such that both f and f−1 are measurable. This means that f−1T = S and
fS = T . A space S that is Borel isomorphic to a Borel subset I of [0, 1], equipped with the
Borel σ-algebra B(I) = I ∩ B([0, 1]), is called a Borel space. By the following lemma, a Polish
space is a Borel space.
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Definition . A Polish space is a topological space, which admits a separable and complete
metrization.

Lemma A1.6. A Polish space S is a Borel space.

Sketch of the proof. The first step is to construct a continuous and injective function f : S →
[0, 1]∞. Let (sn) be a dense sequence in S. Then we define f(x) = (1 ∧ ρ(x, sn)). The second
step is to use binary expansions to construct a measurable injective function g : [0, 1]∞ → [0, 1].
See Chapter 13 of Dudley, R.M.’s “Real Analysis and Probability” for details.

For two functions f : Ω→ (S, S) and g : Ω→ (T, T ), where (S, S) and (T, T ) are measurable
spaces, we say that f is g-measurable if σ(f) ⊂ σ(g), or equivalently, f−1S ⊂ g−1T . If there is
a (T/S-)measurable map h : T → S such that f = h ◦ g, then

f−1S = g−1h−1S ⊂ g−1T .

So f is g-measurable. Under some mild conditions, the converse is also true.

Lemma 1.13. Under the above setup, if (S, S) is a Borel space, then f is g-measurable if and
only if there exists some measurable map h : T → S such that f = h ◦ g.

Proof. We only need to show the “only if” part. Since S is Borel, we may assume that S ∈
B([0, 1]). We may then view f as a map from Ω into [0, 1]. This new viewpoint does not change
σ(f). So f is still g-measurable. If in this case, there exists a measurable map h̃ : T → [0, 1]
such that f = h̃ ◦ g. Then we may define h such that h = h̃ on h̃−1(S), and h = s0 on
h̃−1([0, 1] \ S), where s0 is a fixed point in S. Then h : T → S is measurable, and f = h ◦ g.
Thus, it suffices to assume that S = [0, 1].

If f = 1A, and A ∈ σ(g), then A = g−1B for some B ∈ T . So f = 1B ◦g and we may choose
h = 1B. The result extends by linearity to any g-measurable simple functions. In the general
case, by Lemma 1.11, there exists a sequence of g-measurable simple functions fn : Ω → [0, 1]
such that fn ↑ f . For each n, there exists an T -measurable map hn : T → [0, 1] such that
fn = hn ◦ g. Then h := supn hn : T → [0, 1] is also T -measurable by Lemma 1.9. Finally, we
note that

h ◦ g = (sup
n
hn) ◦ g = sup

n
(hn ◦ g) = sup

n
fn = f.

Definition . A measure on a measurable space (Ω,A) is a map µ : A → R+, which satisfies
µ∅ = 0 and

µ
⋃
n

An =
∑
n

µAn, for all mutually disjoint A1, A2, · · · ∈ A. (1.5)

The triple (Ω,A, µ) is then called a measure space. The measure µ is called finite if µΩ < ∞,
and is called a probability measure if µΩ = 1. In the latter case, (Ω,A, µ) is called a probability
space. The µ is called a σ-finite measure if there is a sequence A1, A2, · · · ∈ A such that
Ω =

⋃
nAn and µAn <∞ for each n.
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Remark . The property (1.5) is called countably additivity, which clearly implies finitely addi-
tivity:

µ
N⋃
n=1

An =
N∑
n=1

µAn, for all mutually disjoint A1, A2, . . . An ∈ A,

by setting An = ∅ for n > N , and countably subadditivity:

µ
⋃
n

Bn ≤
∑
n

µBn, for all B1, B2, · · · ∈ A,

by defining An = Bn \
⋃
k<nBk.

Lemma 1.14 (Continuity). Let µ be a measure on (Ω,A), and let A1, A2, · · · ∈ A.

(i) If An ↑ A, then µAn ↑ µA.

(ii) If An ↓ A, and µA1 <∞, then µAn ↓ µA.

Proof. (i) We apply (1.5) to Dn = An \An−1 with A0 = ∅. (ii) We apply (i) to Bn = A1 \An.
Since µA1 <∞, we have µAn <∞ as well, and µBn = µA− µAn ↑ µA1 − µA.

Exercise . Suppose µ : A → R+ satisfies finitely additivity and the property that if B1 ⊃
B2 ⊃ · · · ∈ A, and there is ε > 0 such that µBn ≥ ε > 0 for all n, then

⋂
nBn 6= ∅. Prove that

µ is a measure.

Exercise . Prove that for two measures µ and ν on (Ω,A) with µΩ = νΩ < ∞, the class
D = {A ∈ A : µA = νA} is a λ-system.

By monotone class theorem and the above exercise, we conclude that if two probability
measures on (Ω,A) agree on a π-system C with σ(C) = A, then the two measures must agree.

We may do the following operations on measures. If µ is a measure, and c ∈ R+, then cµ is
also a measure. If µ is finite, then 1

µΩµ is a probability measure. The sum of two measures is
a measure. If (µn) is an increasing sequence of measures, then limµn is also a measure; if (µn)
is a decreasing sequence of measures, and µ1 is finite, then limµn is also a measure (Lemma
1.15). Thus, if µ1, µ2, . . . are measures on the same space, then

∑
n µn is a measure.

If µ is a measure on (Ω,A) and B ∈ A, then µ(· ∩B) : A 3 A 7→ µ(A∩B) is also a measure
on (Ω,A). It is called the restriction of µ to B. One may also view the restriction as a measure
on the measurable subspace (B,B ∩ A).

The simplest measure is the zero measure, which takes value zero at all A ∈ A. Another
natural measure is the counting measure: µA = #(A) if A is finite; µA =∞ if otherwise. For
s ∈ Ω, the Dirac measure (also called point mass) δs is defined by δs(A) = 1 if s ∈ A, and
δs(A) = 0 if otherwise.

The most important nontrivial measure is the Lebesgue measure λ. It is the unique measure
on (R,B) such that for any interval I, λI equals |I|, the length of I. It is σ-finite because
R =

⋃
n∈Z[n, n+ 1). The proof uses the Carathéodory extension theorem stated below.
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We call a class R ⊂ 2Ω a ring if it contains ∅ and is closed under finite union and difference,
i.e., A,B ∈ R implies that A ∪ B,A \ B ∈ R. A map µ : R → R+ is called a pre-measure
if µ∅ = 0 and µ satisfies countably additivity, i.e., if A1, A2, · · · ∈ R is a partition of A ∈ R,
then µA =

∑
n µAn. By considering the sets Bn = A \

⋃n
k=1Bk, we find that countably

additivity is equivalent to the combination of finitely countability and the statement that for
any B1 ⊃ B2 ⊃ · · · ∈ R, if there is ε > 0 such that µBn ≥ ε for all n, then we have

⋂
nBn 6= 0.

If R has a partition A1, A2, · · · ∈ R such that µAn <∞ for each n, then µ is called σ-finite.

Theorem (Carathéodory extension theorem). A pre-measure µ on a ring R extends to a
measure on σ(R). The extension is unique if µ is σ-finite.

We will only give a sketch of the proof of Carathéodory extension theorem, but will provide
details of the application of the theorem in constructing the Lebesgue measure because similar
arguments will be used later.

Proof of Carathéodory extension theorem (Sketch). The uniqueness part follows from a mono-
tone class argument. Note that for any n, the class An ∩R is a π-system in An, and if µ1 and
µ2 are two extensions, then the set of B ∈ An ∩σ(R) such that µ1B = µ2B form a λ-system in
An. The existence part uses outer measures. For every A ⊂ Ω, we define the outer measure of
A by

µ∗A = inf
R3I⊃A

µI.

It is clear that µ∗ = µ on R. Then we consider the set F of all A ⊂ Ω such that for every
E ⊂ Ω,

µ∗E = µ∗(E ∩A) + µ∗(E \A).

Then one can prove the following statements:

(i) F is a σ-algebra containing R;

(ii) µ∗ restricted to F is a measure.

By (i), F ⊂ σ(R). By (ii), µ∗|σ(R) is the extension that we want.

To construct Lebesgue measure, we define a ring R in R to be the class of finite disjoint
unions of intervals of the form (a, b], where a < b ∈ R. For an element A ∈ R expressed as
disjoint union

⋃m
k=1(ak, bk], we define µA =

∑m
k=1(bk − ak). It is easy to check that µ satisfies

finitely additivity. Then we need to show that, if A1 ⊃ A2 · · · ∈ R, and µAn ≥ ε > 0 for all n,
then

⋂
nAn 6= ∅. For each n, we may pick A′n ∈ R such that A′n ⊂ An and µ(An \ A′n) < ε/2n

(if An =
⋃m
k=1(ak, bk], we set A′n =

⋃m
k=1(a′k, bk] such that ak < a′k < bk and a′k − ak is

small enough). Let A′′n =
⋂n
k=1A

′
n. Then A′′n ⊂ An for each n, and A′′1 ⊃ A′′2 ⊃ · · · . Since

An \ A′′n ⊂
⋃n
k=1(Ak \ A′k), we get µ(An \ A′′n) ≤

∑n
k=1 µ(Ak \ A′k) <

∑n
k=1

ε
2k

< ε. From

µAn > ε we get µA′′n > 0, and so A′′n 6= ∅. Since each A′′n is compact and A′′1 ⊃ A′′2 ⊃ · · · , we
get

⋂
nA
′′
n 6= ∅, which together with A′′n ⊂ An implies that

⋂
nAn 6= ∅. So µ is a pre-measure

on R. We may then use Carathéodory extension theorem to extend µ to a measure on R. It is
easy to check that the extension is the Lebesgue measure.
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Lemma 1.16 (Regularity). Let µ be a finite measure on some metric space S. Then for any
B ∈ B(S),

µB = sup
F⊂B

µF = inf
G⊃B

µG, (1.6)

with F and G restricted to the classes of closed and open subsets of S, respectively.

Proof. Let C denote the set of B which satisfies (1.6). Then (i) S ∈ C because S is both closed
and open; (ii) B ∈ C implies that Bc ∈ C since F ⊂ B and F is closed if and only if F c ⊃ Bc

and F c is open; (iii) B1, B2 ∈ C implies that B1 ∪ B2 ∈ C because if for j = 1, 2, closed sets
F jn ⊂ Bj , n ∈ N, satisfy µF jn → µBj and open sets Gjn ⊃ Bj , n ∈ N, satisfy µGjn → µBj , then
µ(F 1

n ∪ F 2
n)→ µ(B1 ∪B2) and µ(G1

n ∪G2
n)→ µ(B1 ∪B2). The first follows from

(B1 ∪B2) \ (F 1
n ∪ F 2

n) ⊂ (B1 \ F 1
n) ∪ (B2 \ F 2

n),

and the second is similar. The (ii) and (iii) together imply that C is closed under difference.
Suppose (Bn) is an increasing sequence in C, and B =

⋃
nBn. Fix any ε > 0. We may first

choose n such that µBn > µB−ε/2, and then choose closed F ⊂ Bn such that µF > µBn−ε/2.
Since F ⊂ B and µF > µB − ε, we get µB = supF⊂B µF . On the other hand, for each n ∈ N,
we may choose open Gn ⊃ Bn such that µGn < µBn + ε

2n . Let G =
⋃
nGn. Then G is open,

G ⊃ B, and µ(G \B) <
∑

n
ε

2n = ε. Thus, µB = infG⊃B µG. So B ∈ C. Hence C is a λ-system.
We also know that C contains all open sets since every open set G can be written as a union
of an increasing sequence of closed sets. By monotone class theorem, C contains the Borel
σ-algebra B(S), i.e., (1.6) holds for any B ∈ B(S).

Let µ be a measure on (S, S), and f is a measurable map from (S, S) into (T, T ), then we
get a measure µ ◦ f−1 (also denoted by f∗µ) on (T, T ) defined by

(µ ◦ f−1)A = µf−1A.

It is called the pushforward of µ under f .
Given a measure space (Ω,A, µ), we are going to define the integral

µf =

∫
fdµ =

∫
f(ω)µ(dω)

for certain real valued measurable function f on (Ω,A). The construction is composed of several
steps.

Step 1. If f is a nonnegative measurable simple function of the form

f = c11A1 + · · · cn1An

with c1, . . . , cn ∈ R+ and A1, . . . , An ∈ A, we define

µf = c1µA1 + · · ·+ cnµAn.

12



Throughout measure theory we follow the convention that 0 ·∞ = 0. Using the finite additivity
of µ, one can show that the definition is consistent, i.e., if f has another expression: d11B1 +
· · · dm1Bm , then d1µB1 + · · · + dmµBm equals the same number. We then get linearity and
monotonicity: for nonnegative measurable simple functions f and g:

µ(af + bg) = aµf + bµg, for a, b ≥ 0; (1.7)

µf ≥ µg ≥ 0, if f ≥ g. (1.8)

Exercise . Check the consistency and formulas (1.7) and (1.8).

Step 2. If f : Ω → R+ is measurable, by Lemma 1.11 we may choose a sequence of
nonnegative measurable simple functions (fn) such that fn ↑ f . Then we define

µf = limµfn.

We also need to prove the consistency, i.e., the definition does not depend on the choice of (fn).

Lemma 1.18. Let f1, f2, · · · and g be simple measurable functions on Ω such that 0 ≤ f1 ≤
f2 ≤ · · · and 0 ≤ g ≤ lim fn. Then limµfn ≥ µg.

Proof. First suppose g = c1A for c ∈ R+ and A ∈ A. If c = 0, it is trivial. For c > 0, fix
ε ∈ (0, c) and let An = A ∩ {fn ≥ c− ε}. Then An ↑ A, and so

µfn ≥ µ(c− ε)1An = (c− ε)µAn ↑ (c− ε)µA.

So limµfn ≥ (c− ε)µA. Letting ε→ 0, we get limµfn ≥ cµA = µg.
Now suppose g = c11A1 + · · · cm1Am with c1, . . . , cm ∈ R+ and A1, . . . , Am ∈ A. We

may assume that A1, . . . , Am are mutually disjoint. Let µk = µ(· ∩ Ak), 1 ≤ k ≤ m, and
µ0 = µ(· ∩ (

⋃
k Ak)

c). Then µ =
∑n

k=0 µk. So µfn ≥
∑m

k=1 µkfn. For 1 ≤ k ≤ m, since
limn fn ≥ g ≥ ck1Ak , by the above paragraph we get limn µkfn ≥ ckµAk. Thus,

lim
n
µfn ≥ lim

n

m∑
k=1

µkfn =

m∑
k=1

lim
n
µkfn ≥

m∑
k=1

ckµAk = µg.

Applying this lemma, we see that if (fn) and (gm) are two sequences of measurable simple
functions with 0 ≤ fn ↑ f and 0 ≤ gm ↑ f , then for each m, limn µfn ≥ µgm. So limn µfn ≥
limm µgm. By symmetry, we have limm µgm ≥ limn µfn. So limn µfn = limm µgm, and we get
the consistency in the definition of µf .

We can easily prove the linearity and monotonicity: for measurable functions f and g from
Ω into R+, (1.7) and (1.8) both hold.

Theorem 1.19 (Monotone Convergence Theorem). Let f1, f2, · · · : (Ω,A)→ R+ be measurable.
Suppose fn ↑ f . Then µfn ↑ µf .
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Proof. For each n, we choose a sequence of measurable simple functions (gnk ) such that gnk ↑ fn
as k →∞. Then µfn = limk µg

n
k . Define

hk = g1
k ∨ g2

k ∨ · · · ∨ gkk .

Then (hk) is an increasing sequence of nonnegative simple measurable functions. Since for each
k ∈ N, hk ≤ f1 ∨ f2 ∨ · · · fk = fk ≤ f , we have limhk ≤ f and

limµhk ≤ limµfk ≤ µf. (1.9)

For any fixed n ∈ N, we have hk ≥ gnk for k ≥ n. So limhk ≥ limk g
n
k = fn. Thus, limhk ≥

sup fn = f . So we get hk ↑ f and µf = limµhk. By (1.9) we get limµfk = µf .

Lemma 1.20 (Fatou). For any measurable functions f1, f2, · · · : (Ω,A)→ R+, we have

lim inf µfn ≥ µ lim inf fn.

Proof. Fix n ∈ N. Since fk ≥ infm≥n fm for all k ≥ n, by monotonicity,

inf
k≥n

µfk ≥ µ inf
m≥n

fm.

Letting n→∞ and using monotone convergence theorem, we get

lim inf µfn = lim
n

inf
k≥n

µfk ≥ lim
n
µ inf
m≥n

fm = µ lim
n

inf
m≥n

fm = µ lim inf fn.

Step 3. We define µf for integrable functions. A measurable function f : (Ω,A, µ) → R
is called integrable if µ|f | <∞. Here since |f | is a nonnegative measurable function, µ|f | was
defined in Step 2. For the definition, we find two nonnegative measurable functions f1 and f2

such that f = f1 − f2 and µf1, µf2 <∞, and then let

µf = µf1 − µf2.

For the existence of such f1 and f2, we may let f1 = f+ := f ∨ 0 and f2 = f− := (−f) ∨ 0. In
fact, we have f+, f− ≥ 0, f = f+ − f−, and |f | = f+ + f−. So 0 ≤ f± ≤ |f |, which implies that
µf± ≤ µ|f | <∞. For the consistency, suppose g1 and g2 satisfy the same properties as f1 and
f2. Then from f1 − f2 = g1 − g2 we get f1 + g2 = g1 + f2, and so µf1 + µg2 = µg1 + µf2. Since
every item is a real number, we get µf1 − µf2 = µg1 − µg2. Thus, µf is well defined. Finally,
since µf = µf+ − µf− and µ|f | = µf+ + µf−, we get |µf | ≤ µ|f |.

We then have the monotonicity and the linearity with real coefficient: if f, g : Ω → R are
integrable, and a, b ∈ R, then af + bg is also integrable, and µ(af + bg) = aµf + bµg.

In summary, the integral µf is defined for (i) all measurable functions f : (Ω,A, µ) → R+;
and (ii) all measurable functions f : (Ω,A, µ)→ R such that µ|f | <∞. In the former case, µf
takes values in R+, and in the latter case, µf takes values in R.
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Theorem 1.21 (Dominated Convergence). Let f, f1, f2, . . . and g, g1, g2, . . . be R-valued mea-
surable functions on (Ω,A, µ) with |fn| ≤ gn for all n, and such that fn → f , gn → g, and
µgn → µg <∞. Then µfn → µf .

Proof. The sequence (gn±fn) are nonnegative measurable functions and gn±fn → g±f . Since
µg <∞ and µgn → µg, g and gn are integrable for all but finitely many n. Since |fn| ≤ gn and
|f | ≤ g, the same statement holds for g and f . By Fatou’s lemma and linearity of integral,

µg ± µf = µ(g ± f) ≤ lim inf µ(gn ± fn) = lim inf(µgn ± µfn) = µg + lim inf(±µfn).

So we get µf ≤ lim inf µfn and −µf ≤ lim inf(−µfn) = − lim supµfn, which implies that
lim supµfn ≤ µf ≤ lim inf µfn. So limµfn = µf .

Lemma 1.22 (Substitution). Let f from a measurable map from (Ω,A, µ) to (S, S). Let µ◦f−1

be the pushforward measure on (S, S). Then for measurable function g : S → R,

(µ ◦ f−1)g = µ(g ◦ f). (1.10)

Here the equality means that when one side is defined, then the other side is also defined, and
the two sides agree.

Proof. We first show that if g : S → R+, and so g ◦ f : Ω→ R+ and both sides are well defined,
then (1.10) holds. The simplest case is g = 1A. In this case

(µ ◦ f−1)g = (µ ◦ f−1)A = µf−1A = µ1f−1A = µ(g ◦ f).

By linearity, (1.10) then holds for all nonnegative measurable simple functions. By monotone
convergence, (1.10) also holds for all nonnegative measurable functions.

For measurable g : S → R, since |g ◦ f | = |g| ◦ f , by (1.10) g is integrable w.r.t. µ ◦ f−1 if
and only if g ◦ f is integrable w.r.t. µ. Moreover, if g = g1 − g2 such that g1, g2 : S → R are
measurable and (µ◦f−1)gj <∞, j = 1, 2, then by applying (1.10) to gj we get (1.10) for g.

Given a measurable function f : (Ω,A, µ) → R+, we may define another measure f · µ on
(Ω,A) by

(f · µ)A =

∫
A
fdµ =

∫
1Af.

The countably additivity of f ·µ follows from monotone convergence theorem. The f is referred
as the µ-density of f · µ.

Lemma 1.23 (Chain Rule). For any measurable maps f, g : (Ω,A, µ)→ R with f ≥ 0,

(f · µ)g = µ(fg).

The meaning of the equality should be explained in the same way as (1.10), i.e., when one side
is define, the other side is also defined, and the two sides agree.
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Proof. As in the last proof, we may begin with the case when g is an indicator function and
then extend in steps to the general case.

This lemma implies that, if f, g : Ω→ R+ are measurable, then f · (g · µ) = (fg) · µ.
Given a measure space (Ω,A, µ), a set A ∈ A is called µ-null if µA = 0. A relation depending

on ω ∈ Ω is said to hold µ-almost everywhere if there is a µ-null set A such that it holds for all
ω ∈ Ac. We often write µ-a.e. or simply a.e.

Lemma 1.24. If f, g : (Ω,A, µ) → R satisfy that µ-a.e. f = g, then µf = µg. Again the
equality means that if any of µf and µg is defined, then the other is also defined, and the two
values are equal.

Proof. First, suppose g = 0 and f ≥ 0. Let (fn) be a sequence of measurable simple functions
with 0 ≤ fn ↑ f . Then {fn 6= 0} ⊂ {f 6= 0}, and so {fn 6= 0} is a null set. We may
express each fn as c11A1 + · · · cm1Am with c1, . . . , cm ∈ R+ and A1, . . . , Am are null sets. Then
µfn =

∑
ckµAk = 0. So µf = limµfn = 0 = µg.

Second, suppose f, g ≥ 0. Let h = f ∨ g. Then h ≥ f and µ-a.e., h = f . We may write
h = f + φ, where φ : Ω→ R+ is measurable and µ-a.e., φ = 0. By the first paragraph, µφ = 0.
So µh = µf + µφ = µf . Similarly, µh = µg. So µf = µg.

Now we consider integrable functions. Since µ-a.e., |f | = |g|, by the second paragraph,
µ|f | = µ|g|. So f is integrable if and only if g is integrable. Now suppose f and g are integrable.
Since f± = (±f) ∨ 0 = (±g) ∨ 0 = g± a.e., by the previous result we have µf± = µg±. So
µf = µf+ − µf− = µg+ − µg− = µg.

On the other hand, if f : (Ω,A, µ) → R+ satisfies that µf = 0, then µ-a.e. f = 0. In fact,
since {f 6= 0} =

⋃
n{f ≥ 1/n}, if µ{f 6= 0} > 0, then there is n ∈ N such that µ{f ≥ 1/n} > 0.

Then we get

µf ≥ µ 1

n
1{f≥1/n} =

1

n
µ{f ≥ 1/n} > 0.

Since two integrals agree when two integrands agree µ-a.e., we may allow the integrands
to be undefined on some µ-null sets. Monotone Convergence Theorem, Fatou’s Lemma, and
Dominated Convergence Theorem remain valid if the hypothesis are only fulfilled outside some
null sets. We also note that if f : Ω → R+ satisfies µf < ∞, then a.e. f ∈ R+ because from
∞ > µf ≥ ∞ · µf−1{∞} we get µf−1{∞} = 0.

Definition . Let µ and ν be two measures on a measurable space (Ω,A). We say that ν is
absolutely continuous with respect to µ and write ν � µ if every µ-null set is also a ν-null set.
We say that µ and ν are mutually singular and write µ ⊥ ν if there is A ∈ A such that µA = 0
and νAc = 0.

If ν = f · µ, then for any µ-null set A, νA =
∫

1Afdµ = 0 since µ-a.e., 1Af = 0. So A is
also a ν-null set. Thus, we have f · µ� µ. We focus on σ-finite measures.

Theorem A1.3 (Radon-Nikodym). Let µ and ν are two σ-finite measures on (Ω,A),
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(i) If ν � µ, there there is a µ-a.e. unique measurable function f : Ω → R+ such that
ν = f · µ.

(ii) In the general case, there is a µ-a.e. unique measurable function f : Ω → R+ such that
σ := ν − f · µ is a measure that is singular to µ.

In Part (i) of the theorem, we also call f the Radon-Nikodym derivative of ν against µ. For
the proof of Radon-Nikodym Theorem, we introduce the notation of real measures, which is
important on its own.

Definition . Let (Ω,A) be a measurable space. A function ν : A → R is called a real measure
or signed measure if it satisfies countably additivity with ν∅ = 0, i.e., if A1, A2, · · · ∈ A are
mutually disjoint, then ν

⋃
nAn =

∑
n νAn, where the series converges absolutely.

A finite measure is a real measure, and the space of all real measures on (Ω,A) is a linear
space. Thus, the difference of two finite measures is a real measure. If µ is a measure, and
f : Ω → R is integrable with respect to µ, then (f · µ)(A) :=

∫
A fdµ is a real measure. The

countably additivity follows from the Dominated Convergence Theorem.
A real measure ν satisfies continuity: if An ↑ A or An ↓ A, then νAn → νA. Actually,

if An ↑ A, we may write A =
⋃
n(An \ An−1) with A0 = ∅. Since An \ An−1 are mutually

disjoint, νA =
∑

n ν(An \An−1) =
∑

n(νAn − νAn−1) = lim νAn. If An ↓ A, then Acn ↑ Ac and
νAc = νΩ− νA and νAcn = νΩ− νAn.

Theorem (Hahn decomposition). Given a real measure ν on (Ω,A), there exists a partition
{P,N} of Ω such that P,N ∈ A, νE ≥ 0 for all E ∈ P ∩ A, and νE ≤ 0 for all E ∈ N ∩ A.

Proof. Let s = sup{νA : A ∈ A}. Then s ≥ 0 since ν∅ = 0. We now exclude the possibility
that s = +∞. Suppose s = +∞. Let

B = {A ∈ A : sup{νB : B ∈ A, B ⊂ A} = +∞}.

Then Ω ∈ B. It is also easy to see that if A1, A2 ∈ A\B and A1∩A2 = ∅, then A1∪A2 ∈ A\B.
Thus, if A1 ∈ B, A2 ∈ A \ B, and A2 ⊂ A1, then A1 \A2 ∈ B. First, suppose

sup{νB : B ∈ B, B ⊂ A} = +∞, ∀A ∈ B. (1.11)

Then we can inductively construct a sequence A0 ⊃ A1 ⊃ A2 ⊃ · · · in B with A0 = Ω and
νAn+1 > νAn+1. Then (νAn) does not converge, which contradicts the continuity of ν. Second,
suppose (1.11) does not hold. Then there exist A0 ∈ B and M ∈ (0,∞) such that for any B ∈ B
with B ⊂ A0, we have νB ≤ M . We inductively choose a sequence of mutually disjoint sets
(An) in A0 ∩ A such that νAn > M for each n. First, since A0 ∈ B, we may choose A1 ∈ A
such that νA1 > M . Since νB ≤ M for any B ∈ B with B ⊂ A0, we see that A1 ∈ A \ B.
So A0 \ A1 ∈ B. Suppose we have found mutually disjoint sets A1, . . . , An ∈ A0 ∩ A such that
A0\

⋃n
k=1Ak ∈ B (this is the case for n = 1). Then by the definition of B, we can find An+1 ∈ A

with An+1 ⊂ A0 \
⋃n
k=1Ak and νAn+1 ≥ M . Now A1, . . . , An+1 are mutually disjoint. Since
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An+1 ⊂ A, we get An+1 ∈ A \ B. Thus, A0 \
⋃n+1
k=1 Ak = (A0 \

⋃n
k=1Ak) \ An+1 ∈ B. So

the sequence (An) is constructed. However, by the countably additivity of ν, we should have
νAn → 0, which is a contradiction. Thus, s < +∞.

For any A,B ∈ A, we have by inclusion-exclusion,

ν(A ∩B) = νA+ νB − ν(A ∪B) ≥ νA+ νB − s.

So s− νA ∩B ≤ (s− νA) + (s− νB). By induction, we have

s− ν
n⋂
k=1

Ak ≤
n∑
k=1

(s− νAk), A1, . . . , An ∈ A.

If A1, A2, . . . is a sequence in A, then by continuity ν
⋂
nAn = limn ν

⋂n
k=1Ak. So

s− ν
(⋂

n

An

)
≤
∑
n

(s− νAn), (1.12)

By the definition of s, there is a sequence A1, A2, · · · ∈ A such that νAn > s − 1
2n for each n.

Define an increasing sequence (Bn) by Bn =
⋂∞
m=nAm. By (1.12),

νBn ≥ s−
∞∑
k=n

1

2k
= s− 1

2n−1
, n ∈ N. (1.13)

Let P =
⋃
nBn and N = P c. Then {P,N} is a measurable partition of Ω. By continuity

of ν and (1.13), νP = lim νBn ≥ s. By the definition of s, νP ≤ s. So νP = s. If there is
E ∈ P ∩ A such that νE < 0, then ν(P \ E) = νP − νE > νP = s, which contradicts the
definition of s. So νE ≥ 0 for any E ∈ A with E ⊂ P . If there is E ∈ N ∩A such that νE > 0,
then ν(P ∪ E) = νP + νE > νP = s, which again contradicts the definition of s. So νE ≥ 0
for any E ∈ A with E ⊂ P .

If we set ν+ = ν(· ∩ P ) and ν− = −ν(· ∩N), then ν+ and ν− are two finite (nonnegative)
measures, and ν = ν+ − ν−. Since ν+P

c = ν−P = 0, we have ν+ ⊥ ν−. We call ν = ν+ − ν−
the Jordan decomposition of ν.

Lemma . The Jordan decomposition of a real measure is unique.

Proof. We leave this as an exercise.

If ν+ − ν− is the Jordan decomposition of a real measure ν, then we define the measure
|ν| = ν+ + ν−, and call it the total variation of ν.

Proof of Radon-Nikodym Theorem. (i) The uniqueness part is easy. If ν = f · µ = g · µ, and
µ{f 6= g} > 0, then µ{f > g} > 0 or µ{g > f} > 0. By symmetry we assume that µ{f > g} >
0. Then there is n ∈ N such that µ{f > g + 1/n} > 0. Then f · µ does not agree with g · µ on
{f > g + 1/n}, a contradiction.
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For the existence, we may assume that µ and ν are finite. This is because we may find a
measurable partition {An : n ∈ N} of Ω such that µAn, νAn < ∞ for each n. Then µn :=
µ(· ∩ An) and νn := ν(· ∩ An) are finite measures with νn � µn for each n. If for each
n, νn = fn · µn for some fn : An → R+, then we may construct the µ-density f of ν with
f |An = fn.

Now µ and ν are finite measures. Let F be the set of measurable functions f : Ω → R+

such that f · µ ≤ ν, i.e., νA ≥ (f · µ)A for all A ∈ A. Here F contains 0. For f1, f2 ∈ F , let
A1 = {f1 > f2} and A2 = {f1 ≤ f2}. For any A ∈ A,∫

A
f1 ∨ f2dµ =

∫
A∩A1

f1dµ+

∫
A∩A2

f2dµ ≤ νA ∩A1 + νA ∩A2 = νA.

So f1 ∨ f2 ∈ F . Let s = sup{µf : f ∈ F}. Then 0 ≤ s ≤ νΩ < ∞. We may find a sequence
g1, g2, · · · ∈ F such that µgn → s. Let fn = g1∨· · ·∨gn, n ∈ N. Then (fn) is increasing, and for
each n, fn ∈ F , and fn ≥ gn. So µfn → s. Let f = lim fn. By monotone convergence theorem,
for any A ∈ A,

∫
A fdµ = lim

∫
A fndµ ≤ νA. So f ∈ F . Moreover, µf = limµfn = s. We claim

that ν = f · µ. If it is not true, then ν0 := ν − f · µ is a none-zero measure. Since µ is finite,
there is ε > 0 such that ν0Ω > εµΩ. Now τ := ν0− εµ is a real measure with τΩ > 0. By Hahn
decomposition theorem, there is a partition Ω = P ∪N such that τ(· ∩ P ) and −τ(· ∩N) are
measures. For every A ∈ A, from τ(A ∩ P ) ≥ 0, we get ν0(A ∩ P ) ≥ εµ(A ∩ P ), and so

νA =

∫
A
fdµ+ ν0A ≥

∫
A
fdµ+ ν0A ∩ P ≥

∫
A
fdµ+ εµA ∩ P =

∫
A

(f + ε1P )dµ.

Thus, f + ε1P ∈ F . From s = µf ≤ µ(f + ε1P ) ≤ s we get µP = 0. So νP = ν0P = τP = 0.
Then we see that −τ is a (positive) measure, which contradicts that τΩ > 0. The contradiction
shows that ν = f · µ.

(ii) Let τ = µ + ν. Then τ is also a σ-finite measure. Since 0 ≤ ν ≤ τ , we have ν � τ .
By (i) there is a measurable g : Ω → R+ such that ν = g · τ . We have τ -a.e. g ≤ 1 because
for any A ∈ A,

∫
A 1 − gdτ = τA − (g · τ)A = τA − νA = µA ≥ 0. By changing the values of

g on a τ -null set, we may assume that 0 ≤ g ≤ 1. From ν = g · τ we get µ = (1 − g) · τ . Let
A = {g < 1}. Then µAc = 0. Define f = g

1−g on A and f = 0 on Ac. Then ν(· ∩ A) = f · µ.
Let σ = ν − f · µ = ν(· ∩Ac). Then σA = 0. So σ ⊥ µ.

For the uniqueness, we still let τ = µ + ν. Suppose ν = f · µ + σ for some measurable
f : Ω→ R+ and some measure σ with σ ⊥ µ. Let A ∈ A be such that µAc = σA = 0. Then

ν = 1Af · µ+ 1Ac · σ, τ = 1A(f + 1) · µ+ 1Ac · σ.

So ν = (1A
f
f+1 + 1Ac) · τ . By the uniqueness part of (i), if τ = g · µ + ρ and µBc = ρB = 0,

then

1A
f

f + 1
+ 1Ac = 1B

g

g + 1
+ 1Bc , τ − a.e..

This implies that τ -a.e. 1Af = 1Bg. Since µAc = µBc = 0 and µ� τ , we get µ-a.e. f = g.
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Radon-Nikodym theorem also extends to real measures.

Corollary . Let µ be a σ-finite measure on (Ω,A). Let ν be a real measure on (Ω,A). Suppose
ν � µ, i.e., for any A ∈ A, µA = 0 implies νA = 0. Then there a µ-a.e. unique f : Ω → R,
which is integrable w.r.t. µ, such that ν = f · µ.

Proof. This follows from the Radon-Nikodym theorem and Jordan decomposition.

