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Abstract

We define intermediate SLE,(p) and reversed intermediate SLE,(p) processes using
Appell-Lauricella multiple hypergeometric functions, and use them to describe the time-
reversal of multiple-force-point chordal SLE,(p) curves in the case that all force points are
on the boundary and lie on the same side of the initial point, and x and p = (p1,..., pm)
satisfy that either © € (0,4] and 3.5 p; > =2 for all 1 < k < m, or x € (4,8) and

Z?lejzg—2foralllgk§m.
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1 Introduction

The Schramm-Loewner evolution (SLE), first introduced by Oded Schramm in 1999 ([15]), is a
one-parameter (k € (0,00)) family of measures on non-self-crossing curves, which has received a
lot of attention over the past two decades. It has been shown that, modulo time parametrization,
a number of discrete random paths on grids have SLE with different parameters as their scaling
limits. We refer the reader to Lawler’s textbook [3] for basic properties of SLE.

Based on the convergence of various discrete lattice models to SLE, Rohde and Schramm
conjectured (cf. [13]) that, for k € (0,8), chordal SLE,; (growing in a simply connected domain
from one boundary point to another) satisfies reversibility, i.e., the time reversal of a chordal
SLE, curve is also a chordal SLE, curve, modulo a time reparametrization.

The conjecture was first proved for x € (0,4] in [23], which constructed a commutation
coupling of two chordal SLE, curves growing towards each other, and used the coupling to
show that the two curves are time-reversal of each other. The conjecture for k € (4,8) was
proved by [7] using the celebrated imaginary geometry theory.

People have also worked on the reversibility property of other types of SLE. Radial SLE
grows in a simply connected domain from a boundary point to an interior point, and obviously
does not satisfy reversibility. However, one may consider its close relative: whole-plane SLE,
which grows in the Riemann sphere from one (interior) point to another point. Conditionally
on an initial segment of a whole-plane SLE, curve, the rest of the curve is a radial SLE,; curve
in the remaining domain. The reversibility of whole-plane SLE, was first proved for x € (0, 4]
in [20], and later for k € (4,8) in [6]. The work [20] also describes the time-reversal of radial
SLE,, for k € (0,4] although the reversibility does not hold.

SLE.(p) is another important type of SLE, whose growth is affected by some additional
marked points, called force points, besides the target. They were introduced in [5] for the
construction of restriction measures, and were later used in the series [9, 8, [7, 6] as building
blocks of the imaginary geometry.

The paper [21] proves the reversibility of a single-force-point chordal SLE,(p) in the case
that x € (0,4], p > k/2 — 2, and that the only force point lies on the boundary, and is
degenerate, i.e., lies immediately next to the initial point. A new process called intermediate
SLE,(p) was introduced there to describe the time-reversal of chordal SLE,(p) in the case
that the boundary force point is not degenerate. An intermediate SLE,(p) is a two-force-point
process defined using a hypergeometric function, and is different from the SLE,(p) in [5]. It is
also proved in [21] that intermediate SLE, (p) satisfies reversibility for x € (0,4] and p > k/2—2.



The intermediate SLE was later called hypergeometric SLE or hSLE in [II] and [I7]. The
latter paper [17] extends the reversibility of intermediate SLE,(p) to x € (0,8) and p > k/2—2
in the case that both force points are not degenerate, and proved that intermediate SLE,(2) is
the marginal law of a single curve in a multiple 2-SLE,; configuration.

The papers [8, [7] established the reversibility of chordal SLE,(p1, p2) in the case that x €
(0,4) and p1,p2 > —2, or k € (4,8) and p1, p2 > § — 4, and that the two boundary force points
are both degenerate, one on each side. But those papers did not provide description of the
time-reversal of chordal SLE,(p1, p2) in the case that any force point is not degenerate.

The current paper studies the time-reversal of multiple-force-point chordal SLE,(p) in the
case that all force points are boundary points and lie on the same side of the initial point. The
first result of this form was obtained in [22] for k = 4, where it was shown that if the force points
v = (v1,...,Vn) are ordered such that v; is closer to the initial point than v, when j < k, and
if the corresponding force values p = (p1,. .., pm) satisfy that Z?Zl pj > 0forall 1 <k<m,
then the time-reversal of a chordal SLE4(p) curve is a chordal SLE4(—p, —pso) curve, where
Poo = — ZTZI pj, the value —p; force point for the time-reversal is stilfvj, 1 <5 <m,and
the value —po, force point for the time-reversal lies immediately next to the initial point of the
reversal curve, i.e., the terminal point of the original curve.

Below are the main theorems of the paper, which extend the results of [21].

Theorem 1.1. Let vy > -+ > v, € (—00,0) U{0"} or vy < -+ < vy, € (0,+00) U{0T}. Let
o € {+,—} be the sign of v;’s. Suppose k and p1,...,pm satisfy either

(I) k€ (0,4] and for any 1 <k <m, Z?:l pj > —2; or
(II) k € (4,8) and for any 1 < k <m, 2?21%‘ > 5 -2

Let n be a chordal SLE,(p1, ..., pm) curve in H from 0 to oo with force points vy, ..., vy,. Let

J(z) = —=1/z. Let poo = —Z;r;l pj. Then the time-reversal of J on may be reparametrized
by half-plane capacity and become a chordal Loewner curve, whose law is absolutely continuous
w.r.t. that of a chordal SLE(—p1,...,—pm,—Poc) curve in H from 0 to oo with force points

J(v1),...,J(vm),079. Here we use the convention that J(0F) = Foo.

Theorem 1.2. Let K, p1,...,Pm,Poos Vly--+,Um, 0, and J be as in Theorem [I.1 Let vs €
(Vm, +o0) U{+oo} if o = +; and € {—oo} U (—00,vp) if o = —. Let v; = J(vj) and pi = —pj,
j€{l,...,m,00}. Here we use the convention that J(0F) = Foo and J(£oo) = 0F. Let n be
an iSLE,(p1, ..., pm) curve (Definition in H from 0 to oo with force points vy, ..., VUm, Vso-
Let 0" be an iSLE(p1,...,pm) curve (Definition in H from 0 to oo with force points

vl .. v, 05 . Then up to a time-change, the law of the time-reversal of J(n) agrees with the
law of ", which is absolutely continuous w.r.t. that of a chordal SLE.(pY, ..., ph,, pro) curve in
H from 0 to oo with force points vi,...,v],, v, .

The iSLE, (p) and iSLEJ, (p) (shorthands for intermediate SLE, (p) and reversed intermediate
SLE«(p), respectively) processes will be defined using Appell-Lauricella multiple hypergeometric
functions. When vy = o - 0o, the  in Theorem agrees with the 1 in Theorem So



Theorem is a special case of Theorem [I.2] and we have a description of the law of 1" in
Theorem Unless k = 4, an iSLE],(p) curve is not a chordal SLEJ,(p’). So the time-reversal
of a chordal SLE,(p) may not be a chordal SLE,(p') curve.

The proof of Theorem in the case that k 67(0, 4] uses the stochastic coupling technique
introduced in 23] 22]. We will construct a commutation coupling of an iSLE,(p) curve with
an iSLE],(p) curve, and use the commutation relation to prove that the two curves are time-
reversal of each other. The proof in the case that k € (4,8) uses the reversibility of chordal
SLE, established in [7]. We will show that when none of the force points is degenerate, the
laws of both n and n" are absolutely continuous w.r.t. that of a chordal SLE,; curve in H from
0 to oo, and the Radon-Nikodym derivatives are related by the map J. We will then extend
the result to the case that some force points are degenerate using commutation couplings.

The definitions of iSLE(p) and iSLE],(p) are valid for all x € (0,8) and p = (p1,...,pm)

satisfying that Z§:1 pj > max{—2,5 — 4} for 1 < k < m. We believe that both theorems
should hold if Condition (II) is weakened to x € (4,8) and Z?:l pj > 5 —4forl1 <k <m.
Actually, we believe that the theorems should also hold if there are force points on both sides.
The expected extension of Theorem [I.1]is the following conjecture.

Conjecture 1.3. Suppose v; > --- > v, € (—00,0) U {07} and v{ < --- < vt €
(0,400) U{0T}. Let s and p7, 1 < j < mgy, 0 € {+,—}, satisfy that k € (0,8) and
Z?:l p] > max{-2,5 —4} for all 1 < k < m, and o € {+,—}. Let p” = (p7,....p%,,)
and v7 = (vf,...,v5, ), o € {+,—}. Let n be a chordal SLE.(p™, p~) curve in H from 0 to oo
with force points (vt,v™). Let p7, = — Z;n:c’l P, o€ {+,—}. Then the time-reversal of J(n)
may be reparametrized by half-plane capacity and become a chordal Loewner curve, whose law
1s absolutely continuous w.r.t. that of a chordal SLEH(—BJF, —pL, —p~, —ps) curve with force

points J(v]), .. I, ),07, J(vy), s I (v, ), 07

The conjecture is known to be true (cf. [22 Theorem 5.5]) in the case that k = 4 and p;-t

satisfy that Z?Zl p;t >0forall 1l <k < m4. Inthat case, the time-reversal is exactly a chordal

SLE4(—pt, —pL,—p~, —px) curve. For other k, we have not found the correct definitions of
two-sided iISLE, (BJ;, p~) and iSLE[,(p™, p~) curves to make the extension of Theorem (1.2 holds,
even in the simplest case that my =m_ = 1.

Below is the outline of the rest of the paper. In the next section, we recall H-hulls, chordal
Loewner equation, chordal SLE,(p), and multiple hypergeometric functions. In Section
we define iSLE,(p) and iSLE](p) curves, and study some basic properties. In Section {4, we
construct a commutation coupling of an iSLE(p) curve with an iSLE],(p) curve. We prove the

main theorems in the last section.

