Convergent Sequences

Definition 1. A sequence of real numbers $\left(s_{n}\right)$ is said to converge to a real number s if

$$
\begin{equation*}
\forall \varepsilon>0, \quad \exists N \in \mathbb{N}, \quad \text { such that } n>N \text { implies }\left|s_{n}-s\right|<\varepsilon . \tag{1}
\end{equation*}
$$

When this holds, we say that $\left(s_{n}\right)$ is a convergence sequence with s being its limit, and write $s_{n} \rightarrow s$ or $s=\lim _{n \rightarrow \infty} s_{n}$. If $\left(s_{n}\right)$ does not converge, then we say that $\left(s_{n}\right)$ is a divergent sequence.

We first show that one sequence $\left(s_{n}\right)$ can not have two different limits. Suppose $s_{n} \rightarrow s$ and $s_{n} \rightarrow t$. Let $\varepsilon>0$. Then $\frac{\varepsilon}{2}>0$. Since $s_{n} \rightarrow s$, by definition there is $N_{1} \in \mathbb{N}$ such that for $n>N_{1},\left|s_{n}-s\right|<\frac{\varepsilon}{2}$. Since $s_{n} \rightarrow t$, by definition there is $N_{2} \in \mathbb{N}$ such that for $n>N_{2}$, $\left|s_{n}-t\right|<\frac{\varepsilon}{2}$. Here we use N_{1} and N_{2} in the two statements because the N coming from the two limits may not be the same. Let $N=\max \left\{N_{1}, N_{2}\right\}$. If $n>N$, then $n>N_{1}$ and $n>N_{2}$ both hold. So $\left|s_{n}-s\right|<\frac{\varepsilon}{2}$ and $\left|s_{n}-t\right|<\frac{\varepsilon}{2}$, which by triangle inequality imply that

$$
|s-t| \leq\left|s_{n}-s\right|+\left|s_{n}-t\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
$$

Now $|s-t|<\varepsilon$ holds for every $\varepsilon>0$. We then conclude that $|s-t|=0$ (for otherwise $|s-t|>0$, we then get a contradiction by choosing $\varepsilon=|s-t|)$. So $s=t$, and the uniqueness holds.

We will use the following tools to check whether a sequence converges or diverges.

1. the definition
2. basic examples
3. limit theorems
4. boundedness and subsequences.

We have stated the definition. Now we consider some examples.
Example 1. Let $s \in \mathbb{R}$. If $s_{n}=s$ for all n, i.e., $\left(s_{n}\right)$ is a constant sequence, then $\lim s_{n}=s$.
Proof. For any given $\varepsilon>0$ we simply choose $N=1$. If $n>N$, then $\left|s_{n}-s\right|=0<\varepsilon$.
Example 2. We have $\frac{1}{n} \rightarrow 0$.
Proof. Let $\varepsilon>0$. By Archimedean property, there is $N \in \mathbb{N}$ such that $\frac{1}{N}<\varepsilon$. If $n>N$, then

$$
\left|\frac{1}{n}-0\right|=\frac{1}{n}<\frac{1}{N}<\varepsilon
$$

Example 3. The following two sequences are divergent
(i) $\left(s_{n}\right)=\left((-1)^{n}\right)=(-1,1,-1,1,-1,1, \ldots)$;
(ii) $\left(s_{n}\right)=(n)=(1,2,3,4,5,6, \ldots)$.

Proof. (i) We use the notation of subsequence and statement that will be proved later. Suppose $n_{1}<n_{2}<n_{3}<\cdots$ is a strictly increasing sequence of indices, then $\left(s_{n_{k}}\right)$ is a subsequence of $\left(s_{n}\right)$. We will prove a theorem, which asserts that, if $\left(s_{n}\right)$ converges to s, then any subsequence of $\left(s_{n}\right)$ also converges to s. The sequence $\left(s_{n}\right)=\left((-1)^{n}\right)$ contains two constant sequences $(1,1,1, \ldots)$ (with $n_{k}=2 k$) and ($-1,-1,-1, \ldots$) (with $n_{k}=2 k-1$), which converge to different limits. So the original $\left(s_{n}\right)$ can not converge.
(ii) We use the following theorem. If $\left(s_{n}\right)$ is convergent, then it is a bounded sequence. In other words, the set $\left\{s_{n}: n \in \mathbb{N}\right\}$ is bounded. So an unbounded sequence must diverge. Since for $s_{n}=n, n \in \mathbb{N}$, the set $\left\{s_{n}: n \in \mathbb{N}\right\}=\mathbb{N}$ is unbounded, the sequence (n) is divergent.

