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Abstract

We use a coupling technique to prove that there exists a loop-erasure of the time-reversal
of a planar Brownian motion stopped on exiting a simply connected domain, and that the
loop-erased curve is a radial SLE2 curve. This result extends to Brownian motions and
Brownian excursions under certain conditioning in a finitely connected plane domain, and
the loop-erased curve is a continuous LERW curve.

1 Introduction

In this paper we will derive the existence of a loop-erasure of the time-reversal of a planar
Brownian motion up to some finite stopping time. It is well-known that simple random walks on
a regular lattice such as δZ2 converge to planar Brownian motions as the mesh δ → 0. The loop-
erasure of a simple random walk is called a loop-erased random walk (LERW). Lawler, Schramm,
and Werner proved [8] that the LERW on the discrete approximation of a simply connected
domain converges to the Schramm-Loewner evolution (SLE) [4] with parameter κ = 2, i.e.,
SLE2, when the mesh tends to 0. So it is reasonable to conjecture that a planar Brownian
motion in a simply connected domain a.s. has a unique (up to equivalence) loop-erasure, which
is an SLE2 curve. In this paper we will prove the existence. The uniqueness is still open to the
author. In addition, we expect that there exists a deterministic algorithm to erase the loops on
the Brownian motion. This is also not solved in this paper. The result in this paper extends
naturally to finitely connected domains. For simplicity, we will only deal with simply connected
domains, and work on the time-reversal of the Brownian motion.

From [1], the Hausdorff dimension of SLE2 curve is 5/4. The result of this paper implies that
the percolation dimension ([2]) of a planar Brownian motion (the minimal Hausdorff dimension
of a subpath of a Brownian path) is no more than 5/4. This value is strictly less than the
boundary dimension of planar Brownian motion, which is equal to 4/3 ([5][6]).

In [7], Lawler, Schramm, and Werner proved that, by adding Brownian bubbles to a chordal
SLE2 curve and filling the holes, one obtains a Brownian excursion in a simply connected
domain from one boundary point to another boundary point with holes filled in. Their result
gives an evidence that a loop-erasure of a planar Brownian motion should exist.
∗Supported by NSF grant 0963733
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We will use the coupling technique introduced in [14] to prove the existence of the loop-
erasure. The coupling technique is used to create a coupling of a conditional planar Brownian
motion with a radial SLE2 curve in a simply connected domain such that, for every t in the
definition domain of the radial SLE2 curve, say β, the first hitting point of the planar Brownian
motion at the set β[0, t] is the tip point: β(t). Corollary 2.1 will then be applied.

2 Preliminary

In [3], the loop-erasure of a finite path on a graph is defined as follows. LetX = (X0, X1, . . . , Xn)
be a finite path. Let w(0) = 0 and τ = 0. If Xw(τ) 6= Xn, let w(τ+1) = sup{k : Xk = Xw(τ)}+1,
let the value of τ be incremented by 1, and repeat this process; if Xw(τ) = Xn, stop. In the
end, we get integer numbers τ ≥ 0 and 0 = w(0) < w(1) < · · · < w(τ). Then the lattice path
Yk = Xw(k), 0 ≤ k ≤ τ , is called the loop-erasure of X. It is easy to see that every vertex of Y
lies on X, Y is a simple lattice path, and has the same initial and final vertices as X.

From the definition, it is clear that a path Y = (Y0, Y1, . . . , Yτ ) is the loop-erasure of another
path X = (X0, X1, . . . , Xn) if and only if there is an increasing function w : {0, 1, . . . , τ} →
{0, 1, . . . , n} such that w(0) = 0, Yk = Xw(k) for 0 ≤ k ≤ τ , Yτ = Xn, and for 0 ≤ k ≤ τ − 1,
the path (Y0, Y1, . . . , Yk) is disjoint from the path (Xw(k+1), Xw(k+1)+1, . . . , Xn). From this
observation, we may extend the definition of loop-erasure to (continuous) curves.

Definition 2.1 We say a continuous curve Y (t), c ≤ t ≤ d, is a loop-erasure of another
continuous curve X(t), a ≤ t ≤ b, if Y (c) = X(a), Y (d) = X(b), and there is an increasing
function w from [c, d] into [a, b] such that Y (t) = X(w(t)) for c ≤ t ≤ d, and for any t1 < t2 ∈
[c, d], Y [c, t1] ∩X[w(t2), b] = ∅.

It is easy to see that Y must be a simple curve. In fact, we have an equivalent definition.

Lemma 2.1 A simple curve Y (t), c ≤ t ≤ d, is a loop-erasure of a curve X(t), a ≤ t ≤ b, if
and only if Y (c) = X(a), Y (d) = X(b), and for any T ∈ (c, d), the biggest s ∈ [a, b] such that
X(s) ∈ Y [c, T ] satisfies that X(s) = Y (T ).

Proof. First, suppose Y is a loop-erasure of X, and let w be as in the definition. Fix T ∈ [c, d).
For any t ∈ (T, d], we have Y [c, T ] ∩X[w(t), d] = ∅. Thus, X(s) 6∈ Y [c, T ] if s > w+(T ), where
w+(T ) is the right-hand limit of w at T . On the other hand, for any t ∈ (T, d], we have
Y (t) = X(w(t)). By letting t → T+, we conclude that Y (T ) = X(w+(T )). So the biggest s
such that X(s) ∈ Y [c, T ] is w+(T ), and X(w+(T )) = Y (T ).

