Theorem 1 (Squeeze Lemma, Exercise 8.5). Suppose three sequences $\left(a_{n}\right),\left(b_{n}\right),\left(s_{n}\right)$ satisfy that there is $N_{0} \in \mathbb{N}$ such that for all $n>N_{0}, a_{n} \leq s_{n} \leq b_{n}$. If $\left(a_{n}\right)$ and $\left(b_{n}\right)$ both converge to the same number s, then $\left(s_{n}\right)$ also converges to s.

Discussion We want to arrive at the inequality $\left|s_{n}-s\right|<\varepsilon$, which is equivalent to $s-\varepsilon<s_{n}<$ $s+\varepsilon$. In order to have $s_{n}<s+\varepsilon$, we want to use $s_{n} \leq b_{n}$ and $b_{n}<s+\varepsilon$. In order to have $s_{n}>s-\varepsilon$, we want to use $s_{n} \geq a_{n}$ and $a_{n}>s-\varepsilon$. The inequalities $s_{n} \leq b_{n}$ and $s_{n} \geq a_{n}$ are satisfied if $n>N_{0}$. The inequalities $b_{n}<s+\varepsilon$ and $a_{n}>s-\varepsilon$ can be obtained for big n using the convergence of $\left(a_{n}\right)$ and $\left(b_{n}\right)$.

Proof. Let $\varepsilon>0$. Since $\left(a_{n}\right)$ converges to s, there is $N_{1} \in \mathbb{N}$ such that for $n>N_{1},\left|a_{n}-s\right|<\varepsilon$, which implies that $a_{n}>s-\varepsilon$. Since $\left(b_{n}\right)$ converges to s, there is $N_{2} \in \mathbb{N}$ such that for $n>N_{2}$, $\left|b_{n}-s\right|<\varepsilon$, which implies that $b_{n}<s+\varepsilon$. Let $N=\max \left\{N_{0}, N_{1}, N_{2}\right\}$. If $n>N$, then $a_{n} \leq s_{n} \leq b_{n}, a_{n}>s-\varepsilon$, and $b_{n}<s+\varepsilon$, which together imply that $s-\varepsilon<s_{n}<s+\varepsilon$. So we get $\left|s_{n}-s\right|<\varepsilon$ for $n>N$.

For $x \in[0, \infty)$ and $r=p / q \in \mathbb{Q}$ with $p, q \in \mathbb{N}$, we define $x^{r}=\left(x^{1 / q}\right)^{p}$. We have $\left(x^{r_{1}}\right)^{r_{2}}=$ $x^{r_{1} r_{2}}$, and for $x, y \geq 0, x<y$ if and only if $x^{r}<y^{r}$.
Theorem 2 (Theorem 9.7). We have the following basic examples.
(a) $\lim _{n \rightarrow \infty}\left(\frac{1}{n}\right)^{r}=0$ for any $r \in \mathbb{Q}$ and $r>0$.
(b) $\lim _{n \rightarrow \infty} a^{n}=0$ if $|a|<1$.
(c) $\lim _{n \rightarrow \infty} n^{1 / n}=1$.
(d) $\lim _{n \rightarrow \infty} a^{1 / n}=1$ if $a>0$.

Proof. (a) Let $\varepsilon>0$. Then $\varepsilon^{1 / r}>0$. Since $1 / n \rightarrow 0$, there is $N \in \mathbb{N}$ such that for $n>N$, $|1 / n-0|<\varepsilon^{1 / r}$, i.e., $1 / n<\varepsilon^{1 / r}$, which then implies that $\left|(1 / n)^{r}-0\right|=(1 / n)^{r}<\left(\varepsilon^{1 / r}\right)^{r}=\varepsilon$.
(b) If $a=0$, then obviously $0^{n} \rightarrow 0$. Suppose $a \neq 0$. Then $|a|=\frac{1}{1+b}$ for some $b>0$. We use the binomial theorem

$$
(1+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} b^{k},
$$

where

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{n(n-1) \cdots(n-k+1)}{k!} .
$$

