
Theorem 1 (Squeeze Lemma, Exercise 8.5). Suppose three sequences (an), (bn), (sn) satisfy
that there is N0 ∈ N such that for all n > N0, an ≤ sn ≤ bn. If (an) and (bn) both converge to
the same number s, then (sn) also converges to s.

Discussion We want to arrive at the inequality |sn− s| < ε, which is equivalent to s− ε < sn <
s + ε. In order to have sn < s + ε, we want to use sn ≤ bn and bn < s + ε. In order to have
sn > s− ε, we want to use sn ≥ an and an > s− ε. The inequalities sn ≤ bn and sn ≥ an are
satisfied if n > N0. The inequalities bn < s + ε and an > s− ε can be obtained for big n using
the convergence of (an) and (bn).

Proof. Let ε > 0. Since (an) converges to s, there is N1 ∈ N such that for n > N1, |an− s| < ε,
which implies that an > s− ε. Since (bn) converges to s, there is N2 ∈ N such that for n > N2,
|bn − s| < ε, which implies that bn < s + ε. Let N = max{N0, N1, N2}. If n > N , then
an ≤ sn ≤ bn, an > s− ε, and bn < s + ε, which together imply that s− ε < sn < s + ε. So we
get |sn − s| < ε for n > N .

For x ∈ [0,∞) and r = p/q ∈ Q with p, q ∈ N, we define xr = (x1/q)p. We have (xr1)r2 =
xr1r2 , and for x, y ≥ 0, x < y if and only if xr < yr.

Theorem 2 (Theorem 9.7). We have the following basic examples.

(a) limn→∞( 1
n)r = 0 for any r ∈ Q and r > 0.

(b) limn→∞ an = 0 if |a| < 1.

(c) limn→∞ n1/n = 1.

(d) limn→∞ a1/n = 1 if a > 0.

Proof. (a) Let ε > 0. Then ε1/r > 0. Since 1/n → 0, there is N ∈ N such that for n > N ,
|1/n− 0| < ε1/r, i.e., 1/n < ε1/r, which then implies that |(1/n)r − 0| = (1/n)r < (ε1/r)r = ε.

(b) If a = 0, then obviously 0n → 0. Suppose a 6= 0. Then |a| = 1
1+b for some b > 0. We

use the binomial theorem

(1 + b)n =
n∑

k=0

(
n

k

)
bk,

where (
n

k

)
=

n!

k!(n− k)!
=

n(n− 1) · · · (n− k + 1)

k!
.

Especially,
(
n
0

)
= 1 and

(
n
1

)
= n. Also,

(
n
k

)
≥ 0 for all 0 ≤ k ≤ n. So (1 + b)n ≥ 1 + nb > nb.

Thus, |an| = |a|n < 1
nb . Since 1/n→ 0, we get 1

nb → 0. By the corollary of the squeeze lemma,
we get an → 0.

(c) Let sn = n1/n − 1. Then sn ≥ 0 and n = (1 + sn)n. We use the binomial theorem again
and the fact that

(
n
2

)
= 1

2n(n− 1). So if n ≥ 2, then

n = (1 + sn)n ≥ 1 + nsn +
1

2
n(n− 1)s2n >

1

2
n(n− 1)s2n.
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So s2n < 2
n−1 for n ≥ 2. Since 0 ≤ s2n < 2

n−1 for n ≥ 2 and 2
n−1 → 0, by squeeze lemma, s2n → 0.

So sn =
√

s2n → 0. Thus, n1/n = 1 + sn → 1.
(d) If a ≥ 1, then 1 ≤ a1/n ≤ n1/n for n ≥ a. By (iii) and squeeze lemma, we get a1/n → 1.

If 0 < a ≤ 1, then 1/a ≥ 1, and so (1/a)1/n → 1. Thus, a1/n = 1/(1/a)1/n → 1/1 = 1.

Infinite Limits

Definition 1. Let (sn) be a sequence of real numbers. We write limn→∞ sn = +∞ or sn → +∞
if

∀M > 0, ∃N ∈ N, such that n > N implies sn > M. (1)

When this holds, we say that (sn) diverges to +∞. We write limn→∞ sn = −∞ or sn → −∞ if

∀M < 0, ∃N ∈ N, such that n > N implies sn < M. (2)

When this holds, we say that (sn) diverges to −∞.

Since for any x ∈ R, there are M1 > 0 and M2 < 0 such that M2 < x < M1, the assumption
on the M in (1) and (2) can all be replaced by M ∈ R. We may write ∞ for +∞.

Example 1. If sn = n for each n ∈ N, then sn → +∞. To see this is true, for any M > 0, by
Archimedean property, there is N ∈ N such that N > M . Then for any n > N , sn = n > N >
M .

Recall that we say that limn→∞ sn = s or sn → s for some s ∈ R if

∀ε > 0, ∃N ∈ N, such that n > N implies |sn − s| < ε. (3)

If any of (1,2,3) hold, we say that limn→∞ sn exists. But only when (3) holds, we say that (sn)
converges.

When sn → s ∈ R, (sn) is bounded. This is not the case if sn → +∞ or sn → −∞. If
sn → +∞, then (sn) is not bounded above since for any M ∈ R there is n such that sn > M .
But (sn) is bounded below. To see this, taking M = 1, we get an N ∈ N such that sn > 1 for
all n > N . Then min{s1, . . . , sN , 1} is a lower bound of {sn : n ∈ N}. Similarly, if sn → −∞,
then (sn) is bounded above and not bounded below.

Example 2. The sequence sn = (−1)n, n ∈ N, has no limit. We have seen that it is divergent.
It can not diverge to +∞ or −∞ since it is bounded.

Remark 1. The limit property of a sequence is not affected by a change of finitely many
elements. This means that, if we have two sequences (sn) and (tn) and a number N0 ∈ N such
that sn = tn for n > N0, then if lim sn exists, then lim tn also exists and equals lim sn. To see
this, suppose sn → s ∈ R. Let ε > 0. There is Ns ∈ N such that |sn − s| < ε if n > Ns. Let
Nt = max{Ns, N0}. If n > Nt, then n > Ns and n > N0. From n > N0 we know tn = sn; from
n > N we know |sn − s| < ε, which together imply that |tn − s| < ε. If sn → +∞ or −∞,
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the argument is similar. Thus, when we talk about lim sn, we may allow that the sn to be not
defined for finitely many n.

A related fact is that when lim sn exists, then lim sn+1 also exists, and two limits are equal.
The converse is also true.

Remark 2. We have another way to understand the statements (3,1,2). Consider a game
played by Player A and Player B. To describe the limit sn → s ∈ R, let the sequence (sn) and
the number s be fixed. Then the two players choose the following numbers in order:

1. Player A chooses ε > 0.

2. Player B chooses N ∈ N.

3. Player A chooses n ∈ N with n > N .

The rule is: if |sn − s| < ε, then Player B wins the game; otherwise, Player A wins the game.
If sn → s, then Player B has a strategy to always win the game. Otherwise Player A can

always win the game.
To describe lim sn = +∞, we modify the game such that in the first step Player A chooses

M > 0, and the final rule is changed such that B wins the game if sn > M . If sn → +∞, then
Player B has a strategy to win the game; otherwise Player A can always win the game. One
may similarly describe a game for lim sn = −∞.

3