2 Preliminary

We first fix some notation. We write x V y = max{z,y} and x A y = min{x,y} for z,y € R.
Let H ={z€ C:Imz >0}and D = {z € C: |z|] < 1}. For zp € C and S C C, let



rad,(S) = sup{|z — 20| : z € SU{2}}. Let D & C be a simply connected domain. The
conformal radius of D w.r.t. any 2o € D is defined by crad.,(D) = 1/|g.,(0)] if g., maps D

conformally onto D such that g.,(z0) = 0. We write cradgﬁ)(D) for crad,,(D)/4. Then for
x>y eR, cradgfl)(C \ (—00,y]) = |r — y|. By Koebe’s 1/4 theorem, we have dist(z, D¢)/4 <
cradgﬁ)(D) < dist(zp, D). The boundary Poisson kernel w.r.t. z # w € 9D at which 9D is
smooth is defined by Hp(z,w) = %, where g maps D conformally onto H such that
9(2), g(w) # oo. The value does not depend on the choice of g.

2.1 H-hulls

A relatively closed subset K of H is called an H-hull if K is bounded and H \ K is a simply
connected domain. If S is a bounded subset of H such that S UR is connected, then the
unbounded connected component of H \ S is a simply connected domain, whose complement in
H is an H-hull, which is called the H-hull generated by .S, and denoted by Hull(\S). For an H-hull
K, there is a unique conformal map g from H\ K onto H such that gx(z) = 2z + £ + O(Z%)
as z — oo for some ¢ > 0. The constant ¢, denoted by hcap(K), is called the H-capacity of K,
which is zero iff K = (). We write hcapy(K) for heap(K)/2.

If K1 C Ky are two H-hulls, then the quotient hull Ky/K is defined as gx, (K2 \ K1), which
is also an H-hull, and we have gk, = gk, /K, © gk, and hcap(K3) = hcap(K2/K1) + hcap(K7).
From hcap > 0 we see that hcap (K1), hcap(K2/K7) < heap(K3). If K; C Ky C K3 are H-hulls,
then Kz/Kl C Kg/Kl and (K3/K1)/(K2/K1) = K3/K2.

Let K be a non-empty H-hull. Let K9°"" = KU{z : z € K}, where K is the closure of K, and
Z is the complex conjugate of z. By Schwarz reflection principle, there is a compact set S C R
such that gx extends to a conformal map from C\ K9°" onto C\ Sk. Let ax = min(K NR),
br = max(K NR), cx = min Sk, dx = maxSk. Then gx maps C\ (K©" U [ag,br])
conformally onto C\ [ck,dk]. Below is an important example.

Example 2.1. For zp € Rand r > 0, H := {z € H : |z — z9| < r} is an H-hull with
gu(z) =z + r? heap(H) = 72, agg = 20 — 7, by = 29 + 1, HP = {2 € C: |z — 29| < 1},

z—xq’
cyg = xg— 2r, dg = xog + 2r.

The next proposition combines Lemmas 5.2 and 5.3 of [24].

Proposition 2.2. If L C K are two non-empty H-hulls, then |ar,br] C [ak,bk] C [ck,dKk],
[CL,dL] C [CK,dK], and [CK/L7dK/L] C [CK,dK].

Proposition 2.3. Let 29 € R andr > 0. If K is an H-hull with rad,,(K) < r, then hcap(K) <
72, rady, (Sx) < 2r, and |gx (2) — 2| < 3r for any z € C\ K9°UP,

Proof. We have K C H := {2 € H : |z — 29| < r}. So hcap(K) < hcap(H) = r2. From
Proposition Sk C [ek,dk] C [cm,du) = [xro — 2r,xo + 2r]. So rads,(Sk) < 2r. Since
gx(2) — z is analytic on C \ K9 and tends to 0 as z — oo, by the maximum modulus



principle,

sup  [gr(2) — 2| < limsup  |(gk(2) —x0) — (2 — o) < 2r + 7 = 3r,
Ze(C\Kdoub (C\Kdoub Sz— K doub

where the second inequality follows from the facts that z — K9°" implies that gx(z) — Sk,
rad,, (Sk) < 2r, and rady, (KdOUb) <. .

Let fx = gx'. By [14, Lemma C.1], there is a measure u supported on Si with || =
heap(K) such that for any w € C\ Sk,

-1
wa—w:/ ——dug(y). 2.1
(w) [y (2.1)
Differentiating the equality about w, we get
fiew 1= [ du(y) (22)
— 1 = —_— K . .
K s (W —y)?

From this formula we see that fi- > 1 on R\ Sk, and is decreasing on (dg,c0) and increasing
on (—o0,cx). So gk € (0,1] on R\ K, is increasing on (bg,00) and decreasing on (—oo, ak).
Moreover, we have the following proposition.

Proposition 2.4. Let K be an H-hull contained in {\z| < R}. If |z| > TR, then |log %] <
1. 5@2, |log g% ()] < 2. 25| ‘2, and |Sgk (2)] < 35‘ |4, where Sqgg is the Schwarzian derivative

of g, t.e., Sgx = giK _ %(%)2.

Proof. Suppose |w| > 6R. Since ug is supported by Sk C [ck,dx] C [-2R,2R], and |pux| =
heap(K) < R2, by (2.1).

R? R? R
- d )< < = 2.3
[ fre(w) = wl = ‘/QRw W) S SR SR —aR 4 (23)

Thus, frx({|w| = 6R}) is a Jordan curve contained in {|w| < 6.25R}. Since fx maps {|w| > 6R}
onto the exterior of fr ({|w| = 6R}), which contains {|w| > 6.25R}, we see that g = f;* maps
{]z|] > 6.25R} into {|z| > 6R}.

Suppose now |z| > 7TR. Then |gx(z)| > 6R, and by , lgr (2) — z] < % So |gx(2)| —

2R > |z| — 2R > B|z|. By (D again, |gx(z) — z| < |gK(SQ|—2R < %Zﬁ, which implies that

2 . .
\M -1 < fglR‘Q < 5. Since |logz| < 1.016]z — 1] if |z — 1| < 35, we get |log ‘gK ‘|

2
L0165 < §|R|2 From q. we get | fe(gx(2)) = 1| < (pd=p)? < ($E)* < (149) . Slnce
fie(gr(2)) = 1/g4(2), and |logz| < 1.03|z — 1] if |z — 1] < (55)%, we get |loglgy(2)|| <
1.03(2E)2 < 2258

19]z] |22




Differentiating (2.2)) further w.r.t. z twice and then replacing w by gx (z) and using |gx ()| —
2R > 3|z and |z| > TR, we get

2.9283R%2  8.282R 6 - 284 R2
< i < .

[fx(9x(2)] <

B2 4
Using that |1/ fi (9 (2))] = |g% (2)| < 7 < %% < 1.05 and the chain rule for Schwarzian

derivative, we get

1S9 (2)] = 15 f (95 ()] - |9 (2)* < 1.5+ 1.05% i (g5 (2))|* + 1.05%| i (g5 (2))-
Combining the above two displayed formulas, we get |[Sgx(2)| < 35%. O

The following proposition is essentially Lemma 2.8 in [4].

Proposition 2.5. Let ¢ be a conformal map, which maps a real open interval containing xg
into R, and satisfies ¢'(xg) > 0. Then

. heap(9(H)

. / 2
H-10 hcap(H) - ’(b (x0)| ’

where H — xog means that rad,,(H) — 0 with H being a nonempty H-hull.

Definition 2.6. For w € R, let R, = (R\{w})U{w™,w™}. Let K be an H-hull. Let the interval
[a¥,b%] be the convex hull generated by w and K NR. Then gx maps C\ (K9 U [a', %))
conformally onto C\ [c}%,d%] for some interval [c}, d}]. We define g§ from R,, U {400, —o0}
onto [—oo, cf] U [d¥, +00] such that g3 (+oo) = *oo; if x € R\ [al,b%], g (z) = gr(z); if
v € [olfw) U fw by gt (e) = e and if 7 € (w, B8] U {w )}, g (z) = b

Remark 2.7. The maps g will be useful in describing force point processes for SLE«(p).
Note that if K = 0, a¥% = W% = % = d¥% = w; if w € [ak,bk], then % = ag, b = by,
¥ = ¢k, and d¥ = dg. It is clear that g} is increasing. Since g} = gx and ¢} € (0,1] on
(—00,a¥) U (b, 00), and g% maps [a%, w) U {w™} and (w,b¥] U {w™} respectively to ¢% and
d¥, we see that gx is a contraction on (—oo,w) U {w™} and (w,o0) U {w™}.

2.2 Chordal Loewner equation
Let w € C([0,T),R) for some T € (0,¢]. The chordal Loewner equation driven by @ is
2
gi(z) — ()’

For every z € C, let 7, be the first time that the solution ¢ — g¢;(z) blows up; if such time does
not exist, then set 7, = co. For ¢t € [0,T), let K} = {z € H: 7, < t}. It turns out that for
each t > 0, K; is an H-hull with hecap(K;) = 2t, K§°® = {2 € C : 7, < t}, and g; agrees with

Orgi(2) = 0<t<T; go(z) =z



gk, We call g; and K; the chordal Loewner maps and hulls, respectively, driven by @w. Since
we write hcap,y(K) for heap(K')/2, hcapy(K;) =t for all ¢.

If for every t € [0,T), fx, = 91_91 extends continuously from H to H, and n(t) := fx, (W (t)),
0 <t < T, is continuous in ¢, then we say that 7 is the chordal Loewner curve driven by w. Such
7 may not exist in general. When it exists, we have n(0) = w(0) € R, and K; = Hull(n([0,¢]))
for all ¢, and we say that K;, 0 <t < T, are generated by 7.

Let u be a continuous and strictly increasing function on [0,7") such that u(0) = 0. Suppose
that g+ and Ky, 0 <t < T, satisfy that g,-1(;) and K,-1(, 0 <t < u(T), are chordal Loewner
maps and hulls, respectively, driven by @ o u~!. Then we say that ¢; and K;, 0 < t < T, are
chordal Loewner maps and hulls, respectively, driven by @ with speed du, and call (Kuq(t))
the normalization of (K;). If (K;) are generated by a curve 7, i.e., Ky = Hull(n([0,¢])) for all
t, then 7 is called a chordal Loewner curve driven by @ with speed du, and 1o u™! is called
the normalization of n. If u is absolutely continuous, we also say that the speed is u’. In this
case, the g, satisfy the differential equation 0,g¢(z) = %. The original Loewner maps
and hulls then have speed 1.