Especially, $\binom{n}{0}=1$ and $\binom{n}{1}=n$. Also, $\binom{n}{k} \geq 0$ for all $0 \leq k \leq n$. So $(1+b)^{n} \geq 1+n b>n b$. Thus, $\left|a^{n}\right|=|a|^{n}<\frac{1}{n b}$. Since $1 / n \rightarrow 0$, we get $\frac{1}{n b} \rightarrow 0$. By the corollary of the squeeze lemma, we get $a^{n} \rightarrow 0$.
(c) Let $s_{n}=n^{1 / n}-1$. Then $s_{n} \geq 0$ and $n=\left(1+s_{n}\right)^{n}$. We use the binomial theorem again and the fact that $\binom{n}{2}=\frac{1}{2} n(n-1)$. So if $n \geq 2$, then

$$
n=\left(1+s_{n}\right)^{n} \geq 1+n s_{n}+\frac{1}{2} n(n-1) s_{n}^{2}>\frac{1}{2} n(n-1) s_{n}^{2} .
$$

So $s_{n}^{2}<\frac{2}{n-1}$ for $n \geq 2$. Since $0 \leq s_{n}^{2}<\frac{2}{n-1}$ for $n \geq 2$ and $\frac{2}{n-1} \rightarrow 0$, by squeeze lemma, $s_{n}^{2} \rightarrow 0$. So $s_{n}=\sqrt{s_{n}^{2}} \rightarrow 0$. Thus, $n^{1 / n}=1+s_{n} \rightarrow 1$.
(d) If $a \geq 1$, then $1 \leq a^{1 / n} \leq n^{1 / n}$ for $n \geq a$. By (iii) and squeeze lemma, we get $a^{1 / n} \rightarrow 1$. If $0<a \leq 1$, then $1 / a \geq 1$, and so $(1 / a)^{1 / n} \rightarrow 1$. Thus, $a^{1 / n}=1 /(1 / a)^{1 / n} \rightarrow 1 / 1=1$.

Infinite Limits

Definition 1. Let $\left(s_{n}\right)$ be a sequence of real numbers. We write $\lim _{n \rightarrow \infty} s_{n}=+\infty$ or $s_{n} \rightarrow+\infty$ if

$$
\begin{equation*}
\forall M>0, \quad \exists N \in \mathbb{N}, \quad \text { such that } n>N \text { implies } s_{n}>M \tag{1}
\end{equation*}
$$

When this holds, we say that $\left(s_{n}\right)$ diverges to $+\infty$. We write $\lim _{n \rightarrow \infty} s_{n}=-\infty$ or $s_{n} \rightarrow-\infty$ if

$$
\begin{equation*}
\forall M<0, \quad \exists N \in \mathbb{N}, \quad \text { such that } n>N \text { implies } s_{n}<M \tag{2}
\end{equation*}
$$

When this holds, we say that $\left(s_{n}\right)$ diverges to $-\infty$.
Since for any $x \in \mathbb{R}$, there are $M_{1}>0$ and $M_{2}<0$ such that $M_{2}<x<M_{1}$, the assumption on the M in (1) and (2) can all be replaced by $M \in \mathbb{R}$. We may write ∞ for $+\infty$.

Example 1. If $s_{n}=n$ for each $n \in \mathbb{N}$, then $s_{n} \rightarrow+\infty$. To see this is true, for any $M>0$, by Archimedean property, there is $N \in \mathbb{N}$ such that $N>M$. Then for any $n>N, s_{n}=n>N>$ M.