Example (An important application). Suppose µ is a probability measure on (Ω,A), F is a
sub-σ-algebra of A, and f : Ω → R is A-measurable with µ|f | < ∞. Let ν = f · µ. Then ν is
a signed measure on (Ω,A), and ν � µ. Let µ′ = µ|F and ν ′ = ν|F . Then µ′ is a probability
measure on (Ω,F), ν ′ is a signed measure on (Ω,F), and ν ′ � µ′. By the above corollary, there
is an F-measurable f ′ : Ω→ R with µ′|f ′| <∞ such that ν ′ = f ′ · µ. Then for any A ∈ F ,∫

A
f ′dµ =

∫
A
f ′dµ′ = ν ′A = νA =

∫
A
fdµ.

Such f ′ is µ-a.e. unique, and is called the expectation of f conditionally on F with respect to
µ.

A measure space (Ω,A, µ) is called complete if for every B ⊂ A ⊂ Ω with A ∈ A and
µA = 0, we have B ∈ A. Given a measure space (Ω,A, µ), a µ-completion of A is the σ-algebra

Aµ := σ(A,Nµ),

where Nµ is the class of all subsets of µ-null sets in A. Note that Nµ is closed under countable
union because if N1, N2, · · · ∈ Nµ, there there are A1, A2, · · · ∈ A with Nn ⊂ An and µAn = 0
for each n. Then

⋃
nNn ⊂

⋃
nAn ∈ A, and µ

⋃
nAn = 0. So

⋃
nNn ∈ Nµ.

Lemma 1.25. (i) A set A ⊂ Ω is Aµ-measurable if and only if there exist A′, A′′ ∈ A with
A′ ⊂ A ⊂ A′′ and µ(A′′ \ A′) = 0. (ii) A function f from Ω to a Borel space (S, S) is Aµ-
measurable if and only if there is an A-measurable map g : Ω→ (S, S) such that µ-a.e., f = g.

Proof. (i) Let Ãµ denote the set of A ⊂ Ω such that the A′, A′′ in the statement exist. We
need to show that Ãµ = Aµ. Clearly, A,Nµ ⊂ Ãµ ⊂ Aµ. It suffices to show that Ãµ is a

σ-algebra. We need to show that (a) if A ∈ Ãµ, then Ac ∈ Ãµ; and (b) if A1, A2, · · · ∈ Ãµ,
then

⋃
nAn ∈ Ãµ. For (a), note that if A′ ⊂ A ⊂ A′′ with A′, A′′ ∈ A and µ(A′′ \ A′), then

(A′′)c ⊂ Ac ⊂ (A′)c, and µ((A′)c \ (A′′)c) = 0. For (b), note that if for each n, A′n ⊂ An ⊂ A′′n,
A′n, A

′′
n ∈ A and µ(A′′n \ A′n) = 0, then A′ :=

⋃
nA
′
n, A

′′ :=
⋃
nA
′′
n ∈ A and satisfy that

A′ ⊂ A ⊂ A′′ and 0 ≤ µ(A′′ \A′) ≤
∑

n µ(A′′n \A′n) = 0.
(ii) If the g exists, then there is N ∈ A with µN = 0 such that f = g on N c. For any B ∈ S,

we have

f−1B = ((f−1B) \N) ∪ ((f−1B) ∩N) = ((g−1B) \N) ∪ ((f−1B) ∩N).
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So (g−1B) \N ⊂ f−1B ⊂ (g−1B)∪N . Since (g−1B) \N, (g−1B)∪N ∈ A and µN = 0, by (i),
f−1B ∈ Aµ. So f is Aµ-measurable.

Now suppose f is Aµ-measurable. Since S is a Borel space, we may assume that it is a Borel
subset of [0, 1]. We first show that there is an R-valued A-measurable function g such that µ-
a.e., f = g. If f = 1A for some A ∈ Amu, then by (i), there exist A′, A′′ ∈ A with A′ ⊂ A ⊂ A′′.
Then µ-a.e., f = 1A′ := g. The statement then extends to simple measurable functions by
linearity. Now suppose f ≥ 0. There exists a sequence of Aµ-measurable simple functions (fn)
such that 0 ≤ fn ↑ f . For each n, there exists an A-measurable simple function gn such that
µ-a.e. fn = gn. The sequence (gn) may not be nonnegative or increasing. However, we may
choose Nn ∈ A such that µNn = 0 and fn = gn on N c

n. Let N =
⋃
nNn. Then N ∈ A and

µN = 0, and 0 ≤ gn ↑ f on N c. Let g = lim gn on N c and = 0 on N . Then g is A-measurable
and µ-a.e., f = g. Finally, we may modify the value of g such that g takes values in S, and
still satisfies other properties that we want. Let N ∈ A be such that µN = 0 and f = g on N c.
Then g ∈ S on N c since f takes values in S. So g−1S ⊂ N c. We now choose s0 ∈ S, and define
g̃ such that g̃ = g on g−1S ∈ A and g̃ = s0 on (g−1S)c. Then g̃ : Ω→ S is A-measurable, and
µ-a.e., g̃ = g, so µ-a.e., f = g̃.

It is natural to extend µ to the completion Aµ in the way such that if A′ ⊂ A ⊂ A′′ with
A′, A′′ ∈ A and µ(A′′ \ A′) = 0, then µA = µA′. The definition is consistent, and defines a
measure on (Ω,Aµ).

Exercise . Prove the statements in the above paragraph.

We are going to construct product measures. Let (S, S, µ) and (T, T , ν) be two σ-finite
measure spaces. We want the product measure µ× ν be a measure on S × T that satisfies

(µ× ν)(A×B) = µA× νB, ∀A ∈ S and B ∈ T . (1.14)

We will also show that such measure is unique. The µ× ν is called the product of µ and ν.

Lemma 1.26. For any measurable function f : S × T → R+, and any t ∈ T , the function
f(·, t) : S → R+ is S-measurable. If we integrate f(·, t) against µ and get µf(·, t) ∈ R+ for each
t ∈ T , then t 7→ µf(·, t) is T -measurable.

Proof. First suppose µ is finite. Let C denote the set of C ∈ S × T such that the lemma
holds for f = 1C . Then C contains the π-system {A × B : A ∈ S,B ∈ T}. In fact, if
f = 1A×B, then for t ∈ B, f(·, t) = 1A, and for t ∈ Bc, f(·, t) ≡ 0. In either case f(·, t) is
S-measurable. Moreover, µf(·, t) = µA1B(t) is T -measurable. Using the linearity of integrals,
we easily see that C is a λ-system. By monotone class theorem, C = S × T . Thus, the lemma
holds for indicator functions. By linearity and monotone convergence, the statement extends
to nonnegative measurable functions.

Now we do not assume that µ is finite. Since it is σ-finite, we may express µ =
∑

n µn, where
each µn is a finite measure. The measurability of each f(·, t) does not rely on the finiteness
of µ. Since t 7→ µnf(·, t) is T -measurable for each n, the same is true for t 7→ µf(·, t) =∑

n µnf(·, t).
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Theorem 1.27 (Fubini). The product measure µ× ν exists uniquely, and for any measurable
f : S × T → R+ or f : S × T → R with (µ× ν)|f | <∞, we have

(µ× ν)f =

∫
µ(ds)

∫
f(s, t)ν(dt) =

∫
ν(dt)

∫
f(s, t)µ(ds). (1.15)

Here the meaning of the second double integral is that we first fix t ∈ T , treat f(s, t) as a
function in s ∈ S, and integrate the function against the measure µ. The integral is a function
of t ∈ T . We then integrate the function against the measure ν. The procedure is valid for
measurable f : S×T → R+ by Lemma 1.26. The meaning of the first double integral is similar.

Proof. By a monotone class argument involving partitions of S and T into finite measurable
sets, it is easy to see that there exists at most one product measure.

By Lemma 1.26, we may define

(µ× ν)C =

∫
µ(ds)

∫
1C(s, t)ν(dt), C ∈ S × T .

Then µ × ν is clearly a measure that satisfies (1.14). By uniqueness and symmetry, we also
have

(µ× ν)C =

∫
ν(dt)

∫
1C(s, t)µ(ds), C ∈ S × T .

Thus, (1.15) holds for indicator functions. By linearity and monotone convergence, the state-
ment extends to measurable R+-valued functions.

If f : S × T → R is integrable w.r.t. µ× ν, then (µ× ν)|f | <∞. By (1.15),∫
ν(dt)

∫
|f(s, t)|µ(ds) <∞. (1.16)

So for ν-a.e. t ∈ T ,
∫
|f(s, t)|µ(ds) < ∞, i.e., f(·, t) is integrable w.r.t. µ. So we may define∫

f(s, t)µ(ds) (as a function of t) outside a ν-null set. Since |
∫
f(s, t)µ(ds)| ≤

∫
|f(s, t)|µ(ds)

whenever f(·, t) is µ-integrable, by (1.16), t 7→
∫
f(s, t)µ(ds) is ν-integrable. So the double

integral
∫
ν(dt)

∫
f(s, t)µ(ds) is well defined. Similarly,

∫
µ(ds)

∫
f(s, t)ν(dt) is also well defined.

We may prove (1.15) for such f by expressing f = f+ − f−.

Note that the product µ× ν is also a σ-finite measure, and we may then define (µ× ν)× σ
for another σ-finite measures. If (Sk, Sk, µk), 1 ≤ k ≤ n, are σ-finite measure spaces, then we
may use induction to construct the product measure µ1 × · · · × µn on S1 × · · · × Sn, which is
the unique measure that satisfies

(µ1 × · · · × µn)(A1 × · · · ×An) =

n∏
k=1

µkAk, ∀Ak ∈ Sk, 1 ≤ k ≤ n.

In the case all µn are the same µ, we write the product as µn. For the Lebesgue measure λ on
R, its power µn is called the Lebesgue measure on Rn.

We may define the product of infinitely many measures, but need to assume that they are
all probability measures.
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Definition . Let (St, St, µt), t ∈ T , be a family of probability spaces. A probability measure µ
on the product measurable space (

∏
t St,

∏
t St) is called the product of µt, t ∈ T , denoted by∏

t µt, if for any finite Λ ⊂ T , and Aλ ∈ Sλ, λ ∈ Λ, we have

µ
( ∏
λ∈Λ

Aλ ×
∏
t∈T\Λ

St

)
=
∏
λ∈Λ

µλAλ.

By a monotone argument, we see that the product measure in the definition is unique, if
it exists. The existence of the infinite product measure (assuming St are Borel spaces) will be
proved in the next chapter.

Definition . A measurable group is a group G endowed with a σ-algebra G such that the
group operations in G are measurable. This means

(i) the map g 7→ g−1 from G to G is G/G-measurable;

(ii) the map (f, g) 7→ fg from G2 to G is G
2
/G-measurable.

If G is a topological group, i.e., endowed with a topology such that the group operations
are continuous, and has a countable basis, then it is a measurable group. We will mainly work
with the Euclidean space Rn as a measurable group.

Definition . For two σ-finite measures µ and ν on a measurable group G, the convolution of
µ and ν, denoted by µ ∗ ν, is the pushforward of the product measure µ × ν under the map
(f, g) 7→ fg.

The convolution µ ∗ ν may not be σ-finite. If both µ and ν are finite, µ ∗ ν is also finite. If
µ1, µ2, µ3 are finite measures, then the associative law holds: (µ1 ∗ µ2) ∗ µ3 = µ1 ∗ (µ2 ∗ µ3). If
G is Abelian, then the commutative law holds: µ ∗ ν = ν ∗ µ.

Definition . A measure µ on a measurable group G is said to be right- or left invariant if
µ ◦ T−1

g = µ for any g ∈ G, where Tg denotes the right or left shift x 7→ xg or x 7→ gx. If G is
Abelian, right-invariance and left-invariance are equivalent.

Example . The Lebesgue measure λn is an invariant measure on Rn, and any locally finite
invariant measure on Rn is a scalar product of λn.

Lemma 1.28. Let (G,+) be an Abelian measurable group with an invariant measure λ. Suppose
µ and ν are σ-finite measures on G with λ-densities f and g. Then µ ∗ ν has a λ-density f ∗ g
given by

(f ∗ g)(s) =

∫
f(s− t)g(t)λ(dt) =

∫
f(t)g(s− t)λ(dt), s ∈ G. (1.17)

Proof. Let π : G × G → G be the map (s, t) 7→ s + t. Let A ∈ G. Then (s, t) ∈ π−1A if and
only if t ∈ A− s := {x− s : x ∈ A}. So

(µ ∗ ν)A = (µ× ν)(π−1A) =

∫
µ(ds)

∫
1π−1A(s, t)ν(dt)
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=

∫
µ(ds)

∫
1A−s(t)ν(dt) =

∫
µ(ds)

∫
1A−s(t)g(t)λ(dt)

=

∫
µ(ds)

∫
1A(t)g(t− s)λ(dt) =

∫
f(s)λ(ds)

∫
1A(t)g(t− s)λ(dt)

=

∫
1A(t)λ(dt)

∫
f(s)g(t− s)λ(ds) =

∫
1A(t)(f ∗ g)(t)λ(dt).

Here in the third line we use the invariance of λ. Thus, µ ∗ ν has a λ-density f ∗ g.

Note that when G = Rn and λ is the Lebesgue measure on Rn, the f ∗ g defined by (1.17)
agrees with the convolution of f and g.

We now define Lp-spaces for p > 0. Given a measure space (Ω,A, µ) and p > 0, we write
Lp = Lp(Ω,A, µ) for the class of all measurable functions f : Ω→ R with

‖f‖p := (µ|f |p)1/p <∞.

In particular, L1 is the space of all integrable functions. We have a scaling property ‖cf‖p =
|c|‖f‖p for any c ∈ R.

Lemma 1.30 (Hölder inequality and norm inequality). For any measurable functions f and g
on Ω,

(i) if p, q > 1 and 1 = p−1 + q−1, then ‖fg‖1 ≤ ‖f‖p‖g‖q;

(ii) for all p > 0, ‖f + g‖p∧1
p ≤ ‖f‖p∧1

p + ‖g‖p∧1
p .

Proof. (i) If ‖f‖p or ‖g‖q equals 0, then the inequality is trivial because fg = 0 a.e. If ‖f‖p and
‖g‖q are both positive, and one of them is∞, the inequality is also trivial because the RHS is∞.
So we may assume that ‖f‖p, ‖g‖q ∈ (0,∞). By scaling we may assume that ‖f‖p = ‖g‖q = 1.

The relation p−1 + q−1 = 1 implies that (p − 1)(q − 1) = 1. So for x, y ≥ 0, y = xp−1 if
and only if x = yq−1. Consider two subsets of R2

+: A1 = {(x, y) : 0 ≤ x ≤ x0, 0 ≤ y ≤ xp−1}
and A2 = {(x, y) : 0 ≤ y ≤ y0, 0 ≤ x ≤ yq−1}. By Fubini theorem, λ2A1 =

∫ x0
0 xp−1dx and

λ2A2 =
∫ y0

0 yq−1dy. Suppose (x, y) ∈ [0, x0]× [0, y0]. If y ≤ xp−1, then (x, y) ∈ A1; if y ≥ xp−1,
then x ≤ yq−1, and (x, y) ∈ A2. So [0, x0]× [0, y0] ⊂ A1 ∪A2. Thus,

x0y0 = λ2[0, x0]× [0, y0] ≤ λ2A1 + λ2A2 =

∫ x0

0
xp−1dx+

∫ y0

0
yq−1dy = xp0/p+ yq0/q.

Applying the inequality to x0 = |f | and y0 = |g|, we get

‖fg‖1 = µ|f ||g| ≤ µ(|f |p/p+ |g|q/q) = 1/p+ 1/q = 1 = ‖f‖p‖g‖q.

(ii) If p ∈ (0, 1], the inequality follows from the inequality (x+y)p ≤ xp+yp for any x, y ≥ 0
(because x 7→ xp is a concave function). Suppose p > 1. If ‖f‖p or ‖g‖p = ∞, the inequality
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trivially holds. Suppose ‖f‖p, ‖g‖q <∞. Since |f + g|p ≤ 2p(|f | ∨ |g|)p ≤ 2p(|f |p + |g|p), we get
‖f + g‖p <∞. By applying (i) to q := p

p−1 , we get

‖f + g‖pp =

∫
|f + g|pdµ ≤

∫
|f ||f + g|p−1dµ+

∫
|g||f + g|p−1dµ

≤ ‖f‖p‖|f + g|p−1‖q + ‖g‖p‖|f + g|p−1‖q.

Note that

‖|f + g|p−1‖q =
(∫
|f + g|(p−1)qdµ

)1/q
=
(∫
|f + g|pdµ

) p−1
p

= ‖f + g‖p−1
p .

So ‖f + g‖pp ≤ ‖f + g‖p−1
p (‖f‖p + ‖g‖p), which implies (ii) because ‖f + g‖p <∞.

Since ‖f‖p = 0 if and only if a.e. f = 0. By the norm inequality, Lp becomes a metric space

with distance ρ(f, g) = ‖f − g‖p∧1
p if we identify functions that agree µ-a.e. From now on, Lp

will be a space of measurable functions with ‖f‖p <∞ modulus the “equal almost everywhere”
equivalence. We say that fn → f in Lp if ‖fn − f‖p → 0. For p ≥ 1, Lp is a normed space. We
now show that Lp is complete for all p > 0. Then for p ≥ 1, Lp is a Banach space.

Lemma 1.31. Let (fn) be a Cauchy sequence in Lp, where p > 0, then for some f ∈ Lp,
‖fn − f‖p → 0.

Proof. First choose a subsequence (fnk) with
∑

k ‖fnk+1
− fnk‖

p∧1
p < ∞. By Lemma 1.30 and

monotone convergence, we get ‖
∑

k |fnk+1
− fnk |‖

p∧1
p < ∞, and so

∑
k |fnk+1

− fnk | < ∞ a.e.
Hence (fnk) is Cauchy in R a.e. So there is a measurable function f such that fnk → f a.e. By
Fatou’s lemma,∫

|fn − f |pdµ ≤ lim inf
k

∫
|fn − fnk |

pdµ ≤ sup
m≥n

∫
|fn − fm|pdµ→ 0, n→∞.

Thus, f ∈ Lp and ‖fn − f‖p → 0.

Lemma 1.32. For any p > 0, let f, f1, f2, · · · ∈ Lp with fn → f a.e. Then fn → f in Lp if
and only if ‖fn‖p → ‖f‖p.

Proof. If fn → f in Lp, by the norm inequality,

|‖fn‖p∧1
p − ‖f‖p∧1

p | ≤ ‖fn − f‖p∧1
p → 0,

and so ‖fn‖p → ‖f‖p. If ‖fn‖p → ‖f‖p, then we define

gn = 2p(|fn|p + |f |p), g = 2p+1|f |p.

We have gn → g a.e. and µgn → µg = 2p+1‖f‖pp <∞. Since gn ≥ |fn − f |p → 0, by dominated
convergence theorem, µ|fn − f |p → 0, i.e., fn → f in Lp.
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Lemma 1.33. Given a metric space (S, ρ) and a finite measure µ on (S,B(S)), for any p > 0,
the space Cb(S,R) of bounded real valued continuous functions on S is dense in Lp(S,B(S), µ).

Proof. Since µ is finite, we have Cb ⊂ Lp(µ). We need to show that the closure Cb of Cb in
Lp equals Lp. First, for every open set G, there is a sequence (fn) in Cb such that fn → 1G
pointwise. We may choose fn(s) = 1 ∧ nρ(x,Gc). Since 0 ≤ fn ≤ 1, by dominated convergence
theorem, fn → 1G in Lp. So 1G ∈ Cb. By Lemma 1.16, for every B ∈ B(S), 1B ∈ Cb. Since Cb
is a linear space, it then contains all measurable simple functions. By monotone convergence,
we see that Cb contains all nonnegative functions in Lp, and so equals Lp.

Because of Hölder’s inequality, if f, g ∈ L2, fg is integrable, and

|
∫
fgdµ| ≤ ‖f‖2‖g‖2.

So L2 is a Hilbert space with inner product: 〈f, g〉 :=
∫
fgdµ.

Another important space is L∞(µ): the space of bounded measurable functions modulo
“equal almost everywhere”’ equivalence. It is a Banach space with the norm

‖f‖∞ := inf{a ≥ 0 : |f | ≤ a µ− a.e.}.

Theorem . Suppose µ is a σ-finite measure. Let p ∈ [1,∞). Let q = p
p−1 if p > 1; and q =∞

if p = 1. Then every continuous linear function T : Lp → R corresponds to a unique g ∈ Lq
such that for any f ∈ Lp, T (f) =

∫
fgdµ. Conversely, every g ∈ Lq determines a continuous

linear function on Lp defined by f 7→
∫
fgdµ. Moreover, for any g ∈ Lq,

sup
f∈Lp\{0}

|
∫
fgdµ|
‖f‖p

= ‖g‖q.

This means that Lq can be identified as (Lp)∗, the dual of Lp.

Sketch of the proof. Let T be given. Let {An} be a partition of Ω such that µAn < ∞ for
every n. For each n, we may define a real measure νn on An such that νnA = T (1A) for
A ∈ A and A ⊂ An. If µA = 0, then 1A = 0 a.e. and so T (1A) = 0, which implies that
νnA = 0. So νn � A. By Radon-Nikodym theorem, there is a measurable gn on An such that
νnA =

∫
A gndµ. Define g on Ω such that g|An = gn for each n. Then using Hölder inequality,

one can check that such g satisfies the properties.

Exercise . Complete the above proof.

Fix a measurable space (S, S). Let M(S) denote the spaces of σ-finite measures on (S, S).
For each B ∈ S, we define a map πB :M→ R+ such that πB(µ) = µB. We endowM(S) with
the σ-algebra generated by the mappings πB for B ∈ S, i.e.,

σ(π−1
B (B(R+)) : B ∈ S).

ThenM(S) becomes a measurable space. Let P(S) denote the space of all probability measures
on (S, S). Then P(S) = π−1

S {1} is a measurable subset of M(S).
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Lemma 1.35. For any measurable spaces (S, S) and (T, T ), the product mapping (µ, ν) 7→ µ×ν
is measurable from P(S)× P(T ) to P(S × T ).

Proof. It suffices to show that for any C ∈ S × T , πC(µ × ν) = (µ × ν)C from P(S) × P(T )
to R is measurable. Let C denote the class of all such C. Then C is a λ-system. On the other
hand, it contains the π-system {A× B : A ∈ S,B ∈ T}, which generates the σ-algebra S × T .
By monotone class theorem, C equals S × T .

Definition . Given two measurable spaces (S, S) and (T, T ), a mapping µ : S × T → R+ is
called a (probability) kernel from S to T if for every s ∈ S, µs := µ(s, ·) is a (probability)
measure on (T, T ), and for every B ∈ T , s 7→ µ(s,B) is a measurable function on (S, S).

A measure µ on T can be viewed as a kernel: µs = µ for every s ∈ S. In general, a
kernel from S to T can be understood as a S-measurable measure on (T, T ). For a nonnegative
measurable function f : T → R, we may define the integral µf =

∫
µ(s, dt)f(t). The value is a

function on S.

Lemma 1.37. Let C be a π-system in T with σ(C) = T . Let {µs : s ∈ S} be a family of
probability measures on (T, T ). The following are equivalent.

(i) µ(s,B) := µs(B) is a probability kernel from S to T ;

(ii) the map s 7→ µs from S to P(T ) is measurable;

(iii) for any B ∈ C, s 7→ µsB from S to [0, 1] is measurable.

Proof. The equivalence between (i) and (iii) follows from monotone class theorem since the set
of B ∈ T such that s 7→ µsB is measurable form a λ-system. The equivalence between (i) and
(ii) is also straightforward because by the definition of the σ-algebra on P(T ), the map s 7→ µs
is measurable if and only if for any B ∈ T , s 7→ µsB is measurable.

Lemma 1.38. Fix three measurable spaces (S, S), (T, T ), and (U,U). Let µ be a probability
kernel from S to T , and ν be a probability kernel from S × T to U . Let f : S × T → R+ and
g : S × T → U be measurable. Then

(i) µsf(s, ·) is a measurable function of s ∈ S;

(ii) µs ◦ (g(s, ·))−1 is a kernel from S to U ;

(iii) we may define a probability kernel µ⊗ ν from S to T × U by

(µ⊗ ν)(s, C) =

∫
µ(s, dt)

∫
ν(s, t, du)1C(t, u), C ∈ T × U. (1.18)

Proof. (i) By Lemma 1.26, for every s ∈ S, f(s, ·) is measurable. So µsf(s, ·) is well defined.
If f = 1A×B for A ∈ S and B ∈ T , then µsf(s, ·) = 1A(s)µsB is measurable in s. This then
extends to all indicator functions by a monotone class argument, and to arbitrary f by linearity
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and monotone convergence. (ii) For every s ∈ S, µs ◦ (g(s, ·))−1 is a probability measure on
U . For any B ∈ U , (µs ◦ (g(s, ·))−1)B = µs(1B ◦ g(s, ·)). Since (s, t) 7→ 1B(t) ◦ g(s, t) from
S × T to R+ is measurable, applying (i) to the function f(s, t) := 1B(t) ◦ g(s, t), we see that
s 7→ (µs ◦ (g(s, ·))−1)B is measurable. (iii) Applying (i) to the function f((s, t), u) := 1C(t, u),
we see that

∫
ν(s, t, du)1C(t, u) is a measurable function of (s, t) ∈ S × T . Applying (i) again

to the function f(s, t) :=
∫
ν(s, t, du)1C(t, u), we see that the RHS of (1.18) is well defined

and measurable in s ∈ S for a fixed C ∈ T × U . When s is fixed, by monotone convergence,
(µ⊗ ν)(s, ·) is a measure on S×T . Since µ(s, ·) and ν(s, t, ·) are both probability measures, we
get (µ⊗ ν)(s, T × U) = 1. So µ⊗ ν is a probability kernel from S to T × U .

Note that when µ and ν are probability measures, i.e., µ does not depend on s and ν does
not depend on (s, t), then µ⊗ ν is the product measure µ× ν.

By linearity and monotone convergence, for any measurable f : T × U → R+,

(µ⊗ ν)sf =

∫
µ(s, dt)

∫
ν(s, t, du)f(t, u).

We may simply write it as (µ⊗ ν)f = µ(νf).
Suppose we have kernels µk from S0 × · · · × Sk−1 to Sk, k = 1, . . . , n. By iteration we may

combine them into a kernel µ1 ⊗ · · · ⊗ µn from S0 to S1 × · · · × Sn, given by

(µ1 ⊗ · · · ⊗ µn)f = µ1(µ2(· · · (µnf) · · · ))

for any measurable f : S1 × · · ·Sn → R+. In the context of Markov chains, µk is often a kernel
from Sk−1 to Sk, 1 ≤ k ≤ n, and we can get a kernel µ1 · · ·µn from S0 to Sn given by

(µ1 · · ·µn)sB = (µ1 ⊗ · · · ⊗ µn)s(S1 × · · · × Sn−1 ×B)

=

∫
µ1(s, ds1)

∫
µ2(s1, ds2) · · ·

∫
µn−1(sn−2, dsn−1)µn(sn−1, B), s ∈ S0, B ∈ Sn.

Exercise . Problems 1, 6, 7, 15, 19 in Exercises of Chapter 1.

2 Processes, Distributions, and Independence

We now begin the study of probability theory. Throughout, fix a probability space (Ω,A,P).
In the probability context, the sets A ∈ A are called events, and PA = P(A) is called the
probability of A. Given a sequence of events, we may be interested in the events

lim supAn =
⋂
n

⋃
m≥n

Am, lim inf An =
⋃
n

⋂
m≥n

Am.

Since ω ∈ lim supAn if and only if there are infinitely many n such that ω ∈ An, we also
call lim supAn the event that An happens infinitely often, and denote it as {An i.o.}. Since
ω ∈ lim inf An if and only if there is N such that ω ∈ An for all n > N , we also call lim inf An
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the event that An happens ultimately, and denote it as {An ult.}. By basic set theory, we get
{An i.o.}c = {Acn ult.}. We may understand {An i.o.} and {An ult.} from another perspective.
We view every ω ∈ Ω as a universe. The space Ω is a collection of parallel universes. For a
universe ω, we understand An as something that we know whether it happens at the time n. If
ω ∈ An, then in the universe ω, An happens at the time n. Then {An i.o.} is the collection of
universes in which An happen infinitely many times; and {An ult.} is the collection of universes
in which all An happen for n big enough.

By countably subadditivity of P, for any m ∈ N,

P{An i.o.} ≤ P[
∞⋃
n=m

An] ≤
∞∑
n=m

PAn.

If
∑

n PAn <∞, then
∑∞

n=m PAn → 0 as m→∞. So we get P{An i.o.} = 0. This is the easy
part of the Borel-Cantelli lemma.

A measurable mapping f from Ω to another measurable space (S, S) is called a random
element in S. It is called a random variable when S = R, a random vector when S = Rn, a
random sequence when S = R∞, a random or stochastic process when S is a function space, and
a random measure (kernel) when S is a class of measures. The notation P-almost everywhere
will now be called almost surely (abbreviated as a.s.). Let (S, S) be a measurable space and T

be an abstract index set. Let U ⊂ ST . A mapping X from Ω to U , which is U ∩ST -measurable,
is called an S-valued (random) process on T with paths in U . By Lemma 1.8, X can be treated
as a family of random elements Xt in the state space S.

Given a random element ζ in (S, S), the pushforward P ◦ ζ−1 is a probability measure on
(S, S), and is called the distribution or law of ζ. We write it as Law(ζ). For two random elements

ζ and η in the same measurable space, the equality ζ
d
= η means that Law(ζ) = Law(η).

If for every t ∈ T , Xt is a random element in a measurable space (St, St). Then X = (Xt :
t ∈ T ) is a random element in (

∏
t St,

∏
t St). For every finite subset Λ ⊂ T , the associated

finite-dimensional distribution is given by

µΛ = Law(Xt : t ∈ Λ).

For Λ1 ⊂ Λ2 ⊂ T , we use πΛ,Λ1 to denote the natural projection from
∏
t∈Λ2

St to
∏
t∈Λ1

St,
which is measurable. We omit Λ2 when it is equal to T . Since (Xt : t ∈ Λ) = πΛ(X), the finite
dimensional distribution µΛ is the pushforwards of the law of X under πΛ, i.e.,

µΛ = Law(Xt : t ∈ Λ) = (πΛ)∗ Law(X).

Let P∗(T ) to denote the class of all nonempty finite subset of T . Suppose Λ1 ⊂ Λ2 ∈ P∗(T ).
From πΛ1 = πΛ2,Λ1 ◦ πΛ2 we get

µΛ1 = (πΛ2,Λ1)∗µΛ2 , Λ1 ⊂ Λ2 ∈ P∗(T ). (2.1)

If we have a family of finite dimensional distributions µΛ, Λ ∈ P∗(T ), on
∏
t∈Λ St, and the

consistency condition (2.1) holds for every pair Λ1 ⊂ Λ2 ∈ P∗(T ), then we call (µΛΛ)Λ∈P∗(T ) a
consistent family.
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Theorem 5.16 (Kolmogorov extension theorem). Suppose each St, t ∈ T , is a Borel space.
Then for any consistent family (µΛΛ)Λ∈P∗(T ), there exists a unique probability measure µ on∏
t∈T St such that for every Λ ∈ P∗(T ), µΛ = (πΛ)∗µ.

Remark . One important application of Kolmogorov extension theorem is the existence of
infinite product measure. Suppose T is an infinite index set, and for each t ∈ T , µt is a
probability measure on a Borel measurable space (St, St). We define the family

µΛ =
∏
t∈Λ

µt, Λ ∈ P∗(T ),

where P∗(T ) is the class of nonempty subsets of T . We have known that the finite product
measures are well defined. The consistency condition is easy to check. Since St are all Borel
spaces, by Kolmogorov extension theorem, there is a unique probability measure µ on

∏
t St

such that µΛ = (πΛ)∗(µ) for every Λ ∈ P∗(T ). Such µ is the product
∏
t∈T µt.

For a random variable ζ, the expected value, expectation, or mean of ζ is defined as

Eζ =

∫
ζdP =

∫
xdLaw(ζ)

whenever either integral exists. The last equality follows from Lemma 1.22. By that lemma,
we also note that for any random element ζ in a measurable space S and a measurable map
f : S → R,

Ef(ζ) =

∫
Ω
f(ζ)dP =

∫
S
f(s)dLaw(ζ) =

∫
R
xdLaw(f ◦ ζ),

if any integral exists. For a random variable ζ and an event A, we often write E[ζ;A] for
E[1Aζ] =

∫
A ζdP.

Proof of Kolmogorov extension theorem. The uniqueness part follows from the monotone class
theorem.

We now consider the existence part. First assume that T = N. Every Borel space St is
Borel isomorphic to a Borel subset of [0, 1]. Since the theorem depends only on the σ-algebra
structure of St, we may assume that each St is a Borel subset of [0, 1]. Then each µΛ can be
also viewed as a probability measure on [0, 1]Λ.

The proof uses Carathéodory extension theorem. For each n ∈ N, let Fn denote the σ-
algebra on

∏
k∈N Sk generated by the projection πNn , where Nn = {1, . . . , n}. This means that

Fn is the family of subsets A ⊂ [0, 1]∞ of the form B× [0, 1]∞, where B ∈ B([0, 1])n. Then Fn is
increasing in n. Let R =

⋃
nFn. Then R is a ring in [0, 1]∞, and B([0, 1])∞ = σ(R). We define

µ : R → [0, 1] such that if A = B × [0, 1]∞ ∈ Fn for some B ∈ B([0, 1])n, then µA = µNnB.
Such µ is well defined thanks to the consistency condition.

We now show that µ is a pre-measure. It is easy to see that µ satisfies the finitely additivity.
It remains to show that if A1 ⊃ A2 ⊃ · · · ∈ R with µAn ≥ ε > 0 for all n, then

⋂
nAn 6= ∅.

Assume that Ak ∈ Fnk . Since Fn is increasing in n, we may assume that (nk) is increasing
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in k. By inserting repeated sets (e.g., if n1 = 2, n2 = 5, n3 = 7, then we use a new sequence
(A1, A1, A2, A2, A2, A3, A3, . . . ) to replace (A1, A2, A3, . . . )), we may assume that An ∈ Fn for
each n. Suppose An = Bn × [0, 1]∞ for some Bn ∈ B([0, 1])n.

By Lemma 1.16, for each n, there is a closed set Kn ⊂ Bn such that µNn(Bn \Kn) < ε
2n .

Let A′n = Kn × [0, 1]∞ ⊂ An. Then µ(An \ A′n) < ε
2n , and each A′n is a compact subset of

[0, 1]∞. Let A′′n =
⋂n
j=1A

′
j , n ∈ N. Then for every n, A′′n is a compact subset of An, and

An \ A′′n ⊂
⋂n
j=1(Aj \ A′j). The latter implies that µ(An \ A′′n) ≤

∑n
j=1

ε
2j
< ε, which together

with µAn > ε implies that A′′n 6= ∅. Since A′′1 ⊃ A′′2 ⊃ · · · and each A′′n is compact, we get⋂
nA
′′
n 6= ∅, which together with A′′n ⊂ An implies that

⋂
nAn 6= ∅.