The following proposition is a slight variation of Theorem 2.6 of [4].

Proposition 2.8. The H-hulls K;, 0 < t < T, are chordal Loewner hulls with some speed if
and only if for any fived a € [0,T), limsyo supg<;<, diam(Kyy5/K;) = 0. Moreover, the driving
function w satisfies that {W(t)} = (Nsuo Kirs/Ki, 0 < t < T; and the speed is du, where
u(t) = heapy(Ky), 0 <t <T.

Proposition 2.9. Suppose K;, 0 <t < T, are chordal Loewner hulls driven by w with some
speed. Then for any to € (0,T) and t € [0,t¢], ck,, < W(t) < dk,, -

Proof. Let tg € (0,T). If 0 <t < ty, by Propositions and w(t) € lar,, /K, bre,y /] C
[¢ry /10 Aicyy /1) C ey dicy, |- By the continuity of w, we also have w(to) € [k, dK,]. U

We now cite [18, Proposition 2.13] below, which is a corollary of [9, Lemma 2.5] and [8]
Lemma 3.3].

Proposition 2.10. Let K; and n(t), 0 <t < T, be chordal Loewner hulls and curve driven by

W with speed q. Suppose the Lebesgue measure of n([0,T)) NR is 0. Let w = w(0), and x € R,,.

Define X(t) = g, (z), 0 <t <T. Then the set of t such that X(t) # W(t) is zero, and X is

absolutely continuous with X'(t) = I{X(t#@(t)}#% almost everywhere on [0,T).

2.3 Chordal SLE, and SLE,(p) processes

If w(t) = /kB(t), 0 <t < oo, where k > 0 and B(t) is a standard Brownian motion, then
the chordal Loewner curve n driven by @ is known to exist (cf. [I3]), and is called a chordal
SLE, curve in H from 0 to co. It satisfies 7(0) = 0 and lim;_,o, 7(t) = co. The behavior of 7
depends on k: if k € (0,4], n is simple and intersects R only at 0; if £ > 8, 7 is space-filling, i.e.,
H = n(Ry); if k € (4,8), n is neither simple nor space-filling. If D is a simply connected domain



with two distinct marked boundary points (or more precisely, prime ends (cf. [1])) a and b, the
chordal SLE, curve in D from a to b is defined to be the conformal image of a chordal SLE,
curve in H from 0 to co under a conformal map from (H; 0, c0) onto (D;a,b).

For any k > 0, chordal SLE, satisfies Domain Markov Property (DMP): if 5 is a chordal
SLE, curve in D from a to b, and 7 is a stopping time for 7, then conditionally on the part of n
before 7 and the event that 1 does not end at the time 7, the part of n after 7 is a chordal SLE,;
curve from 7(7) to b in the connected component of D \ n([0, 7]) whose boundary contains b.

The SLE,(p) processes, first appeared in [5], are natural variants of SLE,, where one keeps
track of additional marked points, often called force points, which may lie on the boundary
or interior. For the generality needed here, all force points will lie on the boundary. We now
review the definition and properties of SLE,(p) developed in [9].

Let K >0, n €N, pi,....pn € R, w € R, vy,...,0, € Ry U {400, —00}. Recall that
Ry = (R\ {w}) U{w",w™}. We require that for o € {+,—}, ijj:w(, p;j > —2. The chordal
SLE.(p1, - - -, pn) process in H started from w with force points vy, .. ., vy, is the chordal Loewner
process driven by the function w(t), 0 < t < T, which drives chordal Loewner maps g; and
hulls K;, and satisfies the following system of SDE:

di(t) = VrdB(t +Z1{w t#vj(t)}ﬁ dt, @(0) = w, (2.4)
Jj=1 J

where B is a standard Brownian motion, and v;(t) = g, (v;), 1 < j < n. Here we used
Definition The SDE should be understood as an integral equation, i.e., W(t) —w — /kB(t)
equals the Lebesgue integral of the summation from 0 to t. The solution exists uniquely up to the
first time 7" (called a continuation threshold) that Z] B (t)=cx, Pi < —2o0r) .- §0;(t)=dxc, Pi < -2,
whichever comes first. If there does not exist a contlnuatlon threshold then the lifetime is oo.
The v} is called the force point functlon started from v;. If v; = 400 or —oo, then v; is constant

400 or —oo, and the term m is constant 0, which means that the force point 400 or
J
—o0 does not play a role. If v; & {400, —oo}, then v; satisfies the ODE:

. 2 ~ .
dv;(t) = 1{@(t)7éﬁj(t)}m7 0;(0) =vj, 1<j<n (2.5)

This equation should also be understood as an integral equation, which means that v; is abso-
lutely continuous. If v; > w, then v; > w, and vj; is increasing; if v; < w, then v; < @, and v;
is decreasing. Here the sets {v; # W} have Lebesgue measure zero. So we may omit the factors
Lia(#,y I [2-4) and 23).

A chordal SLE (p) process generates a chordal Loewner curve 7 in H started from w up to
the continuation threshold. If no force point is swallowed by the process at any time, this fact
follows from the existence of chordal SLE, curve and Girsanov Theorem. The existence of the
curve in the general case was proved in [9]. The chordal SLE.(p) curve 7 satisfies the following
DMP. If 7 is a stopping time for 7, then conditionally on the process before 7 and the event
that 7 is less than the lifetime of 1, W(7 + -) and v;(7 + ), 1 < j < n are the driving function



at v1(7), ..., (7). Moreover, (7 + ) = fx(r)(n"), where K(7) := Hull(n([0,7])). Here if for
some j, 0;(1) = w(7), then v;(7) as a force point for 7 is treated as @w(r)" if v; > w™, or
v(r)” ifv; <w”.

If two force points v; and vj, are equal, we may treat them as a single force point with force
value p; + pi. By merging the force points and removing +00 and —oo, we may assume that

(o)

the force points vy, ..., v, are mutually distinct finite numbers. We now relabel them by v;"’,
1<j < ng, o€ {+ —}, such that v\ < --- < v§_) <w <wt < U(+) << u,ﬁt), where
n_ or ny could be 0. Then @7(;_) < ... < @Y) <w< 6§+) < < U(+) throughout the life

period. Let p§-i)

and force point functions for a chordal SLE,(p) curve " started from @(7) with force points
[

, 1 <j < ng, denote the corresponding force values. If for any o € {—, +} and

1<k <n,, Z;?:l pga) > —2, then the process will never reach a continuation threshold, and
so its lifetime is 0o, in which case lim;_,o 7(t) = co. For o € {+ —} and k E {1 coy Nty if

Z;LI p§a) £ — 4, then a.s. 7 stays at a p051t1v(e)d1stanc(e )from vk 1)f Zj 1 pj 2 5 — 2, then

a.s. 1 does not h1t the open interval between v, and v, [/, (with U1(10+1 understood as o - 00).

If for some to, @(to) = . (to), then 87 (t) = 3\7(¢) for all 1 < j < k and ¢ > fo in the life
~(0)

period, which means that the force point processes v; for 1 < j < k merge after tg.

The following proposition will be needed. Recall the one quarter conformal radius cradg4) (D)
and boundary Poisson kernel Hp(z,w) defined in Section

Proposition 2.11. Let k € (0,8) and p1,...,Ppm, pm+1 € R satisfy 27&11 pj =0, and for any

1<k <m, Z?lejzg—l Suppose w > vy > > Uy > Untl ER orw < vy < -0 < vy <
Um+1 € R. We also write poo for pm+1, and ve for vpyi1. Let Py denote the law of the chordal
SLE,, curve in H from w to oo. Let Py be the law of a chordal SLE.(p1,- .., pm, Pm+1) curve in

H started from w with force points vi,...,0m,Umy1. Then
dPq 1g o Py (H 4) _ pjlpoctr—4) _ PjPk
By~ Z ] <Crad1()2(9j<00)) T Hp (v,ve)” ) II o) e
Jj=1 1<j<k<m
(2.6)

where Ey is the event that H\n contains a connected component, denoted by Do, which contains
a neighborhood of the line segment [voo,v1]| in H; Q;(c0) is the connected component of C \
([vj,wlUnU{z € C:Z € n}) which contains v, 1 < j < m; and Z > 0 is given by

m W — V; p?] m PjPoo PjPL
:H( ]> H‘UJ_UOO‘ 2K H "U —Uk_‘ 2k,

; W — Vo !

7j=1 7=1

1<j<k<m

Proof. By symmetry, we may assume that w > vy > -+ > v, > vyp41. By [16], before any
force point is separated by 7 from oo, the law Py can be obtained by tilting the law Py by the

10



local martingale defined by

m+1 m—+1

pJ(ﬂ]+4 ) pj N PjPL
=z H g1 (v H [w(t) —v;(t H 0 () — vk(t)] 2, (2.7)

1<j<k<m+1

where g¢ are the chordal Loewner maps, @ is the driving function, v;(t) = ¢:(v;), and the
constant Z > 0 is such that N(0) = 1. More specifically, this means that, if 7 is a stopping
time such that 7 < min{7j : 1 < j < m+1} =Ty, where T} is the first time that v; is swallowed
by the process, and N(t), 0 <t < 7, is bounded by a uniform constant, then

]P)l = N(T) -]P)(] on fT. (28)

Here if 7 = T, then N (7) is understood as N (11) := limyp, N(t), which Py-a.s. converges. This
can be also checked directly using Girsanov Theorem and It6’s formula ([12]). For every n € N,
let 7, = inf(T1U{t > 0: N(¢t) > n}). Then holds for each 7,,. Since Fr, N{T1 = 7,} C F,,
we then get Py = N(T1) - Po on Fr, N {11 = 7,}. Since this holds for any n € N, we get
Py = N(T1) - Py on Fp, N Ep, where Ep := | J;_ {11 = 7u} = {supg<yr, N(t) < o0}, i.e., the
event that N is bounded on [0,77). Since Py-a.s. limyp, N(t) converges, we have Po[Ep| = 1.

