
Convergent Sequences

Definition 1. A sequence of real numbers (sn) is said to converge to a real number s if

∀ε > 0, ∃N ∈ N, such that n > N implies |sn − s| < ε. (1)

When this holds, we say that (sn) is a convergence sequence with s being its limit, and write
sn → s or s = limn→∞ sn. If (sn) does not converge, then we say that (sn) is a divergent
sequence.

We first show that one sequence (sn) can not have two different limits. Suppose sn → s
and sn → t. Let ε > 0. Then ε

2 > 0. Since sn → s, by definition there is N1 ∈ N such that
for n > N1, |sn − s| < ε

2 . Since sn → t, by definition there is N2 ∈ N such that for n > N2,
|sn − t| < ε

2 . Here we use N1 and N2 in the two statements because the N coming from the
two limits may not be the same. Let N = max{N1, N2}. If n > N , then n > N1 and n > N2

both hold. So |sn − s| < ε
2 and |sn − t| < ε

2 , which by triangle inequality imply that

|s− t| ≤ |sn − s|+ |sn − t| < ε

2
+

ε

2
= ε.

Now |s−t| < ε holds for every ε > 0. We then conclude that |s−t| = 0 (for otherwise |s−t| > 0,
we then get a contradiction by choosing ε = |s− t|). So s = t, and the uniqueness holds.

We will use the following tools to check whether a sequence converges or diverges.

1. the definition

2. basic examples

3. limit theorems

4. boundedness and subsequences.

We have stated the definition. Now we consider some examples.

Example 1. Let s ∈ R. If sn = s for all n, i.e., (sn) is a constant sequence, then lim sn = s.

Proof. For any given ε > 0 we simply choose N = 1. If n > N , then |sn − s| = 0 < ε.

Example 2. We have 1
n → 0.

Proof. Let ε > 0. By Archimedean property, there is N ∈ N such that 1
N < ε. If n > N , then

| 1
n
− 0| = 1

n
<

1

N
< ε.

Example 3. The following two sequences are divergent
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(i) (sn) = ((−1)n) = (−1, 1,−1, 1,−1, 1, . . . );

(ii) (sn) = (n) = (1, 2, 3, 4, 5, 6, . . . ).

Proof. (i) We use the notation of subsequence and statement that will be proved later. Suppose
n1 < n2 < n3 < · · · is a strictly increasing sequence of indices, then (snk

) is a subsequence of
(sn). We will prove a theorem, which asserts that, if (sn) converges to s, then any subsequence
of (sn) also converges to s. The sequence (sn) = ((−1)n) contains two constant sequences
(1, 1, 1, . . . ) (with nk = 2k) and (−1,−1,−1, . . . ) (with nk = 2k−1), which converge to different
limits. So the original (sn) can not converge.

(ii) We use the following theorem. If (sn) is convergent, then it is a bounded sequence. In
other words, the set {sn : n ∈ N} is bounded. So an unbounded sequence must diverge. Since
for sn = n, n ∈ N, the set {sn : n ∈ N} = N is unbounded, the sequence (n) is divergent.

Remark 1. This example shows that we have two ways to prove that a sequence is divergent:
(i) find two subsequences that convergent to different limits; (ii) show that the sequence is
unbounded. Note that the (sn) in (i) is bounded and divergent. The (sn) in (ii) is divergent,
but lim sn actually exists, which is +∞, and its every subsequence also tends to +∞. We will
define that limit later.

Now we state some limit theorems.

Theorem 1 (Theorem 9.1). Every convergent sequence is bounded.

Proof. Let (sn) be a sequence that converges to s ∈ R. Applying the definition to ε = 1, we see
that there is N ∈ N such that for any n > N , |sn−s| < 1, which then implies that |sn| ≤ |s|+1.
Let

M = max{|s1|, |s2|, . . . , |sN |, |s|+ 1}.

The maximum exists since the set is finite. Then for any n ∈ N, |sn| ≤ M (consider the case
n ≤ N and n > N separately), i.e., −M ≤ sn ≤M . So {sn : n ∈ N} is bounded.

Theorem 2 (Theorem 9.3). If (sn) converges to s and (tn) converges to t, then (sn + tn)
converges to s + t.

Proof. Let ε > 0. Then ε
2 > 0. Since sn → s, there is N1 ∈ N such that for n > N1, |sn−s| < ε

2 .
Since tn → t, there is N2 ∈ N such that for n > N2, |tn − t| < ε

2 . Let N = max{N1, N2}. If
n > N , then n > N1 and n > N2 both hold, and so |sn−s| < ε

2 and |tn− t| < ε
2 , which together

imply (by triangle inequality) that

|(sn + tn)− (s + t)| ≤ |sn − s|+ |tn − t| < ε

2
+

ε

2
= ε.