Now we prove the other direction. For c ≤ t ≤ d, let w(t) be the biggest s ∈ [a, b] such that
X(s) ∈ Y [c, t]. Then w is an increasing function, and from the assumption, Y (t) = X(w(t))
for c < t < d. The equality holds for t = c since in that case Y [c, t] is a single point Y (c).
It also holds for t = d because X(b) = Y (d) implies that w(d) = b, and so we have Y (d) =
X(b) = X(w(d)). Since Y is simple, so w is strictly increasing. For t1 < t2 ∈ [c, d], we have
w(t2) > w(t1), so from the definition of w(t1) we have X[w(t2), b] ∩ Y [c, t1] = ∅. 2
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Corollary 2.1 A simple curve Y (t), c ≤ t ≤ d, is a loop-erasure of the time-reversal of a curve
X(t), a ≤ t ≤ b, if and only if Y (c) = X(b), Y (d) = X(a), and for any T ∈ (c, d), the first s
such that X(s) ∈ Y [c, T ] satisfies that X(s) = Y (T ).

Two loop-erasures of a curve X are called equivalent if they have the same image. Given a
curve X(t), a ≤ t ≤ b, there may exist more than one loop-erasures, which are not equivalent.
For example, in the compact space S obtained by adding +∞ and −∞ to the strip {z ∈ C :
0 ≤ Im z ≤ 1}, there is a curve, which starts from −∞, ends at +∞, and travels through the
line segments in the following order: . . . , [n, n+ 1], [n+ 1, n+ i], [n+ i, n+ 1 + i], [n+ 1 + i, n+
1], [n + 1, n + 2], . . . , where n ∈ Z. Such curve has at least two loop-erasures: one has image
R ∪ {+∞,−∞}, the other has image (R + i) ∪ {+∞,−∞}, which can not be equivalent.

3 Planar Brownian Motion in Simply Connected Domains

We identify R2 with the complex plane C, and use the convention that a standard real Brownian
motion starts from 0, and has variance t at time t for t ≥ 0, and that a standard complex
Brownian motion is a complex valued random process whose real part and imaginary part
are two independent standard real Brownian motions. Suppose BC(t) is a standard complex
Brownian motion, and D $ C is a simply connected domain containing 0. Let τ = τD be
the first time that BC(t) 6∈ D. Then τ is an a.s. finite stopping time. We will focus on the
loop-erasures of the time-reversal of BC(t), 0 ≤ t ≤ τ . From the remarks in the Section 7,
we will see that BC(t), 0 ≤ t ≤ τ , itself has a loop-erasure, which is a disc SLE2 curve. The
following is the main theorem in this paper.

Theorem 3.1 Almost surely there is a loop-erasure of the time-reversal of BC(t), 0 ≤ t ≤ τ ,
which is a radial SLE2 curve that grows in D towards 0 from a random boundary point of D,
whose distribution is the harmonic measure in D seen from 0.

From Riemann Mapping Theorem and conformal invariance (up to time-change) of complex
Brownian motion [9], SLE, and harmonic measure, we suffice to consider the special case that
D = D := {z ∈ C : |z| < 1}. For ρ ∈ T, let Bρ

C(t) be BC(t) conditioned to exit D at ρ. The
explicit definition of Bρ

C(t) will be given below. From the two lemmas below in this section and
the rotation symmetry of both Bρ

C and radial SLE in D from ρ to 0, to prove Theorem 3.1, we
suffice to show the following theorem.

Theorem 3.2 Almost surely there is a loop-erasure of the time-reversal of B1
C(t), 0 ≤ t ≤ τ1,

which is a radial SLE2 curve that grows in D from 1 towards 0.

Let P (z) = Re 1+z
1−z and Pρ(z) = P (z/ρ) for ρ ∈ T := {z ∈ C : |z| = 1}. Then Pρ is harmonic

and positive in D; vanishes on T except at ρ; and Pρ(0) = 1. We call Pρ the normalized (by its
value at 0) Poisson kernel in D with the pole at ρ. Let δρ(t), 0 ≤ t < τρ, be a complex valued
function that solves the ODE

δ′ρ(t) =
2∂zPρ(δρ(t) +BC(t))
Pρ(δρ(t) +BC(t))

, δρ(0) = 0;
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and suppose that the solution can not be extended beyond τρ. Here 2∂z = ∂x + i∂y. Let
Bρ

C(t) = BC(t) + δρ(t), 0 ≤ t < τρ. Then Bρ
C(t) starts from 0 and satisfies the SDE

dBρ
C(t) = dBC(t) +

2∂zPρ(B
ρ
C)

Pρ(B
ρ
C)

dt, 0 ≤ t < τρ. (3.1)

This is a complex SDE, and its real stochastic part and imaginary stochastic part are two
independent standard Brownian motions. If f is an analytic function, then from Itô’s formula
[9] for real valued functions, the process f(Bρ

C(t)) satisfies the complex SDE:

df(Bρ
C(t)) = |f ′(Bρ

C(t))|dB̃C(t) + f ′(Bρ
C(t))

2∂zPρ(B
ρ
C)