For 0 <t < Ty and 1 <j <m,let D; = H\ Hull(n([0,t])), and let ;(¢) denote the union
of Dy, its reflection about R, and the interval (—oo,v;). Since g; maps D; conformally onto H,
we have Hp,(vj,vr) = g;(vj)g,(ve)/[0;(t) — 0 (t)]?, 1 < j < k < m+ 1. Since g; maps Q;(¢)
conformally onto C \ [v;(t), 00), we get cradl; )(QJ (1) = |0j(t) — Voo (t)|/ g1 (vo0)-

z;

Let 7; = W — v}, and R; = =% Since poo = — > i, pj, N(t) equals

_pi(r—4) _ Pjlpootr—4) PPk
*H( (6)% erad® (5(0) "5 Hp,(vj,0) " ) [ Hpi (om0
1<j<k<m
Suppose Ey occurs. Then Ty} = --- = T, = Ts. Let t T 17 = T. Since Dy — Dy

and €2;(t) — Q;(oc0) in the Carathéodory topology, we have cradl(,g( i(t) — cradgg(Qj(oo)),
1 <j<m,and Hp,(vj,vx) = Hp_ (vj,vx), 1 <j<k<m+1.

For 0 <t < Ty, let P, denote the set of prime ends of D, which lie on either [w, c0) or
the right side of 7([0,]), i.e., it is the image of [@(t), 00) under g; *. Suppose x € (0,4]. Then
Too = 00. Let L > |vee — w|, and & be the connected component of {|z —w| = L} N D; whose
closure contains w — L. Since 7(t) — oo as t — oo, there is N > 0 such that |n(t) —w| > L
for t > N. For those ¢, since & separates [V, v;] from P, in Dy, the extremal distance (cf. [I])
between [vs,v;] and P; in Dy is by comparison principle at least log(L/|vee — w|)/m. Thus,
the extremal distance between [v,v;] and P; in Dy tends to oo as t 1 T, Suppose k € (4, 8).
Then To, < 00 and N(Tx) € (—00,0s). Let € € (0,|n(Ts) — vaol), and & be the connected
component of {|z — n(Tw)| = €} N Dy whose closure contains 7(Tx) + . Then there is § > 0
such that |n(t) — n(Tw)| < € for t € [Too — 0,T). For those t, since & separates [voo, v;] from
P, in Dy, the extremal distance between [vs, v;] and P; in Dy is at least log(|n(T) — vso|/€) /7.
So we again get that the extremal distance between [vs, vj] and Py in Dy tends to 0o as t 1 To.

11
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Since g+ maps D; conformaly onto H, and takes P; and [vs, v;] to [@(t), 00) and [Uso(t), U;(2)],
respectively, by conformal invariance, we get R;(t) = % —last?T T

On the event Ey, since T1 = Too, N(T1) = limyp N(t) equals the RHS of (2.6). This
implies that Ey C Ep. By the assumptions on s and p;’s, we know that Py is supported by
Ey. Since Py = N(T4) - Py on Fp, N Ep, and Fp, agrees with Fp_ on the event Ey, we see that
d(P1|Fr,.)/d(Po|Fr..) is given by the RHS of (2.6). If x € (0,4], then Pp-a.s. Tox = o0, and
SO holds. If k € (4,8), then Py-a.s. Too < 00. If n follows the law Py, then by the DMP
for chordal SLE,, conditionally on Fr_, the part of n after T, is a chordal SLE, from n(Tw)
to oo in Hr, := H\ Hull(n([0,Tx])). If n follows the law P;, then by the DMP for chordal
SLEj(p) and the fact that > 7", pj + peo = 0, conditionally on Fr,, the part of 1 after Ti is
also a chordal SLE, from 77(T ) to oo in Hr_. So the absolute continuity between P; and Py
on Fr., extends to F with the same Radon-Nikodym derivative, and we again have .

Remark 2.12. We may express dP;/dPy in the above theorem in terms of a conformal map
from Dy, onto H. Suppose w > v > « -+ > Uy > Uppg1. Suppose 0D NR = [z, xR]. Let gs be
a conformal map from D, onto H such that g.(x1) = co. By Schwarz reflection principle, g.
extends to a conformal map defined on the union of D, its reflection about R, and (xp,zg).
Then Hp_ (vj,vr) = ¢4 (v;)gh(vk)/]g«(v;) — g« (vr)|?, 1 < j < k <m + 1. Since g, maps Q;(c0)
conformally onto C\ [g.(v;), 00), we get cradq(,g (2;(00)) = |g+(v5) — 95 (Vo0)|/ e (Vo0), 1 < j < m.
Combining these formulas with the equality Z;’;l p; =0, we get

+1 p](p7+4 K)
dJPH ”i—I gi(vj) W 11 (!g*(vg) g*(vk)|>p b (2.9)
S -l 1<j<k<m+1 [0 — vkl

2.4 Multiple hypergeometric functions

Let o, f1,...,Bm,7y € R, and v ¢ {0,—1,-2,...}. We use the Pochhammer symbol («),, to
denote the rising factorial, i.e., (a)g = 1 and (a), = a(a+1)---(a+n —1) for n > 1. Note
that (1), = n!l. Write 8 = (B1,...,0m). Let F(o,B1,...,Bm,V;2z), £ = (z1,...,Zm), be the
(first) Appell-Lauricella multiple hypergeometric function defined by (cf. [10])

Oz)n1+ +nm (ﬁl) . (ﬁm)nm nL L gnm
ﬁ VL Z Z (’y n1+-~-+nm(1)n1 - (1)nm T m - (2.10)

n1=0 Nm =0

Using Stirling’s formula, one easily see that the series itself as well as the series of the partial
derivatives to any order converge absolutely and uniformly on [—r,7]™ for any r € (0,1). Thus,
F is C* on (—1,1)"™, and one may differentiate the series term by term. For 1 < j < m,
let e; denote the vector in R™, whose j-th component is 1, and other components are 0.
Straightforward calculation shows that for any 1 < j < m,

F(a,ﬂ,%x)zijF(aJrl,BJrej,wrl;w)- (2.11)

12



Since we may change the order of summation, we find that for any A C {1,...,m},

F(a,8,7z) = Z (@ini L Ljen (B, [T« Fla+ Inl, Blac, ¥ + Inf; zlae), (2.12)
- Miaf TjeaWn; 53 -

ne
where N := NU {0}, |n| = > jenmn; forn € NA, and A° := {1,...,m} \ A. The equality holds
even in the case A = ) or A = {1,...,m}. In the former case, there is only one term in the
summation, and the equality is trivial; in the latter case, the F-functions on the RHS of
are understood as constant 1, and the equality reduces to the definition .

Let F:F(OJ:BIM")BWZ?’Y;')' By ‘ , We have
F(0,z9,...,xm) = F(a,Bay ..o, By V3 T2,y o oy Tin); (2.13)

F($1, - ,:L‘m_g,xm_l,:vm_l) = F(Oé,,@l, . 76m—2>5m—1 + Bm,’}/;xl, . ,:cm_l). (214)

If ¥ > a + B, by Stirling’s formula, the series (2.10)) converges uniformly on [0,7]™~1 x [0, 1]
for any r € (0,1). Thus, F extends continuously from [0,1)™ to [0,1)™~! x [0, 1], and by (2.12)
and Gauss’s Theorem,

m—1
Flarooam )= 3 U G0 T st 5 )
—m—1 ( )ml Hj:l )n]’ j=1

neN

_ (@i TS Bin, ", DO+ )0 = @ = B)
" 2 e, T arG e

_ D)0y —a = Bn)
L(y = Bm)I(y — @)

We are going to derive some PDEs for the multiple hypergeometric functions. Some of
them can be found in the literature. But for completeness, we will provide detailed proofs.
For z = (z1,...,2py) € R™ and n = (ny,...,ny) € N", we define In| = ny + -+ 4+ ny and

(a)|n\H 1(/6)])
(7)\n\HjJ 1(Dn; - Then

F(o,B1y vy Bn—1,7 — Bmi T1y oy Tm—1)- (2.15)

n
z" =xy" - apm. We may express F(z) as 3o,y Apa™, where Ay

_ (a4 n[)(8; + 1)
(v +Inl) (A +ny) An. (2.16)

An—i-gj
Let 0; denote the partial differential operator x;0,,. Then
0;F(z) = Z n;Apz™. (2.17)
neN™
So
(@401 4+ 0,8 +0)F(x) = Y (a+ [n)(8j +ny)Anz™;

neN™
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Oj(y = 140601+ +0,)F(x) = > nj(y—1+]n)A.a"

neN™
= > n(y— 1+ DAt =25 Y (nj+ 1)y + [n) Ante,z™
neN"n;>1 neN™

By (2.16)), F' satisfies the PDE (cf. [10, Formula (56) of Chapter 9]) £L,;F' =0, 1 < j < m, where

1
Lji=—(a+ 0+ +00)(0j+0;) + —0i(y =1+ 01+ +0n)
J

= Za?k(l - a;j)é)m].&vk + [’Y - (a + 1)xj]8g;]. - ﬂj Zxkamk - Ozﬂj.

k=1 k=1
From (2.17)) we also know that for 1 < j # k < m,

0o (B +0)F(2) = Y n(Bj+ny)Anz® % = Y (L4 ) (B +ny) Apre, 2™

neN"my>1 neN™

From (2.16) we know that (1 + ny)(8; + 1) Ante, = (1+1;)(Bk + k) Ante,. So F satisfies the
PDE L, F' =0 for 1 < j # k < m, where

ﬁj,k = axk (ﬁj + Qj) - amj (Bk + Hk;) = (ﬂjj - :L’k)axjawk + Bjamk — ﬁkazj.
If j = k, the equality £;;F' = 0 trivially holds. Now we let

£=%" 1;“”jcj+22%cj,k
=t

j=1k=1"7

= ii(l —2j)(1 — )0z, 0n), — iaﬁj (xi N 1)

j=1k=1 j=1 J
+Z(1_$j)[7—%@=15k_(a+1)+2ﬂk(;—1)}awj, (2.18)
j=1 J k=1
and . o m
L= Z xj(1—xj)L5 + Z Z i Lk
j=1 7j=1k=1
= szﬂxk(l —2j)(1 — )0z, O, Zaﬁjx](l—xj)
j=1 k=1 Jj=1
+ ) (1 - ) [(7 =D B = (et Daj+ > Bl - xk)} ;- (2.19)
j=1 k=1 k=1



In the above equalities, we used

Z — )0z, 0, = ZZ — p)rwp(l — 25 — 1) 0, O, = 0.

j=1 k::l Jj=1k=1

Then we have
LF=0 on(0,1)™ L'F=0 on(—1,1)™. (2.20)

We now study the positiveness and continuation of the multiple hypergeometric function.
We make some assumptions on the parameters.