Remark 1. This example shows that we have two ways to prove that a sequence is divergent: (i) find two subsequences that convergent to different limits; (ii) show that the sequence is unbounded. Note that the $\left(s_{n}\right)$ in (i) is bounded and divergent. The $\left(s_{n}\right)$ in (ii) is divergent, but $\lim s_{n}$ actually exists, which is $+\infty$, and its every subsequence also tends to $+\infty$. We will define that limit later.

Now we state some limit theorems.
Theorem 1 (Theorem 9.1). Every convergent sequence is bounded.
Proof. Let $\left(s_{n}\right)$ be a sequence that converges to $s \in \mathbb{R}$. Applying the definition to $\varepsilon=1$, we see that there is $N \in \mathbb{N}$ such that for any $n>N,\left|s_{n}-s\right|<1$, which then implies that $\left|s_{n}\right| \leq|s|+1$. Let

$$
M=\max \left\{\left|s_{1}\right|,\left|s_{2}\right|, \ldots,\left|s_{N}\right|,|s|+1\right\} .
$$

The maximum exists since the set is finite. Then for any $n \in \mathbb{N},\left|s_{n}\right| \leq M$ (consider the case $n \leq N$ and $n>N$ separately), i.e., $-M \leq s_{n} \leq M$. So $\left\{s_{n}: n \in \mathbb{N}\right\}$ is bounded.

Theorem 2 (Theorem 9.3). If $\left(s_{n}\right)$ converges to s and $\left(t_{n}\right)$ converges to t, then $\left(s_{n}+t_{n}\right)$ converges to $s+t$.

Proof. Let $\varepsilon>0$. Then $\frac{\varepsilon}{2}>0$. Since $s_{n} \rightarrow s$, there is $N_{1} \in \mathbb{N}$ such that for $n>N_{1},\left|s_{n}-s\right|<\frac{\varepsilon}{2}$. Since $t_{n} \rightarrow t$, there is $N_{2} \in \mathbb{N}$ such that for $n>N_{2},\left|t_{n}-t\right|<\frac{\varepsilon}{2}$. Let $N=\max \left\{N_{1}, N_{2}\right\}$. If $n>N$, then $n>N_{1}$ and $n>N_{2}$ both hold, and so $\left|s_{n}-s\right|<\frac{\varepsilon}{2}$ and $\left|t_{n}-t\right|<\frac{\varepsilon}{2}$, which together imply (by triangle inequality) that

$$
\left|\left(s_{n}+t_{n}\right)-(s+t)\right| \leq\left|s_{n}-s\right|+\left|t_{n}-t\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
$$

So we have the desired convergence.
Theorem 3 (Theorem 9.4). If $\left(s_{n}\right)$ converges to s and $\left(t_{n}\right)$ converges to t, then $\left(s_{n} \cdot t_{n}\right)$ converges to $s \cdot t$.

Discussion. We need to bound $\left|s_{n} t_{n}-s t\right|$ from above for big n. We write

$$
s_{n} t_{n}-s t=s_{n} t_{n}-s_{n} t+s_{n} t-s t=s_{n}\left(t_{n}-t\right)+t\left(s_{n}-s\right) .
$$

By triangle inequality, we get

$$
\left|s_{n} t_{n}-s t\right| \leq\left|s_{n}\left(t_{n}-t\right)\right|+\left|t\left(s_{n}-s\right)\right|=\left|s_{n}\right|\left|t_{n}-t\right|+|t|\left|s_{n}-s\right| .
$$

Since $t_{n} \rightarrow t$ and $s_{n} \rightarrow s$, we know that $\left|t_{n}-t\right|$ and $\left|s_{n}-s\right|$ can be arbitrarily small if we choose n big enough. Thus, if $\left|s_{n}\right|$ and $|t|$ are not too big, then we can control the sum on the RHS (righthand side). In fact, the size of $\left|s_{n}\right|$ can be controlled because of Theorem 9.1.