So we have the desired convergence.

Theorem 3 (Theorem 9.4). If (sn) converges to s and (tn) converges to t, then (sn·tn) converges
to s · t.
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Discussion. We need to bound |sntn − st| from above for big n. We write

sntn − st = sntn − snt + snt− st = sn(tn − t) + t(sn − s).

By triangle inequality, we get

|sntn − st| ≤ |sn(tn − t)|+ |t(sn − s)| = |sn||tn − t|+ |t||sn − s|.

Since tn → t and sn → s, we know that |tn− t| and |sn−s| can be arbitrarily small if we choose
n big enough. Thus, if |sn| and |t| are not too big, then we can control the sum on the RHS
(righthand side). In fact, the size of |sn| can be controlled because of Theorem 9.1.

Proof. Since (sn) is convergent, by Theorem 9.1, there is M > 0 such that |sn| ≤ M for every
n. We may choose M big such that M ≥ |t|. Let ε > 0. Then ε

2M > 0. Since sn → s, there
is N1 ∈ N such that for n > N1, |sn − s| < ε

2M . Since tn → t, there is N2 ∈ N such that for
n > N2, |tn − t| < ε

2M . Let N = max{N1, N2}. If n > N , then n > N1 and n > N2 both hold,
and so |sn − s| < ε

2M and |tn − t| < ε
2M , which together with |sn| ≤M and |t| ≤M imply that

|sntn − st| ≤ |sn(tn − t)|+ |t(sn − s)| = |sn||tn − t|+ |t||sn − s|

≤M |tn − t|+ M |sn − s| < M
ε

2M
+ M

ε

2M
= ε.

Corollary 1. If (sn) converges to s, k ∈ R, and m ∈ N, then (ksn) converges to ks and smn
converges to sm.

Proof. For the sequence (ksn), we apply Theorem 9.4 to the sequence (tn) with tn = k for all
n. For the sequence (smn ) we use induction. In the induction step, note that sm+1

n = sn ∗ smn
and apply Theorem 9.4 to tn = smn

Corollary 2. If (sn) converges to s and (tn) converges to t, then (sn − tn) converges to s− t.

Proof. We write sn + tn = sn + (−1)tn and apply Theorem 9.3 and the previous corollary.

From this corollary we see that sn → s iff sn − s → 0. By the Theorem below, the latter
statement is equivalent to that |sn − s| → 0.

Theorem 4. (a) Suppose two sequences (sn) and (tn) satisfy that tn → 0 and |sn| ≤ |tn| for
all but finitely many n. Then sn → 0.

(b) For any sequence (sn), sn → 0 if and only if |sn| → 0.

Proof. (a) Let N0 ∈ N be such that |sn| ≤ |tn| for n > N0. Let ε > 0. Since tn → 0, there is
N1 ∈ N such that for n > N1, |tn − 0| < ε. Let N = max{N0, N1}. For n > N , |sn| ≤ |tn| and
|tn − 0| < ε, which imply that |sn − 0| = |sn| ≤ |tn| = |tn − 0| < ε.

(b) From (a) we know that if |sn| = |tn| for all n, then sn → 0 iff tn → 0. We then apply
this result to tn = |sn| and use that ||sn|| = |sn|.
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Lemma 1 (Lemma 9.5). If (sn) converges to s such that s 6= 0 and sn 6= 0 for all n, then
(1/sn) converges to 1/s.

Discussion. We need to bound |1/sn − 1/s| from above for big n. We write∣∣∣ 1

sn
− 1

s

∣∣∣ =
∣∣∣s− sn

sns

∣∣∣ =
|sn − s|
|sn||s|

.

Since sn → s, |sn − s| can be arbitrarily small if we choose n big enough. Thus, if |sn| and |s|
are not too close to 0, then we can control the size of the RHS. This means that we need a
positive lower bound of the set {|s1|, |s2|, . . . }.

Proof. Since s 6= 0, we have |s|2 > 0. Since sn → s, applying the definition to ε = |s|
2 , we get

N ∈ N such that for n > N , |sn − s| < |s|
2 , which then implies by triangle inequality that

|sn| ≥ |s| − |sn − s| > |s| − |s|2 = |s|
2 . Let m = min{|s1|, |s2|, . . . , |sN |, |s|2 }. Then m exists and is

positive since the set is a finite set of positive numbers.
Let ε > 0. Then m|s|ε > 0. Since sn → s, there is N ′ ∈ N such that n > N ′ implies that

|sn − s| < m|s|ε, which together with |sn| ≥ m for all n implies that∣∣∣ 1

sn
− 1

s

∣∣∣ =
|sn − s|
|sn||s|

≤ |sn − s|
m|s|

<
m|s|ε
m|s|

= ε.