Thus, µ is a pre-measure on R. By Carathéodory extension theorem, µ extends to a
probability measure on [0, 1]∞. By the definition of µ on R, for every n ∈ N, µ(

∏n
j=1 Sj ×

[0, 1]∞) = µNn
∏n
j=1 Sj = 1. So µ

∏∞
n=1 Sn = limn µ(

∏n
j=1 Sj × [0, 1]∞) = 1. Thus, µ is also

a probability measure on
∏∞
n=1 Sn. For every An ∈

∏n
j=1 Sj ∈ B([0, 1])n, we have µ(An ×∏∞

j=n+1 Sj) = µ(An × [0, 1]∞) = µNnAn. So µNn = (πNn)∗(µ) for every n ∈ N. For every
Λ ∈ P∗(N), there is n ∈ N such that Λ ⊂ Nn. By (2.1) we have

µΛ = (πNn,Λ)∗(µNn) = (πNn,Λ)∗ ◦ (πNn)∗(µ) = (πΛ)∗(µ).

So µ is what we need. We now know that the theorem holds if T is countable.
Finally, we consider a general T . Let Pσ(T ) denote the class of all nonempty countable

subsets of T . We have proved that for any Γ ∈ Pσ(T ), there exists a unique probability measure
µΓ on

∏
t∈Γ St such that for any finite subset Λ of Γ, µΛ = (πΓ,Λ)∗(µΓ). By the uniqueness, if

Γ1 ⊂ Γ2 ∈ Pσ(T ), then µΓ1 = (πΓ2,Γ1)∗(µΓ2). For each Γ ∈ Pσ(T ), let

FΓ = (πΓ)−1
∏
t∈Γ

St =
∏
t∈Γ

St ×
∏
t∈T\Γ

St.

It is easy to check that
⋃

Γ∈Pσ(T )FΓ is a σ-algebra, and so equals
∏
t∈T St. We define µ :⋃

Γ∈Pσ(T )FΓ → [0, 1] such that if A has an expression π−1
Γ B ∈ FΓ for some Γ ∈ Pσ(T ) and

B ∈
∏
t∈Γ St, then µA = µΓB. The value of µA does not depend on the choice of the expression

of A thanks to the consistency condition µΓ1 = (πΓ2,Γ1)∗(µΓ2). So µ is well defined. From the
definition, µΓ = (πΓ)∗µ for every Γ ∈ Pσ(T ). If Λ ∈ P∗(T ), we may pick Γ ∈ Pσ(T ) with Γ ⊃ Λ.
Then we get the desired equality µΛ = (πΓ,Λ)∗ ◦ (πΓ)∗µ = (πΛ)∗µ.

Remark . For the existence of infinite product measure, we do not need to assume that the St
are Borel spaces. The proof still uses Carathéodory extension theorem. Following the proof of
Kolmogorov extension theorem and the construction of the infinite product measure, we need
to show that, if T = N, and A1 ⊃ A2 ⊃ · · · satisfy that for some ε > 0,

An = Bn ×
∏
j>n

Sj , for some Bn ∈
n∏
j=1

Sj with (
n∏
j=1

µj)Bn ≥ ε,

for all n ∈ N, then
⋂
nAn 6= ∅.
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For n > m ∈ N and (x1, . . . , xm) ∈
∏m
j=1 Sj , we define

Bn(x1, . . . , xm) = {(xm+1, . . . , xn) ∈
n∏

j=m+1

Sj : (x1, x2, . . . , xn) ∈ Bn.

By Lemma 1.26, for each (x1, . . . , xm) ∈
∏m
j=1 Sj , Bn(x1, . . . , xm) is a measurable subset

of
∏n
j=m+1 Sj , and (x1, . . . , xm) 7→ (

∏n
j=m+1 µj)Bn(x1, . . . , xm) is a measurable function on∏m

j=1 Sj . For n ≥ 2, let

F (1)
n = {x1 ∈ S1 : (

n∏
j=2

µj)Bn(x1) > ε/2}.

Then F
(1)
2 ⊃ F (1)

3 ⊃ · · · are measurable subsets of S1. By Fubini theorem,

ε ≤ (

n∏
j=1

µj)Bn =

∫
µ1(dx1)(

n∏
j=2

µj)Bn(x1) ≤ ε

2
µ1(F (1)

n )c + µ1F
(1)
n ,

which implies that µ1F
(1)
n ≥ ε/2 for all n ≥ 2. So µ1

⋂
n F

(1)
n ≥ ε/2, and then we have⋂

n≥2 F
(1)
n 6= ∅.

Pick x1 ∈
⋂
n≥2 F

(1)
n . Let B

(1)
n = Bn(x1), n ≥ 2. For every n ≥ 3, and x2 ∈ S2, let

B(1)
n (x2) = Bn(x1, x2) = {(x3, . . . , xn) ∈

n∏
j=3

Sj : (x1, x2, x3, . . . , xn) ∈ Bn.

For n ≥ 3, let

F (2)
n = {x2 ∈ S2 : (

n∏
j=3

µj)B
(1)
n (x2) > ε/4}.

Using Fubini theorem and a similar argument as above, we get
⋂
n≥3 F

(2)
n 6= ∅. So we may pick

x2 ∈
⋂(2)
n≥3 F

(2)
n . Then (

∏n
j=3 µj)Bn(x1, x2) > ε/4 for any n ≥ 3.

Repeating the argument, we can find a sequence x := (x1, x2, . . . ) ∈
∏
k Sk such that

xk ∈ Sk, k ∈ N, and

(

n∏
j=m+1

µj)Bm(x1, . . . , xn) > ε/2n, ∀m > n ∈ N.

We now show that x ∈
⋂
nAn. Pick any n ∈ N, since An = Bn ×

∏∞
j=n+1 Sj , to prove that

x ∈ An, it suffices to show that (x1, . . . , xn) ∈ Bn. To prove this assertion, note that from
µn+1Bn+1(x1, . . . , xn) > 0 we get Bn+1(x1, . . . , xn) 6= ∅. So there is xn+1 ∈ Sn+1 such that
(x1, . . . , xn, xn+1) ∈ Bn+1. From An+1 ⊂ An, we get Bn+1 ⊂ Bn × Sn+1, which then implies
(x1, . . . , xn) ∈ Bn.
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A random vector ζ in Rn is called integrable if every component ζj , 1 ≤ j ≤ n, is integrable.

Lemma 2.5 (Jensen’s inequality). Let ζ be an integrable random vector in Rn. Let f : Rn → R+

be convex, i.e.,

f(px+ (1− p)y) ≤ pf(x) + (1− p)f(y), x, y ∈ Rn, 0 ≤ p ≤ 1.

Then f(Eζ) ≤ E[f(ζ)].

Proof. We use a version of Hahn-Banach Theorem, which asserts that

f(x) = sup
L
L(x),

where the supremum is over all affine functions L : Rn → R with L ≤ f . Since for every affine
function L ≤ f ,

L(Eζ) = E[L(ζ)] ≤ E[f(ζ)],

taking the supremum over all affine functions L ≤ f , we get f(Eζ) ≤ E[f(ζ)].

For a random variable ζ and p > 0, the integral E|ζ|p = ‖ζ‖pp is called the p-th absolute
moment of ζ.

Lemma 2.4. For any random variable ζ ≥ 0 and p > 0,

Eζp = p

∫ ∞
0

P{ζ > t}tp−1dt = p

∫ ∞
0

P{ζ ≥ t}tp−1dt.

Proof. By Fubini’s theorem and change of variables,

Eζp = E
∫ ∞

0
1{ζp > s}ds =

∫ ∞
0

E1{ζ > s1/p}ds

=

∫ ∞
0

E1{ζ > t}ptp−1dt = p

∫ ∞
0

P{ζ > t}tp−1dt.

Here in the third “=” we used s = tp. The proof if the second expression is similar.

Exercise . Show that ‖ζ‖p ≤ ‖ζ‖q if p ≤ q. Here we use the fact that PΩ = 1. So the Lp-spaces
are decreasing in p.

The covariance of two random variables ζ, η ∈ L2 is given by

cov(ζ, η) = E(ζ − Eζ)(η − Eη) = Eζη − EζEη.

It is clearly bilinear. The variance of ζ ∈ L2 is defined by

var(ζ) = cov(ζ, ζ) = E(ζ − Eζ)2 = Eζ2 − (Eζ)2.
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By Cauchy inequality,
| cov(ζ, η)|2 ≤ var(ζ) var(η).

We say that ζ and η are uncorrelated if cov(ζ, η) = 0.
For any collection ζt ∈ L2, t ∈ T , the associated covariance function ρs,t = cov(ζs, ζt), s, t ∈

T , is nonnegative definite, in the sense that for any n ∈ N, t1, . . . , tn ∈ T , and a1, . . . , an ∈ R,∑
i,j aiajρti,tj ≥ 0. This is because∑

i,j

aiajρti,tj =
∑
i,j

aiajE(ζti − Eζti)(ζtj − Eζtj ) = E(
∑
i

ai(ζti − Eζti))
2 ≥ 0.

Example . We now study the following distributions (i.e. probability measures) on R. In each
case below, we suppose ζ is a random variable with Law(ξ) = µ. Recall that Eζ =

∫
xdµ and

var(ζ) = Eζ2 − (Eζ)2 =
∫
x2dµ − (

∫
xdµ)2 are determined by µ. We first consider discrete

distributions, which are combinations of Dirac measures.

(i) The degenerate distribution at x0. This is the point mass µ = δx0 , x0 ∈ R. We have
Eζ =

∫
xdδx0 = x0 and Eζ2 =

∫
x2dδx0 = x2

0 and so var(ζ) = 0.

(ii) The Bernoulli distribution with parameter p ∈ [0, 1]. The measure, denoted by B(p),
has the form µ = pδ1 + (1 − p)δ0. We have Eζ = p(1) + (1 − p)(0) = p and Eζ2 =
p(12) + (1− p)(02) = p. So var(ζ) = p− p2.

(iii) The binomial distribution with parameter n ∈ N and p ∈ [0, 1]. The measure, denoted by
B(n, p), has the form µ =

∑n
k=0 p

k(1 − p)n−k
(
n
k

)
δk. It is a probability measure because∑n

k=0 p
k(1− p)n−k

(
n
k

)
= (p+ (1− p))n = 1. We have

Eζ =
n∑
k=0

pk(1− p)n−kk
(
n

k

)
=

n∑
k=1

pk(1− p)n−k n!

(k − 1)!(n− k)!

= np
n∑
k=1

pk−1(1− p)n−k (n− 1)!

(k − 1)!(n− k)!
= np;

E(ζ2 − ζ) =
n∑
k=0

pk(1− p)n−kk(k − 1)

(
n

k

)

= n(n− 1)p2
n∑
k=2

pk−2(1− p)n−k (n− 2)!

(k − 1)!(n− k)!
= n(n− 1)p2.

So var(ζ) = E(ζ2 − ζ) + Eζ − (Eζ)2 = n(p− p2).
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(iv) The geometric distribution with parameter p ∈ (0, 1]. The measure, denoted by Geom(p),
has the form µ =

∑∞
k=1(1 − p)k−1pδk. It is a probability measure because

∑∞
k=1(1 −

p)k−1p = p
1−(1−p) = 1, where we used

∑∞
k=0 x

k = 1
1−x for |x| < 1. We have

Eζ =

∞∑
k=1

k(1− p)k−1p =
p

(1− (1− p))2
=

1

p
;

E(ζ2 − ζ) =

∞∑
k=1

k(k − 1)(1− p)k−1p

= p(1− p)
∞∑
k=2

k(k − 1)(1− p)k−2 =
2p(1− p)

(1− (1− p))3
=

2(1− p)
p2

.

Here we used the equalities
∑∞

k=1 kx
k−1 = 1

(1−x)2
and

∑∞
k=2 k(k − 1)xk−2 = 2

(1−x)3
for

|x| < 1, which can be proved by differentiating the equality
∑∞

k=0 x
k = 1

1−x . Thus,

var(ζ) = E(ζ2 − ζ) + Eζ − (Eζ)2 = 2(1−p)
p2

+ 1
p −

1
p2

= 1−p
p2

.

(v) The Poisson distribution with parameter λ > 0. The measure, denoted by Pois(λ), has

the form µ =
∑∞

k=0 e
−λ λk

k! δk. It is a probability measure because
∑∞

k=0
λk

k! = eλ. We have

Eζ =
∞∑
k=0

k
λk

k!
= λ

∞∑
k=1

λk−1

(k − 1)!
= λ;

E(ζ2 − ζ) =
∞∑
k=0

k(k − 1)
λk

k!
= λ2

∞∑
k=2

λk−2

(k − 2)!
= λ2.

So var(ζ) = E(ζ2 − ζ) + Eζ − (Eζ)2 = λ2 + λ− λ2 = λ.

Below are continuous distributions on R, which have density functions w.r.t. the Lebesgue
measure λ. In each example below, f is the λ-density of Law(ζ). Then Eζ =

∫
R xf(x)dx and

Eζ2 =
∫
R x

2f(x)dx.

(i) The uniform distribution U [a, b] for a < b ∈ R. The density is f(x) = 1
b−a1[a,b]. Then

Eζ = 1
b−a

∫ b
a xdx = 1

b−a
x2

2 |
b
a = a+b

2 and Eζ2 = 1
b−a

∫ b
a x

2dx = 1
b−a

x3

3 |
b
a = 1

3(a2 + ab + b2).

So var(ζ) = 1
3(a2 + ab+ b2)− (a+b

2 )2 = (a−b)2
12 .

(ii) The exponential distribution Exp(λ) with parameter λ > 0. The density is 1[0,∞)λe
−λx.

It is a probability measure because
∫∞

0 λe−λxdx = 1. We have

Eζ =

∫ ∞
0

xλe−λxdx = −
∫ ∞

0
(−e−λx)dx =

1

λ
;

Eζ2 =

∫ ∞
0

x2λe−λxdx = −
∫ ∞

0
2x(−e−λx)dx =

2

λ2
.

Here we use integration by parts. So var(ζ) = Eζ2 − (Eζ)2 = 1
λ2

.
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(iii) The normal distribution N(µ, σ2) with parameter µ ∈ R and σ > 0. The density is

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 .

It is a probability measure because using a change of variable x = µ+
√
σy, we get

1√
2πσ

∫
R
e−

(x−µ)2

2σ2 dx =
1√
2π

∫
R
e−y

2/2dy,

and by Fubini’s theorem and using polar coordinate,(∫
R
e−y

2/2dy
)2

=

∫
R

∫
R
e−x

2/2e−y
2/2dxdy =

∫ 2π

0

∫ ∞
0

e−r
2/2rdrdθ

= 2π

∫ ∞
0

e−r
2/2rdr = 2π(−er2/2)|∞0 = 2π.

Using the same change of variable x = µ+ σy, we get

Eζ =
1√
2πσ

∫
R
xe−

(x−µ)2

2σ2 dx =
1√
2π

∫
R

(µ+ σy)e−y
2/2dy = µ;

Eζ2 =
1√
2πσ

∫
R
x2e−

(x−µ)2

2σ2 dx =
1√
2π

∫
R

(µ+ σy)2e−y
2/2dy

= µ+ σ2 1√
2π

∫
y2e−y

2/2dy.

Here we used that
∫
R ye

−y2/2dy = 0 because the integrand is odd. Thus,

var(ζ) = σ2 1√
2π

∫
y2e−y

2/2dy = σ2 1√
2π

∫
e−y

2/2dy = σ2,

where we used integration by parts: differentiating y and integrating ye−y
2/2.

We understand the degenerate distribution δµ as a normal distribution N(µ, 0), which
does not have a λ-density. In this case it trivially holds that Eζ = µ and var(ζ) = 0. If
Law(ζ) = N(µ, σ2), then for any a, b ∈ R, Law(aζ + b) = N(aµ+ b, a2σ2).

Exercise . Prove the following

(i) The binomial distribution B(n, p) is the n-th convolution power of the Bernoulli distri-
bution B(p), i.e.,

B(p) ∗ · · · ∗ B(p)︸ ︷︷ ︸
n copies

= B(n, p).
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(ii) The Poisson distributions satisfy that for any λ1, λ2 > 0,

Pois(λ1) ∗ Pois(λ2) = Pois(λ1 + λ2).

(iii) The normal distributions satisfy that for any µ1, µ2 ∈ R and v1, v2 ≥ 0,

N(µ1, v1) ∗N(µ2, v2) = N(µ1 + µ2, v1 + v2).

Example . There exists a probability measure on R, which is not a combination of a discrete
distribution and a continuous distribution. Consider the Cantor 1/3 set:

C = {
∞∑
n=1

an
3n

: an ∈ {0, 2}, n ∈ N}.

It is Borel isomorphic to the product space {0, 2}∞. Let f : {0, 2}∞ → C be the bijective
measurable map

f((an)n∈N) =
∞∑
n=1

an
3n
.

Let µ = 1
2(δ0+δ2) be a probability measure on {0, 2}. We have known that the product measure

µ∞ exists on {0, 2}∞. The pushforward measure f∗µ
∞ is a probability measure on C. Then

f∗µ
∞(Cc) = 0. We know that λ(C) = 0. So f∗µ

∞ ⊥ λ. We also see that f∗µ
∞ has no point

mass, i.e., there does not exist x ∈ C such that f∗µ
∞({x}) > 0, because µ∞ has no point mass.

Exercise . Let µ = 1
2(δ0 + δ1) be a probability measure on {0, 1}. Let f : {0, 1}∞ → [0, 1] be

defined by

f((an)n∈N) =

∞∑
n=1

an
2n
.

Prove that f is measurable, and f∗µ
∞ = λ(· ∩ [0, 1]).

We now define and study the notation of independence. The events At, t ∈ T , are said to
be (mutually) independent (w.r.t. P) if for any distinct indices t1, . . . , tn ∈ T ,

P[
n⋂
k=1

Atk ] =
n∏
k=1

PAtk . (2.2)

We say that a class of families Ct, t ∈ T , are independent, if when we pick an At in every Ct,
then At, t ∈ T , are independent. We do not require the independence between events in the
same family Ct. The random elements ζt, t ∈ T , are said to be independent if the independence
holds for the generated σ-algebras σ(ζt), t ∈ T .

Lemma 2.10 (Strengthened version). For each t ∈ T , let ζt be a random element in a mea-
surable space (St, St). Let ζ = (ζt : t ∈ T ) be a random element in

∏
t∈T St. Then ζt, t ∈ T ,

are independent iff

Law(ζ) =
∏
t∈T

Law(ζt).
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Proof. This is a strengthened version of Lemma 2.10 of the textbook, which assumes that T is
finite. We leave the proof as an exercise.

Corollary . Let T be an arbitrary index set. Suppose for each t ∈ T , µt is a probability measure
on a Borel space (St, St). Then there is a probability space (Ω,A,P), and an independent family
of random elements ζt, t ∈ T , defined on it such that Law(ζt) = µt for each t.

Proof. We have shown that the product measure
∏
t∈T µt on (

∏
t∈T St,

∏
t∈T St) exists. Let

(Ω,A,P) = (
∏
t∈T St,

∏
t∈T St,

∏
t∈T µt). For each t ∈ T , let the random element ζt : Ω → St

be the projection map π{t}. Then the random element ζ = (ζt : t ∈ T ) from Ω to
∏
t∈T St = Ω

is just the identity map. So Law(ζt) = (π{t})∗
∏
s∈T µs = µt, t ∈ T , and Law(ζ) =

∏
t∈T µt. By

Lemma 2.10, ζt, t ∈ T , are independent.

Lemma 2.6. If the π-systems Ct, t ∈ T , are independent, then so are the σ-fields Ft := σ(Ct),
t ∈ T .

Proof. We need to show that for any distinct indices t1, . . . , tn ∈ T , and any Atk ∈ Ftk ,
1 ≤ k ≤ n, (2.2) holds. By assumption, it is true if Atk ∈ Ctk , 1 ≤ k ≤ n. By a monotone
class argument, we may first weaken the assumption on At1 from At1 ∈ Ct1 to At1 ∈ Ft1 , and
then weaken the assumption on At2 from At2 ∈ Ct2 to At2 ∈ Ft2 . Repeating the argument until
we weaken the assumptions of all Atk from Atk ∈ Ctk to Atk ∈ Ftk . Then we get the desired
equality.

Corollary 2.7. Let Ft, t ∈ T , be independent σ-algebras. Let Rs, s ∈ S, be a partition of T .
Then the σ-algebras F ′s = ∨t∈RsFt := σ(

⋃
t∈Rs Ft), s ∈ S, are independent.

Proof. For each s ∈ S, let Cs denote the set of all finite intersections of sets in
⋃
t∈Rs Ft. Then

each Cs is a π-system, and it is straightforward to check that Cs, s ∈ S, are independent. By
Lemma 2.6, we have F ′s = σ(Cs), s ∈ S, are independent.

Pairwise independence between two objects A and B will be denoted by A |= B. In gen-
eral, pairwise independence between all pairs of At, t ∈ T , say, does not imply the (total)
independence of the group At, t ∈ T .

Lemma 2.8. The σ-algebras F1,F2, . . . are independent iff ∨k≤nFk |= Fn+1 for all n.

Proof. The “only if” part follows from Corollary 2.7. For the “if” part, it suffices to show
that for any n ∈ N and Ak ∈ Fk, 1 ≤ k ≤ n, we have P

⋂n
k=1Ak =

∏n
k=1 PAk. This follows

from induction and the fact that P
⋂n
k=1Ak = PAn · P

⋂n−1
k=1 Ak because Fn |= ∨k≤n−1 Fk, and⋂n−1

k=1 Ak ∈ ∨k≤n−1Fk.

A σ-algebra F ⊂ A is called (P-)trivial if for any A ∈ F , PA ∈ {0, 1}.

Lemma 2.9. (i) A σ-algebra F ⊂ A is trivial iff F |= F . (ii) If F is trivial, and ζ is an
F-measurable random element in a separable metric space S, then ζ is a.s. constant.
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Proof. (i) First suppose F is trivial. Let A,B ∈ F . Then PA and PB equal to 0 or 1. If
PA = 0, then since A ∩ B ⊂ A, we have P[A ∩ B] = 0 = PA · PB. Similarly, if PB = 0,
then P[A ∩ B] = PA · PB. Now suppose PA = PB = 1. Then PAc = PBc = 0. Thus,
P[Ac ∪ Bc] = 0. So P[A ∩ B] = 1 − P[(A ∩ B)2] = 1 − P[Ac ∪ Bc] = 1. If F |= F , then for any
A ∈ F , PA = P(A ∩A) = (PA)2, which implies that PA ∈ {0, 1}, and so F is trivial.

(ii) Suppose F is trivial. For each n ∈ N, we may partition S into mutually disjoint
countably many Borel sets Bn,j of diameter < 1/n. Fix n ∈ N. Since P[ζ ∈ Bn,j ] ∈ {0, 1} for
each j, and (Bn,j) is a partition of S, there is jn such that P[ζ ∈ Bn,jn ] = 1. So there is a null
event Nn such that ζ ∈ Bn,jn on N c

n. Let N =
⋃
nNn. Then N is a null set, and ζ ∈

⋂
nBn,jn

on N c. Since diam(Bn,jn) < 1/n for all n, ζ is a constant on N c.

Lemma 2.11. Let ζ and η be independent random elements in measurable spaces S and T ,
and let f : S × T → R be measurable. If f ≥ 0, then Ef(ζ, η) = E[E[f(s, η)]|s=ζ ]. Here
the RHS means that we first fix s ∈ S and integrate the random variable f(s, η), which is
a measurable function in s ∈ S by Lemma 1.38; then we compose it with ζ to get a random
variable, and integrate it. If we do not assume that f ≥ 0, but assume that either E|f(ζ, η)| <∞
or E[E[f(s, η)]|s=ζ ] <∞, then the equality also holds.

Proof. This lemma essentially follows from Fubini’s theorem. We now only work on the case
that f ≥ 0. Let µ and ν be the laws of ζ and η, respectively. Since ζ |= η, by Lemma 2.10,
Law(ζ, η) = µ× ν. By Fubini’s theorem,

Ef(ζ, η) =

∫
f(s, t)µ× ν(ds, dt) =

∫
µ(ds)

∫
f(s, t)ν(dt)

= E
[ ∫

f(s, t)ν(dt)|s=ζ
]

= E[E[f(s, η)]|s=ζ ].

The case without assuming f ≥ 0 follows from linearity.

Corollary . For independent random variables ζ1, . . . , ζn,

1. (i) if ζ1, . . . , ζn ∈ L1, then E
∏n
k=1 ζk =

∏n
k=1 Eζk;

2. (ii) if ζ1, . . . , ζn ∈ L2, then var(
∑n

k=1 ζk) =
∑n

k=1 var(ζk).

Proof. By induction and Corollary 2.7, it suffices to prove the case n = 2. Suppose ζ |= η. To
prove Eζη = EζEη, we apply Lemma 2.11 with f(x, y) = xy. For the variance, we note that

var(ζ + η)− (var(ζ) + var(η)) = 2 cov(ζ, η) = 2E(ζ − Eζ)(η − Eη) = 2E(ζ − Eζ)E(η − Eη) = 0,

where the second equality holds because ζ − Eζ |= η − Eη. So var(ζ + η) = var(ζ) + var(η).

Corollary 2.12. Let ζ, η be independent random elements in a measurable group. Then Law(ζ+
η) = Law(ζ) ∗ Law(η).
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Proof. By Lemma 2.10, Law(ζ, η) = Law(ζ)×Law(η). So Law(ζ+η) equals the pushforward of
Law(ζ)×Law(η) under the map (x, y) 7→ xy, which is the convolution of Law(ζ) and Law(η).

By an exercise, if ζ1, . . . , ζn are independent random variables with Bernoulli distribution
B(p), then ζ1+· · ·+ζn has the binomial distribution B(n, p). Suppose ζ1 and ζ2 are independent
random variables. If they have Poisson distributions Pois(λ1) and Pois(λ2), respectively, then
ζ1 + ζ2 has Poisson distributions Pois(λ1 +λ2). If they have Normal distributions N(µ1, v1) and
N(µ2, v2), respectively, then ζ1 + ζ2 has Normal distributions N(µ1 + µ2, v1 + v2).

We now study some zero-one laws. Given a sequence of σ-algebras F1,F2, . . . , the associated
tail σ-algebra is defined by

T =
⋂
n

∨
k≥n
Fk =

⋂
n

σ(
⋃
k≥n
Fk).

Example . Suppose ζ1, ζ2 . . . is a sequence of random variables, and Fn = σ(ζn) for each n.
Let T be the tail σ-algebra. Then

(i) The set A1 of ω ∈ Ω such that limn ζn(ω) converges is measurable w.r.t. T .

(ii) The set A2 of ω ∈ Ω such that
∑

n ζn(ω) converges is measurable w.r.t. T .

(iii) The set of ω ∈ Ω such that 1
n

∑n
k=1 ζk(ω) converges is measurable w.r.t. T .

(iv) If we define η1 = limn ζn on A1, then η1 is A1 ∩ T -measurable.

(v) If we define η2 =
∑

n ζn on A2, then η2 may not be A2 ∩ T -measurable.

(vi) If we define η3 = limn
1
n

∑n
k=1 ζk on A3, then η3 is A3 ∩ T -measurable.

Theorem 2.13 (Kolmogorov’s zero-one law). Let F1,F2, . . . be independent σ-algebras in A.
Then the associated tail σ-algebra is trivial.

Proof. For n ∈ N, define Tn =
∨
k>nFk. Then T =

⋂
n Tn. By Corollary 2.7, for any n,

F1, . . . ,Fn, Tn are independent. Since T ⊂ Tn, T ,F1, . . . ,Fn are independent for all n. Then
we conclude that, T ,F1,F2, . . . are independent. By Corollary 2.7 again, we get T |=

∨∞
n=1Fn.

Since T ⊂
∨∞
n=1Fn, we get T |= T . By Lemma 2.9 (i), T is trivial.

Corollary 2.14. Let ζ1, ζ2, . . . be independent random variables. Let Sn =
∑n

k=1 ζk, n ∈ N.
Then each of the sequences (ζn), (Sn) and ( 1

nSn) is either a.s. convergent or a.s. divergent. If
(ζn) or ( 1

nSn) a.s. converges, then the limit is a.s. constant.

There is another zero-one law, which works best for the sum of independent and identically
distributed (i.i.d.) sequences of random vectors.

A bijective map p : N→ N is called a finite permutation of N if there is N such that pn = n
for n > N . A finite permutation p of N induces a bijective map Tp : S∞ → S∞ given by
Tp(s1, s2, . . . ) = (sp1 , sp2 , . . . ). A set I ⊂ S∞ is called symmetric if T−1

p I = I for all finite

permutation p of N. Let (S, S) be a measurable space. Then for every p, Ip := {I ∈ S
∞

:
T−1
p I = I} is a σ-algebra. So the set of symmetric I ∈ S∞ form a σ-algebra I =

⋂
p Ip, which

is called the permutation invariant σ-algebra in S
∞

.
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Example . Suppose G is an Abelian measurable group (e.g. Rd). Let B ⊂ G be measurable.
Then the set

EB = {(v1, v2, . . . ) ∈ G :

n∑
k=1

vk ∈ B for infinitely many n}

belongs to the permutation invariant σ-algebra.

Theorem 2.15 (Hewitt-Savage zero-one law). Let ζ1, ζ2, . . . be an i.i.d. sequence of random
elements in a measurable space (S, S), and let ζ = (ζ1, . . . , ζn). Let I be the permutation
invariant σ-algebra in S

∞
. Then ζ−1I is trivial.

Lemma 2.16. Given any σ-algebras F1 ⊂ F2 ⊂ · · · in S, a probability measure µ on ∨nFn,
and a set A ∈ ∨nFn, there exist a sequence A1, A2, · · · ∈

⋃
Fn with µ(An∆A)→ 0.

Proof. Let D denote the set of A ∈ ∨nFn with the stated property. Then D is a λ-system
containing the π-system C :=

⋃
Fn. Here we use the fact that µ(A∆B) = ‖1A − 1B‖1. By

monotone class theorem, D contains σ(C) = ∨nFn.

Proof of Theorem 2.15. Let µ = P ◦ ζ−1. Set Fn = S
n × S∞, n ∈ N. Note that F1 ⊂ F2 ⊂ · · · ,

and ∨nFn = S
∞ ⊃ I. For any I ∈ I, by Lemma 2.16 there is a sequence In of the form Bn×S∞

with Bn ∈ S
n

such that µ(In∆I)→ 0, and so µIn → µI. Writing Ĩn = Sn ×Bn × S∞, then by
the symmetry of µ and I, we have µĨn = µIn and µ(Ĩn∆I) = µ(In∆I)→ 0. Hence

µ((In ∩ Ĩn)∆I) ≤ µ(In∆I) + µ(Ĩn∆I)→ 0

because (A ∩B)∆C ⊂ (A∆C) ∪ (B∆C). So µ(In ∩ Ĩn)→ µI. By independence of ζk, we have

µ(In ∩ Ĩn) = P[(ζ1, . . . , ζn) ∈ Bn, (ζn+1, . . . , ζ2n) ∈ Bn] = P[(ζ1, . . . , ζn) ∈ Bn]2 = µ(In)2.

So µ(In ∩ Ĩn)→ µ(I)2. Then we get µI = (µI)2 and so µI ∈ {0, 1}.

Corollary 2.17. Let ζ1, ζ2, . . . be i.i.d. random vectors in Rd, and put Sn = ζ1 + · · ·+ζn. Then
for any B ∈ B(Rd), P{Sn ∈ B i.o.} = 0 or 1.

Note that Kolmogorov’s zero-one law does not apply here because {Sn ∈ B i.o.} is not a
tail event.

The sequence (Sn) is called a random walk on Rd. For a more specific example, we may
consider the case that every ζk has the distribution

1

2d

∑
σ∈{+,−}

d∑
j=1

δσej ,

where ej is the vector in Rd whose j-th component is 1 and all other components are 0. In
this case (Sn) is called a simple random walk on Zd. By Corollary 2.17, for every v0 ∈ Zd,
P{Sn = v0 i.o.} = 0 or 1. By translation invariance of Zd, one easily see that the value of
P{Sn = v0 i.o.} depends only on d. If the value is 1, the random walk is called recurrent; if the
value is 0, the random walk is called transient. It turns out (not easy!) that, when d ≤ 2, the
random walk is recurrent, and when d ≥ 3, the random walk is transient.
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Theorem 2.18 (Borel-Cantelli lemma). Let A1, A2, · · · ∈ A. Then
∑

n PAn <∞ implies that
P[An i.o.] = 0, and when the An are independent, P[An i.o.] = 0 implies that

∑
n PAn <∞.

Proof. We have proved the first assertion. Now suppose An are independent. Then Acn are also
independent. For any n < N ∈ N,

1− P
N⋃

m=n

Am = P
N⋂

m=n

Acm =

N∏
m=n

(1− PAm).

Letting N →∞, we get

1− P
∞⋃
m=n

Am =

∞∏
m=n

(1− PAm).

If P[An i.o.] = 0, then there is n such that 1− P
⋃∞
m=nAm > 0, which implies by calculus that∑∞

m=n PAm <∞, and so
∑

n PAn <∞.

For x = (x1, . . . , xd) and y = (y1, . . . , yd) in Rd, we write x ≤ y (resp. x < y) if xk ≤ yk
(resp. xk < yk) for all 1 ≤ k ≤ d. For x < y ∈ Rd, we define

(−∞, y] = {z ∈ Rd : z ≤ y} =
d∏

k=1

(−∞, yk], (x, y] = {z ∈ Rd : x < z ≤ y} =
d∏

k=1

(xk, yk].

For a random vector ζ in Rd, we define the associated distribution function F by

F (x) = P[ζj ≤ xj , 1 ≤ j ≤ d] = Law(ζ)(−∞, x].

By a monotone argument, we get

Lemma 2.3. Two random vectors in Rd have the same distribution iff they have the same
distribution function.

We may use F to calculate µ(x, y]. For d = 1, µ(x, y] = F (y) − F (x). For d ≥ 2, we need
an inclusion-exclusion argument.

Exercise . Prove that for any x < y ∈ Rd,

µ(x, y] =
∑

S⊂{1,...,d}

(−1)|S|F (zS), (2.3)

where zS ∈ Rd such that zSk = xk if k ∈ S and zSk = yk if k 6∈ S.

Then F satisfies the following properties.

(i) F (x, y] ≥ 0 for every x < y ∈ Rd, where we define F (x, y] to be the RHS of (2.3).