Proof. Since $\left(s_{n}\right)$ is convergent, by Theorem 9.1, there is $M>0$ such that $\left|s_{n}\right| \leq M$ for every n. We may choose M big such that $M \geq|t|$. Let $\varepsilon>0$. Then $\frac{\varepsilon}{2 M}>0$. Since $s_{n} \rightarrow s$, there is $N_{1} \in \mathbb{N}$ such that for $n>N_{1},\left|s_{n}-s\right|<\frac{\varepsilon}{2 M}$. Since $t_{n} \rightarrow t$, there is $N_{2} \in \mathbb{N}$ such that for $n>N_{2},\left|t_{n}-t\right|<\frac{\varepsilon}{2 M}$. Let $N=\max \left\{N_{1}, N_{2}\right\}$. If $n>N$, then $n>N_{1}$ and $n>N_{2}$ both hold, and so $\left|s_{n}-s\right|<\frac{\varepsilon}{2 M}$ and $\left|t_{n}-t\right|<\frac{\varepsilon}{2 M}$, which together with $\left|s_{n}\right| \leq M$ and $|t| \leq M$ imply that

$$
\begin{gathered}
\left|s_{n} t_{n}-s t\right| \leq\left|s_{n}\left(t_{n}-t\right)\right|+\left|t\left(s_{n}-s\right)\right|=\left|s_{n}\right|\left|t_{n}-t\right|+|t|\left|s_{n}-s\right| \\
\leq M\left|t_{n}-t\right|+M\left|s_{n}-s\right|<M \frac{\varepsilon}{2 M}+M \frac{\varepsilon}{2 M}=\varepsilon
\end{gathered}
$$

Corollary 1. If (s_{n}) converges to $s, k \in \mathbb{R}$, and $m \in \mathbb{N}$, then $\left(k s_{n}\right)$ converges to $k s$ and s_{n}^{m} converges to s^{m}.

Proof. For the sequence $\left(k s_{n}\right)$, we apply Theorem 9.4 to the sequence $\left(t_{n}\right)$ with $t_{n}=k$ for all n. For the sequence $\left(s_{n}^{m}\right)$ we use induction. In the induction step, note that $s_{n}^{m+1}=s_{n} * s_{n}^{m}$ and apply Theorem 9.4 to $t_{n}=s_{n}^{m}$

Corollary 2. If $\left(s_{n}\right)$ converges to s and $\left(t_{n}\right)$ converges to t, then $\left(s_{n}-t_{n}\right)$ converges to $s-t$.
Proof. We write $s_{n}+t_{n}=s_{n}+(-1) t_{n}$ and apply Theorem 9.3 and the previous corollary.
From this corollary we see that $s_{n} \rightarrow s$ iff $s_{n}-s \rightarrow 0$. By the Theorem below, the latter statement is equivalent to that $\left|s_{n}-s\right| \rightarrow 0$.

Theorem 4. (a) Suppose two sequences $\left(s_{n}\right)$ and $\left(t_{n}\right)$ satisfy that $t_{n} \rightarrow 0$ and $\left|s_{n}\right| \leq\left|t_{n}\right|$ for all but finitely many n. Then $s_{n} \rightarrow 0$.
(b) For any sequence $\left(s_{n}\right), s_{n} \rightarrow 0$ if and only if $\left|s_{n}\right| \rightarrow 0$.

Proof. (a) Let $N_{0} \in \mathbb{N}$ be such that $\left|s_{n}\right| \leq\left|t_{n}\right|$ for $n>N_{0}$. Let $\varepsilon>0$. Since $t_{n} \rightarrow 0$, there is $N_{1} \in \mathbb{N}$ such that for $n>N_{1},\left|t_{n}-0\right|<\varepsilon$. Let $N=\max \left\{N_{0}, N_{1}\right\}$. For $n>N,\left|s_{n}\right| \leq\left|t_{n}\right|$ and $\left|t_{n}-0\right|<\varepsilon$, which imply that $\left|s_{n}-0\right|=\left|s_{n}\right| \leq\left|t_{n}\right|=\left|t_{n}-0\right|<\varepsilon$.
(b) From (a) we know that if $\left|s_{n}\right|=\left|t_{n}\right|$ for all n, then $s_{n} \rightarrow 0$ iff $t_{n} \rightarrow 0$. We then apply this result to $t_{n}=\left|s_{n}\right|$ and use that $\left\|s_{n}\right\|=\left|s_{n}\right|$.