Definition 2.13. For m € N, we say that «, 81, ..., Bm, 7 € R satisfy the parameter assumption
if y>0Vaandy>(0Va)+ )i, B forany 1 <k <m.

From now on, we fix o, 81, ..., 8m,y € R, and let F = F(a, B1,...,Bm,7;). Let A,, denote
theset {r e R™:0<x; <--- <y, < 1}.

Lemma 2.14. If o, B4, ..., Bm,7 € R satisfy the parameter assumption, F' is positive on A,

Proof. We prove by induction on m, and use the idea in the proof of Lemma 3.1 of [17]. First,
consider the case m = 1. In this case, the multiple hypergeometric function reduces to a
single-variable hypergeometric function oF}(«, 51,7;x1), and A; = [0, 1). Since v > a+ 31, by
Gauss’s Theorem (cf. [I0, Formula (20) of Section 1.2]), F' extends continuously to [0, 1] with
F(1) = % Since v,y — a,y — B1,7 — a — 1 > 0, we get F(1) > 0. We also note
that F(0) = 1 > 0.

If « A By > 0, then we have FF > 1 on [0,1) since every term in is nonnegative for
x1 € [0,1), and the first term (n; = 0) is 1. Now suppose a A 1 < 0. Let n be the smallest
integer such that n 4 (a A 81) > 0. We write Fj; = F(a+ j, B1 + j,7v + j; ). By (2.11)),

Fl = (aﬂ)(ﬁl,ﬂ)FjH, j>0. (2.21)

Y+
We claim that for any 0 < j < n—1, a+ j,81 + j,7v + j satisfy the parameter assumption.
In fact, since «, 51,y satisfy the parameter assumption, the only way that o + 4,51 + 5,7+ j
could fail to satisfy the parameter assumption is that (y+7j) < (a+7)+ (81 +J), which implies
that v < (aw+ 1) + j. Since j < n, by the definition of n, we have j < —(a A f1). So we get
v < (a+p1) — (e A B1) = aV B, which contradicts that v > « V 8;. By this claim and the
statement in the last paragraph, for each 0 < j <n — 1, F} extends continuously to [0, 1], and
is positive at 0 and 1. Since a +n, 1 +n > 0 and v+ n > 0, by F, >0on [0,1). By
(2.21), F,,—1 is monotone on [0, 1]. Since Fj,—1(1), F,,—1(0) > 0, in either case Fj,_1 > 0 on [0,1].
Then we may use the same argument to show that F,,_o > 0 on [0,1] (if n > 2). Iterating the
argument, we get F' = Fy > 0 on [0, 1].
Suppose m > 2 and the lemma holds for m — 1. First assume that a A 51 > 0. By ,

F(z) = Z m.ﬂ:?lﬁ’(a + 11,82,y By Y + N1 T2, Tin). (2.22)

n1=0
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Since for any ny > 0, a+ny, Ba, . .., Bm,y + n1 satisfy the parameter assumption, by induction
hypothesis, F(a + n1,B2,...,Bm,v + n1;-) is positive on A,,_1. Since a, 31 > 0 and v > 0,
every term in the series of is nonnegative, and the first term (n; = 0) is positive on A,,.
Thus, F' is positive on A,,. Now we assume that o A f;1 < 0. Let n be the first integer such

that n + (a A 1) > 0. For each j, let Fj = F(a+ 7,681 + 7,82, Bm,Y + j;-). By (2.11)),
(a+7)(B1+J)

Oy, Fi = Fir, j>0. 2.23
1+ 7] ’Y—i_] ]+1 -7— ( )
By (Z12) we get
o0
(a + n)nl (ﬂl + n)m n
F,(z) = ' Fla+n+ny, B2, B,y +n+n1522,. .., Tm). (2.24
W= T D g - @20

Since a+n+ni, Bo, ..., Bm, y+n+mn, satisfy the parameter assumption, by induction hypotheses,
F(a+n+ny, B2, ..., Bm,y+n+mnq;-) is positive on A,,_1. Since a+n, f1+n > 0 and y+n > 0,
every term in the series of is nonnegative, and the first term is positive on A,,. Thus,
F, >0o0on A,,. From we then know that F,_1 is monotone in x1 on A,,. Now for every

fixed (z2,...,%m) € Apy—1, the x1 such that (z1,z2,...,2m) € Ay, is [0, 22]. By (2.13}2.14),
Fj(oa:I:Qa“'uxm) = F(a+j7627”'7/Bm7’7+j;:1:27"'7xm)7

Fj(zo, 22, ..y xm) = F(a+j, 01+ + 82,83 s By ¥ + 35225+ o, Tn).
Since «, 81, B2, - - ., Bm, 7y satisfy the parameter assumption, so do a4+ j, B, ..., Bm, v+ j. Thus
by induction hypothesis, F;(0,z2,...,2m) > 0 for (z2,...,2m) € Ayp_1. We claim that for
any 0 < j <n-—-1, a+401+j+ P20 -..,8m,7 + j satisfy the parameter assumption.
This holds because the only way that they could fail to satisfy the parameter assumption is
Y+ <(a+7)+G+D0,08), e, vy<a+>, Bs+j. Since j < n, by the definition of
n,j<—(aApr). Soy<a+d " Bs—alfi=aV i+ ..,0, which contradicts that
v> (00, Bs) V(a4 >0, Bs). So the claim is proved, which implies by induction hypothesis

that Fj(x2,22,...,2m) > 0for (z2,...,2m) € Ap—1 and 0 < j <n—1. Since F,_; is monotone
in 1 on A, and is positive when z; € {0,z2}, we see that F,,_1 > 0 on A,,. Applying the
same argument to F,,_1, we get F,,_o > 0 on A,,. Iterating, we get F' = Fy > 0 on A,,. ]

Lemma 2.15. If0,81,...,Bm,y satisfy the parameter assumption, and v > «, then (i) F is
positive on Ap,; and (ii) F' is monotone in x; on Ay, for every 1 < j < m.

Proof. (i) If a« <0, then «, f1, ..., Bm,y satisfy the parameter assumption, so by Lemma
F >0 on A,. Now suppose a > 0. Let A denote the set of all j such that 8; > 0. Order
the elements in {1,...,m} \ A by t; < --- < tg, where k = m — |A|. Since v > a V 0, and
Btrs---5 By, < 0, we see that for any n > 0, ao + n, B, ..., B,y + n satisfy the parameter
assumption. So by Lemma Fla+n, By, B,y +n;+) >0on Ay. Since a,, B, j € A,

are positive, for any n € NA, % > 0. By (2.12), F > 0 on A,,.
n YIS

"j

(ii) By (2.11), 0, F' = %ﬁjFl, where I} := F(a+1, B+e;,v+1;-). Note that a+1, B+e;,7+1

satisfy the assumption of the lemma. By (i) F; > 0 on A,,. So the conclusion holds. O
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Theorem 2.16. If o, (31, ..., Bm, 7 € R satisfy the parameter assumption, then F extends to a
positive continuous function on Ay, = {(x1,...,2p) :0< 21 < -+ < 2y < 1}

Proof. We prove the theorem by induction. If m = 1, then A; = [0,1]. The statement holds by

Lemma [2.14 and Gauss’s Theorem. Note that F'(1) = % > 0. Now suppose m > 2,

and the statement holds for m — 1. Let Sp, = {z € Ay, : Ty = T—1} and Sy = A1 x {1},
We define P, and Py by

PL(xly .. .,LEm,l,CITm) = (:Cla s ,$m,1,$m,1), PU(‘Tla s ,.Im,l,l'm) = (mla -o oy Tm—1, ]-)

Then for each x € A,,, Pr(z) € Sz, Py(z) € Sy, and = € [Pr(x), Py(z)].

By and induction hypothesis, F|g, extends to a positive continuous function on Sz,
and we denote it by Fp. Since v > a + B, by and the induction hypothesis, F|g,,
extends to a positive continuous function Fyy on Sp.