(ii) F is right-continuous in the sense that limx↓y F (x) = F (y) for any y ∈ Rd, where x ↓ y
means that xk > yk and xk → yk for all 1 ≤ k ≤ d.
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(iii) limminxk→−∞ F (x) = 0.

(iv) limminxk→∞ F (x) = 1.

Here (ii)-(iv) follow from the continuity of µ and the fact that µ(Rd) = 1.

Theorem 2.25-2.26. If F satisfies (i-iii), then it is the distribution function of some σ-finite
measure µ on Rd. If F also satisfies (iv), then µ is a probability measure.

Proof. We define a ring R on Rd to be the class of disjoint unions of sets of the form (x, y] for
x < y ∈ Rd. Define µ : R → R+ such that if A has a disjoint union expression

⋃m
j=1(xj , yj ],

then

µA =

m∑
j=1

F (xj , yj ].

Such µ is well defined and satisfies finitely additivity. We then show that µ is a pre-measure.
Suppose A1 ⊃ A2 ⊃ · · · ∈ R with µAn ≥ ε > 0 for all n. We need to show that

⋂
nAn 6= ∅. For

every n ∈ N, we may choose A′n ∈ R such that A′n ⊂ An and µ(An \A′n) < ε
2n . Here we use the

fact that if xn ↓ x < y, then F (xn, y]→ F (x, y], which follows from the right-continuity of F .
Let A′′n = A′1 ∩ · · · ∩ A′n. Then A′′n ⊂ An for each n, and A′′1 ⊃ A′′2 ⊃ · · · . Since An \ A′′n ⊂⋃n

k=1(Ak \ A′k), we get µ(An \ A′′n) ≤
∑n

k=1 µ(Ak \ A′k) <
∑n

k=1
ε

2k
< ε. From µAn > ε we get

µA′′n > 0, and so A′′n 6= ∅. Since each A′′n is compact and A′′1 ⊃ A′′2 ⊃ · · · , we get
⋂
nA
′′
n 6= ∅,

which together with A′′n ⊂ An implies that
⋂
nAn 6= ∅. So µ is a pre-measure on R. We may

then use Carathéodory extension theorem to extend µ to a measure on Rd. It is σ-finite because
µ(x, x+ 1] <∞ for every x ∈ Zd, where 1 = (1, . . . , 1).

By (iii) we have, for every y ∈ Rd,

F (y) = lim
minxk→−∞

F (x, y] = lim
minxk→−∞

µ(x, y] = µ(−∞, y].

So F is the distribution function of µ. If (iv) holds, then

µRd = lim
n→∞

µ(−∞, (n, . . . , n)] = lim
n→∞

F (n, . . . , n) = 1,

which implies that µ is a probability measure.

Exercise . Problems 4, 5, 8, 12 of Exercises of Chapter 2.

3 Random Sequences, Series, and Averages

We still fix a probability space (Ω,A,P), and assume that all random elements are defined on
this space. We will study several different concepts of convergence of random variables: almost

sure convergence, ζn → ζ a.s., convergence in probability, ζn
P→ ζ, convergence in distribution,

ζn
d→ ζ, and convergence in Lp.
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Definition . Let ζ, ζ1, ζ2, . . . be random elements in a metric space (S, ρ).

(i) We say that ζn converges almost surely to ζ, and write ζn → ζ a.s., if there is a null event
N such that ρ(ζn(ω), ζ(ω))→ 0 for every ω ∈ Ω \N .

(ii) We say that ζn converges in probability to ζ, and write ζn
P→ ζ, if for every ε > 0,

limn→∞ P{ρ(ζn, ζ) > ε} = 0.

(iii) We say that ζn converges in distribution to ζ, and write ζn
d→ ζ, if for every f ∈ Cb(S,R),

the space of bounded real-valued continuous functions on S, we have Ef(ζn)→ Ef(ζ).

(iv) In the case that S = R, we say that ζn converges to ζ in Lp for some p > 0, if ζ, ζ1, ζ2, · · · ∈
Lp and ‖ζn − ζ‖p = (E|ζn − ζ|p)1/p → 0.

Lemma 3.1 (Chebyshev inequality). For any measurable ζ : Ω→ R+ and r > 0,

P{ζ ≥ r} ≤ 1

r
Eζ.

Proof. Since ζ ≥ r1{ζ≥r}, we get Eζ ≥ E(r1{ζ≥r}) = rP{ζ ≥ r}.

Exercise . Prove that ζn → ζ in Lp for some p > 0 implies that ζn
P→ ζ.

Lemma . For ζ, ζ1, ζ2, . . . in the above definition, ζn
P→ ζ iff E[1 ∧ ρ(ζn, ζ)]→ 0.

Proof. For every ε ∈ (0, 1), from ε1{ρ(ζn, ζ) > ε} ≤ 1 ∧ ρ(ζn, ζ) ≤ 1{ρ(ζn, ζ) > ε}+ ε, we get

εP{ρ(ζn, ζ) > ε} ≤ E[1 ∧ ρ(ζn, ζ)] ≤ P{ρ(ζn, ζ) > ε}+ ε.

These inequalities imply the equivalence.

Remark . The lemma means that the convergence in probability is determined by a metric

ρV (ζ, η) = E[1 ∧ ρ(ζ, η)].

This is in general not true for almost surely convergence

Lemma 3.2 (subsequence criterion). Let ζ, ζ1, ζ2, . . . be as before. Then ζn
P→ ζ iff every

subsequence N ′ ⊂ N has a further subsequence N ′′ ⊂ N ′ such that ζn → ζ a.s. along N ′′. In
particular, the almost sure convergence implies the convergence in probability.

Proof. Suppose ζn
P→ ζ. Then E[1 ∧ ρ(ζn, ζ)] → 0 by the above lemma. Suppose N ′ ⊂ N.

Then E[1 ∧ ρ(ζn, ζ)] → 0 along N ′. We may then choose a subsequence N ′′ ⊂ N ′ such that∑
n∈N ′′ E[1 ∧ ρ(ζn, ζ)] <∞. By monotone convergence theorem, we get

E[
∑
n∈N ′′

1 ∧ ρ(ζn, ζ)] <∞,
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which implies that a.s.
∑

n∈N ′′ 1 ∧ ρ(ζn, ζ) <∞. So a.s. ζn → ζ along N ′′. On the other hand,

suppose ζn 6
P→ ζ. Then E[1 ∧ ρ(ζn, ζ)] 6→ 0. So there is ε > 0 and a subsequence N ′ ⊂ N such

that E[1 ∧ ρ(ζn, ζ)] > ε for any n ∈ N ′. It there is a further subsequence N ′′ ⊂ N ′ such that
ζn → ζ a.s. along N ′′, then since 1 ∧ ρ(ζn, ζ) → 0 a.s. along N ′′, by dominated convergence
theorem, E[1 ∧ ρ(ζn, ζ)]→ 0 along N ′′, which is a contradiction.

Finally, if ζn → ζ a.s. then for any N ′ ⊂ N, ζn → ζ a.s. along N ′. So we get ζn
P→ ζ.

Remark . From Lemma 3.2, we see that the condition that ζn → ζ a.s. in dominated conver-

gence theorem can be further weakened to ζn
P→ ζ. This means that if ζn → Pζ, |ζn| ≤ η for

all n, and Eη <∞, then Eζn → Eζ.

Example . We may find a sequence of random variables ζn on ([0, 1], λ) such that ζn
P→ 0 but

ζn does not a.s. converge to 0. In fact, we may choose ζn = 1An , where

A1 = [0, 1], A2 = [0, 1/2], A3 = [1/2, 1],

A4 = [0, 1/4], A5 = [1/4, 2/4], A6 = [2/4, 3/4], A7 = [3/4, 1], . . .

The general formula is: for 2k ≤ n ≤ 2k+1−1, ζk = 1[ n
2k
−1,n+1

2k
−1]. We observe that ‖ζn‖1 = 2−k

if 2k ≤ n ≤ 2k+1− 1. So ζn → 0 in L1, which implies that ζn
P→ 0. However, for every t ∈ [0, 1],

there are infinitely many n such that ζn(t)→ 1. So ζn does not a.s. tend to 0.

Lemma 3.3. Let S and T be two metric spaces. Suppose ζn
P→ ζ in S, and f : S → T be

continuous. If ζn
P→ ζ in S, then f(ζn)

P→ f(ζ) in T .

Proof. By Lemma 3.2, every subsequence N ′ ⊂ N contains a further subsequence N ′′ ⊂ N ′

such that ζn → ζ a.s. in S along N ′′. By the continuity of f , we see that f(ζn) → f(ζ) a.s. in

T along N ′′. Thus, by Lemma 3.2 f(ζn)
P→ f(ζ) in T .

Corollary 3.5. Let ζ, ζ1, ζ2, . . . and η, η1, η2, . . . be random variables with ζn
P→ ζ and ηn

P→ η.

Then aζn+bηn → aζ+bη for any a, b ∈ R and ζnηn → ζη. Furthermore, ζn/ηn
P→ ζ/η whenever

ηn and η do not take value zero.

Proof. From ζn
P→ ζ and ηn

P→ η we get (ζn, ηn)
P→ (ζ, η). We may then apply Lemma 3.3 to

continuous functions R2 3 (x, y) 7→ ax+ by ∈ R, R2 3 (x, y) 7→ xy, and R× (R\{0}) 3 (x, y) 7→
x/y, respectively.

Definition . For random elements ζ1, ζ2, . . . in a metric space (S, ρ), we say that (ζn) is a
Cauchy sequence in probability if for any ε > 0, P{ρ(ζn, ζm) > ε} → 0 as n,m → ∞. Using a
similar argument as before, we can show that this is equivalent to that E[1 ∧ ρ(ζn, ζm)]→ 0 as
n,m→∞.
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If ζn
P→ ζ, then E[1∧ρ(ζn, ζ)]→ 0 as n→∞. By triangle inequality, we get E[1∧ρ(ζn, ζm)]→

0 as n,m → ∞, which implies that (ζn) is a Cauchy sequence in probability. The converse is
true if (S, ρ) is complete. This is the lemma below.

Lemma 3.6. If (S, ρ) is complete, then (ζn) is a Cauchy sequence in probability iff ζn
P→ ζ for

some random element ζ in S.

Proof. We have proved the “if” part. Now we prove the “only if” part. Assume that (ζn) is
a Cauchy sequence in probability. We may choose a subsequence (nk) of N such that E[1 ∧
ρ(ζnk , ζnk+1

)] ≤ 2−k for all k ∈ N. Then we have

E[
∑
k

1 ∧ ρ(ζnk , ζnk+1
)] ≤

∑
k

2−k <∞,

which implies that a.s.
∑

k 1 ∧ ρ(ζnk , ζnk+1
) < ∞, and so

∑
k ρ(ζnk , ζnk+1

) < ∞. So almost
surely (ζnk) is a Cauchy sequence in S. By the completeness of S, there is a random element ζ

in S such that a.s. ζnk → ζ. Thus, E[1 ∧ ρ(ζnk , ζ)]→ 0 as k →∞. To see that ζn
P→ ζ, write

E[1 ∧ ρ(ζm, ζ)] ≤ E[1 ∧ ρ(ζnk , ζ)] + E[1 ∧ ρ(ζm, ζnk)],

and use the convergence of the RHS to 0 as m, k →∞.

This lemma shows that the space of random elements on S with metric ρV (ζ, η) = E[1 ∧
ρ(ζ, η)] is complete when S is complete.

Lemma 3.7. The convergence in probability implies the convergence in distribution.

Proof. Suppose ζn
P→ ζ in S, and f ∈ Cb(S). Then f(ζn)

P→ f(ζ) by Lemma 3.3. By monotone

convergence theorem (for convergence in probability), we have Ef(ζn)→ Ef(ζ). So ζn
d→ ζ.

Definition . Let µ, µ1, µ2, . . . be probability measures on a metric space (S, ρ). We say that
µn converges weakly to µ, and write µn

w→ µ, if for any f ∈ Cb(S,R), µnf → µf .

Remark . By Lemma 1.22, Ef(ζ) = Law(ζ)f . So ζn
d→ ζ iff Law(ζn)

w→ Law(ζ). This means
that the convergence in distribution depends only on the distributions of ζ and ζn (and not on
the exact value of ζn(ω) and ζ(ω)).

Lemma 3.25 (Portmanteau). For any probability measures µ, µ1, . . . , µn on a metric space
(S, ρ), these conditions are equivalent:

(i) µn
w→ µ;

(ii) lim infn µnG ≥ µG for any open set G ⊂ S;

(iii) lim supn µnF ≤ µF for any closed set F ⊂ S;
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(iv) limn µnB = µB for any B ∈ B(S) with µ∂B = 0.

A set B satisfying the condition in (iv) is called a µ-continuity set.

Example . Suppose (xn) is a sequence in S and xn → x0 ∈ S. Then we have δxn
w→ δx0

because for any f ∈ Cb,
δxn = f(xn)→ f(x0) = δx0f.

Suppose G ⊂ S is open, and x0 ∈ ∂G, then we can find a sequence (xn) in G such that xn → x0.
Then δx0G = 0 but δxnG = 1 for each n. So we do not get a strict inequality in (ii).

Proof. Assume (i), and fix an open set G ⊂ S. Let fm(x) = 1 ∧ (mρ(x,Gc)), m ∈ N. Then
fm ∈ Cb(S) and fm ↑ 1G. For each m, by µn

w→ µ, we have µfm = limn µnfm ≤ lim infn µnG.
Sending m → ∞ and using monotone convergence, we then get (ii). The equivalence between
(ii) and (iii) are clear from taking complements. Now assume (ii) and (iii). For any B ∈ B,

µB◦ ≤ lim inf
n

µnB
◦ ≤ lim inf

n
µnB ≤ lim sup

n
B ≤ lim sup

n
B ≤ µB.

If µ∂B = 0, then µB = µB◦ = µB, and (iv) follows.
Assume (iv), and fix a closed set F ⊂ S. Write F ε = {s ∈ S : ρ(s, F ) < ε}. Then the

sets ∂F ε ⊂ {s ∈ S : ρ(s, F ) = ε}, ε > 0, are disjoint. So there are at most countably many
ε > 0 such that µ∂F ε = 0. We can find a positive sequence εm → 0 such that for every m,
µ∂F εm = 0. So µF εm = limn µnF

εm ≥ lim supn µnF . Sending m → ∞, we get (iii). Finally,
assume (ii) and let f : S → R+ be continuous. By Lemma 2.4 and Fatou’s lemma,

µf =

∫ ∞
0

µ{f > t}dt ≤
∫ ∞

0
lim inf

n
µn{f > t}dt ≤ lim inf

n

∫ ∞
0

µn{f > t}dt = lim inf
n

µnf.

Suppose now f ∈ Cb(S) and |f | ≤ c. Applying the above formula to c ± f , we get c ± µf ≤
lim infn(c± µnf), which implies limn µnf = µf , i.e., (i) holds.

Exercise . Let µ, µ1, µ2, . . . be probability measures on Rd. Let F, F1, F2, . . . be their distri-
bution functions. Prove that µn

w→ µ iff for any continuity point x of F , Fn(x)→ F (x).

Definition . A family of probability measures µt, t ∈ T , on a topological space S is called
tight, if for any ε > 0, there is a compact set K ⊂ S such that µt(S \K) < ε for any t ∈ T .

Suppose (S, ρ) is a metric space. For x ∈ S and ε > 0, let B(x, ε) = {y ∈ S : ρ(x, y) < ε}.
For A ⊂ S and ε > 0, let

Aε =
⋃
x∈A

B(x, ε) = {y ∈ S : ρ(y,A) < ε}.

We now state some results about weak convergence without proofs.

Theorem 14.3 (Prokhorov’s theorem). Let (S, ρ) be a separable metric space. Then
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(i) The Prokhorov metric ρ∗ on the space P(S) defined by

ρ∗(µ, ν) = inf{ε > 0 : µA ≤ νAε + ε and νA ≤ µAε + ε for any A ∈ B(S)}

is a metric such that the weak convergence of probability measures on S is equivalent to
the convergence w.r.t. the Prokhorov metric.

(ii) A tight family is relatively sequential compact w.r.t the weak convergence, i.e., every se-
quence in the family contains a weak convergent subsequence.

(iii) If S is complete, then (P(S), ρ∗) is complete and every relatively compact subset of P(S)
is a tight family.

This lemma tells us that the weak convergence is induced by some explicitly defined metric,
and if S is complete, then the a tight family is equivalent to a relatively compact set w.r.t. weak
convergence.

In the case that S = Rd, we sketch a proof of (ii) as follows. Suppose µ1, µ2, . . . is a sequence
of probability measures on Rd. Let F1, F2, . . . be the distribution functions. Since 0 ≤ Fn ≤ 1,
for every x ∈ Qd, (Fn(x)) contains a convergent subsequence. By a diagonal argument and
passing to a subsequence, we may assume that (Fn(x)) converges for each x ∈ Qd. Let F̃ (x),
x ∈ Qd, be the limit function. Such F̃ is non-decreasing on Qd. We use F̃ to define a function
F on Rd such that F (x) = limQd3y↓x F̃ (y), x ∈ Rd. Then F is non-decreasing and right-
continuous, and Fn(x)→ F (x) for each continuity point x of F . If {µn} is tight, then F is the
distribution function of some probability measure µ, which is the weak limit of µn.

To understand the Prokhorov metric, suppose X and Y are two random elements in S
defined on the same probability space (Ω,A,P) such that

P{ρ(X,Y ) > ε} < ε. (3.1)

Then it is straightforward to check that ρ∗(Law(X),Law(Y )) < ε. The converse is not true,
but we have the following coupling theorem, whose proof is omitted.

Theorem (coupling theorem). If ρ∗(µ, ν) < ε, then there are a probability space (Ω,A,P) and
two random elements X,Y in S defined on Ω such that Law(X) = µ, Law(Y ) = ν, and (3.1)
holds.

From Lemma 3.7, ζn
P→ ζ implies that Law(ζn)

w→ Law(ζ) and ζ
d→ ζ. We have a converse

statement in the following sense. We omit its proof.

Theorem 3.30 (Skorokhod’s representation theorem). Let µ, µ1, µ2, . . . be probability measures
on a separable metric space (S, ρ). Then there exist a probability space (Ω,A,P) and random
elements ζ, ζ1, ζ2, . . . in S defined on Ω such that Law(ζ) = µ, Law(ζn) = µn, and ζn → ζ
pointwise.

Exercise . Suppose ζn
d→ ζ and Law(ζ) is a point mass. Prove that ζn

P→ ζ.
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There are other types of convergence of measures, such as the strong convergence: µnA→
µA for every A ∈ A, and an even stronger convergence: the total variation convergence:

‖µn − µ‖TV := 2 sup
A∈A
|µA− νA| → 0.

They are stronger than the weak convergence, but do not rely on the topology of S.

Example . Let S be a metric space. Let (xn) be a sequence in S that converges to x0. Suppose
xn 6= x0 for all n. Then δxn converges to δx0 weakly but not strongly. If we take A = {x0},
then δxnA = 0 for all n but δx0A = 1.

Exercise . Let µ, µ1, µ2, . . . be probability measures on a measurable space S. Let ν be a
finite measure on S such that µ � ν and µn � ν for all n. Such ν always exists, e.g., let
ν = µ +

∑
n
µn
2n . Let f = dµ/dν and fn = dµn/dν. Then f, fn ∈ L1(ν); µn → µ in total

variation iff fn → f in L1(ν); and µn → µ strongly iff fn → f weakly in L1(ν), i.e., for any
g ∈ L∞,

∫
fngdν →

∫
fgdν.

We now introduce a new concept: uniformly integrability, which plays an important role
in the theory of martingales. To motivate the definition, we observe that if ζ ∈ L1, then by
dominated convergence theorem, E[1|ζ|≥Rζ]→ 0 as R→∞.

Definition . A family of random variables ζt, t ∈ T , is called uniformly integrable, if

lim
R→∞

sup
t∈T

E[1|ζt|≥Rζ] = 0.

The previous observation shows that any finite set of integrable random variables is uni-
formly integrable. The uniformly integrability depends only on the distributions of the random
variables, and is stronger than the tightness of the distributions.

Exercise . For t ∈ T , let ζt be a random variable with distribution µt, and let pt,n = P[|ζt| ≥ n].
Prove that ζt, t ∈ T , is uniformly integrable iff

∑
n pt,n converges uniformly in t ∈ T , which

then implies that the family µt, t ∈ T , is tight.

Exercise . Prove that a sequence ζ1, ζ2, · · · ∈ L1 is uniformly integrable iff

lim
R→∞

lim sup
n→∞

∫
{|ζn|≥R}

|ζn|dP = 0.

Lemma . If for some p > 1, {ζt : t ∈ T} is Lp-bounded, i.e., there is C < ∞ such that
‖ζt‖p ≤ C for all t ∈ T , then ζt, t ∈ T , is uniformly integrable.

Proof. To see this, note that∫
{|ζt|≥R}

|ζt|dP ≤
∫
{|ζt|≥R}

(|ζt|/R)p−1|ζt|dP ≤ R1−pE|ζt|p = R1−p‖ζt‖pp ≤ R1−pCp.
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The lemma does not hold for p = 1. For example, if ζn = n1[0,1/n], n ∈ N, are defined on
([0, 1], λ), then ‖ζn‖1 = 1 for all n, but for any R > 0, E[1|ζn|≥Rζn] = 1 if n ≥ R.

Lemma 3.10. The random variables ζt, t ∈ T , are uniformly integrable iff they are L1-bounded,
and

lim
PA→0

sup
t∈T

E[1A|ζt|]→ 0. (3.2)

Proof. Suppose ζt, t ∈ T , are uniformly integrable. Then

E[1A|ζt|] ≤ RPA+ E[1|ζt|≥R|ζt|].

For any ε > 0, we may choose R > 0 such that E[1|ζt|≥R|ζt|] < ε/2 for all t ∈ T . Thus, if
PA < ε/(2R), then E[1A|ζt|] < ε for all t ∈ T . To get the L1-boundedness, we take A = Ω and
take R to be sufficiently big in the displayed formula.

Suppose now ζt, t ∈ T , are L1-bounded, and (3.2) holds. By Chebyshev’s inequality we get

P{|ζt| ≥ R} ≤
1

R
sup
t∈T
‖ζt‖1 → 0, R→∞,

which together with (3.2) implies the uniformly integrability.

Exercise . Let ζs, s ∈ S, and ηt, t ∈ T , be two uniformly integrable families of random
variables. Then |ζs|+ |ηt|, (s, t) ∈ S × T , are also uniformly integrable.

Proposition 3.12. Fix p > 0. Suppose ζ1, ζ2, · · · ∈ Lp are such that |ζn|p, n ∈ N, are uniformly

integrable. Suppose ζn
P→ ζ. Then ζn → ζ in Lp.

Proof. By Fatou’s lemma and the L1-boundedness of |ζn|p (by Lemma 3.10), we have

E|ζ|p ≤ lim inf
n

E|ζn|p <∞.

So ζ ∈ Lp. Since |ζn − ζ|p ≤ 2p(|ζn|p + |ζ|p), by the exercise above, |ζn − ζ|p, n ∈ N, are also
uniformly integrable. Fix ε > 0. Then

E[|ζn − ζ|p] ≤ εp + E[1{|ζn−ζ|≥ε}|ζn − ζ|
p].

Since ζn
P→ ζ, as n → ∞, P{|ζn − ζ| ≥ ε} → 0, which implies E[1{|ζn−ζ|≥ε}|ζn − ζ|p] → 0 by

Lemma 3.10. Sending n→∞, we get lim supn E[|ζn− ζ|p] ≤ εp. Since this holds for any ε > 0,
we get E[|ζn − ζ|p]→ 0. So ζn → ζ in Lp.

Theorem 3.23 (strong law of large numbers). Let ζ, ζ1, ζ2, . . . be i.i.d. random variables with
E|ζ| <∞. Let Sn =

∑n
k=1 ζk. Then a.s. 1

nSn → Eζ.

We are not going to prove the theorem following the approach of the textbook (Proposition
3.14, Lemma 3.15, Lemma 3.16, Theorem 3.17, Theorem 3.18, Lemma 3.19, Lemma 3.20,
Lemma 3.21, Corollary 3.22). Instead, we give elementary proofs of some weaker results, and
postpone the proof of Theorem 3.23 to the chapter of martingales.
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Theorem (weak law of large numbers for L2). In the setup of Theorem 3.23, if ζ ∈ L2, then
1
nSn

P→ Eζ.

Proof. By subtracting Eζ from ζn, n ∈ N, we may assume that Eζ = 0. Since ζ1, ζ2, . . . are
independent,

E
[∣∣∣ 1
n

n∑
j=1

ζj

∣∣∣2] =
1

n2
var
( n∑
j=1

ζj

)
=

1

n2

n∑
j=1

var(ζj) =
1

n
var(ζ).

By Chebyshev inequality, for any ε > 0,

P
[∣∣∣ 1
n

n∑
j=1

ζj

∣∣∣ ≥ ε] ≤ 1

ε2
E
[∣∣∣ 1
n

n∑
j=1

ζj

∣∣∣2] ≤ 1

n

var(ζ)

ε2
→ 0,

as n→∞. So 1
n

∑n
j=1 ζj

P→ 0.

Theorem (strong law of large numbers for L4). Theorem 3.23 holds if ζ ∈ L4.

Proof. We again assume that Eζ = 0. We have

E
[
(
1

n
Sn)4

]
=

1

n4

∑
1≤j1,j2,j3,j4≤n

E[ζj1ζj2ζj3ζj4 ].

If for some s ∈ {1, 2, 3, 4}, js 6∈ {jt : t 6= s}, then by independence of ζ1, ζ2, . . . and that
Eζjs = 0, we get

E[ζj1ζj2ζj3ζj4 ] = EζjsE[
∏
t6=s

ζjt ] = 0.

Thus,

E
[( 1

n

n∑
j=1

ζj

)4]
=

1

n4

n∑
j=1

Eζ4
j +

12

n4

∑
1≤j<k≤n

Eζ2
j ζ

2
k =

1

n3
Eζ4 +

6(n− 1)

n3
(Eζ2)2 ≤ 6

n2
Eζ4.

In the last inequality, we used (Eζ2)2 ≤ Eζ4. So for any ε > 0, by Chebyshev inequality,

P
[∣∣∣ 1
n
Sn

∣∣∣ ≥ ε] ≤ 1

ε4
E
[( 1

n
Sn

)4]
≤ 6

n2

Eζ4

ε4
.

Since
∑

n
6
n2

Eζ4
ε4

<∞, by Borel-Cantelli lemma, a.s. there is a random N such that for n > N ,
| 1nSn| < ε. This implies that 1

n

∑n
j=1 ζj → 0 a.s.

Exercise . Problems 4, 5, 6, 8, 11, of Exercises of Chapter 3.
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4 Characteristic Functions and Classical Limit Theorems

Suppose ζ is a random vector in Rd with distribution µ, the associated characteristic function
µ̂ is given by

µ̂(t) =

∫
eitxµ(dx) = Eeitζ , t ∈ Rd, (4.1)

where tx denotes the inner product t1x1+· · ·+tdxd. The function x 7→ eitx is integrable because
|eitx| = 1. In the language of Analysis, µ̂ is the Fourier transform of µ. If µ is a distribution on
Rd+, i.e., µRd+ = 1, then the Laplace transform µ̃ is defined by

µ̃(t) =

∫
e−txµ(dx) = Ee−tζ , t ∈ Rd+.

The function x 7→ e−tx is integrable because 0 < e−tx ≤ 1 as tx ≥ 0. Finally, for a distribution
µ on Z+ = {0, 1, 2, . . . }, the generating function ψ is defined by

ψ(s) =

∞∑
n=0

snP{ζ = n} = Esζ , s ∈ [0, 1].

Formally, µ̃(u) = µ̂(iu) and µ̂(t) = µ̃(−it), µ̃(u) = ψ(e−u) and ψ(s) = µ̃(− log s). We will focus
on characteristic functions. Many results also apply to Laplace transforms and generating
functions with similar proofs.

We first list some simple properties of characteristic functions.

(i) If φ is the characteristic function for ζ, then for any a ∈ R and b ∈ Rd, the characteristic
function for aζ + b is eitbφ(at).

(ii) If φ1, . . . , φn are characteristic functions for independent ζ1, . . . , ζn, then the characteristic
function for ζ1 + · · ·+ ζn is

∏n
j=1 φj(t). We used the fact that eitζ1 , . . . , eitζn are indepen-

dent. Thus, if ζ1, . . . , ζn are i.i.d. with characteristic function φ, and Sn =
∑n

k=1 ζk, then
the characteristic function for 1

nSn is φ(t/n)n.

(iii) For any characteristic function φ, φ(0) = 1 and for any t ∈ Rd, |φ(t)| ≤ 1 and φ(−t) = φ(t),
where the bar stands for the complex conjugate. Here we use the inequality |Ef | ≤ E|f |
for complex random variable f and the equality eitx = e−itx.

(iv) φ is uniformly integrable. Here we use that |eit1x− eit2x| = |ei(t1−t2)x− 1| ≤ 2∧ (|t− s||x|)
and dominated convergence theorem.

(v) If µn converges weakly to µ with associated characteristic functions φn and φ, then for
any t ∈ Rd, φn(t) → φ(t). Here we used the fact that, for any t ∈ Rd, x 7→ eitx is a
bounded and continuous.
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(vi) In the case d = 1, if E|ζ|n < ∞ for some n ∈ N, then φ is n-times continuously dif-
ferentiable, φ(n) is bounded and uniformly continuous, and φ(n)(0) = inEζn. To see
this is true, we may formally differentiate (4.1) w.r.t. t and get φ′(t) = E[ixeitx]. If
we continue differentiation, then we get φ(k)(t) = E[(ix)keitx] for all k ∈ N. In gen-
eral, this equalities may not hold. In fact, (ix)keitx may not be integrable. How-
ever, if E|ζ|n < ∞ for some n ∈ N, then for any 0 ≤ k ≤ n and t ∈ Rd, (iζ)keitζ

is integrable, and we may define φ[k](t) = E[(iζ)keitζ ], 0 ≤ k ≤ n. Here φ[0] = φ.
Since |(ix)keitx − (ix)keisx| ≤ |x|k(2 ∧ |s − t||x|), by DCT, we see that φ[k] is uni-
formly continuous for each 0 ≤ k ≤ n. By Fubini Theorem, for 1 ≤ k ≤ n and
a < b ∈ R,

∫ b
a φ

[k](t) = φ[n−1](b) − φ[k−1](a). Thus, φ[k] is the derivative of φ[k−1].

So φ(n)(t) = φ[n](t) = E[(iζ)keitζ ]. Taking t = 0, we get φ(n)(0) = E[(iζ)k] = ikE[ζk].

The following theorem is important for us.

Theorem 4.3. For probability measures µ, µ1, µ2, . . . on Rd, µn
w→ µ iff µ̂n → µ̂ pointwise iff

µ̂n → µ̂ uniformly on every bounded set.

That µn
w→ µ implies that µ̂n → µ̂ pointwise is Property (v) above. We postpone the proof

to the end of this chapter. This theorem in particular implies that µ̂ determines µ.

Example . (i) If µ is the degeneracy distribution δx0 , then µ̂(t) = eitx0 .

(ii) If µ is the Bernoulli distribution B(p), then µ̂(t) = peit·1 + (1− p)eit·0 = 1− p+ peit.

(iii) If µ is the binomial distribution B(n, p), since it is the n-th convolution power of the
Bernoulli distribution B(p), we get µ̂(t) = (1− p+ peit)n.

(iv) If µ is the geometric distribution Geom(p), then

µ̂(t) =

∞∑
k=1

(1− p)k−1peitk =
peit

1− (1− p)eit
.

(v) If µ is the Poisson distribution Pois(λ), then

µ̂(t) =

∞∑
k=0

e−λ
λk

k!
eitk = eλe

it−λ.

(vi) If µ is the uniform distribution U[a, b], then

µ̂(t) =
1

b− a

∫ b

a
eitxdx =

eitb − eita

itb− ita
.

(vii) If µ is the exponential distribution Exp(λ), then

µ̂(t) =

∫ ∞
0

λe−λxeitxdx =
λ

λ− it
.
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(viii) If µ is the normal distribution N(a, σ2), then

µ̂(t) =

∫ ∞
−∞

1√
2πσ

e−
(x−a)2

2σ2 eitxdx =

∫ ∞
−∞

1√
2π
e−

y2

2 eit(a+σy)dy

= e−
σ2

2
t2+iat

∫ ∞
−∞

1√
2π
e−

1
2

(y−itσ)2dy = e−
σ2

2
t2+iat.

Here the last equality follows from contour integral in complex analysis. The statement

holds true even if σ = 0. When µ is N(0, 1), the characteristic function is e−
t2

2 .

We now study some applications of Theorem 4.3.

Theorem (weak law of large numbers for L1). Let ζ, ζ1, ζ2, . . . be an i.i.d. sequence random

variables in L1. Let Sn =
∑n

j=1 ζj. Then 1
nSn

P→ Eζ.

Proof. Let φ be the characteristic function for ζ. Since ζ ∈ L1, φ ∈ C1, φ(0) = 1 and
φ′(0) = iEζ. The characteristic function for 1

nSn is φ(t/n)n = exp(n log φ(t/n)), which tends

to exp(t ddt(log φ)|0) = eitφ
′(0)/φ(0) = eitEζ as n → ∞. Since eitEζ is the characteristic function

for δEζ , by Theorem 3.4, Law( 1
nSn)→ δEζ . So 1

nSn
P→ Eζ.

Proposition 4.9 (central limit theorem). Let ζ, ζ1, ζ2, . . . be i.i.d. random variables in L2 with
Eζ = 0 and Eζ2 = 1. Let Sn =

∑n
j=1 ζj. Then Law(n−1/2Sn)

w→N(0, 1).

Proof. Let φ be the characteristic function for ζ. Since ζ ∈ L2, we have φ ∈ C2, φ(0) =
1, φ′(0) = iEζ = 0, and φ′′(0) = −Eζ2 = −1. The characteristic function for n−1/2Sn is
φ(n−1/2t)n = exp(n log φ(t/n1/2)). By Taylor theorem, as n→∞,

φ(
t√
n

) = 1− t2

2n
+ o(

1

n
),

which implies that

log φ(
t√
n

) = − t
2

2n
+ o(

1

n
).

So we have

φ(n−1/2t)n = exp(n log φ(t/n1/2))→ e−
t2

2 , as n→∞.

Since e−
t2

2 is the characteristic function for N(0, 1). The proof is complete by Theorem 4.3.

Theorem (Poisson limit theorem). For any λ > 0, as n → ∞, the binomial distributions
B(n, λ/n) tend weakly to the Poisson distribution Pois(λ).

Proof. The characteristic function for B(n, λ/n) is

φn = (1− λ/n+ λ/neit)n → eλe
it−λ, as n→∞.