Pρ(B
ρ
C)

dt, (3.2)

where B̃C(t) := f ′(BC(t))
|f ′(BρC(t))|BC(t) has the same distribution as BC(t). There is no drift term

coming from the second derivatives of f because ∆f ≡ 0.
The process Bρ

C(t) satisfies rotation symmetry, which means that for a ∈ T, (Ra(B
ρ
C(t)))

has the same distribution as (Baρ
C (t)), where Ra(z) := az. This follows easily from (3.2) with

f = Ra. Note that for any z ∈ C, a2∂zPρ(z)
Pρ(z) = 2∂zPaρ(az)

Paρ(az) .
There is no compact set K ⊂ D such that Bρ

C(t) ∈ K for 0 ≤ t < τρ. For otherwise, the
solution δρ(t) could be extended beyond τρ. The next two lemmas give the reason why Bρ

C(t)
is viewed as BC(t) conditioned to exit D at ρ.

Lemma 3.1 Let ν denote the distribution of (BC(t) : 0 ≤ t < τ). For every ρ ∈ T, let µ(ρ, ·)
denote the distribution of (Bρ

C(t) : 0 ≤ t < τρ). Then ν =
∫

T µ(ρ, ·)dλ(ρ), where λ is the uniform
probability measure on T.

Proof. From Itô’s formula, the process Mρ(t) := Pρ(BC(t)), 0 ≤ t < τ , is a positive local
martingale. So if σ is any Jordan curve in D surrounding 0, and τσ is the first time that BC(t)
visits σ, then E [Mρ(τσ)] = Mρ(0) = 1. From Girsanov Theorem, it is easy to check that the
distribution of (Bρ

C(t) : 0 ≤ t < τσ) is absolutely continuous w.r.t. that of (BC(t) : 0 ≤ t < τσ),
and the Radon-Nikodym derivative is Mρ(τσ).

We are considering probability measures on the space of curves γ(t), 0 ≤ t < T , in D,
started from 0. Let (Ft) denote the natural filtration generated by the curves. For each n ∈ N,
let τn denote the first time when |γ(t)| ≥ 1 − 1/n. Then each τn is an (Ft)-stopping time,
and the whole sigma-algebra F is generated by the union

⋃
n∈NFτn . For each n ∈ N and

ρ ∈ T, µ(ρ, ·) is absolutely continuous w.r.t. ν on Fτn , and the Radon-Nikodym derivative is
Pρ(BC(τn)). We have that ρ 7→ Pρ(BC(τn)) is continuous, and

∫
T Pρ(BC(τn))dλ(ρ) = 1. Thus,

ν =
∫

T µ(ρ, ·)dλ(ρ) on Fτn . Finally, since F is the σ-algebra generated by the union
⋃
n∈NFτn ,

which is an algebra, so the proof is finished by Monotone Class Theorem. 2

Lemma 3.2 Almost surely limt→τ−ρ B
ρ
C(t) = ρ.
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Proof. Let Wρ(z) = ρ+z
ρ−z , which maps D conformally onto the right half plane {Re z > 0},

and maps ρ to ∞. We have Pρ = ReWρ, so 2∂zPρ = W ′ρ. Let Zρ(t) = Wρ(B
ρ
C(t)). Then

Pρ(B
ρ
C(t)) = ReZρ(t). From (3.2), there is another standard complex Brownian motion B̃C(t)

such that Zρ(t) satisfies the SDE:

dZρ(t) = |W ′ρ(B
ρ
C(t))|dB̃C(t) +

|W ′ρ(B
ρ
C(t))|2

ReZρ(t)
dt, 0 ≤ t < τρ.

Let uρ(t) =
∫ t

0 |W
′
ρ(B

ρ
C(s))|2ds, 0 ≤ t < τρ. Then uρ is continuous and increasing, and maps

[0, τρ) onto [0, Sρ) for some Sρ ∈ (0,∞]. Let Zuρ (t) = Zρ(u−1
ρ (t)), 0 ≤ t < Sρ. Then there is

another standard complex Brownian motion B̂C(t) such that Zuρ (t) satisfies the SDE:

dZuρ (t) = dB̂C(t) +
1

ReZuρ (t)
dt, 0 ≤ t < Sρ. (3.3)

Since the curve Bρ
C(t), 0 ≤ t < τρ, is not contained in any compact subset of D, so Zuρ (t),

0 ≤ t < Sρ, is not contained in any compact subset of {Re z > 0}. Thus, Sρ =∞. From (3.3),
ReZuρ is a Bessel process of dimension 3 started from 1. Since |Zuρ (t)| ≥ ReZuρ (t), and Sρ =∞,
so a.s. limt→∞ |Zuρ (t)| =∞. Since limz→∞W

−1
ρ (z) = ρ, so we derive the conclusion. 2

4 Schramm-Loewner Evolution

Schramm-Loewner evolution (SLE) was introduced by Oded Schramm [11] to study the scaling
limits of 2-dimensional statistical lattice model at criticality, where the conformal invariance
property appears in the limit. It is very successful in giving mathematical proofs of the con-
jectures proposed by physicists. The definition of SLE combines the Loewner’s differential
equation with a stochastic input. For the completeness of this paper, we now give a brief in-
troduction of radial SLE, which is one of the major versions of SLE. The reader may refer to
[10] and [4] for more properties of SLE.