Theorem 5 (Theorem 9.6). Suppose (sn) converges to s and (tn) converges to t. If s 6= 0 and
sn 6= 0 for all n, then (tn/sn) converges to t/s.

Proof. By Lemma 9.5, (1/sn) converges to 1/s. Applying Theorem 9.4 to the sequences (1/sn)
and (tn), we get the conclusion.

Example 4. Derive lim 3n+1
7n−4 and lim 4n3+3n

n3−6

Solution. We write

3n + 1

7n− 4
=

3 + 1/n

7 + (−4) ∗ 1/n
,

4n3 + 3n

n3 − 6
=

4 + 3 ∗ (1/n)2

1 + (−6) ∗ 1/n
.

We have shown that lim 1/n = 0. So (i) lim(3 + 1/n) = 3 + 0 = 3 and lim(7 + (−4) ∗ 1/n) =
7 + (−4) ∗ 0 = 7, which imply that lim 3n+1

7n−4 = lim(3 + 1/n)/ lim(7 + (−4) ∗ 1/n) = 3/7; (ii)

lim(4 + 3 ∗ (1/n)2) = 4 + 3 ∗ 02 = 4 and lim(1 + (−6) ∗ 1/n) = 1 + (−6) ∗ 0 = 1, which imply

that lim 4n3+3n
n3−6 = lim(4 + 3 ∗ (1/n)2)/ lim(1 + (−6) ∗ 1/n) = 4.

We now state some theorems about the relation between limits and orders.

Theorem 6 (Exercise 8.9). (a) If (sn) converges to s, and there is N0 ∈ N such that sn ≥ 0
for all n > N0, then s ≥ 0.

(b) Suppose (sn) converges to s and (tn) converges to t. If there N0 ∈ N such that sn ≤ tn
for all n > N0, then s ≤ t.
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Proof. (a) We prove by contradiction. Suppose s < 0. Let ε = |s| = −s > 0. Since sn → s,
there is N ∈ N such that for n > N , |sn − s| < ε, which implies that sn < s + ε = 0. Let
n = max{N,N0}+ 1. Then n > N0 and n > N . From n > N0 we get sn ≥ 0; from n > N we
get sn < 0. This is the contradiction.

(b) Applying (i) to the sequence (tn−sn) we conclude that its limit t−s is nonnegative.

For x ∈ [0,∞) and n ∈ N, the power root x1/n is defined as the unique y ∈ [0,∞) such that
yn = x. The uniqueness of such y follows from the fact that if 0 ≤ y1 < y2, then yn1 < yn2 . The
existence follows from the “Intermediate Value Theorem” for continuous function f(x) = xn,
which will be stated and proved later. We now just accept the existence of x1/n for any

x ∈ [0,∞). It is clear that 0 ≤ x1 < x2 implies that 0 ≤ x
1/n
1 < x

1/n
2 . We restrict our attention

to [0,∞) although in the case that n is an odd number, we can also define x1/n for x < 0.
When n = 2, x1/2 is often written as

√
x. We have the following theorem.

Theorem 7 (Example 5). Suppose (sn) converges to s and sn ≥ 0 for all n. Then (
√
sn)

converges to
√
s.

Discussion We want to bound |√sn−
√
s| from above for big n. It is useful to note the equality

(
√
sn −

√
s)(
√
sn +

√
s) = (

√
sn)2 − (

√
s)2 = sn − s.

Taking absolute value, we get

|
√
sn −

√
s| · |
√
sn +

√
s| = |sn − s|.

If
√
s > 0, then

|
√
sn −

√
s| = |sn − s|

√
sn +

√
s
≤ |sn − s|√

s
.

Proof. By Theorem 6, s ≥ 0. First suppose s > 0. Then
√
s > 0. Let ε > 0. Then

√
sε > 0.

Since sn → s, there is N ∈ N such that for n > N , |sn − s| <
√
sε, which implies that

|
√
sn −

√
s| = |sn − s|

√
sn +

√
s
≤ |sn − s|√

s
<

√
sε√
s

= ε.

We leave the proof in the case s = 0 as an exercise. Note that for x ≥ 0,
√
x < ε iff x2 < ε.
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