Since eλe
it−λ is the characteristic function for Pois(λ), the proof is done.
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The rest of this chapter is devoted to the proof of Theorem 4.3. Recall the definition of
tightness: a family of probability measures µt, t ∈ T , on a topological space S is tight if for
any ε > 0, there is a compact set K ⊂ S such that µtK

c < ε for all t ∈ T . When S = Rd,
this is equivalent to limr→∞ supt∈T µt{x : |x| ≥ r} = 0. If, in addition, T = N, this is further
equivalent to limr→∞ lim supn µn{x : |x| ≥ r} = 0.

Lemma 3.8. A weakly convergent sequence of probability measures on Rd is tight.

This is a special case of Prokhorov Theorem. But we can now give a direct proof.

Proof. For any r > 1, we define a bounded continuous function fr on Rd by fr(x) = 0 if
|x| ≤ r − 1, fr(x) = 1 if |x| ≥ r, and fr(x) = |x| − (r − 1) if r − 1 ≤ |x| ≤ r. Then

lim sup
n

µn{x : |x| ≥ r} ≤ lim
n
µnfr = µfr ≤ µ{x : |x| ≥ r − 1}.

Here the RHS tends to 0 as r →∞. So limr→∞ lim supn µn{x : |x| ≥ r} = 0.

Lemma 3.9. Let ζ1, ζ2, . . . be random vectors in Rd with laws µ1, µ2, . . . . Then {µn} is tight

iff cnζn
P→ 0 for any constants c1, c2, · · · ≥ 0 with cn → 0.

Proof. First assume that {µn} is tight. Let cn → 0. Fix any r, ε > 0. We note that |cnr| ≤ ε
for all but finitely many n. So |cnζn| > ε implies |ζn| > r for all but finitely many n. So we get

lim supP{|cnζn| > ε} ≤ lim supP{|ζn| > r}.

Here the RHS tends to 0 as r →∞, and the LHS does not depend on r. So lim supP{|cnζn| >
ε} ≤ 0, which implies that limP{|cnζn| > ε} = 0. Since this holds for any ε > 0, we get

cnζn
P→ 0.

If {µn} is not tight. Then we can find ε0 > 0 and a subsequence (µnk) such that P[|ζnk | ≥
k] ≥ ε0 for all k. We may then find c1, c2, · · · ≥ 0 with cn → 0 such that cnk = 1

k . Then
P[|cnkζnk | ≥ 1] ≥ ε0 for all k, which implies that cnζn does not converge to 0 in probability.

Lemma 4.1. For any probability measure µ on R and r > 0, we have

µ{x : |x| ≥ r} ≤ r

2

∫ 2/r

−2/r
(1− µ̂(t))dt; (4.2)

Proof. Let c > 0. By Fubini Theorem and straightforward calculation,∫ c

−c
(1− µ̂(t))dt =

∫ c

−c

∫
R

(1− eitx)µ(dx)dt =

∫
R

∫ c

−c
(1− eitx)dtµ(dx)

=

∫
R

(
t− eitx

ix

)∣∣∣t=c
t=−c

µ(dx) = 2c

∫
R

(
1− sin(cx)

cx

)
µ(dx) ≥ cµ{x : |cx| ≥ 2},

where the last step follows from sinx ≤ 1 ≤ x/2 for x ≥ 2. Letting c = 2
r , we get (4.2).
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Remark . For 1 ≤ k ≤ d, let ek ∈ Rd be the vector whose k-th coordinate is 1 and other
coordinates are 0; let πk be the projection x 7→ xk = ekx from Rd to R. For a probability
measure µ on Rd, and 1 ≤ k ≤ d, let µk = (πk)∗µ. Then we get

µ̂k(t) =

∫
R
eitxµk(dx) =

∫
Rd
eitxkµ(dx) =

∫
Rd
ei(tek)xµ(dx) = µ̂(tek), 1 ≤ k ≤ d.

By Lemma 4.1, we have

µ(Rd \ [−δ, δ]d) ≤
n∑
k=1

µ{x ∈ Rd : |xk| ≥ δ} =
d∑

k=1

µk{x ∈ R : |x| ≥ δ}

≤
d∑

k=1

δ

2

∫ 2/δ

−2/δ
(1− µ̂k(t))dt =

d∑
k=1

δ

2

∫ 2/δ

−2/δ
(1− µ̂(tek))dt. (4.3)

Lemma 4.2. A family {µα} of probability measures on Rd is tight iff {µ̂α} is equicontinuous
at 0, and then {µ̂α} is uniformly equicontinuous on Rd.

Proof. Note that {µα} is tight iff µα(Rd \ [−r, r]d) → 0 as r → ∞, uniformly in α. First,

suppose {µ̂α} is equicontinuous at 0. Then for each 1 ≤ k ≤ d, r
2

∫ 2/r
−2/r(1 − µ̂α(tek))dt → 0 as

r →∞, uniformly in α. By (4.3) we see that {µα} is tight.
Next, suppose {µα} is tight. Let ζα be a random vector with law µα. We compute that for

s, t ∈ Rd,
|µ̂α(s)− µ̂α(t)| = E|ei(s−t)ζα − 1| ≤ E[|(s− t)ζα| ∧ 2].

By Lemma 3.9, for any sequence (αn) of indices and any two sequences (sn) and (tn) in Rd with

|sn − tn| → 0, we get (sn − tn)ζn
P→ 0, which implies by DCT that E[|(sn − tn)ζαn | ∧ 2] → 0,

and so by the above formula, |µ̂αn(sn) − µ̂αm(tn)| → 0. This shows that {µ̂α} is uniformly
equicontinuous on Rd, and in particular is equicontinuous at 0.

We also need the following approximation lemma from Analysis.

Lemma 4.4 (Stone-Weierstrass approximation). Every continuous function f : Rd → R with
period 2π in each coordinate admits a uniform approximation by linear combinations of eikx,
k ∈ Zd.

Proof. We first consider the case d = 1. In this case f has a Fourier series
∑

n∈Z ane
inx, where

an = 1
2π

∫ π
−π f(x)e−inxdx. The truncated series

∑N
n=−N ane

inx is a linear combinations of einx,
n ∈ Z, but may not converge uniformly to f .

The approximation sequence is constructed as follows. Let N ∈ N. Let hN (x) be the sum
of the finite geometric series

hN (x) = ei(1−N)x/2 + ei(3−N)x/2 + · · ·+ ei(N−3)x/2 + ei(N−1)x/2 = ei(1−N)x/2
N−1∑
k=0

eikx.
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It has ratio eix, the leading term ei(1−N)x/2 and the ending term ei(N−1)x/2. We observe that

eix/2hN (x) − e−ix/2hN (x) = eiNx/2 − e−iNx/2, and so hN (x) = eiNx/2−e−iNx/2
eix/2−e−ix/2 = sin(Nx/2)

sin(x/2) .

Calculating hN (x)2 using the series expression, we get

sin2(Nx/2)

sin2(x/2)
= ei(1−N)x

(N−1∑
n=0

eikx
)(N−1∑

m=0

eimx
)

= ei(1−N)x
2N−2∑
k=0

∑
0≤n,m≤N−1:n+m=k

eikx

= ei(1−N)x
2N−2∑
k=0

(N − |N − 1− k|)eikx =
N−1∑
j=1−N

(N − |j|)eijx.

Let b
(N)
n = (1− |n|N ). Then

∑N−1
n=1−N b

(N)
n einx = sin2(Nx/2)

N sin2(x/2)
. We define gN (x) = sin2(Nx/2)

N sin2(x/2)
. Then

gN ≥ 0, and 1
2π

∫ π
−π gN (x)dx = b

(N)
0 = 1.

Let

fN (x) =
1

2π

∫ π

−π
f(x− y)gN (y)dy =

1

2π

∫ π

−π
f(y)gN (x− y)dy

=
∑
n

1

2π

∫ π

−π
f(y)b(N)

n ein(x−y)dy =
∑
n

anb
(N)
n einx.

So fN is a linear combination of eikx, k ∈ Z. To see that fN → f uniformly, we compute

|fN (x)− f(x)| =
∣∣∣ 1

2π

∫ π

−π
(f(x− y)− f(x))gN (y)dy

∣∣∣ ≤ 1

2π

∫ π

−π
|f(x− y)− f(x)|gN (y)dy

=
1

2π

∫ δ

−δ
|f(x− y)− f(x)|gN (y)dy +

1

2π

∫
[−π,π]\[−δ,δ]

|f(x− y)− f(x)|gN (y)dy

≤ sup
|x−z|≤δ

|f(x)− f(z)|+ 2‖f‖ · 1

2π

∫
[−π,π]\[−δ,δ]

gN (y)dy. (4.4)

We note that for any fixed δ ∈ (0, π), 1
2π

∫
[−π,π]\[−δ,δ] gN (y)dy → 0 as N →∞ because

sup
y∈[−π,π]\[−δ,δ]

gN (y) ≤ 1

N sin2(δ/2)
.

Given any ε > 0, we may first choose δ ∈ (0, π) such that sup|x−z|≤δ |f(x)−f(z)| < ε
2 , and then

choose N0 such that for N > N0, the second term of (4.4) is also less than ε
2 .

For general dimension d, we let g
(d)
N (x) =

∏d
k=1 gN (xk). Then g

(d)
N ≥ 0, is a linear combina-

tion of eikx, k ∈ Zd, and satisfies 1
(2π)d

∫
[−π,π]d g

(d)
N (y)dy = 1. Let

fN (x) =
1

(2π)d

∫
[−π,π]d

f(x− y)g
(d)
N (y)dy =

1

(2π)d

∫
[−π,π]d

f(y)g
(d)
N (x− y)dy.
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Then each fN is a linear combination of eikx, k ∈ Zd. A similar computation with [−δ, δ]d and
[−π, π]d in place of [−δ, δ] and [−π, π] shows that

|fN (x)− f(x)| ≤ sup
maxk |xk−zk|≤δ

|f(x)− f(z)|+ 2‖f‖
(2π)d

∫
[−π,π]d\[−δ,δ]d

g
(d)
N (y)dy.

To conclude that fn → f uniformly, we need to show that for any δ ∈ (0, π),∫
[−π,π]d\[−δ,δ]d

g
(d)
N (y)dy → 0, as N →∞. (4.5)

Now we do not have supy∈[−π,π]d\[−δ,δ]d g
(d)
N (y) → 0 as N → ∞. However, if we let Uk = {x ∈

[−π, π]d : |xk| ≥ δ}, 1 ≤ k ≤ d, then the LHS of (4.5) is

≤
d∑

k=1

∫
Uk

g
(d)
N (y)dy = d

(∫
[−π,π]

gN (y)dy
)d−1

·
∫

[−π,π]\[−δ,δ]
gN (y)dy ≤ d(2π)d

N sin2(δ/2)
.

So we get (4.5) and conclude the proof.

Proof of Theorem 4.3. If µn
w→ µ, then for each t → Rd, since x 7→ eitx is bounded and

continuous on Rd, we get µ̂n(t)→ µ̂(t). By Lemma 3.8, {µn} is tight. By Lemma 4.2, {µ̂n} is
uniformly equicontinuous on Rd. So µ̂n → µ̂ uniformly on every bounded set.

Suppose now µ̂n → µ̂ pointwise. By (4.3) we have

lim sup
n

µn(Rd \ [−r, r]d) ≤ lim sup
n

d∑
k=1

r

2

∫ 2/r

−2/r
(1− µ̂n(tek))dt =

d∑
k=1

r

2

∫ 2/r

−2/r
(1− µ̂(tek))dt,

where the equality follows from DCT. Since µ̂ is continuous at 0, the RHS tends to 0 as r →∞,
which shows that {µn} is tight.

Given any ε > 0, we may then choose r > 0 so large such that µn{|x| ≥ r} < ε for each n
and µ{|x| ≥ r} < ε. Now fix f ∈ Cb(Rd). We need to show that µnf → µf . By the definition
of µ̂n and µ̂, we know this is true if f is of the form x 7→ eitx for some t ∈ Rd, or is a linear
combination of such functions. Let m = ‖f‖, the supernorm of f . Let h ∈ C(Rd) be such that
0 ≤ h ≤ 1, h ≡ 1 on {|x| ≤ r}, and h ≡ 0 on Rd \ (−πr, πr)d. Then ‖hf‖ ≤ m, hf agrees
with f in {|x| ≤ r}, and vanishes outside (−πr, πr)d. So we may extend hf from (−πr, πr)d to
f̃ ∈ C(Rd), which has period 2πr in each coordinate. Then f̃ agrees with f on {|x| ≤ r}, and
‖f̃‖ = ‖hf‖ ≤ m. By Lemma 4.4 there exists some linear combination g of eikx/r, k ∈ Zd, such
that ‖f̃ − g‖ < ε. By earlier discussion, µng → µg. For any n ∈ N,

|µnf − µng| ≤ µn{|x| ≥ r}‖f − f̃‖+ ‖f̃ − g‖ ≤ 2mε+ ε,

and similarly for µ. Thus,

|µnf − µf | ≤ |µng − µg|+ 2(2m+ 1)ε, n ∈ N.

Letting n→∞ and then ε→ 0, we get µnf → µf . Since f ∈ Cb is arbitrary, we get µn
w→ µ.

Exercise . Problems 6, 14 of Exercises of Chapter 4.
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5 Conditioning and Disintegration

We now study conditioning. We still fix a probability space (Ω,A,P). Suppose B ∈ A is such
that PB > 0. We may then define a conditional probability

P[A|B] =
P[A ∩B]

P[B]
, A ∈ A.

It is easy to see that P[·|B] is a probability measure on (Ω,A). The expectation w.r.t. this
probability measure is then given by

E[ζ|B] =
E[1Bζ]

P[B]
.

We want to extend the above concept and define conditional expectation E[·|F ], where F
is a sub-σ-algebra of A. To motivate the definition, we suppose B1, . . . , Bn is a measurable
partition of Ω such that P[Bk] > 0 for each 1 ≤ k ≤ n. They together generate a sub-σ-algebra
FB, each element is a union of some Bk’s. Given an integrable random variable ζ, consider its
conditional expectation given Bk, we get n real values E[ζ|B1], . . . ,E[ζ|Bn]. We now define a
new random variable ζB on Ω by

ζB =
n∑
k=1

E[ζ|Bk]1Bk . (5.1)

Then ζB is FB-measurable, and for any Bk,

E[1BkζB] = E[ζ|Bk]P[Bk] = E[1Bkζ].

Since every A ∈ FB is a disjoint union of some Bk’s, we get

E[1AζB] = E[1Aζ], ∀A ∈ FB (5.2)

On the other hand, suppose ζB is an FB-measurable random variable and satisfies (5.2). Then
ζB takes constant value on each Bk, and so can be expressed as

∑
k ck1Bk for some c1, . . . , cn ∈

R. Taking A = Bk in (5.2), we get ckP[Bk] = E[1Bkζ], which implies that ck = E[ζ|Bk]. So ζB
is given by (5.1), and we can reveal E[ζ|Bk] for each k from ζB.

Definition . For a sub-σ-algebra F of A and ζ ∈ L1(A,P), we use E[ζ|F ] or EFζ to denote an
element η ∈ L1(F ,P), which satisfies that

E[1Aζ] = E[1Aη], ∀A ∈ F . (5.3)

For A ∈ A, we define PFA = P[A|F ] as E[1A|F ]. If η is a random element, then we define
E[ζ|η] = Eηζ as E[ζ|σ(η)], and define P[A|η] = PηA as E[1A|σ(η)].
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Theorem 5.1, Part I. The EFζ as in the definition always exists and is a.s. unique. Moreover,
the map ζ 7→ EFζ is a bounded linear map from L1(A) to L1(F) with ‖EFζ‖1 ≤ ‖ζ‖1, and if
ζ ≥ 0 then a.s. EFζ ≥ 0.

Proof. We may define a signed measure ν on (Ω,A) by dν = ζdP. Then ν � P on A, and
so we also have ν � P on F . Applying Radon-Nikodym Theorem to P and ν on (Ω,F), we
get an F-measurable random variable η, which is integrable w.r.t. P, such that dν = ηdP on
F . Let A ∈ F . From dν = ηdP on F , we get E[1Aη] = ν(A). From dν = ζdP on A, we get
E[1Aζ] = ν(A). Thus, E[1Aη] = E[1Aζ]. So we get the existence of EFζ.

Now suppose another F-measurable random variable η′ satisfies E[1Aη
′] = E[1Aζ] for any

A ∈ F . Then η and η′ are both F-measurable, and for any A ∈ F , E[1Aη
′] = E[1Aζ] = E[1Aη].

So η′ = η a.s., and we get the a.s. uniqueness of EFζ. In particular, we see that EFζ is a
uniquely defined element in L1(F).

If ζ ≥ 0, then the above ν is a positive measure, which implies that the Radon-Nikodym
derivative dν/dP = EFζ on F is a.s. nonnegative.

To see that the map ζ 7→ EFζ is linear, let ζ, η ∈ L1(A) and a, b ∈ R. Let ζ ′ = EFζ and
η′ = EFη. Then for any A ∈ F , we have

E[1A(aζ + bη)] = aE[1Aζ] + bE[1Aη] = aE[1Aζ
′] + bE[1Aη

′] = E[1A(aζ ′ + bη′)].

So we get E[aζ + bη|F ] = aEFζ + bEFη.
To see that ‖EFζ‖1 ≤ ‖ζ‖1, we write ζ = ζ+−ζ− such that ζ± ≥ 0 and ‖ζ‖1 = ‖ζ+‖1+‖ζ−‖1.

Let ζ ′± = EFζ± ≥ 0. Then EFζ = ζ ′+ − ζ ′−, and so

‖EFζ‖1 ≤ ‖ζ ′+‖1 + ‖ζ ′−‖1 = E[ζ ′+] + E[ζ ′−] = E[ζ+] + E[ζ−] = ‖ζ+‖1 + ‖ζ−‖1 = ‖ζ‖1.

We refer to the property (5.3) as the averaging property; to the property that ζ ≥ 0 implies
E[ζ|F ] ≥ 0 as positivity; to the property that ζ 7→ EFζ is a linear map as linearity; and to the
property that ‖EFζ‖1 ≤ ‖ζ‖1 as L1-contractivity. Note that if we take A = Ω in (5.3), then we
get E[ζ] = E[E[ζ|F ]]. When F is generated by a partition {B1, . . . , Bn}, we get the well-known
formula E[ζ] =

∑n
k=1 P[Bk]E[ζ|Bk].

Since EFζ is only a.s. unique, any formula involves conditional expectation only holds almost
surely no matter whether or not we use the phrase “a.s.”.

For any A ∈ A, since 0 ≤ 1A ≤ 1, we have 0 ≤ PFA ≤ 1. Since 1Ω ≡ 1 and 1∅ ≡ 0, we get
a.s. PFΩ = 1 and PF∅ = 0.

Remark . There are two trivial cases. If F = A, since ζ is A-measurable, we get EAζ = ζ. If
F = {Ω, ∅}, then E[ζ|{Ω, ∅}] is a constant, which equals E[ζ].

Remark . If ζ |= F , then EFζ = Eζ. In fact, for any A ∈ F , since 1A |= ζ, we have E[1Aζ] =
E[1A]Eζ = E[1AEζ]. Since Eζ is F-measurable, we get EFζ = Eζ.
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Remark . We have a.s. EFζ = ζ iff ζ is FP-measurable, where FP is the P-completion of F .
If ζ is FP-measurable, then there is an F-measurable random variable ζ ′ such that a.s. ζ ′ = ζ.
So for any A ∈ F ,

∫
A ζ
′dP =

∫
A ζdP, which implies that a.s. EFζ = ζ ′ = ζ. On the other

hand, if a.s. EFζ = ζ, we take ζ ′ = EFζ. Then ζ ′ is F-measurable and a.s. ζ ′ = ζ. So ζ is
FP-measurable.

Example . Suppose FB is generated by a measurable partition {B1, . . . , Bn} of Ω. Now we
do not assume that P[Bk] > 0 for every k. Since EFBζ is FB-measurable, it is constant, say
ck, on each Bk. From E[1BkEFBζ] = E[1Bkζ] we get ckP[Bk] = E[1Bkζ]. So if P[Bk] > 0, then
ck = E[ζ|Bk]; if P[Bk] = 0, then ck can be any number. The choice of ck does not affect the a.s.
uniqueness of E[ζ|FB].

Theorem 5.1, Part II. We use the setup as before.

(i) If ζ ∈ L∞, then EFζ ∈ L∞, and ‖EFζ‖∞ ≤ ‖ζ‖∞.

(ii) For p ∈ (1,∞), if ζ ∈ Lp, then EFζ ∈ Lp and ‖EFζ‖p ≤ ‖ζ‖p.

(iii) If G ⊂ F is another σ-algebra, then EGEFζ = EGζ.

(iv) If 0 ≤ ζn ↑ ζ ∈ L1, then E[ζn|F ] ↑ E[ζ|F ].

Proof. (i) Let M = ‖ζ‖∞, then a.s. M ± ζ ≥ 0, which implies that a.s.

0 ≤ EF [M ± ζ] = M ± EFζ.

So a.s. −M ≤ EFζ ≤M , i.e., ‖EFζ‖∞ ≤M = ‖ζ‖∞.
(ii) Since the map EF is a contraction from L1(A) to L1(F), and a contraction from L∞(A)

to L∞(F), by Marcinkiewicz interpolation theorem, it is also a contraction from Lp(A) to Lp(F)
for any p ∈ [1,∞]. This result also follows from Jensen’s inequality below.

(iii) Let ζ ′ = EFζ and ζ ′′ = EGζ ′. Then ζ ′′ is G-measurable, and for any A ∈ G,

E[1Aζ
′′] = E[1Aζ

′] = E[1Aζ.

So we get ζ ′′ = EGζ.
(iv) From 0 ≤ ζ1 ≤ ζ2 ≤ · · · ≤ ζ we get a.s.

0 ≤ E[ζ1|F ] ≤ E[ζ2|F ] ≤ · · · ≤ E[ζ|F ].

Let ζ ′ = limn→∞ E[ζn|F ]. Then ζ ′ is F-measurable and a.s. ζ ′ ≤ E[ζ|F ]. By Monotone
convergence theorem and the averaging property,

E[ζ ′] = lim
n→∞

E[E[ζn|F ]] = lim
n→∞

E[ζn] = E[ζ] = E[E[ζ|F ]].

This equality together with a.s. ζ ′ ≤ E[ζ|F ] implies that a.s. E[ζ|F ] = ζ ′ = limn→∞ E[ζn|F ].
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We refer to (i) and (ii) as the L∞-contractivity and Lp-contractivity, to (iii) as the chain
rule, and to (iv) as the monotone convergence property.

Theorem 5.2, Part III. (i) Let ζ ∈ L1(A) and let η be an F-measurable random variable
such that ηζ ∈ L1(A). Then ηE[ζ|F ] ∈ L1(F) and

E[ηζ|F ] = ηEFζ. (5.4)

(ii) Let p, q ∈ [1,∞] be such that 1
p + 1

q = 1. Let η ∈ Lp(A) and ζ ∈ Lq(A). Then ζEFη,

ηEFζ, and EFζEFη are all integrable, and have the same expectation, i.e.,

E[ζEFη] = E[ηEFζ] = E[EFζEFη]. (5.5)

Proof. (i) We first assume that η is an F-measurable simple random variable. Then there are
A1, . . . , An ∈ F and c1, . . . , cn ∈ R such that η =

∑n
k=1 ck1Ak . Then ηEFζ ∈ L1(F) because η

is bounded and EFζ ∈ L1(F). Moreover, for any A ∈ F ,

E[1AηEFζ] = E[
n∑
k=1

ck1A∩AkE
Fζ] =

n∑
k=1

ckE[1A∩Akζ] = E[1Aηζ].

So we get (5.4). Next, we assume that ζ, η ≥ 0, but do not assume that η is simple. Then we
can find a sequence of nonnegative F-measurable simple random variables (ηn) with ηn ↑ η.
For each n, we have ηnEFζ ∈ L1(F) and E[ηnζ|F ] = ηnEFζ. Since ηnζ ↑ ηζ, and ηζ ∈ L1(A),
we get

E[ηζ|F ] = lim
n

E[ηnζ|F ] = lim
n
ηnE[ζ|F ] = ηE[ζ|F ].

So we again get (5.4). Finally, we do not assume that ζ, η ≥ 0. We may write ζ = ζ+ − ζ−
and η = η+ − η−. Then for any σ1, σ2 ∈ {+,−}, from |ησ1 | ≤ |η| and |ζσ2 | ≤ |ζ| we get
ησ1ζσ2 ∈ L1(A). The previous result implies that (5.4) holds for ησ1 and ζσ2 . Using the
linearity, we get (5.4) for η and ζ.

(ii) Since η ∈ Lp(A) and ζ ∈ Lq(A), we get EFη ∈ Lp(F) by Lp-contractivity of EF
and then ζEFη ∈ L1(A) by Hölder’s inequality. Applying (i) with E[η|F ] in place of η, we get
E[ζEFη|F ] = EFζEFη. Symmetrically, we get E[ηEFζ|F ] = E[η|F ]E[ζ|F ]. Taking expectation,
we get (5.5).

We refer to (i) as the pull-out property, and to (ii) as the self-adjointness. From (ii) we see
that, for 1 ≤ p <∞, the adjoint operator of the conditional expectation EF : Lp(A)→ Lp(F)
is the conditional expectation EF : Lq(A) → Lq(F). When p = 2, EF : L2(A) → L2(F) is in
fact the orthogonal projection onto L2(F).

Lemma 5.2 (local property). Let F and G be two sub-σ-algebras of A. Let ζ, η be two integrable
random variables. Suppose there is A ∈ F ∩ G such that A ∩ F = A ∩ G and a.s. ζ = η on A.
Then a.s. EFζ = EGη on A.
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Proof. Since A ∈ F ∩ G and A ∩ F = A ∩ G, both 1AEFζ and 1AEGη are F ∩ G-measurable.
For any B ∈ F ∩ G, by the averaging property and that a.s. ζ = η on A,

E[1B1AEFζ] = E[1A∩BEFζ] = E[1A∩Bζ] = E[1A∩Bη] = E[1B1AEGη].

Since this holds for any B ∈ F ∩G, we get a.s. 1AEFζ = 1AEGη. So we get the conclusion.

Lemma 5.5 (uniformly integrability, Doob). For any ζ ∈ L1, the family EFζ, where F is any
sub-σ-algebra of A, are uniformly integrable.

Proof. By the L1-contractivity, {EFζ} is L1-bounded. In order to show that it is uniformly
integrable, by Lemma 3.10, it suffices to show that E[1AEFζ] → 0 as A ∈ A and PA → 0,
uniformly in F . So we need to show that if F1,F2, . . . are sub-σ-algebras of A, and A1, A2, · · · ∈
A satisfy PAn → 0, then E[1An EEFnζ] → 0. By the self-adjointness, Since ζ ∈ L1 and
1An ∈ L∞,

E[1AnEFnζ] = E[ζEFn [1An ]].

Since E[EFn [1An ]] = PAn → 0, we know that EFn [1An ] → 0 in L1. So EFn [1An ]
P→ 0. Thus,

ζEFn [1An ]
P→ 0. By dominated convergence theorem (for convergence in probability), we get

E[ζEFn [1An ]]→ 0, as desired.

We are going to use conditional expectation to define conditional distribution (or law).
Suppose F is a sub-σ-algebra of A, and ζ is a random element in a measurable space (S, S).
For every A ∈ S, PF [ζ ∈ A] is an element in L1(F), which satisfies a.s. 0 ≤ PF [ζ ∈ A] ≤ 1,
PF [ζ ∈ S] = 1, and PF [ζ ∈ ∅] = 0. Suppose for each A ∈ S, we choose a representative, say
ζA, of PF [ζ ∈ A]. Such ζA is an F-measurable random variable. We may choose ζA such that
0 ≤ ζA ≤ 1, ζS ≡ 1, and ζ∅ ≡ 0. Consider the map ν : Ω× S → [0, 1] defined by

ν(ω,A) = ζA(ω).

We find that, for any A ∈ S, ν(·, A) is an F-measurable random variable. On the other hand,
by the linearity and monotone convergence property of conditional expectation, we have

a.s. ν(·, A) =

∞∑
n=1

ν(·, An), if A is a disjoint union of A1, A2, · · · ∈ S.

This means that there is an exceptional event N depending on A1, A2, . . . with PN = 0 such
that

µ(ω,A) =
∞∑
n=1

ν(ω,An), ∀ω ∈ Ω \N.. (5.6)

Since there are uncountably many such sequences, in general, we may not be able to find a
common exceptional null set, which is an F-measurable set N with PN = 0, such that (5.6)
holds for any A,A1, A2, · · · ∈ A such that A is a disjoint union of A1, A2, . . . . However if such
N does exist, we may modify the value of each ζA as follows. Pick s0 ∈ S. For every A ∈ S, we

63



do not change the value of ζA on Ω \N , but for ω ∈ N , we now define ζA(ω) = 1A(s0) = δs0A.
Then the new ζA are still representatives of PF [ζ ∈ A], and (5.6) holds true for all ω ∈ Ω. So
we find that ν is a probability kernel from (Ω,F) to (S, S).

Definition . Suppose ν is a probability kernel from (Ω,F) to (S, S) and satisfies that for any
A ∈ S, a.s.

PF [ζ ∈ A] = ν(·, A).

Then ν is called a (regular) conditional distribution (or law) of ζ, given F . When such ν exists,
we write it as Law(ζ|F) or LawF (ζ).

A conditional law is convenient for us. Suppose further that η is a random element in
another measurable space (T, T ). We may then consider conditional law of ζ given σ(η). If such
a conditional law ν exits, then it is a probability kernel from (Ω, σ(η)) to (S, S). Recall that, for
any probability kernel µ from (T, T ) to (S, S), (ω,A) 7→ µ(η(ω), A) is a probability kernel from
(Ω, σ(η)) to (S, S). It is desirable to have a probability kernel µ such that ν(ω,A) = µ(η(ω), A).
Then for any A ∈ S, we have

Pη[ζ ∈ A] = µ(η,A), a.s. (5.7)

When such µ exists, we then have the existence of Law(ζ|η), which equals µ(η, ·). The following
theorem concerns the existence of such kernel.

Theorem 5.3. Let (S, S) and (T, T ) be two measurable spaces, where S is a Borel space. Let
ζ and η be two random elements in S and T , respectively. Then there is a probability kernel
µ from (T, T ) to (S, S) such that for any A ∈ S, (5.7) holds. Moreover, such µ is Law(η)-a.s.
unique, which means that if another µ′ satisfies the same property, then there exists N ∈ T with
P ◦ η−1N = 0 such that µ′ ≡ µ on (T \N)× S.

Corollary . If ζ is a random element in a Borel space (S, S), then for any sub-σ-algebra F of
A, the conditional law Law(ζ|F) exists and is a.s. unique.

Proof of the corollary. Take (T, T ) = (Ω,F). Let η : Ω→ Ω be the identity. Since F ⊂ A, η is
A/F-measurable. We have Law(η) = P and σ(η) = F . By Theorem 5.3, there is a probability
kernel µ from (Ω,F) to (S, S) such that for any A ∈ S, a.s. PF [ζ ∈ A] = Pη[ζ ∈ A] = µ(η,A) =
µ(·, A). So µ = Law(ζ|F). By Theorem 5.3, such µ is Law(η)-a.s. unique. Since Law(η) = P,
such µ is a.s. unique.

Proof of Theorem 5.3. We may assume that S ∈ B(R). Then ζ is a random variable. For every
r ∈ Q, we consider a representative of P[ζ ≤ r|η], which is an η-measurable random variable
taking values in [0, 1]. By Lemma 1.13, for each r ∈ Q, there is a random variable fr defined
on T such that

a.s. Pη[ζ ≤ r] = fr(η). (5.8)

For any r1, r2 ∈ Q with r1 < r2, by positivity we have a.s. fr1(η) ≤ fr2(η), which implies
that P◦η−1-a.s. fr1 ≤ fr2 . By monotone convergence property, we have a.s. limn→+∞ fn(η) = 1
and limn→+∞ f−n(η) = 0. Thus, P ◦ η−1-a.s. limZ3n→+∞ fn = 1 and limZ3n→−∞ fn = 0. Since
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there are at most countably many pairs (r1, r2) with r1, r2 ∈ Q, we may find N ∈ T with
Pη−1N = 0 such that for t ∈ T \ N , Q 3 r 7→ fr(t) is increasing, and limZ3n→+∞ fn(t) = 1
and limZ3n→−∞ fn(t) = 0. Then we get limQ3r→+∞ fr(t) = 1 and limQ3r→−∞ fr(t) = 0 for
t ∈ T \N . We define a measurable function F : T × R→ [0, 1] such that

F (t, x) =

{
infQ3r>x fr(t), t ∈ T \N ;
1[0,∞)(x), t ∈ N.

Then for every t ∈ T , F (t, ·) is increasing and right continuous and satisfies limx→+∞ F (t, x) = 1
and limx→−∞ F (t, x) = 0, and so is a distribution of some probability measure m(t, ·) on R
(when t ∈ N , m(t, ·) = δ0 by the construction). From the measurability of F , we see that for
any x ∈ R, t 7→ m(t, (−∞, x]) is T -measurable. Using a monotone class argument, we conclude
that m is a probability kernel from T to R.

By (5.8) and the monotone convergence property of conditional expectation, for any x ∈ R,
a.s.

m(η, (−∞, x]) = F (η, x) = inf
Q3r>x

Pη[ζ ≤ r] = Pη[ζ ∈ (−∞, x]].

Using a monotone class argument based on the a.s. monotone convergence property, we may
extend the last relation to

m(η,B) = Pη[ζ ∈ B] a.s. ∀B ∈ B(R). (5.9)

In particular, we have a.s. m(η, Sc) = 0, i.e., P ◦ η−1-a.s. m(·, Sc) = 0. Taking s0 ∈ S, (5.9)
remains true if m is replaced by the kernel µ from T to S defined by

µ(t, ·) =

{
m(t, ·), if m(t, Sc) = 0;
δs0 , if m(t, Sc) > 0.

Such µ is what we need. If there is another probability kernel µ′ from T to S with the stated
property, then for any r ∈ Q, a.s.

µ(η, (−∞, r]) = Pη[ζ ≤ r] = µ′(η, (−∞, r]).

Since Q is countable, we can exchange “for any r ∈ Q” with “a.s.”. A monotone class argument
yields a.s. µ(η, ·) = µ′(η, ·), and so P ◦ η−1-a.s. µ = µ′.

There are two trivial cases. If F = {Ω, ∅}, then a probability kernel from (Ω,F) to (S, S)
is just a probability measure on (S, S). In this case, the conditional law Law(ζ|F) agrees with
Law(ζ), which is often referred as the unconditional law of ζ. Another trivial case is F = A.

Exercise . Find the conditional law Law(ζ|A).

Recall that if f : S → R is measurable such that E|f(ζ)| <∞, then

Ef(ζ) =

∫
S
f(s) Law(ζ)(ds).