Let B(t) be a standard real Brownian motion. Let κ > 0 be a parameter. Let ξ(t) =
√
κB(t),

t ≥ 0. The following differential equation is called the radial Loewner equation driven by ξ.

∂tgt(z) = gt(z)
eiξ(t) + gt(z)
eiξ(t) − gt(z)

, g0(z) = z. (4.1)

It turns out that there is a decreasing family of domains (Dt : 0 ≤ t < ∞) with D0 = D and
0 ∈ Dt for all t ≥ 0, such that each gt is defined on Dt, maps Dt conformally onto D, and
satisfies gt(0) = 0 and g′t(0) = et. Moreover, almost surely

β(t) := lim
D3z→eiξ(t)

g−1
t (z) (4.2)

exists for 0 ≤ t < ∞, and β(t), 0 ≤ t < ∞, is a continuous curve in D with β(0) = 1 and
limt→∞ β(t) = 0. Such β is called a standard radial SLEκ curve. The radial SLEκ curve in a
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general simply connected domain which grows from a boundary point to an interior point is
defined as the image of such β under a conformal map from D onto this domain, which takes 1
and 0 to the initial and end points, respectively. If κ ∈ (0, 4], β is a simple curve, intersects T
only at its initial point, and for each t ≥ 0, Dt = D \ β((0, t]); if κ > 4, β is no longer a simple
curve, and for each t ≥ 0, Dt is the connected component of D \ β((0, t]) which contains 0. In
this paper we are mostly interested in the case κ = 2, so β is a simple curve.

There is an interesting local martingale associated with radial SLE2, which was used to
prove the convergence of LERW to SLE2 [8]. Recall that Peiξ(t) is the normalized Poisson kernel
in D with the pole at eiξ(t). Since g−1

t maps D conformally onto Dt = D \ β(0, t], fixes 0, and
has continuous extension to D, which maps eiξ(t) to β(t), so Qt := Peiξ(t) ◦ gt is the normalized
(Qt(0) = 1) Poisson kernel in Dt with the pole at β(t). We have the following proposition.

Proposition 4.1 Let κ = 2. Then for any z ∈ D, (Qt(z) : 0 ≤ t < Tz) is a local martingale,
where Tz ∈ (0,∞] is such that [0, Tz) is the maximal interval with z ∈ Dt for t ∈ [0, Tz)

5 Local Martingale in Two Time Variables

Theorem 3.2 will be proved by constructing a coupling of the process B1
C(t), 0 ≤ t < τ1, with a

standard radial SLE2 curve β(t), 0 ≤ t <∞, such that conditioned on β up to a finite stopping
time T , the part of B1

C before hitting β[0, T ] is a complex Brownian motion in D \ β[0, T ]
conditioned to hit β(T ). In this section, we will first construct a local coupling.

First we suppose that the conditional complex Brownian motion B1
C(t1), 0 ≤ t1 < τ1, and

the standard radial SLE2 curve β(t2), 0 ≤ t2 < ∞, are independent. This is a trivial coupling
of the above two processes. Let ξ(t2) =

√
2B(t2) be the driving function of β, and let gt denote

the radial Loewner maps. Let (F1
t1) and (F2

t2) be the natural filtrations generated by B1
C(t1)

and (ξ(t2)), respectively. Then (β(t2)) and (gt2) are (F2
t2)-adapted. Let

D = {(t1, t2) ∈ [0, τ1)× [0,∞) : B1
C[0, t1] ∩ β[0, t2] = ∅}.

For every t2 ∈ [0,∞), let T1(t2) be the maximal number such that (t1, t2) ∈ D for t1 ∈ [0, T1(t2));
for every t1 ∈ [0, τ1), let T2(t1) be the maximal number such that (t1, t2) ∈ D for t2 ∈ [0, T2(t1)).
If t̄2 <∞ is an (F2

t2)-stopping time, then T1(t̄2) is an (F1
t1 ×F

2
t̄2

)-stopping time; if t̄1 < τ1 is an
(F1

t1)-stopping time, then T2(t̄1) is an (F1
t̄1
×F2

t2)-stopping time.
Let Qt2 = Peiξ(t2) ◦ gt2 be as in Proposition 4.1. Since g0 = id and ξ(0) = 0, so Q0(z) =

P1(z) = 1+z
1−z . Define M on D such that

M(t1, t2) =
Qt2(B1

C(t1))
Q0(B1

C(t1))
.

It is clear that M(t1, 0) = 1 for any 0 ≤ t1 < τ1. Since B1
C(0) = 0 and Qt2(0) ≡ 1, so

M(0, t2) = 1 for any 0 ≤ t2 <∞.
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Lemma 5.1 (a) For any (F1
t1)-stopping time t̄1 < τ1, M(t̄1, t2), 0 ≤ t2 < T2(t̄1), is an (F1

t̄1
×

F2
t2)-local martingale. (b) For any (F2

t2)-stopping time t̄2 < ∞, M(t1, t̄2), 0 ≤ t1 < T1(t̄2), is
an (F1

t1 ×F
2
t̄2

)-local martingale.