Suppose (z") is a sequence in A,, with 2 — 20 € A,,. To prove the existence of the
continuation of F on A,,, we need to show that (F(z")) converges. If 22 | < 1, then this
is true since F extends continuously to [0,1)™~! x [0,1] D A,, U Sy > 2°. Now suppose
29, = 1. Then Py(z"), Pr(z") — 2°. So we have F(Py(z")) = Fy(Py(2")) — Fy(2°) and
F(Pp(2™)) = Fr(Pr(2™)) — Fr(2°). By Lemma (ii), F' is monotone in x,, on A,,. So
F(z™) lies between F(Py(z™)) and F(Pr(z™)). For the existence of the limit, it remains to
show that Fyy = Fp on Sy NSy = A2 x {1} x {1}, which follows easily from .
Finally, since Fy; and FJ, are respectively positive on Sy and Sy, and F is monotone in ,,, we
conclude that F is positive on A,,. ]

3 Intermediate SLE,(p) Processes

3.1 Forward curves

Fix k € (0,8). Let m € N, N,;, = {n e N:1 <n <m}, and Ny = N,;, U {oo}. Let p; € R,
J € Np7, satisfy that 3o pj = 0, and for k € Ny, 2?21 pj > max{—2,5 —4}. Let w € R.
Let v1,...,Um, V00 € Ry U {400, —00} be such that either w™ > vy > -+ > v, > v O
wy <vp <0 < vy < Vs Let p = (p1,--0,pm) and v = (V1, ..., Um, Voo). We are going to
define an intermediate SLE(p) curve in H from w to oo with force points v. By symmetry, we
only need to deal with the case that w™ >V > > Uy S Uso-

Let 1 be a chordal SLE«(p, pso) curve in H started from w € R with force points v. Since
Z§:1 pj > —2for 1 <k < m, and ZjeN% p;j = 0 > —2, there is no continuation threshold
for n, so the lifetime of 7 is co, and 7(t) — 0o as t — oo. Since Y ;cyeo pj =0 > § — 4 and
25:1 pj > 5 —4for 1 <k < m,nas. does not visit any of v;, 7 € N7, which is different
from w™ or —oo. Let (K;) be the chordal Loewner hulls generated by 7, let @ be the chordal
Loewner driving function for 7, and let v; be the force point function started from v;, j € Noe.
Then v;(t) = g§,(v;) (Definition [2.6), and @ > ¥1 > -+ Uy > Voo. Moreover, for some standard
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Brownian motion B, w and v; satisfy the SDE:

d@(t):\/EdB(t)+§:< Pk Pk )dt, @(0) = w; (3.1)

w(t) —ox(t)  w(t) - Voo(t)

k=1
d5:(1) 2___ g, 5(0) e N (3.2)
vi(t) = ———— 0:(0) = v; . .

W= —ae Y i I = 0m

For j e Ny, let 7; = w; —vj. Then 0 <7y <.+ <7, < Zoo. If v = —00, then T; = +o0;

otherwise Z; is finite and satisfies the SDE

(P p 2

d7:(t) = /rdB(t) + (;fﬁfg—:—ﬁ—>dt+;¢—fdt 3.3

For j € N¥, let T denote the first time that Z; = 0. Then 77 < --- < T,,, < T. In the case
that v; = w™, we have Tj = 0. Define continuous processes I;, j € N;,,, on [0, 00] by

I;(t) = exp </0t 1{@5007,50}(3)(?5002(8)2 - Ej(s);oo(s)> ds). (3.4)

Note that the set of ¢ such that any Z;(¢) equals 0 has Lebesgue measure zero. Since 0 < z; <
Too, I is nonnegative and decreasing. Since T; = To, after T, I; is constant on [Ti, 00]. If
Vj = VUso, then Tj = Too, and so [; = 1. If v = —o0, then I; = 1 for all j. Now suppose
Vj # Voo and Voo # —00. For 0 <t < T, we define Q;(t) to be the union of H \ Ky, (—o0,v;),
and the reflection of H \ K; about R. Then g; maps ;(t) conformally onto C \ [v;(t),c0), and
takes Voo € ;(t) t0 Voo (t). By chordal Loewner equation and (3.2),

dgi(v;) 2 . d|v;(t) — Voo ()] 2 .
G~ E02 5,0 —m®)] 505 (3:3)
So we get

_ 150 — (0] _ eradi (24(1))
 gi(wso)lvj —veol  crad(?) (2;(0))
Since dist(vao,n) > 0, H\ 7 contains a connected component, denoted by D, whose boundary
contains ve,. For 1 < j < m, let Qj(oo) denote the union of D, the reflection of Dy, about R,
and the real interval (n(Tw),v;) if Toe < 00 or (—00,v;) if Too = 00. Then Q;(o0) is a simply
connected domain containing ve. As t T Tu, ;(t) = ©;(c0) in the Carathéodory topology.
So crad (Q;(t) — cradq(ﬁ(ﬂj(oo)) € (0,00), which implies that I;(Tw) = limyp, I;(t) is a

Li(t) , 0<t < To. (3.6)

Voo
finite positive number.
For j € N, define Rj = /%o on [0,Tw), and R; = 1 on [T, 00]. Here if vy = —o0,
then R; is understood as constant 0 if v; # —oo, and constant 1 if v; = —oco. Then 0 < Ry <
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-+ <Ry < 1. If v = w™, then T = 0, and all R; = 1. Suppose now vs, & {w™, —oco}. Then
Ts > 0, and each R; satisfies the following SDE up to T

m
ar; = =B ap 1A2RJ [éj—i—2—/€+;pk<};€—l>}dt. (3.7)
Since p1 + - + pm + poo = 0 > § — 4, either x € (0,4], Too = 00, and limy_,1., 7(t) = oo; or
k€ (4,8), To < 00, and 1(Ts) € (—00,Vs0). Using the same extremal distance argument as
in the proof of Proposition except with [veo, v; A min(n([0,t]) NR)] in place of [va, v;], We
get R;(t) = 1 as t T Too. Thus, R; is continuous on [0,c0]. Also note that in any case,
holds throughout [0, 00) because of the factor 1 — R; on its RHS.
Define parameters

2p; 4
=1-—, Bj="L, jeNn,, vy=-+) : 3.8
(07 o /33 o J m Y /€+k€N Bk’ ( )

and F = F(a, B1,- .-, Br, ;). Let R(t) = (R1(t), -+, Rn(t)) € Ay, and

M(t) = mjg[m LT, telo,00]. (3.9)

Lemma 3.1. M is a uniformly integrable positive continuous martingale.

Proof. Tt is easy to see that «, 31, ..., Bk, satisfy the parameter assumption in Definition [2.13]
By Theorem F extends to a positive continuous function on A,,. Since R is continuous
and takes values in A,,, F(R) is positive and continuous. We also know that Ij,1<j5<m,
are positive and continuous. So M is positive and continuous.

Now we prove the martingale property. If all v;’s are equal to v, then all R;’s and I;’s are
constant 1, and so is M. If v, = —o0, then all I;’s are constant 1, and R is constant, and so M
is again constant 1. Now we suppose that not all v;, 1 < j < m, are equal to Vs, and v, # —00.
Let m' be the biggest j < m such that v; # ve. Then vj # Voo, 1 < j < m/, and v; = Vo,
m’'+1<j <m. Sonis a chordal SLE,(p1, ..., pm, ps) curve in H started from w with force
points v1, ..., U, Voo, Where pl o = poo + Zsz’H pj = —Z?L pj. We have I; = R; =1
form"+1 < j<m. Let ¥ = %—Fzgnz/lﬁj and F = F(a,p1,---,Bm,7;+). Then by (2.15)),
F(x1,...,xm,1,...,1) equals a constant times ﬁ(xl, s Ty ). Let R = (Ri,...,Rpy). Then

(R ’ ap . .
M(t) = g((g((é)))) | Ij(t)T], which is the M defined for the chordal SLE.(p1,..., pm/, ps)

curve. So by replacing m by m’ we may assume below that vj # v for all 1 < j < m.

Since R(t) € [0,1)™ for t < T, from ([2.18)2.2013.443.7) and It6’s formula, we see that
M (t) is a local martingale up to T,. Here we used the fact that the set of ¢ such that any
R;(t) equals 0 has Lebesgue measure zero. Since M is constant on [Tu, 00|, it is a local
martingale throughout [0,00]. To show that M is uniformly integrable, it suffices to show
that supg<;r. M(t) is integrable. By Theorem |log(F(R(t)))| is bounded by a constant
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aPj
depending only on « and p;’s. So we only have to control the size of H;’l:l I; 2 . From |D
and (3.4), we easily get

L,>1; > [vr = vl p ) 0,Ts), 1<j<k<m. (3.10)

|Uj — Voo ’

Let ps = 7", pj. By (3.10), it now suffices to show that supy<;r Im(t)¥ is integrable.

Since Ip, is decreasing, if apy > 0, then supg<;oq Im(t)g is bounded by 1, and so is inte-

grable. Now we assume that apy, < 0. Then I, (t)% is increasing.
Let 7, = Too ANinf{t € [0,T) : M(t) > n}, n € N. Then (7,) is an increasing sequence of
stopping times tending to T, and for each n, M (t A 7,) is a bounded martingale. By Optional

apyy

Stopping Theorem, E[M (7,)] = M (0) = 1. By Theorem and 1) M(1y) < Iny(1) 2,
with the implicit constants depending only on K, p1, ..., Pm, V1, - - -, Um, Voo- LhuS, E[Im(Tn)%]
is bounded by a constant. Since Im(t)% is increasing, and 7,, T T, by monotone convergence
theorem, E[supy<;7,_ Im(t)%] < 00. So the proof is done. O

By this lemma, we know that E[M (Tw)] = M(0) = 1. So we may define another probability

measure by weighting the law of n by M (7).

Definition 3.2. A (forward) intermediate SLE,(p) (iSLE,(p) for short) curve in H from w to
oo with force points v is a random curve 7, whose law is absolutely continuous w.r.t. that of
a chordal SLE,(p, pso) curve in H from w to oo with force points v, and the Radon-Nikodym
derivative is M (TOO) We extend the definition to general simply connected domains via con-
formal maps.

We now describe some properties of the iSLE,(p) curve. Because of the absolute continuity,
it satisfies every almost sure property of the chordal SLE,(p, poo) curve. For example, it a.s.
ends at its target, and does not visit any of its force points not immediately next to any of
its endpoints. If k < 4, the curve is simple, does not visit the boundary arc between its two
endpoints which does not contain any force point, and does not visit the boundary arc between
its target point and its last force point which does not contain its initial point. In the case that
the domain is H, and the force points are on the left of the initial point w, these two boundary
arcs that will not be visited are (w, +00) and (—00, Vso).