The following theorem extends this equality to conditional laws.
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Theorem 5.4 (disintegration). Let ζ and η be random elements in measurable spaces (S, S) and
(T, T ), respectively. Let F ⊂ A be a σ-field such that η is F-measurable. Suppose Law(ζ|F)
exists. Let f be a measurable function on S × T such that E|f(ζ, η)| < ∞. Then for a.s.
ω ∈ Ω, s 7→ f(s, η(ω)) is integrable w.r.t. Law(ζ|F)(ω, ·), ω 7→

∫
f(s, η(ω)) Law(ζ|F)(ω, ds) is

F-measurable, and equals E[f(ζ, η)|F ](ω). In short, this means a.s.

E[f(ζ, η)|F ] =

∫
f(s, η) Law(ζ|F)(ds). (5.10)

Integrating (5.10), we get the commonly used formula

E[f(ζ, η)] = E
∫
f(s, η) Law(ζ|F)(ds). (5.11)

When η disappears, (5.10 becomes E[f(ζ)|F ] =
∫
f(s) Law(ζ|F )(ds).

Proof. We first prove (5.11). We write ν for Law(ζ|F). First, suppose f = 1B×C , where B ∈ S
and C ∈ T . Then

∫
f(s, η)ν(ds) = 1η∈CνB is F-measurable because η ∈ F . By η ∈ F and the

pull-out property of conditional expectation,

E[f(ζ, η)] = E[EF [1ζ∈B1η∈C ]] = E[1η∈CPF [ζ ∈ B]] = E[1η∈CνB] = E
∫
f(s, η)ν(ds).

So we proved (5.11) for f = 1B×C . By a monotone class argument, we then conclude that, if f
is an indicator function, then

∫
f(s, η)ν(ds) is F-measurable and (5.11) holds. Using linearity

and monotone convergence, we see that the measurability and (5.11) holds for any measurable
function f ≥ 0. In particular, if Ef(ζ, η) < ∞, we find that a.s.

∫
f(s, η)ν(ds) < ∞. So

s 7→ f(s, η) is a.s. integrable w.r.t ν, and the measurability holds outside a null set on which∫
f(s, η)ν(ds) =∞.

We now return to (5.10). Fix a measurable f : S × T → R+ with Ef(ζ, η) < ∞, and let
A ∈ F . Then ηA := (η,1A) is an F-measurable random element in T × {0, 1}. Note that
1Af(ζ, η) can be expressed as f̃(ζ, ηA) such that f̃(s, (t, 1)) = f(s, t) and f̃(s, (t, 0)) = 0. Such
f̃ is S × (T × {0, 1})-measurable. Applying (5.11) with T × {0, 1} in place of T , ηA in place of
η, and f̃ in place of f , we get

E[1Af(ζ, η)] = E[f̃(ζ, ηA)] = E
∫
f̃(s, ηA)ν(ds) = E[1A

∫
f(s, η)ν(ds)].

Since
∫
f(s, η)ν(ds) is F-measurable, we get (5.10) for f ≥ 0. The general result follows by

taking differences.

Remark . For two random elements ζ and η in T and S, respectively, if Law(ζ|η) exists and is
expressed by µ(η, ·) for a probability kernel µ from T to S, then we may recover the Law(ζ, η)
using µ and ν := Law(η). For any A ∈ S × T , applying (5.11) to F = σ(η) and f = 1A, we get

P[(ζ, η) ∈ A] = E
∫
S

1A(s, η)µ(η, ds) =

∫
T
ν(dt)

∫
S

1A(s, t)µ(t, ds).
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Thus, ν⊗µ as a probability measure on T ×S is the law of (η, ζ). When ζ |= η, µ is the constant
Law(ζ), and ν ⊗ µ is just the product measure Law(η)× Law(ζ).

Example . Suppose ζ and η are two random variables such that the law of (ζ, η) is absolutely
continuous w.r.t. the Lebesgue measure on R2, and the Radon-Nikodym derivative is f . Define
fη on R by fη(y) =

∫
R f(x, y)dx ∈ [0,∞]. Then fη is the density of the law of η against the

Lebesgue measure on R because for any B ∈ B,

P[η ∈ B] = P[(ζ, η) ∈ R×B] =

∫
B
dy

∫
R
dxf(x, y) =

∫
B
fη(y)dy.

So Law(η)-a.s. fη ∈ (0,∞). Now we define a probability kernel µ from R to R such that for
y ∈ R and A ∈ B, if fη(y) ∈ (0,∞), then

µ(y,A) =
1

fη(y)

∫
A
f(x, y)dx;

and otherwise, µ(y,A) = δ0(A). This means that for Law(η)-a.s. all y, µ(y, ·) has a density,

which is f(x,y)
fη(y) , w.r.t. the Lebesgue measure. The choice of µ(y, ·) when fη(y) ∈ {0,∞} is not

important. We claim that Law(ζ|η) = µ(η, ·). To see this, note that for any A,B ∈ B, letting
B′ = B ∩ f−1

η ((0,∞)), we get

E[1η∈B1ζ∈A] = E[1η∈B′1ζ∈A] =

∫
B′

∫
A
f(x, y)dxdy =

∫
B′
fη(y)

∫
A

f(x, y)

fη(y)
dxdy

=

∫
B′
fη(y)µ(y,A)dy = E[1B′µ(η,A)] = E[1Bµ(η,A)].

For a fixed A ∈ B, since the above formula holds for any B ∈ B, we get a.s. P[ζ ∈ A|η] = µ(η,A).
Since this holds for any A ∈ B, we get Law(ζ|η) = µ(η, ·).

Corollary (Jensen’s inequality for conditional expectation). Let ζ be an integrable random
variable. Let F ⊂ A be a σ-algebra. Let f : R→ R be convex such that f(ζ) is integrable. Then

E[f(ζ)|F ] ≥ f(E[ζ|F ]).

Proof. Applying (5.10) and using the unconditional Jensen’s inequality, we get

E[f(ζ)|F ] =

∫
f(s) Law(ζ|F)(ds) ≥ f

(∫
sLaw(ζ|F)(ds)

)
= f(E[ζ|F ]).

Applying this Jensen’s inequality to f(x) = |x|p, p ∈ (1,∞), we see that for ζ ∈ Lp,
E[|ζ|p] ≥ E[|E[ζ|F ]|p], and so we again get the Lp-contractivity ‖E[ζ|F ]‖p ≤ ‖ζ‖p.
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We now define conditional independence. For sub-σ-algebras G,F1, . . . ,Fn of A, we say
that F1, . . . ,Fn are conditionally independent, given G, if

PG
[ n⋂
k=1

Bk

]
=

n∏
k=1

PG [Bk] a.s., Bk ∈ Fk, 1 ≤ k ≤ n.

If (Ft)t∈T is an infinite family of sub-σ-algebras of A, we say that they are conditionally inde-
pendent, given G, if the same property holds for every finite subcollection Ft1 , . . . ,Ftn . Condi-
tional independence involving events At or random elements ζt, t ∈ T , is defined as before in
terms of the induced σ-algebras σ(At) and σ(ζt). We use |= G to denote pairwise conditional
independence, given G.

If ζ is G-measurable, then for any PG [ζ ∈ A] = 1ζ∈A, and so ζ is conditionally independent
of any F ⊂ A, given G. If Ft, t ∈ T , are all independent of G, then for any B ∈

∨
t∈T Ft,

PG [B] = P[B], and so Ft, t ∈ T , are conditionally independent, given G, iff Ft, t ∈ T , are
unconditionally independent.

Proposition 5.6 (conditional independence, Doob). Let F ,G,H be sub-σ-algebras of A. Then
F |= GH iff

P[H|F ,G] = P[H|G] a.s., ∀H ∈ H. (5.12)

Proof. Assuming (5.12) and using the chain rule and pull-out properties, we get for any F ∈ F
and H ∈ H,

PG [F ∩H] = EG [EF∨G [1F1H ]] = EG [1FEF∨G [1H ]]

= EG [1FP[H|F ,G]] = EG [1FP[H|G]] = PG [H]PG [F ],

which shows that F |= GH. Conversely, if F |= GH, then for any F ∈ F , G ∈ G, and H ∈ H,

E[1F∩GPGH] = E[EG [1F1GEG [1H ]]] = E[1GEG [1H ]EG [1F ]]

= E[1GPG [H]PG [F ]] = E[1GPG [F ∩H]] = E[PG [G ∩ F ∩H]] = P[F ∩ G ∩H].

By a monotone class argument, we get that for any A ∈ F ∨ G,

E[1APGH] = P[A ∩H].

Since PGH is F ∨ G-measurable, we get (5.12).

From now on, for every sub-σ-algebra F of A, we use F to denote the completion of F
w.r.t. P.

Corollary 5.7. Let F ,G,H be sub-σ-algebras of A. Then

(i) F |= GH iff F |= G(G,H);

(ii) F |= GF iff F ⊂ G.
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Proof. (i) By Proposition 5.6, both relations are equivalent to

P[F |G,H] = P[F |G] a.s., ∀F ∈ F .

(ii) If F |= GF , then by Proposition 5.6, for any F ∈ F ,

a.s. 1F = P[F |F ,G] = P[F |G],

which implies that F ∈ G. So F ⊂ G. On the other hand, if F ⊂ G, then for any F ∈ F ,

a.s. P[F |G] = P[F |G] = 1F = P[F |F ,G].

Using Proposition 5.6 again, we get F |= GF .

Proposition 5.8 (chain rule). Let G,H,F1,F2, . . . be sub-σ-algebras of A. Then the following
conditions are equivalent.

(i) H |= G(F1,F2, . . . );

(ii) H |= G,F1,...,FnFn+1 for all n ≥ 0.

Proof. If (i) holds, then for any n ≥ 0, H |= G(F1, . . . ,Fn). By Proposition 5.6, for any H ∈ H
and n ≥ 0, a.s.

P[H|G,F1, . . . ,Fn] = P[H|G] = P[H|G,F1, . . . ,Fn,Fn+1],

which implies (ii) by Proposition 5.6.
Suppose (ii) holds. By Proposition 5.6, for any H ∈ H and n ≥ 0, a.s.

P[H|G,F1, . . . ,Fn] = P[H|G,F1, . . . ,Fn,Fn+1].

When n = 0, this means a.s. P[H|G] = P[H|G,F1]. Thus, for any m ≥ 1, a.s.

P[H|G] = P[H|G,F1, . . . ,Fm].

So by Proposition 5.6,
H |= G(F1, . . . ,Fm), m ≥ 1.

By a monotone class argument, we get (i).

Remark . Taking G = {Ω, ∅}, we find that H |= (F1,F2, . . . ) iff H |= F1,...,FnFn+1 for all n ≥ 0.

Exercise . Do Problems 1, 2, 4, 5, 7, 8 in Chapter 5. Note that Problems 4,5 define EFζ for
any R+-valued random variable (may not be integrable); Problems 7,8 extend Fatou’s lemma
and dominated convergence theorem to conditional expectation.
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6 Filtration and Stopping Times

Consider a measurable space (Ω,A). Let T ⊂ R be an index set. A filtration on T is an
increasing family of σ-algebras Ft ⊂ A, t ∈ T . This means that s < t ∈ T implies that Fs ⊂ Ft.
We understand Ft as the knowledge at the time t with the memory of the past being kept. The
increasingness of Ft reflects the arrow of time. From now on, we use F to denote a filtration
rather than a σ-algebra. Let (S, S) be a measurable space. An S-valued stochastic process
X with index T is a family of measurable mappings Xt, t ∈ T , from Ω to S. It is called
F-adapted if Xt is Ft-measurable for every t ∈ T . If we start with X = (Xt)t∈T , and define
Ft = σ(Xs : s ≤ t), t ∈ T , then F = (Ft) is called the filtration induced by X. It is the smallest
filtration to which X is adapted.

Given a filtration F = (Ft)t∈T , a random variable τ taking values in T ∪ {supT} is called
an F-stopping time or F-optional time if for any t ∈ T , {τ ≤ t} = {ω ∈ Ω : τ(ω) ≤ t} ∈ Ft.
Intuitively, τ is a stopping time means that we can determine whether τ happens using only
the knowledge of the past.

Exercise . Show that if T is countable, then τ is an F-stopping time iff {τ = t} ∈ Ft, ∀t ∈ T .

Exercise . Show that the supremum of a sequence of F-stopping times is an F-stopping time,
and the minimum of finitely many F-stopping times is an F-stopping time. We will see that
the infimum of a sequence of F-stopping times may not be an F-stopping time.

Example . Suppose (Ω,F ,P) is a probability space, and ζ1, ζ2, . . . is an i.i.d. sequence of ran-
dom variables with Bernoulli distribution B(1/2). Let F = (Fn)n∈N be the filtration generated
by ζ = (ζn). Let Xn =

∑n
k=1 ζk, n ∈ N. Then X = (Xn)n∈N is an F-adapted process. Let

N ∈ N. Let τN be the first n such that Xn = N ; if such time does not exist, we set τN = ∞.
Then τN is an F-stopping time because for any n ∈ N,

{τN ≤ n} =
n⋃
k=1

{Xk = N} ∈ Fn.

On the other hand, let σN be the last n such that Xn = N ; and when such time does not exist,
let σN =∞. Then σN is not a stopping time because

{σN = n} = {Xn = N} ∩ {ζn+1 = 1} ∈ Fn+1 \ Fn.

Intuitively, σN is not a stopping time because we need future information to determine whether
it happens.

For an F-stopping time τ , we define

Fτ := {A ∈ A : A ∩ {τ ≤ t} ∈ Ft, ∀t ∈ T}.

It is easy to see that Fτ is a σ-algebra. We understand Fτ as the knowledge at the random
time τ .
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Exercise . Show that for any fixed t0 ∈ T , the constant time τ ≡ t0 is an F-stopping time,
and the σ-algebra Fτ associated with such τ agrees with the Ft0 . Thus, τ and Fτ naturally
extend t and Ft for deterministic times t ∈ T .

Lemma 6.1. For any F-stopping times σ and τ , we have

(i) τ is Fτ -measurable;

(ii) Fσ ∩ {σ ≤ τ} ⊂ Fσ∧τ = Fσ ∩ Fτ ⊂ Fτ .

(iii) Fσ ∩ {σ = τ} = Fτ ∩ {σ = τ}.

(iv) {σ < τ}, {σ ≤ τ}, {σ = τ} ∈ Fσ ∩ Fτ .

(v) If σ ≤ τ , then Fσ ⊂ Fτ .

Proof. Let A ∈ Fσ. Then for any t ∈ T ,

(A ∩ {σ ≤ τ}) ∩ {τ ≤ t} = (A ∩ {σ ≤ t}) ∩ {τ ≤ t} ∩ {σ ∧ t ≤ τ ∧ t}.

Since A ∈ Fσ, A∩{σ ≤ t} ∈ Ft. Since τ is an F-stopping time, {τ ≤ t} ∈ Ft. Since σ ∧ t takes
values in T ∩ (−∞, t], and for s ∈ T ∩ (−∞, t], if s < t, {σ ∧ t ≤ s} = {σ ≤ s} ∈ Fs ⊂ Ft; and
if s = t, {σ ∧ t ≤ s} = Ω ∈ Ft. So σ ∧ t is Ft-measurable. Similarly, τ ∧ t is Ft-measurable. So
{σ ∧ t ≤ τ ∧ t} ∈ Ft. Thus, (A ∩ {σ ≤ τ}) ∩ {τ ≤ t} ∈ Ft. Since this holds for any t ∈ T , we
get A ∩ {σ ≤ τ} ∈ Fτ . Thus,

Fσ ∩ {σ ≤ τ} ⊂ Fτ . (6.1)

If σ ≤ τ , then {σ ≤ τ} = Ω, and we get Fσ ⊂ Fτ from (6.1). So we proved (v). Since
σ ∧ τ ≤ σ, τ , by (v) we get Fσ∧τ ⊂ Fσ ∩ Fτ . On the other hand, if A ∈ Fσ ∩ Fτ , then from

A ∩ {σ ∧ τ ≤ t} = (A ∩ {σ ≤ t}) ∪ (A ∩ {τ ≤ t}) ∈ Ft, t ∈ T,

we get A ∈ Fσ∧τ . So Fσ ∩ Fτ ⊂ Fσ∧τ . Thus, Fσ∧τ = Fσ ∩ Fτ . From (6.1) we get Fσ ∩ {σ ≤
τ} ⊂ Fσ ∩ Fτ = Fσ∧τ , which is (ii).

Taking A = Ω ∈ Fσ in (6.1), we get {σ ≤ τ} ∈ Fσ ∩ Fτ . Swapping σ and τ , we get
{σ < τ} = {τ ≤ σ}c ∈ Fσ ∩Fτ . Thus, {σ = τ} = {σ ≤ τ} \ {σ < τ} ∈ Fσ ∩Fτ . So we get (iv).

Since by (ii) Fσ ∩ {σ ≤ τ} ⊂ Fτ , and by (iv) {σ = τ} ∈ Fσ ∩ Fτ , we get Fσ ∩ {σ = τ} ⊂
Fτ ∩ {σ = τ}. Swapping σ and τ , we get Fτ ∩ {σ = τ} ⊂ Fσ ∩ {σ = τ}. So (iii) holds.

Finally, since τ takes values in T ∪ {supT}, to prove (i) that τ is Fτ -measurable, it suffices
to show that for any t ∈ T , {τ ≤ t} ∈ Fτ . This follows from (iv) since any deterministic time t
is an F-stopping time.

Suppose now T = R+ = [0,∞). For a filtration F on R+, we define a new filtration F+ by
F+
t =

⋂
u>tFu, t ≥ 0. We understand F+

t as the knowledge at an infinitesimal time after t. It
is clear that for 0 ≤ t < u, Ft ⊂ F+

t ⊂ Fu. We may not have Ft = F+
t .
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Example . Let Ω be the space left-continuous Z+-valued increasing functions defined on R+

with initial value 0. For t ≥ 0, let πt : Ω → Z+ be the map ω 7→ ω(t). Let F = (Ft)t≥0

be the filtration such that Ft = σ(πs : 0 ≤ s ≤ t). Fix t0 ≥ 0. Let At0 denote the set of
ω ∈ Ω which are continuous at t0. Then At0 ∈ F+

t0
\ Ft0 . In fact, At0 = {πt+0 = πt0}, where

πt+0
(ω) := limt↓t0 ω(t). For any t0 ≥ 0, πt0 ∈ Ft0 ⊂ F+

t0
. For any u > t0, we may pick a

sequence (tn) in (t0, u] with tn ↓ t0. Then π+
t0

= limn πtn ∈ Fu. Since this holds for any u > t0,
π+
t0
∈
⋂
u>t0
Fu = F+

t0
. Thus, At0 = {π+

t0
= πt0} ∈ F+

t0
.

Next, we show that At0 6∈ Ft0 . We define an equivalence relation “∼=t0” on Ω such that
ω1
∼=t0 ω2 iff ω1 and ω2 agree on [0, t0]. Let Gt0 be the family of all subsets of Ω which are

unions of the equivalence classes w.r.t. ∼=t0 . Then Gt0 is a σ-algebra, and πt ∈ Gt0 for 0 ≤ t ≤ t0,.
Thus, Ft0 ⊂ Gt0 . We see that At0 6∈ Gt0 because for any ω1 ∈ At0 , we may define ω2 ∈ Ω \ At0
by ω2(t) = ω1(t) for 0 ≤ t ≤ t0 and ω2(t) = ω1(t) + 1 for t > t0. Thus, At0 6∈ Ft0 .

We say that F is right-continuous if F+ = F . This means that the knowledge at time t is
the same as the knowledge at the time t+ o(1). In particular, F+ is right-continuous because

(F+)+
t =

⋂
u>t

F+
u =

⋂
u>t

⋂
v>u

Fv =
⋂
v>t

Fv = F+
t .

We call F+ the right-continuation of F . A random time τ : Ω → [0,∞] is called a weak F-
stopping time if for any t > 0, {τ < t} ∈ Ft. In this case, for any h > 0, τ + h is an F-stopping
time because for any t ≥ 0, when t < h, {τ + h ≤ t} = ∅ ∈ Ft, and when t ≥ h, we may take a
sequence (tn) in (t− h, t) with tn ↓ t− h, and get

{τ + h ≤ t} = {τ ≤ t− h} =
⋂
n

{τ < tn} ∈ Ft,

where the last relation holds because {τ < tn} ∈ Ftn ⊂ Ft as tn < t. So for each h > 0, we may
define a σ-algebra Fτ+h. If 0 < h1 < h2, from τ + h1 < τ + h2 we get Fτ+h1 ⊂ Fτ+h2 . We now
define Fτ+ =

⋂
h>0Fτ+h, which is also a sub-σ-algebra of A.

Lemma 6.2. A random time τ is a weak F-stopping time iff it is an F+-stopping time, in
which case

Fτ+ = F+
τ = {A ∈ A : A ∩ {τ < t} ∈ Ft, ∀t > 0}.

Proof. For any t ≥ 0 and u > t, we note that

{τ ≤ t} =
⋂

r∈Q+∩(t,u]

{τ < r}, {τ < t} =
⋃

r∈Q+∩(0,t)

{τ ≤ r}.

If A ∩ {τ ≤ r} ∈ F+
r for all r ≥ 0, then for t > 0,

A ∩ {τ < t} =
⋃

r∈Q+∩(0,t)

(A ∩ {τ ≤ r}) ∈ Ft
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because for r < t, F+
r ⊂ Ft. On the other hand, if A ∩ {τ < r} ∈ Fr for all r > 0, then for

t ≥ 0 and u > t,

A ∩ {τ ≤ t} =
⋂

r∈Q+∩(t,u]

(A ∩ {τ < r}) ∈ Fu.

Since this holds for any u > t, we get A ∩ {τ ≤ t} ∈ F+
t . So we have proved the first assertion

by taking A = Ω. For general A ∈ A, this shows that F+
τ = {A ∈ A : A∩{τ < t} ∈ Ft,∀t > 0}.

By the definition of Fτ+, A ∈ Fτ+ iff A ∈ Fτ+h for each h > 0, i.e., A∩{τ +h ≤ t} ∈ Ft for
each t ≥ 0 and h > 0. Since {τ+h ≤ t} = ∅ when h > t, the above relation is further equivalent
to that A ∩ {τ ≤ t − h} ∈ Ft for any t ≥ h > 0, which by a change of variable (s = t − h) is
equivalent to A ∩ {τ ≤ s} ∈ Fs+h for any s ≥ 0 and h > 0, and hence to A ∩ {τ ≤ s} ∈ F+

s for
all s ≥ 0, i.e., A ∈ F+

τ . Thus, Fτ+ = F+
τ .

Note that if F is right-continuous, then a weak F-stopping time is an F-stopping time, and
there is no difference between Fτ+ and Fτ . Intuitively, τ is a weak F-stopping time means that
we can determine that τ happens using the information of the past and a tiny bit of future.

Lemma 6.3. Let τ1, τ2, . . . be weak F-stopping times. Then τ := inf{τn} is also a weak F-
stopping time, and Fτ+ =

⋂
nFτn+.

Proof. We see that for any t > 0 and A ∈ A,

A ∩ {τ < t} = A ∩
⋃
n

{τn < t} =
⋃
n

(A ∩ {τn < t}). (6.2)

Taking A = Ω, we see that τ is a weak F-stopping time. By Lemma 6.1, Fτ+ ⊂
⋂
nFτn+. If

A ∈
⋂
nFτn+, then by Lemma 6.2, A∩{τn < t} ∈ Ft for each n, and so by (6.2), A∩{τ < t} ∈ Ft,

which implies that A ∈ Fτ+. So we get Fτ+ =
⋂
nFτn+.

Note that if F is right-continuous, this lemma tells us that the infimum of a sequence of
F-stopping times is an F-stopping time. This is not true in general. The lemma below shows
another reason that a right-continuous filtration is useful.

If T = R+ or Z+, for a set B ⊂ S, we may define the hitting time

τB = inf{t ∈ T, t > 0 : Xt ∈ B}.

As usual, we set inf ∅ = ∞ by convention. The following result helps us to decide whether τB
is a stopping time.

Lemma 6.6. Fix a filtration F on T = R+ or Z+, let X be an F-adapted process on T with
values in a measurable space S, and let B ⊂ S. Then we have the following

(i) If T = Z+ and B is measurable, τB is an F-stopping time.

(ii) If T = R+, S is a metric space, B is closed, and X is continuous, then τB is a weak
F-stopping time.
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(iii) If T = R+, S is a topological space, B is open, and X is right- or left- continuous, then
τB is a weak F-stopping time.

In particular, in (ii) and (iii), if F is right-continuous, then τB is an F-stopping time.

Proof. (i) For any n ∈ Z+,

{τB ≤ n} =
n⋃
k=1

{Xk ∈ B} ∈ Fn

since for every k ≤ n, {Xk ∈ B} ∈ Fk ⊂ Fn. So τB is an F-stopping time.
Suppose now T = R+. Let t0 > 0. By the definition of τB,

{τB < t0} =
⋃

0<t<t0

{Xt ∈ B} =
⋃
n∈N

⋃
t∈[

t0
n
,(1− 1

n
)t0]

{Xt ∈ B}.

(ii) If S is a metric space, B is closed and X is continuous, then for any n ∈ N,⋃
t∈[

t0
n
,(1− 1

n
)t0]

{Xt ∈ B} =
⋂
m∈N

⋃
t∈[

t0
n
,(1− 1

n
)t0]

{ρ(Xt, B) <
1

m
}

=
⋂
m∈N

⋃
r∈Q∩[

t0
n
,(1− 1

n
)t0]

{ρ(Xr, B) <
1

m
}.

Thus, for any t0 > 0,

{τB < t0} =
⋃
n∈N

⋂
m∈N

⋃
r∈Q∩[

t0
n
,(1− 1

n
)t0]

{ρ(Xr, B) <
1

m
}.

Since for any n,m ∈ N and r ∈ Q ∩ [ t0n , (1−
1
n)t0], {ρ(Xr, B) < 1

m} ∈ Fr ⊂ Ft0 , and the above
formula involves only countable union and countable intersection, we set {τB < t0} ∈ Ft0 .

(iii) If B is open and X is right-continuous or left-continuous, then for any t0 > 0,

{τB < t0} =
⋃

t∈(0,t0)

{Xt ∈ B} =
⋃

r∈Q∩(0,t0)

{Xr ∈ B} ∈ Ft0 .

So we again conclude that τB is a weak F-stopping time.

Remark . If we now define τB = inf{t ≥ 0 : Xt ∈ B}, the above theorem still holds. If T = Z+

and σ is an F-stopping time, then τ := inf{t ≥ σ : Xt ∈ B} is a stopping time. For the latter
statement, we note that for any u ∈ Z+,

{τ ≤ u} =
⋃

0≤t≤u
{σ ≤ t} ∩ {Xt ∈ B} ∈ Fu.
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Lemma 6.4 (discrete approximation). For any weak F stopping time τ , there exists a sequence
of countably valued F-stopping times (τn) with τn ↓ τ .

Proof. Let τn = 2−nd2nτ + 1e. This means that if k
2n ≤ τ < k+1

2n for some k ∈ Z≥0, then

τn = k+1
2n . Then τn takes values in 2−nN and τn ↓ τ . To see that each τn is an F-stopping time,

we note that for any t ≥ 0, there is k0 ∈ Z≥0 such that k0
2n ≤ t <

k0+1
2n . Then τn ≤ t iff τn ≤ k0

2n

iff τ ∈ [ k2n ,
k+1
2n ) for some k ∈ Z with k + 1 ≤ k0, which is equivalent to that τ < k0

2n . Since τ is

a weak F-stopping time, we get {τn ≤ t} = {τ < k0
2n } ∈ F k0

2n
⊂ Ft.

The definition of F-adaptedness does not imply the joint measurability (t, ω) 7→ Xt(ω).
Now we introduce a stronger concept.

Definition . Let F be a filtration on R+. An S-valued process X on R+ is called F-
progressively measurable or simply progressive if for any t0 ∈ R+, the map

Ω× [0, t0] 3 (ω, t) 7→ Xt(ω) ∈ S

is Ft0 × B[0, t0]-measurable. A set A ∈ Ω× R+ is called F-progressive if 1A is F-progressive.

Exercise . Show that (i) an F-progressive process is F-adapted; (ii) the class of all F-
progressive sets form a σ-algebra, denoted by P; and (iii) a stochastic process X on R+ is
F-progressive iff it is measurable w.r.t. P.

Lemma . A left- or right-continuous adapted process is progressive.

Proof. Let X be a left- or right-continuous adapted process. We need to show that for any
t0 ≥ 0, (ω, t) 7→ Xt(ω) is Ft0 × B[0, t0]-measurable. Let t0 ≥ 0. It suffices to construct a
sequence of functions Xn : Ω× [0, t0]→ S such that each Xn is Ft0 × B[0, t0]-measurable, and
Xn → X pointwise on Ω × [0, t0]. If X is left-continuous, we define Xn(ω, t) = X(ω, k2n t0) if
k

2n t0 ≤ t <
k+1
2n t0 for some k ∈ Z. If X is right-continuous, we define Xn(ω, t) = X(ω, k+1

2n t0) if
k

2n t0 ≤ t <
k+1
2n t0 for some k ∈ Z with k < 2n; and Xn(ω, t0) = X(ω, t0). From the adaptedness

of X, we see that in both cases, Xn is Ft0 ×B[0, t0]-measurable. The pointwise convergence of
Xn → X follows from the left- or right-continuity of X.

It is useful to have a progressive process for the following reasons.

Lemma 6.5. Fix a filtration with index T . Let τ be a T -valued F-stopping time. Let X be an
F-adapted process on T with values in a measurable space (S, S). Then Xτ : ω 7→ Xτ(ω)(ω) is
Fτ -measurable in the following two cases.

(i) T is countable;

(ii) T = R+ and X is progressive.
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Proof. To prove that Xτ is Fτ -measurable, we need to show that for any B ∈ B(S) and t0 ∈ T ,
{Xτ ∈ B} ∩ {τ ≤ t0} ∈ Ft0 . Note that

{Xτ ∈ B} ∩ {τ ≤ t0} = {Xτ∧t0 ∈ B} ∩ {τ ≤ t0};

{Xτ∧t0 ∈ B} = ({Xτ ∈ B} ∩ {τ ≤ t0}) ∪ ({Xt0 ∈ B} ∩ {t0 ≤ τ}).

Since X is F-adapted, {Xτ ∈ B} ∩ {τ ≤ t0} ∈ Ft0 iff {Xτ∧t0 ∈ B} ∈ Ft0 . Note that τ ∧ t0 is
an F-stopping time bounded above by t0. So it suffices to show that for any F-stopping time
σ bounded above by t0, Xσ is Ft0-measurable.

(i) Since σ takes values in {t ∈ T : t ≤ t0}, we have

{Xσ ∈ B} =
⋃

t∈T :t≤t0

({Xt ∈ B} ∩ {σ = t}) ∈ Ft0

because T is countable, and for t ∈ T with t ≤ t0, {Xt ∈ B}, {σ = t} ∈ Ft ⊂ Ft0 .
(ii) Now σ takes values in [0, t0]. The we write Xσ = Xt0 ◦ ψ, where Xt0 is the restriction

of X to Ω × [0, t0], and ψ : Ω → Ω × [0, t0] is given by ω 7→ (ω, σ(ω)). Since X is progressive,
Xt0 is Ft0×B[0, t0]-measurable. In order to show that Xσ is Ft0-measurable, it suffices to show
that ψ is Ft0/(Ft0 × B[0, t0])-measurable. This holds because for any B ∈ Ft0 and t ∈ [0, t0],
ψ−1(B × [0, t]) = B ∩ {σ ≤ t} ∈ Ft0 .

Let P be a probability measure on (Ω,A) and we work on the probability space (Ω,A,P).
For any σ-algebra G ⊂ A, we use G to denote the completion of G, and say that G is complete
if G = G. A filtration (Ft) is called complete if every Ft is complete. Given any filtration
F = (Ft), its completion is the filtration (F t). Suppose now T = R+ and F is a filtration on
R+. We get two filtration extensions of F : one is its completion (F t), the other is its right-
continuation (F+

t ). The following lemma tells us that the right-continuation of the completion
agrees with the completion of the right-continuation.

Lemma 6.8. For any filtration F on R+, we have

F+
t = F+

t , ∀t ≥ 0.

Proof. Since Ft ⊂ F t for all t ≥ 0, we have F+
t =

⋂
u>tFu ⊂

⋂
u>tFu = F+

t for all t ≥ 0.

Since every F t is complete, every F+
t is also complete. So F+

t ⊂ F
+
t , t ≥ 0.

We now prove the opposite direction. Let A ∈ F+
t for some t ≥ 0. Then A ∈ Fu for every

u > t. By Lemma 1.25, for each u > t, there is Au ∈ Fu such that P[A∆Au] = 0. Choose un ↓ t
and define A′ = lim supAun ∈ F+

t . Then P[A∆A′] ≤
∑

n P[A∆Aun ] = 0. So A ∈ F+
t . Thus,

F+
t ⊂ F+

t .

The common filtration (F+
t ) = (F+

t ) is both complete and right-continuous, and is called
the (usual) augmentation of F .

Exercise . Do problems 2 and 4 in Chapter 6.
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7 Martingales

Definition . Let F be a filtration with index set T ⊂ R. Let X = (Xt)t∈T be an F-adapted
process of integrable random variables. If for any s, t ∈ T with s ≤ t, we have

Xs = E[Xt|Fs] a.s., (7.1)

then we say that X is an F-martingale. If (7.1) holds with “≤” (resp. “≥”) in place of “=” for all
s ≤ t ∈ T , then X is called an F-submartingale (resp. F-supermartingale). If X = (X1, . . . , Xd)
is a process on T in Rd, we say that X is an F-vector martingale if for every 1 ≤ k ≤ d, Xk is
an F-martingale.

Facts: X is an F-martingale iff it is both an F-submartingale and an F-supermartingale;
X is an F-supermartingale iff −X is an F-submartingale; and a linear combination of F-
martingales is also an F-martingale. We have some freedom to choose the filtration.

Exercise . Prove that if X is an F-martingale (resp. supermartingale or submartingale), then
it is also a martingale (resp. supermartingale or submartingale) w.r.t. (i) the completion of F ;
(ii) the filtration induced by X.

Example . Let the filtration F be given. Let ζ be an integrable random variable. Let Xt =
E[ζ|Ft], t ∈ T . Then X is an F-martingale because for any s ≤ t ∈ T , by chain rule,

E[Xt|Fs] = E[E[ζ|Ft]|Fs] = E[ζ|Fs] = Xs.

By Lemma 5.5, X is uniformly integrable, and so is L1-bounded.

For a process X on Z+, we define ∆Xn = Xn −Xn−1, n ∈ N.

Exercise . For an F-adapted process X on Z+, prove that X is an F-martingale (resp. super-
martingale or submartingale) iff a.s. E[∆Xn|Fn−1] = 0 (resp. ≥ 0 or ≤ 0) for all n ∈ N.