Lemma 1 (Lemma 9.5). If $\left(s_{n}\right)$ converges to s such that $s \neq 0$ and $s_{n} \neq 0$ for all n, then $\left(1 / s_{n}\right)$ converges to $1 / s$.
Discussion. We need to bound $\left|1 / s_{n}-1 / s\right|$ from above for big n. We write

$$
\left|\frac{1}{s_{n}}-\frac{1}{s}\right|=\left|\frac{s-s_{n}}{s_{n} s}\right|=\frac{\left|s_{n}-s\right|}{\left|s_{n}\right||s|} .
$$

Since $s_{n} \rightarrow s,\left|s_{n}-s\right|$ can be arbitrarily small if we choose n big enough. Thus, if $\left|s_{n}\right|$ and $|s|$ are not too close to 0 , then we can control the size of the RHS. This means that we need a positive lower bound of the set $\left\{\left|s_{1}\right|,\left|s_{2}\right|, \ldots\right\}$.

Proof. Since $s \neq 0$, we have $\frac{|s|}{2}>0$. Since $s_{n} \rightarrow s$, applying the definition to $\varepsilon=\frac{|s|}{2}$, we get $N \in \mathbb{N}$ such that for $n>N,\left|s_{n}-s\right|<\frac{|s|}{2}$, which then implies by triangle inequality that $\left|s_{n}\right| \geq|s|-\left|s_{n}-s\right|>|s|-\frac{|s|}{2}=\frac{|s|}{2}$. Let $m=\min \left\{\left|s_{1}\right|,\left|s_{2}\right|, \ldots,\left|s_{N}\right|, \frac{|s|}{2}\right\}$. Then m exists and is positive since the set is a finite set of positive numbers.

Let $\varepsilon>0$. Then $m|s| \varepsilon>0$. Since $s_{n} \rightarrow s$, there is $N^{\prime} \in \mathbb{N}$ such that $n>N^{\prime}$ implies that $\left|s_{n}-s\right|<m|s| \varepsilon$, which together with $\left|s_{n}\right| \geq m$ for all n implies that

$$
\left|\frac{1}{s_{n}}-\frac{1}{s}\right|=\frac{\left|s_{n}-s\right|}{\left|s_{n}\right||s|} \leq \frac{\left|s_{n}-s\right|}{m|s|}<\frac{m|s| \varepsilon}{m|s|}=\varepsilon .
$$

Theorem 5 (Theorem 9.6). Suppose (s_{n}) converges to s and $\left(t_{n}\right)$ converges to t. If $s \neq 0$ and $s_{n} \neq 0$ for all n, then $\left(t_{n} / s_{n}\right)$ converges to t / s.
Proof. By Lemma 9.5, ($1 / s_{n}$) converges to $1 / s$. Applying Theorem 9.4 to the sequences $\left(1 / s_{n}\right)$ and $\left(t_{n}\right)$, we get the conclusion.

Example 4. Derive $\lim \frac{3 n+1}{7 n-4}$ and $\lim \frac{4 n^{3}+3 n}{n^{3}-6}$
Solution. We write

$$
\frac{3 n+1}{7 n-4}=\frac{3+1 / n}{7+(-4) * 1 / n}, \quad \frac{4 n^{3}+3 n}{n^{3}-6}=\frac{4+3 *(1 / n)^{2}}{1+(-6) * 1 / n} .
$$

We have shown that $\lim 1 / n=0$. So (i) $\lim (3+1 / n)=3+0=3$ and $\lim (7+(-4) * 1 / n)=$ $7+(-4) * 0=7$, which imply that $\lim \frac{3 n+1}{7 n-4}=\lim (3+1 / n) / \lim (7+(-4) * 1 / n)=3 / 7$; (ii) $\lim \left(4+3 *(1 / n)^{2}\right)=4+3 * 0^{2}=4$ and $\lim (1+(-6) * 1 / n)=1+(-6) * 0=1$, which imply that $\lim \frac{4 n^{3}+3 n}{n^{3}-6}=\lim \left(4+3 *(1 / n)^{2}\right) / \lim (1+(-6) * 1 / n)=4$.