There are some degenerate cases. If all v;’s are equal to v, then since ZT:I pj + poc =0,
and M is constant 1, the iSLE,(p) curve is just a chordal SLE, curve in H from w to co. If
Voo = —00, then M is again constant 1, and the iSLE.(p) curve is a chordal SLE(p) curve
with force points vy, ..., vy,. So Theorem [T1.1]is a special case of Theorem

Now we assume that not all v;’s are equal to v, and vs, # —00. By merging force points
as we did in the proof of Theorem we may assume that v; # v, for all j € N,,. We
now derive a formula of M(Ty,) in terms of conformal radius. Since Q;(t) — ;(oc0) in the

Carathéodory topology, by 1D we have [;(t) — cradgg (Qj(oo))/crad%)(Qj(O)) as t 1 Too.
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Recall that Rj(t) - 1ast 1 Tx. Let 1 = (1,...,1) € R™. Then we get

PO (e 0 00)) 25

M(Ty) = F(RO) 23\ cradl!) (0;(0))

(3.11)

3.2 Reversed curves

Let K, p1,- -+, Pm; Poo, p be as in Sectlonm Let w" € R and v7,... vm, o € Ryr U{+00, —0c0}
be such that either (w")™ < v < ol < .- <o} or (W)™ > vl > vl > -+ > v]. Let
v = (v],...,v),,v5 ). We will define a reversed intermediate SLE ( ) curve in H from w" to
oo with force points v”. By symmetry, we only need to deal with the case that (W)t <ol <
oh << ol

Let pi = —pj, j € N7, and p" = (p7, ..., p;,). Let )" be a chordal SLE,(p", p%,) curve in H
started from w” with force points v". By the assumptions on p;’s, we have pl = Z;n:l pj > —2
and for any k € Ny, p. + Z;n:k Py = foll pj > —2. So there is no continuation threshold for
n". Thus, the lifetime of 1" is oo, and n"(t) — oo as t — oo. Similarly, we have p., > 5§ —4 and
for any k € Ny, plo + Z;n:k pj > 5 —4. Son" a.s. does not visit any of its force pomt other
than (w")* or +oo.

Let (K}) be the chordal Loewner hulls generated by 7", let @" be the driving function, and
let 97 be the force point function started from vf, j € N7. Then v} (¢ ) = gKT( 7, W < g, <

oy, g - < 7, and for some standard Browman motion B", w" and v%, j € N , satisfy the
SDE:
di" (1) = VrdB'(t) + > (A i _ P )dt a0 =w;  (3.12)
2\ GH a0 oo -mn/" ’
2 r .
For j € N° | let ’x\; = @; — ﬁ; Then 0 >z, > Z;,, > --- > 77, and each finite function 56;

(v} # +00) satisfies the SDE

T T Pk Pl 2
d&5(t) = v/rdB" (1 (2 — L Yar+ . 14
0= VRO 2L G )™ 5w B19
keNy, J
For 5 € N°° let T7 denote the first time that 27 = 0. Then T, < T}, < --- < T7. Now

Equation (3.5 holds here with additional superscrlpts “r?
Define I]” ] € N,,, on [0, 0] by

() = exp (/t 102 7éo}(s)<§§(2s)2 0 ds). (3.15)

Since 77 > 75, > 0, I is continuous and decreasmg Since E; = 7%, on [I],00), I] takes
T

constant value on [Tj,oo]. If v = v, then v = U7, and so [] = 1. fU = +00, we also

[eoh)
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get I7 = 1. Let A denote the set of j € Ny, such that +00 > vj > vl,. By chordal Loewner
equamon and (| -, we find that, for j € A, up to 17,

Ll ead @) jor — vl Adist(ur, i ([0, 1))
= (9r7) WPy = vkl erad® (Qr(0)) - Ao} — vL |  (819)

j
where Q" (t) is the union of H \ K7, the interval (v7, V max(K] NR),00), and the reflection of
H\ K7 about R. The second “=" follows from the fact that gxy maps 2"(¢) conformally onto

C\ (—00,0%(t)], and takes v} to v7(t); and the “>” follows from Koebe’s 1/4 theorem. Since
I7 stays constant on [T]T, oo], and 1" does not get closer to vj after T7, we get

1= 17(0) > I7(t) > (1A (dist(v], 17 ([0, 6])) /|0 — vo]))/4, te[0,00], jEA  (3.17)

Since I7 =1 for j € Ny, \ A, and dist(v],7") > 0, we get I > 0 on [0, 00] for all j € Ny,.

For 1 < j <'m, define R} on [0, o] such that R} = 27, /27 on [0,T7), and R} = 1 on [T}, oc].
Here if v; = v, = +00, then R; is understood as constant 1; and if v;-" = +o00 > vl then R§
is understood as constant 0. Then 0 < R} < --- < R" < 1. Let R" = (R},...,R") € A,,. If
v} # +00, R} satisfies the following SDE up to 77:

AR = Rr(x— Rr)der W [2 +(2 - K)RS + Em:pk(l — R;)]dt. (3.18)
k=1

b (Z%)

The same extremal distance argument as before shows that in the case that for j € A, ast 1T 17,
R;T — 1. Thus, for all j € N,,, R; is continuous on [0, c0]. Also note that in any case
holds throughout [0, o] because of the factor R}(1 — R}) on the RHS.

Let F' be the multiple hypergeometric function as in the last subsection. Define the M" on
[0, 0] by

V0= Fgrioy 1150 mnuw (319)

Lemma 3.3. M" is a positive continuous local martingale.

]ENm

Proof. The continuity and positiveness of M follows from the continuity and positiveness of
F(R") and I}-", 1 < j < m. Here we use the continuity of R and the continuity and positiveness
of F on A,,. Now we check the local martingale property of M".

If vj = U&,, then R is constant 1. If vj = +00 > v, then R’ is constant 0. Thus, if
A =0, then F(R") is constant, and so is M’". Suppose now A={jeN,,:my <j<mo}#0,
where m; < mo € N,,,. By -,-7 0, Ty v oy Ty, 1, ..., 1) equals a constant
times ﬁ(:cml, ey Ty ), Where F is the mult1ple hypergeometrlc function F'(a, Bimys - s Bmas Y —

m r R L1

S e B )- So MP(t) = UL o) 5
For j € A, we have R§(t) < 1 before T}7,,. By (2.19[2.2013.15(3.18) and It6’s formula, we
find that M" is a local martingale up to T’°2 Conditionally on w"(t), t < Ty, , the process
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w = w(T},, 4 -) is the driving function of a chordal SLE.(p", p5,) curve in H started from
w"(T},,) W/i\t/h force points v} (7y,,) and force point processes v} = vi(Ty, ++), j € Ny If
we define M" for this process, then from what we have proved, M" is a local martingale up

to the first time that any force point 7 (77, ), which lies strictly between @"(T},,) and +oo, is

separated from oo. Moreover, M" = M" (T, +-)/M"(T},,). So M" is a local martingale at
least up to Ty, ;. Repeating this argument, we conclude that M" is a local martingale up to
T7. Since every R} is constant 1 on [17, 0], and every I7’s takes (random) constant value on
[T7, 0], so does M". Thus, M" is a local martingale throughout [0, co]. O

Definition 3.4. A reversed intermediate SLE,(p) (iSLE[(p) for short) curve in H from w"
to oo with force points v” is a random curve, whose law is obtained by locally weighting the
law of a chordal SLE.(p", pL.) curve in H started from w” with force points v" by the positive
continuous local martingale M" (which is then a supermartingale) as in Lemma We extend
the definition to general simply connected domains via conformal maps.

Remark 3.5. By Lemma the law of the iSLE](p) curve is absolutely continuous w.r.t. the
chordal SLE,(p", p.,) curve if and only if M" is uniformly integrable w.r.t. the latter law, and
then the Radon-Nikodym derivative is M"(00). We will see that this holds if x and p1, ..., pm
satisfies Condition (I) or (II) in Theorem [1.1]

We now describe some properties of the iSLE](p) curve. Because of the local absolute
continuity, it satisfies every local almost sure property of the chordal SLE,(p", pl,) curve.
For example, before the end of its lifetime, it a.s. does not visit any of its force points not
immediately next to its initial point. If k < 4, then the curve is simple. If, in addition, its law
is (globally) absolutely continuous w.r.t. that of the chordal SLE,(p", pL,) curve, then it a.s.
do not accumulate at any of its force points not immediately next to any of its endpoints. The
following lemma provides us the converse statement.

Lemma 3.6. Let P, denote the law of an iSLE](p) curve in H from w" to oo with force points
v". Let P. denote the law of a chordal SLE(p", pl,) curve in H started from w" with force
points v". Let F" be the filtration. Let S = {v;j: j € A}. Then we have the following.

(i) Let T be an F"-stopping time such that dist(n([0, 7)), S) is bounded from below by a positive
constant, then M"(- A T) is uniformly bounded. If P. is supported by the space of curves
whose lifetimes are strictly greater than 7, then so is P,.

(ii) P, restricted to the event {dist(n,S) > 0} is absolutely continuous w.r.t. P..
(iii) If P, is supported by {dist(n, S) > 0}, then P, < P,.
(iv) P, is supported by the set of curves that have zero spherical distance from S U {oo}.

Here we use the convention that if S =0, then dist(n, ) = co.
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Proof. (i) By and the fact that I is continuous and positive on the compact set A,,,,
M"(- A7) is uniformly bounded. If P.[Tx, > 7] = 1, then by Lemma (iii), Pr[Tx > 7] =
Eo[L{r ooy M7(7)] = E[M"(r)] = M7(0) = 1,

(ii) For each n € N, let 7, be the first ¢ such that dist(n([0,t]),S) < 1/n, which satisfies the
assumption in (i). By (i) and Lemma (iv), P, restricted to JF7 is absolutely continuous
w.r.t. P. restricted to F; . Since F] agrees with F  on the event {7, = oo}, the restriction
of P, to {7, = oo} is absolutely continuous w.r.t. P.. Since {dist(n, S) > 0} = U, en{7n = 00},
we get (ii). Finally, (iii) and (iv) follow immediately from (ii) and the fact that P. is supported
by the curves that end at oo. ]

Remark 3.7. In the case that m = 1, the iSLE,(p) and iSLE],(p) curves both agree with the
intermediate SLE,(p) curve defined in [21]. So Theorems and [1.2] extend the reversibility
results there. For m > 2, an iSLE],(p) curve is in general dlﬁerent from an iSLE(p) curve.