Example . Let ζ1, ζ2, . . . be a sequence of independent integrable random variables. For
n ∈ Z+, let Xn =

∑n
k=1 ζk and Fn = σ(ζk : 1 ≤ k ≤ n). Then F = (Fn) is a filtration, and

X = (Xn) is F-adapted. For n ∈ N, since ∆Xn = ζn |= Fn−1, we get a,s. E[∆Xn|Fn−1] = E[ζn].
Thus, X is a martingale (resp. submartingale or supermartingale) if Eζn = 0 (resp. ≥ 0 or ≤ 0)
for all n ∈ N. If Law(ζn) = 1

2(δ1 + δ−1), X is a random walk on Z.

A martingale on Z+ may be thought of as a gambler’s balance history, who always plays
fair games.

Definition . For a filtration F on Z+, a process A = (An)n≥0 is called F-predictable if A0 ≡ 0,
and for n ∈ N, An ∈ Fn−1.

We use this name because we know the value of An at the time n−1. Note that a predictable
process must be adapted.
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Lemma 6.10. For a filtration F on Z+, every F-predictable process X can be expressed as the
sum M+A, where M is an F-martingale and A is F-predictable, and such decomposition is a.s.
unique. Moreover X is a submartingale (resp. supermartingale) iff the A in the decomposition
is a.s. increasing (resp. decreasing).

The decomposition X = M +A is called the Doob’s decomposition.

Proof. Define the process A by

An =

n∑
k=1

E[∆Xk|Fk−1], n ≥ 0.

Then A0 = 0 and for n ≥ 1, An is Fn−1-adapted and ∆An = E[∆Xn|Fn−1]. So A is F-
predictable. Let M = X −A. Then M is also an F-adapted process, and for n ≥ 1, a.s.

E[∆Mn|Fn−1] = E[∆Xn −∆An|Fn−1] = E[∆Xn|Fn−1]−∆An = 0.

So M is an F-martingale. So we get the existence of Doob’s decomposition. Suppose there is
another such decomposition M ′ + A′, then Y := M −M ′ = A′ − A is both F-martingale and
F-predictable, and has the initial value Y0 = 0. So for any n ∈ N, a.s. Yn = E[Yn|Fn−1] = Yn−1.
We then get a.s. Yn = 0 for all n ∈ N. So we get the a.s. uniqueness of Doob’s decomposition.
Moreover, X is a submartingale iff a.s. E[∆Xn|Fn−1] = ∆An ≥ 0 for each n ≥ 1, which
is equivalent to that a.s. An is increasing. Similarly, X is a supermartingale iff a.s. An is
decreasing.

Lemma 6.11. Let M be a martingale in Rd. Let f : Rd → R be a convex function. Suppose
Xt = f(Mt) is integrable for every t. Then X is a submartingale. The statement remains true
if M is a submartingale, and f : R→ R is convex and increasing.

Proof. The statements follows from Jensen’s inequality for conditional expectation. The first
one holds because

E[Xt|Fs] = E[f(Mt)|Fs] ≥ f(E[Mt|Fs]) = f(Ms) = Xs, s ≤ t ∈ T.

The second one holds because

E[X1|Fs] = E[f(Mt)|Fs] ≥ f(E[Mt|Fs]) ≥ f(Ms) = Xs, s ≤ t ∈ T.

We say that X is an Lp-process if Xt ∈ Lp for each t ∈ T . We say X is Lp-bounded if ‖Xt‖p,
t ∈ T , is bounded. If M is an Lp-martingale, p ∈ [1,∞), applying Lemma 6.11 to f(x) = |x|p,
we see that |M |p is a submartingale.

Applying Lemma 6.11 to f(x) = x∨0, we see that if X is a submartingale, then the process
X+
t := Xt ∨ 0, t ∈ T , is also a submartingale.

We say that an F-stopping time τ is bounded if there is a deterministic time u ∈ T such
that a.s. τ ≤ u. The following theorem generalizes the equality E[Mt|Fs] = Ms to stopping
times.
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Theorem 6.12 (Optional Stopping Theorem). Let M be a martingale on some index set T
with filtration F . Let σ and τ be two F-stopping times taking countably many values. Suppose
τ is bounded. Then Mτ and Mσ∧τ are integrable, and a.s.

E[Mτ |Fσ] = Mσ∧τ .

In particular, if a.s. σ ≤ τ are both bounded, then a.s. E[Mτ |Fσ] = Mσ and so E[Mτ ] = E[Mσ].

Proof. Suppose u ∈ T satisfies that a.s. τ ≤ u. By Lemmas 5.2 (local property) and 6.1 (Fτ
agrees with Ft on {τ = t}), for any t ∈ T with t ≤ u, a.s.

E[Mu|Fτ ] = E[Mu|Ft] = Mt on {τ = t}.

Since τ takes countably many values, we get a.s. E[Mu|Fτ ] = Mτ and so Mτ is integrable. Since
σ ∧ τ is also an F-stopping time bounded by u taking countably many values, Mσ∧τ is also
integrable, and a.s.

Mσ∧τ = E[Mu|Fσ∧τ ] = E[E[Mu|Fτ ]|Fσ∧τ ] = E[Mτ |Fσ∧τ ].

It remains to show that a.s. E[Mτ |Fσ] = E[Mτ |Fσ∧τ ]. Since Fσ agrees with Fσ∧τ on {σ =
σ ∧ τ} = {σ ≤ τ}, by Lemma 5.2, a.s. E[Mτ |Fσ] = E[Mτ |Fσ∧τ ] on {σ ≤ τ}. Since Fτ ∩
{τ ≤ σ} ⊂ Fσ and Mτ is Fτ -measurable, by Lemma 5.2, a.s. E[Mτ |Fσ] = Mτ on {τ ≤ σ}.
Since Fτ ∩ {τ ≤ σ} = Fτ ∩ {τ ≤ σ ∧ τ} ⊂ Fσ∧τ , by Lemma 5.2, a.s. E[Mτ |Fσ] = Mτ on
{τ ≤ σ}. thus, a.s. E[Mτ |Fσ] = E[Mτ |Fσ∧τ ] on {τ ≤ σ}. Combining this with that a.s.
E[Mτ |Fσ] = E[Mτ |Fσ∧τ ] on {σ ≤ τ}, we get a.s. E[Mτ |Fσ] = E[Mτ |Fσ∧τ ], as desired.

Exercise . Prove that if T = Z+ or finite, and X is a submartingale (resp. supermartingale),
then for σ, τ in the theorem, we have a.s. E[Xτ |Fσ]−Xσ∧τ ≥ 0 (resp. ≤ 0). Hint: Use Doob’s
decomposition.

Example . The condition on τ can not be removed. Suppose ζ1, ζ2, . . . is a sequence of i.i.d.
random variables with common distribution 1

2(δ1 + δ−1). For n ∈ Z+, let Xn =
∑n

k=1 2k−1ζk.
Then X is a martingale. Let τ = inf{n ∈ N : ζn = 1}. Then τ is a stopping time, and a.s. takes
values in N. In fact,

P[τ =∞] = P[
⋂
N∈N
{τ > N}] = lim

N→∞
P{ζn = −1, 1 ≤ n ≤ N} = lim

N→∞
2−N = 0.

We observe that for any N ∈ N, when τ = N , Xτ =
∑N−1

k=1 (−1)2n−1 + 2N−1 = 1. Thus,
E[Xτ ] = 1. But since X0 = 0, E[X0] = 0 6= E[Xτ ].

This example describes the balance history of a gambler, who bids one dollar on the first
day, doubles his bid on every next day, and stops whenever he wins. In reality, a gambler can
not win money with this game because he does not have infinite amount of money to bid.

Lemma 6.13 (Martingale Criterion). Let M be an integrable adapted process on some index
set T w.r.t. a filtration F . Then M is an F-martingale iff for any two T -valued F-stopping
times σ and τ taking at most two values, we have E[Mσ] = E[Mτ ].
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Proof. The only if part follows from Theorem 6.12. For the if part, let s < t ∈ T . Let A ∈ Fs.
Then τ := s1A+ t1Ac is an F-stopping time because for any u ∈ T , if u ≥ t, {τ ≤ u} = Ω ∈ Fu;
if s ≤ u < t, {τ ≤ u} = A ∈ Fs ⊂ Fu; and if u < s, {τ ≤ u} = ∅ ∈ Fu. By the assumption, we
have

0 = EMt − EMτ = EMt − E[1AMs]− E[1AcMt] = E[1A(Mt −Ms)].

Since this holds for any A ∈ Fs, we get a.s. E[Mt −Ms|Fs] = 0. So M is an F-martingale.

Corollary 6.14 (Martingale Transforms). Let M be a martingale on some index set T with
filtration F . Fix a stopping time τ that takes countably many values, and let η be a bounded,
Fτ -measurable random variable. Then the process Nt = η(Mt−Mt∧τ ) is again an F-martingale.

Taking η ≡ 1, from Corollary 6.14 we see that if M is an F-martingale, and if τ is a bounded
F-stopping time taking countably many values, then the stopped process

M τ
t := Mτ∧t, t ∈ T,

is also an F-martingale.

Proof. Fix t ∈ T . By Optional Stopping Theorem, Mt−Mt∧τ is Ft-measurable and integrable.
Since η is bounded, Nt is also bounded. Since Nt = 0 on {t ≤ τ}, we may rewrite Nt as
Nt = 1{τ≤t}η(Mt −Mt∧τ ). Since η is Fτ -measurable, by Lemma 6.1, 1{τ≤t}η is Ft-measurable.
So Nt is Ft-measurable. Thus, N is F-adapted.

Let σ be any T -valued F-stopping time taking at most two values. By the pull-out property
and Optional Stopping Theorem,

E[Nσ|Fτ ] = ηE[Mσ|Fτ ]− ηE[Mσ∧τ |Fτ ] = ηMσ∧τ − ηMσ∧τ = 0.

So E[Nσ] = 0. Since this holds for all such σ, by Lemma 6.13, N is an F-martingale.

Proposition 6.15 (maximum inequalities). Let X be a submartingale on some countable index
set T . Then for any r ≥ 0 and u ∈ T ,

rP[ sup
t∈T :t≤u

Xt > r] ≤ E[1{ sup
t∈T :t≤u

Xt > r}Xu] ≤ EX+
u , (7.2)

rP[sup
t∈T
|Xt| > r] ≤ 3 sup

t∈T
E|Xt|. (7.3)

Proof. We first assume that T is finite. Then we may assume that T = {0, 1, 2, . . . , n}. Define
τ = u ∧ inf{t : Xt > r} and B = {maxt≤uXt > r}. Then τ is a stopping time bounded by u,
and B ∈ Fτ because for t0 ∈ T , if t0 ≥ u, then B ∩ {τ ≤ t0} = B ∈ Fu ⊂ Ft0 ; and if t0 < u,
then B ∩{τ ≤ t0} = {maxt≤t0 Xt > r} ∈ Ft0 . By Optional Stopping Theorem, E[Xu|Fτ ] ≥ Xτ .
Since Xτ > r on B and X+

u = Xu ∨ 0 ≥ 1BXu, we get

EX+
u ≥ E[1BXu] ≥ E[1BXτ ] ≥ rPB,
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which proves (7.2) in the case that T is finite.
Let M + A be the Doob decomposition of X. Then A is non-negative and increasing. So

M ≤ X. Applying (7.2) to −M , which is a martingale and hence a submartingale, we get

rP[ min
t∈T :t≤u

Xt < −r] ≤ rP[ min
t∈T :t≤u

Mt < −r] = rP[ sup
t∈T :t≤u

(−Mt) > r]

≤ E[(−Mu)+] = E[M+
u ]− E[Mu] ≤ E[X+

u ]− E[M0] = E[X+
u ]− E[X0] ≤ E[|Xu|] + E[|X0|].

Since {maxt≤u |Xt| > r} = {maxt≤uXt > r}∪{mint≤uXt < −r}, combining the above formula
with (7.2) and taking supremum over u ∈ T proves (7.3) in the case that T is finite.

For a countable index set T , there is an increasing sequence of finite index sets Tn such that
T =

⋃
Tn and u ∈ Tn for each n. From the last paragraph, for each n ∈ N,

rP[ sup
t∈Tn:t≤u

Xt > r] ≤ E[1{ sup
t∈Tn:t≤u

Xt > r}Xu] ≤ EX+
u ; (7.4)

rP[ sup
t∈Tn
|Xt| > r] ≤ 3 sup

t∈Tn
E|Xt|. (7.5)

We have supt∈T :t≤uXt = limn supt∈Tn:t≤uXt, so 1{supt∈Tn:t≤uXt > r} → 1{supt∈T :t≤uXt > r}
and 1{supt∈Tn:t≤u |Xt| > r} → 1{supt∈T :t≤u |Xt| > r}. By sending n → ∞ in (7.4) and (7.5)
and using DCT, we get (7.2) in the general case.

For a process X on some index set T , we define the process X∗ = (X∗t )t∈T by

X∗t = sup
s∈T :s≤t

|Xs|, t ∈ T.

Let X∗∞ = supt∈T |Xt|.

Proposition 6.16 (Doob’s norm inequality). Let M be a martingale on some countable index
set T . Let p, q > 1 satisfy p−1 + q−1 = 1. Then

‖M∗t ‖p ≤ q‖Mt‖p, t ∈ T.

Proof. If ‖Mt‖p = ∞, the inequality is trivial. If ‖Mt‖ = 0, the for any s ∈ T with s ≤ t, a.s.
Ms = E[Mt|Fs] = 0. Since T is countable, we get a.s. M∗t = 0. The inequality is also trivial.

Now assume 0 < ‖Mt‖p <∞. Applying Proposition 6.15 to the submartingale |M |, we get
for any r > 0,

rP[M∗t > r] ≤ E[1{M∗t > r}|Mt|].
Note that q = p

p−1 . By Lemma 2.4 and Hölder’s inequality,

‖M∗t ‖pp = E(M∗t )p = p

∫ ∞
0

P[M∗t > r]rp−1dr ≤ p
∫ ∞

0
E[1{M∗t > r}|Mt|]rp−2dr

= pE
[
|Mt|

∫ M∗t

0
rp−2dr

]
= qE[|Mt|(M∗t )p−1] ≤ q‖Mt‖p‖(M∗t )p−1‖q = q‖Mt‖p‖M∗t ‖p−1

p .

Let both sides be divided by ‖M∗t ‖
p−1
p , we get the inequality again.
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Definition . For a real valued process X on T , and a < b ∈ R, an [a, b]-upcrossing interval of
X is [s, t] such that s < t ∈ T , Xs ≤ a and Xt ≥ b. For t ∈ T , the number of [a, b]-upcrossings
of X up to t, denoted by N b

a(t), is the supremum of n ∈ Z+ such that there exist n mutually
disjoint [a, b]-upcrossing intervals of X contained in (−∞, t]. This number could be 0 or ∞.

Lemma 6.17 (upcrossing inequality). Let X be a submartingale on a countable index set T .
Then

EN b
a(t0) ≤ E[(Xt0 − a) ∨ 0]

b− a
, t0 ∈ T, a < b ∈ R.

Proof. Let Yt = (Xt − a) ∨ 0. By Lemma 6.11, Y is a submartingale. We see that [s, t] is an
[a, b]-upcrossing of X iff [s, t] is an [0, b− a]-upcrossing of Y . Thus, we may assume that X ≥ 0
and a = 0. First assume that T is finite. Then we may assume that T = {0, 1, . . . , N}. In the
end we will use the idea in the proof of Proposition 6.15 to extend the result to the general T .

Define τ0 = 0,

σn = t0 ∧ inf{t ≥ τn−1 : Xt = 0}, τn = t0 ∧ inf{t ≥ σn : Xt ≥ b}, n ∈ N.

Then all σn and τn are stopping times satisfying τ0 ≤ σ1 ≤ τ1 ≤ · · · ≤ t0; if σn < t0, Xσn = 0;
if τn < t0, Xτn ≥ b; and N b

0(t0) is the biggest n such that σn < t0 and Xτn ≥ b (*).
Fix n0 ∈ N. Since X is a submartingale and X ≥ 0, we have

E[Xt0 ] ≥ E[Xτn0
] ≥ E[Xτn0

]− E[Xτ0 ] =

n0∑
k=1

(E[Xτk ]− E[Xσk ]) +

n0∑
k=1

(E[Xσk ]− E[Xτk−1
])

≥
n0∑
k=1

(E[Xτk ]− E[Xσk ]) =

n0∑
k=1

E[Xτk −Xσk ].

We have Xτk ≥ Xσk for each k because if σk = t0, then Xτk = Xt0 = Xσk , and if σk = t0, then
Xσk = 0 ≤ Xτk . If N b

a(t0) ≥ k, then Xσk = 0 and Xτk ≥ b. So we have

E[Xt0 ] ≥
n0∑
k=1

E[1{Nb
a(t0)≥k}b] = b

n0∑
k=1

P[N b
a(t0) ≥ k].

Since this inequality holds for any n0 ∈ N, we get E[Xt0 ] ≥ b
∑∞

k=1 P[N b
a(t0) ≥ k] = bE[N b

a(t0)].
So we finish the proof in the case that T is finite.

For the general case, we may find an increasing sequence of finite sets Tn such that t0 ∈ Tn
for each n and T =

⋃
n Tn. Let N b

a(Tn, t0) denote the number of [a, b]-upcrossings of X on Tn
up to t0. Then N b

a(Tn, t0) ↑ N b
a(t0), and we have the upper bound for each N b

a(Tn, t0), which
does not depend on n. Then we finish the proof in the general case by letting n→∞.

Exercise . Prove the statement (*) in the proof of Lemma 6.17.

Theorem 6.18 (Doob’s regularization theorem). Let X be an L1-bounded submartingale on
some index set T . Then for every monotone sequence (tn) in T , a.s. Xtn converges.
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Proof. Since the statement concerns only on Xtn , n ∈ N, we may assume that T = {tn : n ∈ N}.
So T is countable. Suppose ‖Xt‖1 ≤ m for all t ∈ T . By Proposition 6.15, for any r > 0,
P[supt∈T |Xt| > r] ≤ m

r , which implies that a.s. X is bounded on T . Let the exceptional event
be E0. By Lemma 6.17, for any t ∈ T and a, b ∈ Q with a < b,

EN b
a(t) ≤ E[(Xt − a) ∨ 0]

b− a
≤ ‖Xt − a‖1

b− a
≤ ‖Xt‖1 + |a|

b− a
≤ m+ |a|

b− a
.

Let T 3 tn ↑ supT , we get EN b
a(supT ) ≤ m+|a|

b−a . So a.s. N b
a(supT ) < ∞. Let the exceptional

event be Ea,b. For an increasing or decreasing sequence (tn) in T , if (Xtn) diverges then either
X is unbounded or lim supXtn > lim inf Xtn . In the latter case, we can find a, b ∈ Q such that
lim supXtn > b > a > lim inf Xtn , which implies that there are infinitely many [a, b]-upcrossings
of X. Thus,

{(Xtn) diverges} ⊂ E0 ∪
⋃

a<b∈Q
Ea,b.

Since the RHS is a null set, we get a.s. Xtn converges.

A martingale M is said to be closed if u = supT ∈ T . In this case, clearly Mt = E[Mu|Ft]
for all t ∈ T . If supT 6∈ T , we say that M is closable if it can be extended to a martingale on
T = T ∪ {supT}. If Mt = E[ζ|Ft] for some ζ ∈ L1, we may clearly choose Mu = ζ.

Theorem 6.21. For a martingale M on an index set T such that supT 6∈ T , the following are
equivalent:

(i) M is uniformly integrable, i.e., {Mt : t ∈ T} is uniformly integrable;

(ii) M is closeable, i.e., there is ζ ∈ L1 such that Mt = E[ζ|Ft] for all t ∈ T ;

(iii) M is convergent at supT , i.e., as T 3 t ↑ supT , Mt converges in L1.

Proof. By Lemma 5.5, (ii) implies (i). Now assume (i). Then M is L1-bounded. If T 3 tn ↑
supT , by Theorem 6.18, a.s. Mtn converges. By Proposition 3.12, Mtn converges in L1. Since
this holds for any such sequence (tn), the limit does not depend on (tn). In fact, for any two
increasing sequences (tn) and (t′n) in T that tend to supT we may construct an increasing
sequence (t′′n) in T tending to supT such that (tn) and (t′n) are both subsequences of (t′′n). Then
Mt′′n converges in L1, which is the common limit of (Mtn) and (Mt′n). So we conclude that Mt

converges in L1 as T 3 t ↑ supT . Finally, assume (iii). Let ζ ∈ L1 be the L1-limit of Mt as
t ↑ T . For any u, t ∈ T with u ≥ t, we have E[Mu|Ft] = Mt. Since Mu → ζ in L1 as u→ supT ,
by L1-contractivity of EFt , we get E[ζ|Ft] = Mt. So M is closeable.

Corollary 6.22. Let p ∈ (1,∞). Let M be a martingale on an index set T not bounded above.
Then M is Lp-bounded iff Mt converges in Lp as T 3 t→∞.
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Proof. If Mt converges in Lp, then by the increasingness of ‖Mt‖p, M is Lp bounded. If M is
Lp-bounded, then M is uniformly integrable. Let (tn) be a sequence in T with tn → ∞. By
Theorem 6.18, a.s. Mtn converges. By Proposition 6.16, ‖ supt∈T |Mt|‖p ≤ p

p−1 supt∈T ‖Mt‖p <
∞. So |M |p is also uniformly integrable. By Proposition 3.12, Mtn converges in Lp. By
mixing sequences we see that the limit does not depend on (tn). So Mt converges in Lp as
T 3 t→∞.

Theorem 6.23. Let ζ ∈ L1. Let F be a filtration on T . Let (tn) be a monotone sequence in
T . Then E[ζ|Ftn ] converges a.s. and in L1. If (tn) is increasing, the limit is E[ζ|

∨
nFtn ]; and

if (tn) is decreasing, the limit is E[ζ|
⋂
nFtn ].

Proof. Let Mt = E[ζ|Ft], t ∈ T . Then M is a uniformly integrable F-martingale, and so is L1-
bounded. By Theorems 6.18 and Lemma 3.12, Mtn converges a.s. and in L1. Let η = lim supMtn

be the limit.
If (tn) is increasing, then η is

∨
nFtn-measurable. Let A ∈

⋃
nFtn . Then there is n0 such

that for n ≥ n0, A ∈ Ftn , which implies that E[1Aζ] = E[1AMtn ]. Since Mtn → η in L1, we get
E[1Aζ] = E[1Aη]. By a monotone class argument, we then conclude that this equality holds for
any A ∈

∨
nFtn . So we get η = E[ζ|

∨
nFtn ].

If (tn) is decreasing, then η is
⋂
nFtn-measurable. Let A ∈

⋂
nFtn . Then for any n, E[1Aζ] =

E[1AMtn ]. Since Mtn → η in L1, we get E[1Aζ] = E[1Aη]. So we get η = E[ζ|
⋂
nFtn ].

Theorem (Law of large numbers). Let ζ1, ζ2, . . . be an i.i.d. sequence of integrable random
variables. Let Sn =

∑n
k=1 ζk, n ∈ N. Then 1

nSn converges a.s. and in L1 to Eζ.

Proof. For n ∈ N, let F−n = σ(Sm : m ≥ n). Then it is clear that F = (F−n) is a filtration on
−N. Let n ∈ N. By the i.i.d. property of (ζn), for any k ≤ n, (ζk, Sn, Sn+1, . . . ) has the same
distribution as (ζ1, Sn, Sn+1, . . . ). So E[ζk|F−n] = E[ζ1|F−n], 1 ≤ k ≤ n. Thus,

E[ζ1|F−n] =
1

n

n∑
k=1

E[ζk|F−n] = E[
1

n
Sn|F−n] =

1

n
Sn.

By Theorem 6.23, 1
nSn converges a.s. and in L1. By Kolmogorov’s zero-one law, the limit is

a.s. constant. Since E[ 1
nSn] = Eζ1 for every n, the constant must be Eζ1.

Most of the theorems we studied require that the index set T to be countable. In order to
extend the theory to martingales on R+, we will assume that the processes are right-continuous.
For such a process X, we may use X|Q+ to recover the whole X.

Lemma 6.28. Let X be a submartingale on an index set {t∞, · · · , t2, t1} with t1 > t2 > · · · >
t∞. Then (Xtn) is uniformly integrable and converges a.s. and in L1.

Proof. For every n ∈ N, let αn = E[Xtn |Ftn+1 ]−Xtn+1 ≥ 0, which is Ftn+1-measurable. Then∑
Eαn =

∑
n

(EXtn − EXtn+1) = EXt1 − lim
n

EXtn ≤ EXt1 − EXt∞ <∞.
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So a.s.
∑

n αn < ∞. Note that {
∑

n αn = ∞} ∈
⋂
nFtn . Define Atn , n ∈ N, such that

Atn =
∑

k≥n αk on {
∑

k αk < ∞} and Atn ≡ 0 on {
∑

k αk = ∞}. Then each Atn is Ftn-
measurable. Let Mtn = Xtn −Atn . Then M is a martingale on {tn : n ∈ N} because

E[Mtn −Mtn+1 |Ftn+1 ] = E[Xtn −Xtn+1 − αn|Ftn+1 ] = 0.

It is uniformly integrable since it is closable by Mt1 . The process A is also uniformly integrable
because supn |Atn | = At1 and EAt1 =

∑
Eαn < ∞. So {Xtn : n ∈ N} is uniformly integrable.

By the definition of A, Atn → 0. By Theorem 6.18, Mtn a.s. converges. Thus, a.s. Xtn converges.
By Theorem 3.12, Xtn converges in L1.

Theorem 6.29. Let X be an F-submartingale on R+. Suppose both X and F are right-
continuous. Then for any two stopping times σ, τ with τ being bounded, we have a.s.

E[Xτ |Fσ] ≥ Xσ∧τ . (7.6)

If X is an F-supermartingale, then by applying the theorem to −X, we get E[Xτ |Fσ] ≤
Xσ∧τ . If X is an F-martingale, then since it is both a submartingale and a supermartingale,
the equality in (7.6) holds.

Proof. For n ∈ N, let τn = 2−nd2nτ + 1e and σn = 2−nd2nσ + 1e. Then (τn) and (σn) are
stopping times with τn ↓ τ and σn ↓ σ. Since each τn and σn take countably many values, by
Optional Stopping Theorem we have learned, we have a.s.

E[Xτn |Fσm ] ≥ Xτn∧σm , m, n ∈ N. (7.7)

Fix n ∈ N. Since F is right-continuous, Fσ =
⋂
mFσm . By Theorem 6.23, as m → ∞,

E[Xτn |Fσm ] → E[Xτn |Fσ] a.s. and in L1. Since X is right-continuous, Xτn∧σm → Xτn∧σ as
m→∞. Sending m→∞ in (7.7), we get a.s.

E[Xτn |Fσ] ≥ Xτn∧σ, n ∈ N. (7.8)

From this inequality, we see that (X0, . . . , Xτ2 , Xτ1) is a submartingale w.r.t. the filtration
(F0, . . . ,Fτ2 ,Fτ1). By Lemma 6.28, (Xτn) converges a.s. and in L1. Since τn ↓ τ , the limit is
Xτ by the right-continuity of X. Sending n→∞ in (7.8), we get (7.6).

Finally, we discuss the existence of a right-continuous version of a sub-martingale on R+.
Given a process X on T , we say that another process X ′ on T is a version of X if for any t ∈ T ,
a.s. X ′t = Xt. This in general is weaker than the condition that a.s. X ′t = Xt for any t ∈ T , in
which case we say that X and X ′ are indistinguishable. Suppose F is a complete filtration on
T . If X is F-adapted, then any version of X is also F-adapted. If X is an F-martingale (or
submartingale), then any version of X is also an F-martingale (or submartingale).

A process X on R+ is called rcll (right-continuous with left-hand limits, also called Càdlàg)
if for every ω ∈ Ω and t0 ≥ 0, limt↓t0 Xt(ω) = Xt0(ω), and when t0 > 0, limt↑t0 Xt(ω) converges.
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Theorem 6.27. Let F be a right-continuous and complete filtration on R+. Let X be an
F-submartingale. Suppose t 7→ EXt is right-continuous. Then X has an rcll version. In
particular, if X is an F-martingale, then an rcll version of X exists.

Proof. Let Y = X|Q+ . By Proposition 6.15, for any n ∈ N, a.s. Y is bounded on Q+ ∩ [0, n].
By upcrossing inequality (Lemma 6.17), for any n ∈ N and a < b ∈ Q, the number of [a, b]-
upcrossings of Y before n is a.s. finite. Thus there is N ∈ A with PN = 0 such that for ω ∈ N c,
for any n ∈ N and a < b ∈ Q, Yt(ω) is bounded on Q+ ∩ [0, t], and Q+ 3 t 7→ Yt(ω) has
finitely many [a, b]-upcrossings before n. Thus, for ω ∈ Ω \N , and any bounded increasing or
decreasing sequence (tn) in Q+, Ytn(ω) converges. Let ω ∈ Ω \N and t ∈ R+. We may choose
a sequence (tn) in Q+ with tn ↓ t. Then limYtn(ω) converges. By a limit argument we see that
the limit does not depend on (tn). Thus, limQ+3t↓t0 Yt converges. Define a process Z on R+

such that if ω ∈ Ω\N , then for any t0 ∈ R+, we define Zt0(ω) = limQ+3t↓t0 Yt(ω); and if ω ∈ N ,
then Zt(ω) = 0 for all t ∈ R+. It is clear that Z is an rcll. (Exercise)

Since F is right-continuous and complete, and PN = 0, Z is F-adapted. Let t ≥ 0. Let
(tn) be a sequence in Q+ with tn ↓ t. By Lemma 6.28, (Ytn) converges in L1 to Zt. Since a.s.
E[Ytn |Ft] = E[Xtn |Ft] ≥ Xt, we get a.s. Zt = E[Zt|Ft] ≥ Xt. By the right-continuity of EXt,
EZt = limEYtn = limEXtn = EXt. This together with a.s. Zt ≥ Xt implies a.s. Zt = Xt. So Z
is a version of X.

Example . The most important example of continuous martingale is Brownian motion, which
is also a Markov process. We will learn its construction in the next chapter.

Example . Suppose X0, X1, X2, . . . is a random walk on Z. We extend X to a process Y on
R+ such that Yt = Xbtc for t ≥ 0. Then Y is a right-continuous martingale on R+, and has no
continuous version.

Exercise . Do problems 13, 15, 17, 19 of Chapter 6.

8 Markov Processes

Definition . Let (S, S) be a Borel space. An S-valued F-adapted process X on T is called an
F-Markov process if for any u ≥ t ∈ T , a.s.

Law(Xu|Ft) = Law(Xu|Xt).

By Theorem 5.3, the Markov property is equivalent to that, for any A ∈ S, a.s.

P[Xu ∈ A|Ft] = P[Xu ∈ A|Xt].

By Proposition 5.6, the Markov property is equivalent to that

Xu |= XtFt, ∀u ≥ t ∈ T.
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Exercise . Prove that if X is an F-Markov process, then it is also a Markov process w.r.t. (i)
the completion of F ; and (ii) the filtration induced by F .

Lemma 7.1. If X is an F-Markov process on T , then for any t ∈ T ,

Ft |= Xt{Xu : u ≥ t},

and
{Xs : s ≤ t} |= Xt{Xu : u ≥ t}.

The last relation means that given the present, the future is independent of the past.

Proof. Let t = t0 ≤ t1 ≤ t2 ≤ · · · ∈ T . Then Law(Xtn+1 |Ftn) = Law(Xtn+1 |Xtn). Since

σ(Xtn) ⊂ σ(Xt0 , . . . , Xtn) ⊂ σ(Ft, Xt0 , . . . , Xtn) ⊂ Ftn ,

we get Law(Xtn+1 |Xtn) = Law(Xtn+1 |Xt0 , . . . , Xtn) = Law(Xtn+1 |Ft, Xt0 , . . . , Xtn), which im-
plies by Proposition 5.6 that

Ft |= Xt0 ,Xt1 ,...,XtnXtn+1 , n ≥ 0,

which further implies by Proposition 5.8 that

Ft |= Xt(Xt1 , Xt2 , . . . ).

By a monotone class argument, we get Ft |= Xt{Xu : u ≥ t}. The last formula holds because X
is F-adapted.

By Theorem 5.3, for any t ≤ u ∈ T , there is a probability kernel µt,u from S to S (we now
call it a kernel on S) such that for any A ∈ S, a.s.

P[Xu ∈ A|Ft] = µt,u(Xt, A).

Such µt,u is Law(Xt)-a.s. unique, and is called a transition kernel. When t = u, P[Xt ∈ A|Ft] =
1A(Xt) = δXtA. So we may choose µt,t to be µt,t(s,A) = δsA for s ∈ S and A ∈ S. Let
νt = Law(Xt), t ∈ T .

Proposition 7.2. Let t0 ≤ t1 ≤ · · · tn ∈ T . We have

Law(Xt1 , . . . , Xtn |Ft0) = (µt0,t1 ⊗ µt1,t2 ⊗ · · · ⊗ µtn−1,tn)(Xt0 , ·); (8.1)

Law(Xt1 , . . . , Xtn) = νt0µt0,t1 ⊗ µt1,t2 ⊗ · · · ⊗ µtn−1,tn . (8.2)

Corollary 7.3. For any s ≤ t ≤ u ∈ T , νsµs,t = νt, and νs-a.s. µs,u = µs,tµt,u.
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Recall that for kernels µ1, . . . , µn on S, µ1 ⊗ · · · ⊗ µn is a probability kernel from S to Sn

such that for s0 ∈ S and A ∈ Sn,

(µ1 ⊗ · · · ⊗ µn)(s0, A) =

∫
µ1(s0, ds1)

∫
µ2(s1, ds2) · · ·

∫
µn(sn−1, dsn)1A(s1, . . . , sn);

and µ1µ2 is a probability kernel from S to S defined by (µ1µ2)(s0, A) = (µ1 ⊗ µ2)(s0, S × A)
for s0 ∈ S and A ∈ S. If, in addition, ν is a probability measure on S, then νµ1 ⊗ · · · ⊗ µn is a
probability measure on Sn such that for A ∈ Sn,

(νµ1 ⊗ · · · ⊗ µn)A =

∫
ν(ds0)(µ1 ⊗ · · · ⊗ µn)(s0, A).

If f : Sn → R+ is measurable, then

(νµ1 ⊗ · · · ⊗ µn)f =

∫
ν(ds0)

∫
µ1(s0, ds1)

∫
µ2(s1, ds2) · · ·

∫
µn(sn−1, dsn)f(s1, . . . , sn).

Exercise . Prove that for a probability measure ν on S and kernels µ1, µ2, µ3 on S, we have
the associative law: (νµ1)µ2 = ν(µ1µ2) and (µ1µ2)µ3 = µ1(µ2µ3).