Recall that we say that $\lim _{n \rightarrow \infty} s_{n}=s$ or $s_{n} \rightarrow s$ for some $s \in \mathbb{R}$ if

$$
\begin{equation*}
\forall \varepsilon>0, \quad \exists N \in \mathbb{N}, \quad \text { such that } n>N \text { implies }\left|s_{n}-s\right|<\varepsilon \tag{3}
\end{equation*}
$$

If any of (123) hold, we say that $\lim _{n \rightarrow \infty} s_{n}$ exists. But only when (3) holds, we say that $\left(s_{n}\right)$ converges.

When $s_{n} \rightarrow s \in \mathbb{R},\left(s_{n}\right)$ is bounded. This is not the case if $s_{n} \rightarrow+\infty$ or $s_{n} \rightarrow-\infty$. If $s_{n} \rightarrow+\infty$, then $\left(s_{n}\right)$ is not bounded above since for any $M \in \mathbb{R}$ there is n such that $s_{n}>M$. But $\left(s_{n}\right)$ is bounded below. To see this, taking $M=1$, we get an $N \in \mathbb{N}$ such that $s_{n}>1$ for all $n>N$. Then $\min \left\{s_{1}, \ldots, s_{N}, 1\right\}$ is a lower bound of $\left\{s_{n}: n \in \mathbb{N}\right\}$. Similarly, if $s_{n} \rightarrow-\infty$, then $\left(s_{n}\right)$ is bounded above and not bounded below.

Example 2. The sequence $s_{n}=(-1)^{n}$, $n \in \mathbb{N}$, has no limit. We have seen that it is divergent. It can not diverge to $+\infty$ or $-\infty$ since it is bounded.

Remark 1. The limit property of a sequence is not affected by a change of finitely many elements. This means that, if we have two sequences $\left(s_{n}\right)$ and $\left(t_{n}\right)$ and a number $N_{0} \in \mathbb{N}$ such that $s_{n}=t_{n}$ for $n>N_{0}$, then if $\lim s_{n}$ exists, then $\lim t_{n}$ also exists and equals $\lim s_{n}$. To see this, suppose $s_{n} \rightarrow s \in \mathbb{R}$. Let $\varepsilon>0$. There is $N_{s} \in \mathbb{N}$ such that $\left|s_{n}-s\right|<\varepsilon$ if $n>N_{s}$. Let $N_{t}=\max \left\{N_{s}, N_{0}\right\}$. If $n>N_{t}$, then $n>N_{s}$ and $n>N_{0}$. From $n>N_{0}$ we know $t_{n}=s_{n}$; from $n>N$ we know $\left|s_{n}-s\right|<\varepsilon$, which together imply that $\left|t_{n}-s\right|<\varepsilon$. If $s_{n} \rightarrow+\infty$ or $-\infty$,
the argument is similar. Thus, when we talk about $\lim s_{n}$, we may allow that the s_{n} to be not defined for finitely many n.

A related fact is that when $\lim s_{n}$ exists, then $\lim s_{n+1}$ also exists, and two limits are equal. The converse is also true.

Remark 2. We have another way to understand the statements (3112). Consider a game played by Player A and Player B. To describe the limit $s_{n} \rightarrow s \in \mathbb{R}$, let the sequence $\left(s_{n}\right)$ and the number s be fixed. Then the two players choose the following numbers in order:

1. Player A chooses $\varepsilon>0$.
2. Player B chooses $N \in \mathbb{N}$.
3. Player A chooses $n \in \mathbb{N}$ with $n>N$.

The rule is: if $\left|s_{n}-s\right|<\varepsilon$, then Player B wins the game; otherwise, Player A wins the game.
If $s_{n} \rightarrow s$, then Player B has a strategy to always win the game. Otherwise Player A can always win the game.

To describe $\lim s_{n}=+\infty$, we modify the game such that in the first step Player A chooses $M>0$, and the final rule is changed such that B wins the game if $s_{n}>M$. If $s_{n} \rightarrow+\infty$, then Player B has a strategy to win the game; otherwise Player A can always win the game. One may similarly describe a game for $\lim s_{n}=-\infty$.