Proof. (a) This part follows immediately from Proposition 4.1.
(b) Let ft̄2 = Qt̄2/Q0. Then ft̄2 is F2

t̄2
-measurable, and M(t1, t̄2) = ft̄2(B1

C(t1)). Recall that
Q0 = P1. From (3.1) (ρ = 1) and Itô’s formula, we see that M(t1, t̄2), 0 ≤ t1 < T1(t̄2), satisfies
the (F1

t1 ×F
2
t̄2

)-adapted SDE:

d1M(t1, t̄2) = Re[2∂zft̄2(B1
C(t1))dBC(t1)] + Re[2∂zft̄2(B1

C(t1))
2∂zQ0(B1

C)
Q0(B1

C)
]dt1

+
1
2

∆ft̄2(B1
C(t1))dt1.

We have ft̄2Q0 = Qt̄2 , and both Q0 and Qt̄2 are harmonic. So

0 = ∆Qt̄2 = 4∂z∂z(ft̄2Q0) = ft̄2∆Q0 +Q0∆ft̄2 + 4∂zft̄2∂zQ0 + 4∂zft̄2∂zQ0

= Q0∆ft̄2 + 8 Re[∂zft̄2∂zQ0].

So we have
d1M(t1, t̄2) = Re[2∂zft̄2(B1

C(t1))dBC(t1)]. (5.1)

Thus, M(t1, t̄2), 0 ≤ t1 < T1(t̄2), is an (F1
t1 ×F

2
t̄2

)-local martingale. 2

Let J denote the set of Jordan curves in D \ {0} that surround 0. For every σ ∈ J, let T 1
σ

be the first time that B1
C(t1) hits σ; let T 2

σ be the first time that β(t2) hits σ. Then T jσ is an
(F jtj )-stopping time, j = 1, 2. Let JP denote the set of (σ1, σ2) ∈ J2 such that σ1 ∩ σ2 = ∅, and
σ2 surrounds σ1. Then for any (σ1, σ2) ∈ JP, [0, T 1

σ1
]× [0, T 2

σ2
] ⊂ D.

Lemma 5.2 For any (σ1, σ2) ∈ JP, | ln(M)| is bounded on [0, T 1
σ1

] × [0, T 2
σ2

] by a constant
depending only on σ1 and σ2.

Proof. Fix (σ1, σ2) ∈ JP. In this proof, a uniform constant means a constant depending only
on σ1 and σ2; and we say a variable is uniformly bounded if its absolute value is bounded by
a uniform constant. Let N(t1, t2) = Qt2(B1

C(t1)). Since M(t1, t2) = N(t1, t2)/N(t1, 0), so we
suffice to show that ln(N) is uniformly bounded on [0, T 1

σ1
] × [0, T 2

σ2
]. Fix t1 ∈ [0, T 1

σ1
] and

t2 ∈ [0, T 2
σ2

]. Let Eσj denote the domain bounded by σj , j = 1, 2. Let Ω = Eσ2 \ Eσ1 and
Ωt2 = Dt2 \ Eσ1 for t2 ∈ [0, T 2

σ2
]. Recall that Dt2 = D \ β((0, t2]). Let m and mt2 denote the

moduli of the above doubly connected domains, respectively. Then m is a uniform constant,
and m ≤ mt2 . Since gt2 maps Dt2 conformally onto D, so it maps Ωt2 onto D \ gt2(Eσ1),
which must have modulus mt2 ≥ m. Since 0 ∈ Eσ1 and gt2(0) = 0, so 0 ∈ gt2(Eσ1). There is
uniform constant rm ∈ (0, 1) such that the modulus of D \ [0, rm] equals m. It is known that,
for connected compact sets K ⊂ D with 0 ∈ K and the modulus of D \ K being at least m,
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the maximum of r(K) := supz∈K |z| is attained when K = [0, rm]. Now gt2(Eσ1) satisfies the
property of K, so gt2(Eσ1) ⊂ {|z| ≤ rm}. Since B1

C(t1) ∈ Eσ1 , so |gt2(B1
C(t1))| ≤ rm. Since

N(t1, t2) = Qt2(B1
C(t1)) = P (gt2(B1

C(t1))/eiξ2(t2)), where P (z) = Re 1+z
1−z , so 1−rm

1+rm
≤ N(t1, t2) ≤

1+rm
1−rm . Thus, | ln(N)| ≤ ln(1+rm

1−rm ), which is a uniform constant. 2

The stochastic process M(t1, t2) valued at certain pair of times (T1, T2) will be used as a
Radon-Nikodym derivative to weight some simple probability distribution to get a somehow
complicated distribution. Here are the details. Fix (σ1, σ2) ∈ JP. Let µ denote the joint
distribution of B1

C(t1), 0 ≤ t1 < τ1, with β(t2), 0 ≤ t2 < ∞, which are independent to each
other. From Lemma 5.1 and Lemma 5.2, we have

∫
M(T 1

σ1
, T 2

σ2
)dµ = M(0, 0) = 1. Define νσ1,σ2

such that dνσ1,σ2/dµ = M(T 1
σ1
, T 2

σ2
). Then νσ1,σ2 is also a probability measure. Now suppose

the joint distribution of the above two random curves is νσ1,σ2 instead of µ. Since M = 1 when
either t1 or t2 equals 0, so the marginal distributions of νσ1,σ2 agree with those of µ. Thus,
νσ1,σ2 is also a coupling measure of B1