Proof of Proposition 7.2. Let f : Sn → R be a bounded measurable function. By Theorem 5.4,

E[f(Xt1 , . . . , Xtn)|Ftn−1 ] =

∫
f(Xt1 , . . . , Xtn−1 , sn) Law(Xtn |Ftn−1)(dsn)

=

∫
µtn−1,tn(Xtn−1 , dsn)f(Xt1 , . . . , Xtn−1 , sn).

Note that we replace the Xtn by sn and integrate against µtn−1,tn(Xtn−1 , dsn). Since the RHS
of the above formula is a bounded measurable function composed with Xt1 , . . . , Xtn−1 , by
conditioning it further on Ftn−2 and using a similar argument, we get

E[f(Xt1 , . . . , Xtn)|Ftn−2 ] =∫
µtn−2,tn−1(Xtn−2 , dsn−1)

∫
µtn−1,tn(sn−1, dsn)f(Xt1 , . . . , Xtn−2 , sn−1, sn).

Iterating this argument, we get

E
[
f(Xt1 , . . . , Xtn)|Ft0 ]

=

∫
µt0,t1(Xt0 , s1)

∫
µt1,t2(s1, ds2) · · ·

∫
µtn−1,tn(sn−1, dsn)f(s1, . . . , sn).

Setting f = 1A for A ∈ Sn, we get (8.1). Taking expectation, we then get (8.2).
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Proof of Corollary 7.3. Taking n = 1, t0 = s and t1 = t in (8.2), we find that for any A ∈ S,
νtA = Law(Xt)(A) = (νsµs,t)A. So νt = νsµs,t. Taking n = 2, t0 = s, t1 = t, and t2 = u in
(8.1), we find that for any A ∈ S, a.s.

µs,u(Xs, A) = Law(Xu|Fs)(·, A) = Law(Xt, Xu|Fs)(·, S ×A)

= (µs,t ⊗ µt,u)(Xs, A) = (µs,tµt,u)(Xs, A).

Thus, a.s. µs,u(Xs, ·) = (µs,tµt,u)(Xs, ·), which implies that νs-a.s. µs,u = µs,tµt,u.

We call the equalities
µs,u = µs,tµt,u, ∀s ≤ t ≤ u ∈ T,

the Chapman-Kolmogorov relation.

Theorem 7.4. Let (S, S) be a Borel space. Let T ⊂ R be an index set such that minT exists.
Suppose µs,t, s < t ∈ T , is a family of kernels on S that satisfies the Chapman-Kolmogorov
relation. Then for any probability measure ν on S, there is an S-valued Markov process X on
T with transition kernel µs,t and initial distribution Law(XminT ) = ν.

Proof. We define νt for t ∈ T such that if t = t0 = minT , νt0 = ν; and if t > t0, νt = νµt0,t. By
the associative law we see that for t1 < t2 ∈ T , νt2 = νt1µt1,t2 .

Let T̂ denote the family of nonempty subsets of T . For each Λ = {t1 < · · · < tn} ∈ T̂ ,
we define νΛ = νt1µt1,t2 ⊗ · · · ⊗ µtn−1,tn as a probability measure on SΛ. We now show that

the family {νΛ : Λ ∈ T̂} is consistent, i.e., for any Λ1 ⊂ Λ2, πΛ2,Λ1
∗ νΛ2 = νΛ1 , where πΛ2,Λ1 is

the projection from SΛ2 onto SΛ1 . It suffices to prove it in the case that |Λ2 \ Λ1| = 1. Write
Λ2 = {t1 < · · · < tn}. Fix 1 ≤ k ≤ n. We need to show that, if Λ1 = Λ2 \ {tk}, then for any

B ∈ Sn−1
, with Bk defined by

Bk = {(s1, . . . , sn) ∈ Sn : (s1, . . . , sk−1, sk+1, . . . , sn) ∈ B},

we have νΛ2Bk = νΛ1B. Recall that

νΛ2Bk =

∫
νt1(ds1)

∫
µt1,t2(s1, ds2) · · ·

∫
µtn−1,tn(sn−1, dsn)1Bk(s1, . . . , sn)

If k = n,

νΛ2Bn =

∫
νt1(ds1) · · ·

∫
µtn−2,tn−1(sn−2, dsn−1)

∫
µtn−1,tn(sn−1, dsn)1B(s1, . . . , sn−1)

=

∫
νs1(ds1) · · ·

∫
µtn−2,tn−1(sn−2, dsn−1)1B(s1, . . . , sn−1) = νΛ1B.

If k = 1, using νt1µt1,t2 = µt2 , we get

νΛ2B1 =

∫
νt1(ds1)

∫
µt1,t2(s1, ds2) · · ·

∫
µtn−1,tn(sn−1, dsn)1B(s2, . . . , sn)
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=

∫
νt2(ds2) · · ·

∫
µtn−1,tn(sn−1, dsn)1B(s2, . . . , sn) = νΛ1B.

If 2 ≤ k ≤ n− 1, then using µtk−1,tkµtk,tk+1
= µtk−1,tk+1

, we get

νΛ2Bk =

∫
νt1(ds1)

∫
µt1,t2(s1, ds2) · · ·

∫
µtk−1,tk(sk−1, dsk)

∫
µtk,tk+1

(sk, dsk+1) · · ·

· · ·
∫
µtn−1,tn(sn−1, dsn)1B(s1, . . . sk−1, sk+1, sn)

=

∫
νt1(ds1)

∫
µt1,t2(s1, ds2) · · ·

∫
µtk−1,tk+1

(sk−1, dsk+1) · · ·

· · ·
∫
µtn−1,tn(sn−1, dsn)1B(s1, . . . sk−1, sk+1, sn) = νΛ1B.

So we proved the consistence. By Theorem 5.16, there is a probability measure νT on (ST , S
T

)

such that for any Λ ∈ T̂ , πT,Λ∗ νT = νΛ. Define a probability space (Ω,A,P) by Ω = ST , A = S
T

,
and P = νT . Let X be a process on T defined on Ω such that Xt(ω) = ω(t), t ∈ T . This means
that the whole process X as a map from Ω to ST is the identity. Thus, Law(X) = P = νT , and
for any Λ = {t1 < · · · < tn} ∈ T̂ , Law(Xt1 , . . . , Xtn) = πT,ΛνT = νΛ. Taking n = 1 and t1 = t0,
we get Law(Xt0) = ν{t0} = ν. Let F be the filtration on Ω = ST induced by X. We now show
that X is an F-Markov process with transition kernel µt,u, t < u ∈ T .

Let t < u ∈ T . Let A ∈ S. Taking t1 < · · · < tn = t and B ∈ Sn. Then

E[1{(Xt1 ,...,Xtn )−1B}1{Xu∈A}] = νt1,...,tn,u(B ×A)

=

∫
νt1(ds1)

∫
µt1,t2(s1, ds2) · · ·

∫
µtn−1,tn(sn−1, dsn)

∫
µtn,u(sn, dsu)1B(s1, . . . , sn)1A(su)

=

∫
νt1(ds1)

∫
µt1,t2(s1, ds2) · · ·

∫
µtn−1,tn(sn−1, dsn)µtn,u(sn, A)1B(s1, . . . , sn)

= E[µt,u(Xt, A)1B(Xt1 , . . . , Xtn)] = E[1{(Xt1 ,...,Xtn )−1B}µt,u(Xt, A)].

By a monotone class argument, we get a.s. P[Xu ∈ A|Ft] = µt,u(Xt, A). So a.s. Law(Xu|Ft) =
µt,u(Xt, ·), as desired.

The process X constructed in the above proof is called a canonical process.
Assume that S is an Abelian measurable group. For a probability measure µ on S and x ∈ S,

we use x+ µ to denote the measure B 7→ µ(B − x). A kernel µ on S is called homogeneous if
there is a probability measure ν on S such that

µ(x, ) = x+ ν, x ∈ S,

and we say that the kernel µ is induced by the measure ν. An S-valued Markov process with
homogeneous transition kernels is said to be space-homogeneous. We say that an S-valued
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process X has independent increments if for any times t0 ≤ · · · ≤ tn, Xt0 and the increments
Xtk −Xtk−1

, 1 ≤ k ≤ n, are mutually independent. Given a filtration F on T , an F-adapted
process X is said to have F-independent increments if for any s ≤ t ∈ T , (Xt −Xs) |= Fs. The
latter condition is stronger because it implies that, for t0 ≤ · · · tn, (Xt0 , Xtj − Xtj−1 , 1 ≤ j ≤
k − 1) |= Xtk −Xtk−1

for any 1 ≤ k ≤ n.

Proposition 7.5. An S-valued process X on T is a space-homogeneous F-Markov process if
and only if it has F-independent increments. Moreover, for each s ≤ t ∈ T , the transition
kernel µs,t is induced by the measure νs,t := Law(Xt −Xs), and the family νs,t satisfies that if
t0 ≤ t1 ≤ · · · ≤ tn ∈ T , then νt0,tn = νt0,t1 ∗ νt1,t2 ∗ · · · ∗ νtn−1,tn.

Proof. First suppose X has F-independent increments. Let t ≤ u ∈ T . From Xu −Xt |= Ft, we
get Law(Xu −Xt|Ft) = Law(Xu −Xt). Since Xt is Ft-measurable, we then get Law(Xu|Ft) =
Xt + Law(Xu −Xt). So we find that X is an F-Markov process with the transition kernel µt,u
being the homogeneous kernel induced by Law(Xu −Xt).

Next suppose X is an space-homogeneous F-Markov process with transition kernel µt,u. Let
t ≤ u ∈ T . Then there is a probability measure νt,u on S such that Law(Xu|Ft) = µt,u(Xt, ·) =
Xt + νt,u. Then we get Law(Xu − Xt|Ft) = νt,u. Since νt,u is a constant measure, we get
Xu −Xt |= Ft. So X has F-independent increments.

Finally, if t0 ≤ t1 ≤ · · · ≤ tn ∈ T , then since Xtk −Xtk−1
, 1 ≤ k ≤ n, are independent, we

get νt0,tn = νt0,t1 · · · νtn−1,tn .

For a family of homogeneous kernels µt,u induced by the measures νt,u, t < u ∈ T , the
Chapman-Kolmogorov relation is equivalent to that νs,u = νs,t ∗ νt,u for s < t < u ∈ T .

In the case T = R+ or Z+, we define time-homogeneous Markov process. A Markov process
with transition kernels µs,t, s < t ∈ T , is called time-homogeneous if there is a family of kernels
µt, t ∈ T , on S, such that µs,t = µt−s for every s < t ∈ T . In this case, the Chapman-
Kolmogorov relation is equivalent to that

µsµt = µs+t, ∀s, t ∈ T. (8.3)

We call the family {µt : t ∈ T} satisfying (8.3) a semigroup. If each µt has mean zero, then X
is a martingale because E[Xu −Xt|Ft] = E[Xu −Xt] =

∫
xµu−t(dx) = 0 for u ≥ t.

If a time-homogeneous Markov process is also space-homogeneous, then the kernels µt,
t ∈ T , are induced by probability measures νt, t ∈ T , on S, and the Chapman-Kolmogorov
relation is equivalent to that

νs ∗ νt = νs+t, ∀s, t ∈ T. (8.4)

On the other hand, if the family νt, t ≥ 0, satisfies the above equality, by Theorem 7.4 we
may then construct a space-homogeneous and time-homogeneous Markov process on T with
transition kernels µs,t(x, ·) = x+ νt−s.

We have two families of probability measures {νt : t ≥ 0} on R that satisfy (8.4) with
T = R+. One is νt = N(0, t), the normal distribution with mean 0 and variance t, t ≥ 0, and
the corresponding Markov process is a Brownian motion. Since the νt all have mean zero, a
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Brownian motion is a martingale. A Brownian motion has a continuous version. The other
example is νt = Pois(t), the Poisson distribution with parameter t, t ≥ 0, and the corresponding
Markov process is a Poisson process, which takes integer values and has an rcll version.

Fix a semigroup of kernels µt, t ∈ T , on S. For each probability measure ν on S, there is
a canonical process X with initial distribution ν and transition kernels µs,t = µt−s, s ≤ t. We
use Pν to denote the law of such X, which is a probability measure on ST . In the case that
ν = δx for x ∈ S, we write Px for Pδx .

Lemma 7.7. The measures Px, x ∈ S, form a probability kernel from S to ST , and for any
probability measure ν on S, Pν = µP·, i.e.,

PνA =

∫
(PxA)ν(dx), ∀A ∈ ST .

This lemma means that we may view Pν as a mixture of Px, x ∈ S.

Proof. Both the measurability of x 7→ PxA and the displayed formula are obvious for cylinder
sets of the form A = π−1

Λ B for a finite set Λ ⊂ T . The general case follows by a monotone class
argument.

For t ∈ T , define θt : ST → ST by (θtω)s = θt+s, s ∈ T . If X is a process on T , then θtX is
the process Xt+·, i.e., the part of X after t.

Proposition 7.9 (Strong Markov Property). Fix a time-homogeneous Markov process X on
T = R+ or Z+, and let τ be a stopping time taking countably many values. Then a.s. on
{τ < ∞}, Law(θτX|Fτ ) = PXτ . Here we understand PXτ as the composition of the kernel P·
with the map Xτ .

Proof. We first assume that τ is a deterministic time t0. For sets of the form A = π−1
{t1<···<tn}B,

by Proposition 7.2 and time-homogeneity,

P[θt0X ∈ A|Ft0 ] = P[(Xt0+t1 , · · · , Xt0+tn) ∈ B|Ft0 ]

= (µt1 ⊗ µt2−t1 ⊗ · · · ⊗ µtn−tn−1)(Xt0 , B) = PXt0A.

By a monotone class argument, the above formula holds for any A ∈ ST . So we get

Law(θt0X|Ft0) = PXt0 .

In the general case, suppose τ takes values in the countable set C. Then for any t ∈ C \ {∞},
by Lemma 6.1, Fτ agrees with Ft on {τ = t}; and by Lemma 5.2, Law(θt0X|Fτ ) agrees with
Law(θt0X|Ft) on {τ = t}, which is PXt . So for each t ∈ C \ {∞}, Law(θt0X|Fτ ) = PXt = PXτ
on {τ = t}. Since C is countable and {τ <∞} =

⋃
t∈C{τ = t}, we arrive at the conclusion.

We say that a probability measure ν is invariant for the semigroup µt, t ∈ T , if νµt = ν for

every t ∈ T . A process X on T is said to be stationary if for all t ∈ T , θtX
d
= X.
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Lemma 7.11. Let X be a time-homogeneous Markov process on T with transition kernels (µt)
and initial distribution ν. Then X is stationary iff ν is invariant for (µt).

Proof. If X is stationary, then for any t ∈ T ,

νµt = νt = Law(Xt) = Law((θtX)0) = Law(X0) = ν.

So ν is invariant for (µt). On the other hand, suppose ν is invariant for (µt). Then Law(Xt) =
νt = νµt = ν for any t ∈ T . By Proposition 7.2 and time-homogeneity, for any t1 < · · · < tn ∈ T
and t0 ∈ T ,

Law(Xt0+t1 , . . . , Xt0+tn) = νt0+t ⊗ µt1−t0 ⊗ · · · ⊗ µtn−tn−1

= νt0 ⊗ µt1−t0 ⊗ · · · ⊗ µtn−tn−1 = Law(Xt1 , . . . , Xtn).

By a monotone class argument, we get θt0X
d
= X.

For a time-homogeneous Markov processes, if T = R+, it is called continuous-time; if
T = Z+, it is called discrete-time. In the latter case, the family µn, n ∈ Z+, are determined
by the single kernel µ1 as µn = µ1 · · ·µ1. When S is countable, it is called discrete-state or a
Markov chain.

From now on, let X = (Xn)n≥0 be a discrete-time discrete-state Markov process. The
transition kernels µn can be expressed by the square matrix pn indexed by S, where

pnx,y = µn(x, {y}), x, y ∈ S.

The equality µnµm = µn+m becomes the equality of matrix product: pnpm = pn+m, i.e.,
pn+m
x,y =

∑
z∈S p

n
x,zp

m
z,y. When n = 0, pn is the identity matrix.

Let y ∈ S. We consider the sequence of successive visits to y. Define τ0
y = 0. When τny is

defined, we define τn+1
y to be the first t > τny such that Xt = y. When such t does not exist,

we define τn+1
y =∞. Then we get an increasing sequence of stopping times (τny )n≥0. We define

the occupation times

κy = sup{n : τny <∞} =
∞∑
n=1

1{Xτny = y}, y ∈ S.

We define the hitting probabilities:

rx,y = Px[τ1
y <∞] = Px[κy ≥ 1], x, y ∈ S.

Proposition 7.12. For any x, y ∈ S and n ∈ N,

Px[κy ≥ n] = Px[τny <∞] = rx,yr
n−1
y,y , (8.5)

Ex[κy] =
rx,y

1− ry,y
. (8.6)

Here if ry,y = 1, then the fractal is understood as ∞ if rx,y > 0, and 0 if rx,y = 0.
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Proof. By Strong Markov property, conditionally on Fτny , on the event {τny < ∞}, the condi-

tional law of the process Xτny +· is Py. We observe that τn+1
y − τny agrees with the τ1

y for the
process Xτny +·. Thus,

Px[τn+1
y <∞|Fτny , τ

n
y <∞] = Px[τn+1

y − τny <∞|Fτny , τ
n
y <∞] = Py[τ1

y <∞] = ry,y.

Integrating this formula, we get

Px[τn+1
y <∞] = Px[τny <∞]ry,y, n ≥ 1.

Since Px[τ1
y <∞] = rx,y, we get (8.5) by induction. Since Ex[κy] =

∑∞
n=1 Px[κy ≥ n], summing

(8.5) over n ∈ N, we get (8.6).

For x = y, we get Py[κy ≥ n] = rny,y, n ∈ N. If ry,y = 1, then Py-a.s. κy = ∞, and we say
that the state y is recurrent. If ry,y < 1, then Py-a.s. κy < ∞, and we say that the state y is
transient.

Proposition 7.13. If an invariant distribution ν exists, then any state x with ν{x} > 0 is
recurrent.

Proof. By the invariance of ν,

0 < ν{x} =
∑
y∈S

ν{y}pny,x.

Thus, by Proposition 7.12,

∞ =

∞∑
n=1

∑
y∈S

ν{y}pny,x =
∑
y∈S

ν{y}
∞∑
n=1

pny,x =
∑
y∈S

ν{y}Ey[κx] =
∑
y∈S

ν{y}ry,x
1− rx,x

≤ 1

1− rx,x
.

Then we must have rx,x = 1, and so x is recurrent.

The period dx of a state x is defined as the greatest common divisor of the set {n ∈ N; pnx,x >
0}, and we say that x is aperiodic if dx = 1. When the set of n is empty, the period is understood
as ∞.

Proposition 7.14. If x ∈ S has period d <∞, then pndx,x > 0 for all but finitely many n.

Proof. Let F = {n ∈ N : pndx,x > 0}. If n,m ∈ F , then from

p(n+m)d
x,x =

∑
y∈S

pndx,yp
md
y,x ≥ pndx,xpmdx,x > 0,

we get n+m ∈ F . So (F,+) is a semigroup. From the definition of the period, F has the greatest
common divisor 1. Thus, the group generated by F is Z. Thus, there exist n1, . . . , nk ∈ F and
z1, . . . , zk ∈ Z such that

∑
j zjnj = 1. Let m = n1

∑
j |zj |nj . Any n ≥ m can be expressed as

n = m+ hn1 + r, where h ∈ Z+ and r ∈ {0, . . . , n1 − 1}. Then we have

n = hn1 +m+ r = hn1 + n1

∑
j

|zj |nj + r(
∑
j

zjnj) = hn1 +
∑
j

nj(|zj |n1 + zjr) ∈ F.
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Suppose X starts from a recurrent state x. Then X visits x at the times 0 = τ0
x < τ1

x <
τ2
x < · · · , which are all finite. The successive excursions of X from x are processes Y n, n ∈ Z+,

of random finite lifetime, given by

Y n
t = Xτnx +t, 0 ≤ t ≤ τn+1

x − τnx .

Note that each Y n starts from x and ends at x. Conversely, we may construct X from (Y n).
First, since the lifetime of Y n equals τn+1

x − τnx , we can recover all τnx for X. Second, when τnx
is known, we may use Y n to recover the path of X restricted to [τnx , τ

n+1
x ].

Proposition 7.15 (simplified version). The processes Y 0, Y 1, Y 2, . . . are independent with
identical distribution.

Proof. Fix n ∈ N. By strong Markov property, conditional on Fτnx , the conditional law of the
process Xτnx +· is the same as the unconditional law of X. Thus, Xτnx +· has the same law as
X, and is independent of Fτnx . Since τn+1

x − τnx is the first t ≥ 1 such that Xτnx +t = x, and
Y n = Xτnx +·|[0,τn+1

x −τnx ], we see that Y n |= Fτnx , and has the same law as Y0. So all Y n have

the same law. Since Y n concerns only the values of X before τn+1
x , we see that Y n is Fτn+1

x
-

measurable. From Y n |= Fτnx , we then know Y n |= (Y k : 0 ≤ k ≤ n − 1) for all n ∈ N, which
implies that Y 0, Y 1, Y 2, . . . are independent.

Recall that rx,y = Px[τ1
y <∞].

Lemma 7.17. Let x ∈ S be recurrent, and define Cx = {y ∈ S; rx,y > 0}. Then ry,z = 1 for
all y, z ∈ Cx , and all states in Cx are recurrent.

Proof. Suppose X starts from x. Let y ∈ Cx. By the strong Markov property, conditionally
on Fτ1y and the event that τ1

y <∞, the probability that X returns to x after τ1
y at some finite

time equals ry,x. Thus the probability that X visits y and then returns to x is rx,yry,x. Since
x is recurrent, this probability is just rx,y. Since rx,y > 0, we get ry,x = 1. Since rx,y, ry,x > 0,
there are m,n ∈ N such that pnx,y, p

m
y,x > 0. Then we have

Ey[κy] =
∞∑
k=1

Py[Xk = y] =
∞∑
k=1

pky,y ≥
∞∑
s=1

pn+s+m
y,y =

∞∑
s=1

∑
z∈S

∑
w∈S

pny,zp
s
z,wp

m
w,y

≥
∞∑
s=1

pny,xp
s
x,xp

m
x,y = pny,xp

n
y,x

∞∑
s=1

psx,x = pny,xp
n
y,xEx[κx] =∞.

Thus, y is also recurrent. Since ry,x = 1, we have x ∈ Cy. From the above result we get rx,y = 1.
Let y, z ∈ Cx. From ry,x = rx,z = 1 and the strong Markov property, we know that, if X starts
from y, then it visits x, and then visits z after that time. So we get ry,z = 1.

We say that X is irreducible if rx,y > 0 for any x, y ∈ S.

Proposition 7.16. Let X be irreducible. Then
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(i) the states are either all recurrent or all transient;

(ii) all states have the same period;

(iii) if ν is invariant, then ν{x} > 0 for all x ∈ S.

If all states are recurrent/transient, then we say that X is recurrent/transient.

Proof. (i) By Lemma 7.17, if one state x is recurrent, then all states are recurrent since Cx = S.
(ii) For any x, y ∈ S, choose n,m ∈ N with pmx,y, p

n
y,x > 0. Then for any h ≥ 0,

pn+h+m
y,y =

∑
z∈S

∑
w∈S

pny,zp
h
z,wp

m
w,y ≥ pny,xphx,xpmx,y.

For h = 0, we get pn+m
y,y > 0. So dy|(m+ n). In general, phx,x > 0 implies that pn+h+m

y,y > 0, and
so dy|h. So we get dy|dx. Reversing the roles of x, y, we get dx|dy. Thus, dx = dy.

(iii) Fix x ∈ S. Choose y ∈ S with ν{y} > 0 and n ∈ N such that pny,x > 0. By invariance
of ν, we have

ν{x} =
∑
z∈S

ν{z}pnz,x ≥ ν{y}pny,x > 0.

We may now state the basic ergodic theorem for irreducible Markov chains. Recall that for
any signed measure µ, its total variation is ‖µ‖TV = 2 supA |µA|. If X and Y are two random
elements with laws µ and ν, then ‖µ− ν‖TV ≤ 2P[X 6= Y ].

Theorem 7.18. Let X be irreducible and aperiodic with state space I. Then exactly one of
these conditions holds:

(i) There exists a unique invariant distribution ν; furthermore, ν{i} > 0 for all i ∈ I, and
for any distribution µ on I,

lim
n→∞

‖Pµ ◦ θ−1
n − Pν‖TV = 0. (8.7)

(ii) No invariant distribution exists, and

lim
n→∞

pni,j = 0, ∀i, j ∈ I. (8.8)

If X satisfies (i), then it is recurrent because for any x ∈ S, from (8.7) we know that
pnx,x → ν{x} > 0, which implies that Ex[κx] =

∑∞
n=1 p

n
x,x = ∞. In this case we say that X is

positive recurrent. If X satisfies (ii), it may be recurrent or transient. If it is recurrent, then
we say that X is null recurrent.
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Lemma 7.19. Let X and Y be independent Markov chains on some countable state spaces I
and J , with transition matrices (pi,i′) and (qj,j′), respectively. Then the pair (X,Y ) is again
Markov with transition matrices rn(i,j),(i′,j′) = pni,i′q

n
j,j′. If X and Y are irreducible and aperiodic,

then so is (X,Y ), and in that case (X,Y ) is recurrent whenever invariant distributions exist
for both X and Y .

Proof. Let FX = (FXn ) and FY = (FYn ) be the filtration induced by X and Y , respectively.
Define a new filtration F by Fn = FXn ∨ FYn for each n ∈ Z+. Then both X and Y are
F-adapted, and so is the joint process (X,Y ). Fix m ≥ n ∈ N. Then for every i′ ∈ I and
j′ ∈ J ,

P[Xm = i′|FXn ] = pm−nXn,i′
, P[Ym = j′|FYn ] = qm−nYn,j′

,

which is equivalent to that, for any A ∈ FXn and B ∈ FYn ,

P[A ∩ {Xm = i′}] = E[1Ap
m−n
Xn,i′

], P[B ∩ {Ym = j′}] = E[1Bq
m−n
Yn,j′

].

Since X and Y are independent, the above formula is further equivalent to

P[C ∩ {(Xm, Ym) = (i′, j′)}] = E[1Cp
m−n
Xn,i′

qm−nYn,j′
], (8.9)

where C = A ∩B. By a monotone class argument, we see that (8.9) holds for any C ∈ Fn. So
we get

P[(Xm, Ym) = (i′, j′)|Fn] = pm−nXn,i′
qm−nYn,j′

= rm−n(Xn,Yn),(i′,j′).

So (X,Y ) is a Markov process with transition matrices (rn(i,j),(i′,j′)).

Suppose X and Y are irreducible and aperiodic. Fix i, i′ ∈ I and j, j′ ∈ J . By Proposition
7.14, pni,i′ > 0 and qnj,j′ > 0 for all but finitely many n. So rn(i,j),(i′,j′) = pni,i′q

n
j,j′ for all but

finitely many n. Thus, (X,Y ) is irreducible and aperiodic. Finally, suppose µ and ν are
invariant distributions for X and Y , respectively. Then µ × ν is an invariant distribution for
(X,Y ) because for any (i′, j′) ∈ I × J ,

(µ× ν){(i′, j′)} = µ{i′}ν{j′} =
(∑
i∈I

µ{i}pi,i′
)(∑

j∈J
ν{j}qj,j′

)
=

∑
(i,j)∈I×J

(µ× ν){(i, j)}r(i,j),(i′,j′).

By Proposition 7.16, µ{i}, ν{j} > 0 for any i ∈ I and j ∈ J . So (µ × ν){(i, j)} > 0 for every
(i, j) ∈ I × J . By Proposition 7.13, (X,Y ) is recurrent.

Lemma 7.20. Let I be a countable set. Let µ and ν be probability measures on I. Let X
and Y be independent Markov chains on I with the same transition matrices (pni,j) and initial
distributions µ and ν. Suppose that the Markov chain (X,Y ) on I × I is irreducible and
recurrent. Then

lim
n→∞

‖Pµ ◦ θ−1
n − Pν ◦ θ−1

n ‖TV = 0. (8.10)
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Proof. For any n ∈ N, Law(Xn+·) = Pµ ◦θ−1
n and Law(Yn+·) = Pν ◦θ−1

n . Let F be the filtration
induced by (X,Y ). Let τ = inf{n ≥ 0 : Xn = Yn}, i.e., the first time that (X,Y ) reaches the
diagonal {(i, i) : i ∈ I}. Then τ is an stopping time. By assumption, (X,Y ) is irreducible and
recurrent. Thus, τ is a.s. finite.

From the strong Markov property of (X,Y ), conditionally on Fτ , Xτ+· has the same con-
ditional law as Yτ+·. Define another process X̃ such that for n ≤ τ , X̃n = Xn, and for n ≥ τ ,
X̃n = Yn. In other words, X̃ follows X before colliding with Y , and follows Y afterwards. Then
X̃|[0,τ ] = X|[0,τ ] is Fτ -measurable, and Law(X̃τ+·|Fτ ) = Law(Xτ+·|Fτ ). So we get

Law(X̃|[0,τ ], X̃τ+·) = Law(X|[0,τ ], Xτ+·).

Since X is determined by X|[0,τ ] and Xτ+· in a measurable way, the above formula implies that

Law(X̃) = Law(X). Thus, Pµ ◦ θ−1
n = Law(Xn+·) = Law(X̃n+·). Since Pν ◦ θ−1

n = Law(Yn+·),

and X̃n+· = Yn+· on the event {τ ≤ n}, we get

‖Pµ ◦ θ−1
n − Pν ◦ θ−1

n ‖TV ≤ 2P[τ > n].

Since a.s. τ <∞, we get ‖Pµ ◦ θ−1
n − Pν ◦ θ−1

n ‖TV → 0.

Lemma 7.21 (Existence). In the setting of Theorem 7.18, if (8.8) fails, then an invariant
distribution exists.

Proof. Assume that (8.8) fails. Then there are i0, j0 ∈ I such that lim sup pni0,j0 > 0. By a
diagonal argument, we may find a subsequence N ′ ⊂ N such that for any j ∈ I, pni0,j converges
to some cj ∈ [0, 1] along N ′. Moreover, we may choose N ′ such that cj0 > 0. Since

∑
j p

n
i0,j

= 1
for every n, by Fatou’s lemma,

∑
j cj ≤ 1.

Let X and Y be independent with the transition matrix p. By Lemma 7.19, (X,Y ) is
an irreducible Markov chain on I2 with transition matrix r(i,j),(i′,j′) = pi,i′pj,j′ . If (X,Y ) is
transient, then for any i, j ∈ I,

∞ >

∞∑
n=1

P(i,i)[(Xn, Yn) = (j, j)] =

∞∑
n=1

rn(i,i),(j,j) =

∞∑
n=1

(pni,j)
2,

which implies that (8.8) holds, which is a contradiction. So (X,Y ) is recurrent. By Lemma
7.20, for any i, j ∈ I,

|pni,j − pni0,j | ≤ ‖Pi ◦ θ
−1
n − Pi0 ◦ θ−1

n ‖TV → 0.

Since pni0,j → cj along N ′, we get pni,j → cj along N ′ for all i, j ∈ I.
From the Chapman-Kolmogorov relation, we conclude that for any n,∑

j∈I
pni,jpj,k = pn+1

i,k =
∑
j∈I

pi,jp
n
j,k, i, k ∈ I.
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Letting n→∞ along N ′, by Fatou’s lemma we get

lim inf
N ′3n→∞

∑
j∈I

pni,jpj,k ≥
∑
j∈I

cjpj,k;

and by dominated convergence theorem we get

lim
N ′3n→∞

∑
j∈I

pi,jp
n
j,k =

∑
j∈I

pi,jck = ck.

Thus, ck ≥
∑

j∈I cjpj,k for every k ∈ I. Summing over k, we get
∑

k ck on both sides since∑
k pj,k = 1. So we must have ck =

∑
j∈I cjpj,k for every k ∈ I. Since cj0 > 0, we get an

invariant distribution ν with ν{j} = cj/
∑

i ci, j ∈ I.

Proof of Theorem 7.18. If no invariant distribution exists, then (8.8) holds by Lemma 7.21.
Now let ν be an invariant distribution. By Proposition 7.16, ν{i} > 0 for all i ∈ I. By Lemma
7.19, the Markov chain (X,Y ) in Lemma 7.20 is irreducible and recurrent, so (8.10) holds for
any initial distributions µ and ν. If ν is invariant, we get (8.7) since Pν ◦ θ−1

n = Pν by Lemma
7.11. If ν ′ is also invariant, then (8.7) yields Pν′ = Pν , and so ν ′ = ν.

Theorem 7.22. For a Markov chain on I and states i, j ∈ J with j aperiodic, we have

lim
n→∞

pni,j =
Pi[τj <∞]

Ei[τj ]
.

Proof. First take i = j. If j is transient, then pnj,j → 0 and Ejτj = ∞. The equality holds
trivially. Suppose j is recurrent. If X starts from j, then it stays in Cj , and the restriction of
X to Cj is a recurrent Markov chain by Lemma 7.17. Since j is aperiodic, X|Cj is aperiodic by
Proposition 7.16. Thus, limn→∞ p

n
j,j converges by Theorem 7.18.

Define L(n) =
∑n

k=1 1Xk=j , the number of times that X visits j before n. Then L is
increasing, L(0) = 0, and L(τnj ) = n. Since τnj − τ

n−1
j , n ≥ 1, are mutually independent, by

the law of large numbers, a.s.
τnj
n → Ejτj . This statement holds even if Ejτj = ∞ because

in that case for any M > 0, τnj ≥
∑n

k=1 ζ
M
k , where ζMk = M ∧ (τkj − τ

k−1
j ), and we then get

lim inf
τnj
n ≥ Ej [ζM1 ]. Letting M → ∞, we then get

τnj
n → ∞. Thus, Pj-a.s. limn→∞

L(τnj )

τnj
→

1
Ejτj . For any n ∈ Z+, we may find m ∈ Z+ such that τmj ≤ n < τm+1

j . Then L(n) = m

and L(n)
n = m

n ∈ ( m
τm+1
j

, mτmj
]. Thus, L(n)

n → 1
Eτj . Since L(n) ≤ n, by dominated convergence

theorem, 1
n

∑n
k=1 p

k
j,j = 1

nEjL(n)→ 1
Ejτj . So we get pnj,j → 1

Ejτj .

Now let i 6= j. Using the strong Markov property and dominated convergence, we get

pni,j = Pi[Xn = j] = Pi[τ1
j ≤ n,Xn = j] = Pi[τ1

j ≤ n, (θτ1j ◦X)n−τ1j
= j]

= Ei[1{τ1
j ≤ n}p

n−τj
j,j ]→ Ei[1{τ1

j <∞} lim
n→∞

pnj,j ] =
Pi[τj <∞]

Ei[τj ]
.
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