We now state some theorems about the relation between limits and orders.
Theorem 6 (Exercise 8.9). (a) If (s_{n}) converges to s, and there is $N_{0} \in \mathbb{N}$ such that $s_{n} \geq 0$ for all $n>N_{0}$, then $s \geq 0$.
(b) Suppose $\left(s_{n}\right)$ converges to s and $\left(t_{n}\right)$ converges to t. If there $N_{0} \in \mathbb{N}$ such that $s_{n} \leq t_{n}$ for all $n>N_{0}$, then $s \leq t$.

Proof. (a) We prove by contradiction. Suppose $s<0$. Let $\varepsilon=|s|=-s>0$. Since $s_{n} \rightarrow s$, there is $N \in \mathbb{N}$ such that for $n>N,\left|s_{n}-s\right|<\varepsilon$, which implies that $s_{n}<s+\varepsilon=0$. Let $n=\max \left\{N, N_{0}\right\}+1$. Then $n>N_{0}$ and $n>N$. From $n>N_{0}$ we get $s_{n} \geq 0$; from $n>N$ we get $s_{n}<0$. This is the contradiction.
(b) Applying (i) to the sequence $\left(t_{n}-s_{n}\right)$ we conclude that its limit $t-s$ is nonnegative.

For $x \in[0, \infty)$ and $n \in \mathbb{N}$, the power root $x^{1 / n}$ is defined as the unique $y \in[0, \infty)$ such that $y^{n}=x$. The uniqueness of such y follows from the fact that if $0 \leq y_{1}<y_{2}$, then $y_{1}^{n}<y_{2}^{n}$. The existence follows from the "Intermediate Value Theorem" for continuous function $f(x)=x^{n}$, which will be stated and proved later. We now just accept the existence of $x^{1 / n}$ for any $x \in[0, \infty)$. It is clear that $0 \leq x_{1}<x_{2}$ implies that $0 \leq x_{1}^{1 / n}<x_{2}^{1 / n}$. We restrict our attention to $[0, \infty)$ although in the case that n is an odd number, we can also define $x^{1 / n}$ for $x<0$.

When $n=2, x^{1 / 2}$ is often written as \sqrt{x}. We have the following theorem.
Theorem 7 (Example 5). Suppose (s_{n}) converges to s and $s_{n} \geq 0$ for all n. Then $\left(\sqrt{s}_{n}\right)$ converges to \sqrt{s}.

Discussion We want to bound $\left|\sqrt{s_{n}}-\sqrt{s}\right|$ from above for big n. It is useful to note the equality

$$
\left(\sqrt{s_{n}}-\sqrt{s}\right)\left(\sqrt{s_{n}}+\sqrt{s}\right)=\left(\sqrt{s_{n}}\right)^{2}-(\sqrt{s})^{2}=s_{n}-s
$$

Taking absolute value, we get

$$
\left|\sqrt{s_{n}}-\sqrt{s}\right| \cdot\left|\sqrt{s_{n}}+\sqrt{s}\right|=\left|s_{n}-s\right| .
$$

If $\sqrt{s}>0$, then

$$
\left|\sqrt{s_{n}}-\sqrt{s}\right|=\frac{\left|s_{n}-s\right|}{\sqrt{s_{n}}+\sqrt{s}} \leq \frac{\left|s_{n}-s\right|}{\sqrt{s}} .
$$

Proof. By Theorem 6, $s \geq 0$. First suppose $s>0$. Then $\sqrt{s}>0$. Let $\varepsilon>0$. Then $\sqrt{s} \varepsilon>0$. Since $s_{n} \rightarrow s$, there is $N \in \mathbb{N}$ such that for $n>N,\left|s_{n}-s\right|<\sqrt{s} \varepsilon$, which implies that

$$
\left|\sqrt{s_{n}}-\sqrt{s}\right|=\frac{\left|s_{n}-s\right|}{\sqrt{s_{n}}+\sqrt{s}} \leq \frac{\left|s_{n}-s\right|}{\sqrt{s}}<\frac{\sqrt{s} \varepsilon}{\sqrt{s}}=\varepsilon .
$$

We leave the proof in the case $s=0$ as an exercise. Note that for $x \geq 0, \sqrt{x}<\varepsilon$ iff $x^{2}<\varepsilon$.