C(t1), 0 ≤ t1 < τ1, with β(t2), 0 ≤ t2 < ∞. We now
look at the behavior of the sub-curves B1

C(t1), 0 ≤ t1 ≤ T 1
σ1

, and β(t2), 0 ≤ t2 ≤ T 2
σ2

. Fix any
(F2

t2)-stopping time t̄2 ≤ T 2
σ2

. From (3.1), (5.1), and Girsanov Theorem, under νσ1,σ2 , there
is an (F1

t1 × F
2
t̄2

)-standard complex Brownian motion B̃C(t1) such that B1
C(t1), 0 ≤ t1 ≤ T 1

σ1
,

satisfies the (F1
t1 ×F

2
t̄2

)-adapted SDE:

dB1
C(t1) = dB̃C(t1) +

2∂zP1(B1
C)

P1(B1
C)

dt1 +
2∂zft̄2(B1

C)
ft̄2(B1

C)
dt1

= dB̃C(t1) +
2∂zQt̄2(B1

C)
Qt̄2(B1

C)
dt1, (5.2)

where the second equality holds because P1ft̄2 = Q0ft̄2 = Qt̄2 .

6 Coupling Measures

Let M be as in the last section. Then we have the following proposition.

Proposition 6.1 For any finite collection (σm1 , σ
m
2 ), 1 ≤ m ≤ n, in JP, there is an a.s.

continuous stochastic process M∗ defined on [0,∞]2, which satisfies the following properties:

(i) M∗ = M on [0, T 1
σm1

]× [0, T 2
σm2

], 1 ≤ m ≤ n;

(ii) M∗(t, 0) = M∗(0, t) = 1 for any t ∈ [0,∞];

(iii) There are constants C2 > C1 > 0 depending only on (σm1 , σ
m
2 ), 1 ≤ m ≤ n, such that

C1 ≤M∗(t1, t2) ≤ C2 on [0,∞]2;

(iv) For any (F2
t2)-stopping time t̄2, M∗(t1, t̄2), 0 ≤ t1 ≤ ∞, is an (F1

t1 ×F
2
t̄2

)-martingale;

(v) For any (F1
t1)-stopping time t̄1, M∗(t̄1, t2), 0 ≤ t2 ≤ ∞, is an (F1

t̄1
×F2

t2)-martingale.
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For the proof, we may first define M∗ on [0,∞]×{0}∪{0}× [0,∞]∪
⋃n
m=1[0, T 1

σm1
]× [0, T 2

σm2
]

by (i) and (ii), and then extend M∗ to [0,∞]2 in such a way that: if R is a rectangle obtained
by dividing [0,∞]2 using the lines {t1 = T 1

σm1
} and {t2 = T 2

σm2
}, 1 ≤ m ≤ n, and R is not

contained in any [0, T 1
σm1

] × [0, T 2
σm2

], then there are functions fR1 (t1) and fR2 (t2) such that
M∗(t1, t2) = fR1 (t1)fR2 (t2) on R. Such M∗ is well constructed, and is unique. Property (iii)
follows from Lemma 5.2. Property (iv) and (v) follow from the local martingale property of M .
The reader may refer to [14] (Theorem 6.1) for the explicit formula of M∗ and a detailed proof
of a similar proposition.

Let JP∗ be the set of (σ1, σ2) ∈ JP such that both σ1 and σ2 are polygonal curves whose
vertices have rational coordinates. Then JP∗ is countable. Let (σm1 , σ

m
2 ), m ∈ N, be an

enumeration of JP∗. For each n ∈ N, let Mn
∗ be the M∗ given by the above proposition for

(σm1 , σ
m
2 ), 1 ≤ m ≤ n, in the above enumeration. Let the probability µ be as in the last

section. For each n ∈ N, define νn such that dνn = Mn
∗ (∞,∞)dµ. From the property of M∗,∫

Mn
∗ (∞,∞)dµ = Mn

∗ (0, 0) = 1, so νn is a probability measure. Since Mn
∗ = 1 when either t1

or t2 equals 0, so νn is also a coupling measure of B1
C(t1), 0 ≤ t1 < τ1, with β(t2), 0 ≤ t2 <∞.

Fix any m ∈ N. If n ≥ m, from the martingale property of Mn
∗ , we have

E [Mn
∗ (∞,∞)|F1

T 1
σm1

×F2
T 2
σm2

] = Mn
∗ (T 1

σm1
, T 2

σm2
) = M(T 1

σm1
, T 2

σm2
).

Thus, on F1
T 1
σm1

× F2
T 2
σm2

, νn equals νσm1 ,σm2 defined in the last section. We want to construct a

coupling measure ν∞ of B1
C(t1), 0 ≤ t1 < τ1, with β(t2), 0 ≤ t2 <∞, such that for any m ∈ N,

ν∞ equals νσm1 ,σm2 on F1
T 1
σm1

×F2
T 2
σm2

. Such ν∞ could be defined as a subsequential weak limit of

(νn) in some suitable topology as follows.
Let C := ∪T∈[0,∞]C([0, T ],D). Extend B1

C to [0, τ1] such that B1
C(τ1) = 1, and extend β

to [0,∞] such that β(∞) = 0. Then both B1
C and β are random elements in C. Let µ1 and

µ2 be their distributions, respectively. We view them as probability measures on C, where the
σ-algebra is generated by the events {T ≥ a, f(a) ∈ A}, where 0 ≤ a ≤ ∞. So µ = µ1 × µ2 is a
probability measure on C × C.

Let Γ denote the space of nonempty compact subsets of [0,∞]×D endowed with Hausdorff
metric. Then Γ is a compact metric space. Define G : C → Γ such that G(f) is the graph of f .
Then G is a one-to-one map. Let IG = G(C). One may check that G and G−1 (defined on IG)
are both measurable. This is also true for G×G and G−1 ×G−1.

For n ∈ N, ν̄n := (G × G)∗(νn) is a probability measure on Γ2. Since Γ2 is compact, so
(ν̄n) has a subsequence (ν̄nk) that converges weakly to some probability measure ν̄∞ on Γ×Γ.
Let νnkj and ν∞j , j = 1, 2, denote the marginal distributions of νnk and ν∞. Then for j = 1, 2,
ν̄nkj → ν̄∞j weakly. For n ∈ N and j = 1, 2, since νnj = µj , ν̄nj = G∗(µj). Thus, ν̄∞j = G∗(µj),
j = 1, 2. So ν̄∞ is supported by I2

G. Let ν∞ = (G−1 ×G−1)∗(ν̄∞) be a probability measure on
C2. For j = 1, 2, we have ν∞j = (G−1)∗(ν̄∞j ) = µj . So ν∞ is also a coupling measure of µ1 and
µ2.
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It remains to check that for any m ∈ N, ν∞ equals νσm1 ,σm2 on F1
T 1
σm1

×F2
T 2
σm2

. For any σ ∈ J,

define a truncate map Pσ from C onto itself such that Pσ(f) is the restriction of f to [0, τσ],
where τσ is the first time that f(t) ∈ σ. Fix m ∈ N. Then ν∞ equals νσm1 ,σm2 on F1

T 1
σm1

× F2
T 2
σm2

iff
(Pσm1 × Pσm2 )∗(ν∞) = (Pσm1 × Pσm2 )∗(νσm1 ,σm2 ). (6.1)

From an earlier observation, (6.1) holds if ν∞ is replaced by νn with n ≥ m.
Let D : (f, g) 7→ (f, g, f, g) be a diagonal map from C2 to C4. For n ∈ N, let

λ̄n = [((G ◦ Pσm1 )× (G ◦ Pσm2 ))× (G×G)]∗ ◦D∗(νn).

Then λ̄n is a probability measure on Γ4 = Γ2×Γ2. It is a coupling of (G×G)∗◦(Pσm1 ×Pσm2 )∗(νn)
and (G×G)∗(νn), and is supported by

G := {(F1, F2, F3, F4) ∈ Γ4 : (0, 0) ∈ F1 ⊂ F3, (0, 1) ∈ F2 ⊂ F4}.

Here we use the facts that B1
C(0) = 0 and β(0) = 1.

Since Γ4 is a compact space, the sequence (λ̄nk) has a subsequence, say (λ̄nkj ), which
converges weakly to a probability measure λ̄∞ on Γ2 × Γ2. Then λ̄∞ is also supported by
G. Let λ̄∞1 and λ̄∞2 be the marginal distributions of λ̄∞ on the first two variables and the
last two variables, respectively. Then we have (G × G)∗ ◦ (Pσm1 × Pσm2 )∗(ν

nkj ) → λ̄∞1 and
(G × G)∗(ν

nkj ) → λ̄∞2 . Since (6.1) holds with ν∞ replaced by ν
nkj if nkj ≥ m, so λ̄∞1 =

(G×G)∗◦(Pσm1 ×Pσm2 )∗(νσm1 ,σm2 ). Since (G×G)∗(νnk)→ (G×G)∗(ν∞), so λ̄∞2 = (G×G)∗(ν∞).
Let λ∞ = (G−1 ×G−1 ×G−1 ×G−1)∗(λ̄∞), and let λ∞1 and λ∞2 be its marginal distributions.
Then we have λ∞1 = (Pσm1 × Pσm2 )∗(νσm1 ,σm2 ) and λ∞2 = ν∞. Since λ̄∞ is supported by G, so
λ∞ is supported by the set of (f1, f2, f3, f4) ∈ C4 such that f1 and f2 are subcurves of f3 and
f4, respectively. From the property of (Pσm1 ×Pσm2 )∗(νσm1 ,σm2 ), we can further conclude that λ∞

is supported by {(f1, f2, f3, f4) ∈ C4 : f1 = Pσm1 (f3), f2 = Pσm2 (f4)}. So we obtain (6.1). The
reader may refer to Lemma 4.1 in [15] for a more detailed argument.

Now for each m ∈ N, ν∞ = νσm1 ,σm2 on F1
T 1
σm1

×F2
T 2
σm2

. Let t̄2 be an (F2
t2)-stopping time with

t̄2 ≤ T 2
σm2

. From the discussion at the end of the last section, we see that B1
C(t1), 0 ≤ t1 ≤ T 1

σm1
,

satisfies (5.2) for some (F1
t1 ×F

2
t̄2

)-standard complex Brownian motion B̃C(t1).
Fix t2 ∈ (0,∞). For n ∈ N, define

Rn = sup{T 1
σm1

: 1 ≤ m ≤ n, T 2
σm2
≥ t2}.

Fix n ∈ N. Then for any 1 ≤ m ≤ n, if t2 ≤ T 2
σm2

, then B1
C(t1), 0 ≤ t1 ≤ T 1

σm1
, satisfies (5.2). So

B1
C(t1), 0 ≤ t1 ≤ Rn, should also satisfy (5.2).

From the definition, T1(t2) is the maximal number such that B1
C(t1) is disjoint from β[0, t2]

for 0 ≤ t1 < T1(t2). It is easy to check that T1(t2) = supn∈NRn. Thus, B1
C(t1), 0 ≤ t1 < T1(t2),

should also satisfy (5.2). Let Wt2(z) = eiξ(t2)+gt2 (z)

eiξ(t2)−gt2 (z)
. Then Qt2 = ReWt2 ; Wt2 maps Dt2
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conformally onto the right half plane, and maps β(t2) to ∞. The argument in the proof of
Lemma 3.2 can be used here to show that a.s. limt1→T1(t2)B

1
C(t1) = β(t2). Thus, B1

C(T1(t2)) =
β(t2). In fact, we may view B1

C(t1), 0 ≤ t1 < T1(t2), as the complex Brownian motion BC(t)
conditioned to leave Dt2 at β(t2). This result holds for every t2 ∈ (0,∞). So a.s. for every
t2 ∈ Q ∩ (0,∞), we have B1

C(T1(t2)) = β(t2).
From the definition, it is clear that T1 as a function of t2 is decreasing, and B1

C[0, T1(t2)) is
disjoint from β[0, t2] for any t2 ∈ [0,∞). For any a ∈ R, it is easy to check that {t2 : T1(t2) > a}
is an open subset of [0,∞). So t2 7→ T1(t2) is right-continuous. Since both B1

C and β are
continuous, and Q ∩ (0,∞) is dense in (0,∞), so a.s. for any t2 ∈ (0,∞), B1

C(T1(t2)) = β(t2).
From Corollary 2.1, we see that β is a loop-erasure of the reversal of B1

C.

7 Some Remarks

1. One can prove that, under the new coupling measure ν∞, for any (F1
t1)-stopping time

t̄1 < τ1, the curve β(t2), 0 ≤ t2 < T2(t̄1), is a radial SLE2 curve in D started from 1 aimed
at B1

C(t̄2), which stops on hitting B1
C[0, t̄1]. In general, β may not visit B1

C(t̄2).

2. Theorem 3.2 can be extended to finitely connected plane domains. Let γ1 be a Brownian
motion started from an interior point z0 in a finitely connected domain D, stopped on
exiting D, and conditioned to hit ∂D at z1. The process satisfies SDE (3.1) with Pρ
replaced by the Poisson kernel function in D with the pole at z2. Then the time-reversal
of γ1 has a loop-erasure, which is a continuous LERW in D growing from z1 to z0 ([13]).

3. Let γ2 be the Brownian excursion in D from one boundary point z1 to another boundary
point z2. The process starts from z1, and after the initial time, it becomes a Brownian
motion in D conditioned to exit D at z2. We can conclude that the time-reversal of γ2

has a loop-erasure, which is a continuous LERW in D from z2 to z1. For the proof, we
may use the coupling technique to construct a coupling of γ2 with a continuous LERW
β in D from z2 to z1 such that conditioned on the part of β up to a finite stopping time
T , the part of γ2 before hitting β[0, T ] is a Brownian excursion in D \ β[0, T ] from z1 to
β(T ). It is well known that the time-reversal of γ2 is the Brownian excursion in D from
z2 to z1. So γ2 itself has a loop-erasure, which is a continuous LERW in D from z1 to
z2. Especially, if D is simply connected, then the Brownian excursion from z1 to z2 has
a loop-erasure, which is a chordal SLE2 curve in D from z1 to z2.

4. Let γ3 be the Brownian motion in D started from an interior point z0 and conditioned
to hit another interior point z3. The process satisfies SDE (3.1) with Pρ replaced by
GD(z1, ·), where GD(·, ·) is the Green function in D. Using the coupling technique, we
can conclude that the time-reversal of γ3 has a loop-erasure, which is a continuous LERW
in D from z3 to z0 ([16]). It is well known that the time-reversal of γ3 is the Brownian
motion in D started from z3 conditioned to hit z0. So γ3 itself has a loop-erasure, which
is a continuous LERW in D from z0 to z3.
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5. Let γ4 be a Brownian excursion in D started from a boundary point z1 and conditioned to
hit an interior point z0. The process starts from z1, and after the initial time, it becomes
the Brownian motion in D conditioned to hit z0. We can conclude that its time-reversal
has a loop-erasure, which is a continuous LERW in D from z0 to z1. It is well known
that γ4 is the time-reversal of the γ1 in Remark 2. So γ1 has a loop-erasure, which is a
continuous LERW in D from z0 to z1; and γ4 has a loop-erasure, which is a continuous
LERW in D from z1 to z0. In particular, if D is a simply connected domain, a continuous
LERW from an interior point z0 to a random boundary point with harmonic measure
distribution is a disc SLE2 curve ([12]) in D started from z0. So we conclude that the
BC(t), 0 ≤ t ≤ τ , in Theorem 3.1 has a loop-erasure, which is a disc SLE2 curve in D
started from z0.
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