3.3 Driving functions

Define G, 1 < j <'m, on A,, by

O, F(z
T (3:20)

We know that 9., F" is well defined on (—1,1)™. Since by , F(x1,...,2m,1,...,1) equals
some constant times F'(aq, 81, .., Bm/, Y — ZZ”:WH Br;T1,- s Ty, Op, I is also well defined
on A, N{z € R™: z; < 1}. Since F is positive on A,,, G; is well defined on A,,. By Girsanov
Theorem we see that the driving function @ for the iSLE,(p) curve in H from w to oo with
force points vy, ..., Um, Vs, Which generates chordal Loewner hulls (Ky), satisfies the SDE

did(t) = /rdB(t Z( )l FRG (RO (321)

_UJ) w(t) = Veo(t)

where B is a standard Brownian motion; v;(t) = g (v;), j € N2; R = (Ri,..., Rp); and
R;(t) = % before the first time that w(t) = Vs (t), and equals 1 after that time.

Similarly, the driving function @w" for an iSLE,(p) curve in H from w" to oo with force points
v, which generates chordal Loewner hulls (K7 ), satisfies the SDE

-
vl .., 0,

m

47 (6) = VRB ()= 3 (7= oRETo )l G E O (322

where B" is a standard Brownian motion, ﬁ;(t) g}@? (v}") jENS R = (R},...,R

Ri(t) = %_%%ﬁ? before the first time that @ (t) = v}, (¢), and equals 1 after that time.

r.); and

m
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From the SDEs for driving functions, we see that both iSLE«(p) and iSLE],(p) processes
satisfy DMP. We now provide a proof for the DMP of iSLE,(p). Suppose by symmetry that
v; < w for all j. We claim that, for any j € Ny° and 7,¢ > 0,

o(r) vi(T if v;(7) < w(r);
o { 5 e B, Ty (r) < D), -

Trer pyyic, (@(T)7), i 0i(7) = B(7)

If 7 -t = 0, the statement is trivial. Suppose now 7,¢t > 0. Let v;(7 4 t) denote the RHS of
. Since @(7) € Kry¢/Kr and (1) > ck,, we see that g/, maps C\ ((Kr4/K;)"PU
[vj(7),00)) conformally onto C\ [0;(7 +t),00). By the definition of v;, gk, ,, and gx, maps
C\ (K993 U [v;,00)) conformally onto C \ [0;(7 +t),00) and C\ ((Kr4¢/K;)%" U [05(7), 00)),
respectively. Thus, 9K, 4o/ K, TADS C\ ((Kr4¢/K7)%"PU[0;(7), 00)) conformally onto C\ [0;(7+
t),00). So we have v;(7 +t) = v;(7 + t), as desired.

Suppose now 7 is an F-stopping time. On the event 7 < oo, define B7(t) = B(7+t) — B(1),
w" = w(r +-), and v} = V(7 + ), j E N¢©. Then BT is a Brownian motion conditionally on
F; and the event {7 < oc}; and @", 07, j € Ny, and B” solve (3.21). The chordal Loewner
hulls generated by @7 are K] := r+t/KT, t > 0. By (3.23), v7(t) = giué(f)(ﬁT(O)), where

v7(0) = v;(7) is understood as w(r)~ if v;(7) = w(r). Thus, w" génera‘ces a chor]dal Loewner
curve 17, whose law conditional on F; is an iSLE.(p) curve in H from @(r) to oo with force
points v;(7), j € N , where if any v;(7) equals to w(7), then as a force point it is treated
as w(r)~. Since gKT maps H conformally onto H \ K, and maps w(7) to n(7), and 7" (t) to
n(T+-), the conditional law of n(7+-) given F, and the event {7 < oo} is an iISLE,(p) curve in
H\ K, from 5(7) to oo with force points min({v;} Un([0,7])NR), j € N2, A similar statement
with max in place of min holds if v; > w for all j.
At the end of this subsection, we describe the driving function for a forward or reversed
intermediate SLEy(p) curves in H when the target is not co. Let x, p; and pf}, j € N7, p and
" be as before. Let w_ < wy € R. Let v0o < vy < ++- < vy € {wl,w} U (w_,wy), and
v = (V1,.-+,Um, Vo). Let 1 be an iSLE,(p) curve in H from w,; to w_ with force points v.
Then the part of 17 up to the first time that it separates w_ from oo is a chordal Loewner curve
with some speed. After normalization, we make this part of  a chordal Loewner curve (with
speed 1), and call it an iSLE(p) curve in H under chordal coordinate from w; to w_ with force
points v. We similarly define an iSLE],(p) curve in H under chordal coordinate from w_ to w,
with force points v. Following the argument in [16] we obtain the proposition below. We leave

the proof to the interested reader.

Proposition 3.8. (i) The driving process Wy of an iSLE.(p) curve in H under chordal coor-
dinate from wy to w_ with force points v, which generates chordal Loewner hulls (K (t)),
satisfies the SDE

didy = /RdB, + " dt + Z ( ‘ L Vlps + KG3 (Bt (3.24)

w+—voo
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where By is a standard Brownian motion; @' (t) = g}v(:(t) (w-) and @j’(t) = g}”(i(t)(vj),

Go—oF  @t_mt
€ N, RY = (Rf,...,R}), and R;r = ;Jr ;i . ;1 gf before the first time that the
+ Voo - 7Y

denommator vanishes, and equals 1 after that time.

(ii) The driving process w_ of an iSLE](p) curve in H under chordal coordinate from w_ to
w4 with force points v, which generates chordal Loewner hulls (K_(t)), satisfies the SDE

di_ = \/kdB_ —l— dt — i(,\ ! —— — = ! —— )[pj + rGj(R7)]dt, (3.25)

(O o - W_ — v

where B_ is a standard Brownian motion; W, (t) = g}”(:(t)(uur) and v; (1) = g}”(:(t) (vj),

j €N R = (Ry,....R;,

), and R; = Bt | gi:;’ before the first time that the

w— —’U

denominator vanishes, and equals 1 after that tzme.

4 Commutation Coupling

We are going to construct a commutation coupling of an iSLE, (p) curve with an iSLE], (p) curve
in the sense of [2]. More specifically, we will prove the following theorem.

Theorem 4.1. Let k € (0,8). Let p1,...,pm, Poc € R satisfies that Z?:l pj > (—2) V(5 —4)
for any k € N,,,, and ZjeN%pj =0. Let wy > w_ € R. Let vy > -+ > vy > U €
(w_,wp)U{wh,wi}. Let p=(p1,...,pm) and v = (v1,...,Vm, V). Then there are a pair of
random curves ny(t4), 0 <ty < T4, andn_(t—), 0 <t_ < T_, defined on the same probability
space such that ny is an iSLE.(p) curve in H under chordal coordinate from wy to w_ with
force points v, n— is an iSLE!(p) curve in H under chordal coordinate from w_ to wi with
force points v, and they commute with each other in the following sense. Let F* and Ki(-) be
the filtration and chordal Loewner hulls, respectively, generated by 7.

(i) If T— is an F~ -stopping time, then conditionally on F and the event that T— < T_, up to
a time-change, the law of ny up to the time that it hits n_([0,7_]) is that of an iSLE(p)
curve in H\ K _(7_) fromw, ton_(7_) with force points v;Vmax(n_ ([0, 7_])NR), j € N
up to the time that it hits n—([0,7_]) or separates n—([0,7_]) from oo.

(ii) If Ty is an F+-stopping time, then conditionally on ‘7:7++ and the event that T < Ty, up to
a time-change, the law of n— up to the time that it hits n4([0,74]) is that of an iSLE] (p)
curve in H\ K1 (1) fromw_ tony (1) with force points v; Amin(n, ([0, 74])NR), j € N
up to the time that it hits n4([0,74]) or separates n4([0,74]) from oco.

Let P+ denote the marginal law of 74 in the theorem. We call the joint law of 4 and n_ a
(global) commutation coupling of P, and P_. We now introduce local commutation couplings.
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For o € {4, -}, let =, denote the space of crosscuts ¢ in H, which have positive distance
from {w4,w_}, and separate w, from both co and w_,. So for each £ € Z,, Hull(§) contains a
neighborhood of w, in H, and does not have w_, on its closure. Let = be the set of ({4,¢_) €
=4 x E_ such that Hull(§4) NHull(-) = 0. For each o € {+,—} and § € Z;, let 7¢ denote the
first ¢ such that 7, (¢) € €. If such ¢ does not exist, then we set ¢ =15

For ({4+,&_) € E, a coupling of a curve 74 with law P, and a curve n_ with law P_ is called
a locally commutation coupling within (£4,£_) if Theorem (i) holds up to 7'5; with the
additional assumption that 7— < 7., and Theorem (ii) holds up to 7~ with the additional
assumption that 7 < TE—: .

This section is devoted to the proof of this theorem. The construction of the coupling follows
the procedure in [23] 22]. We first study how two deterministic/random chordal Loewner curves
interact with each other. Then use that to construct local commutation couplings, and finally
extend the local couplings to a global commutation coupling.

4.1 Deterministic ensemble

Let wi,w— and vj, 7 € NJ7, be as in Theorem Let n4(t), 0 < t < T4, and n_(t),
0 <t < T-, be two chordal Loewner curves in H with 74 (0) = wL, which respectively generate
chordal Loewner hulls (K4 (t)) and (K_(t)). Suppose further that for o € {+, —}, 7, does not
visit {v; 1 j € NoO}\ {w,w'}, w_o & Ky(t) for 0 <t < T,, and that the Lebesgue measure
of n, NR is zero. We remark here that these properties are almost surely satisfied if 7, follows
the law P,. Let W, and w_ be their driving functions. Then w4 (0) = wy, and we have chordal

Loewner equations:

2
K. (1)(2) = () a0’ 9r.(0)(2) = 2. (4.1)
Let
D={(ty,t-) €[0,T4) x [0,T-) : Ki(ty)NK_(t_) = 0}. (4.2)

For o € {+,—}, let TP : [0,T_,) — (0,T,] be such that TP (t_,) is the supremum of ¢, such
that (t1,t_) € D. For a function X defined on D and s € [0,7%) (resp. [0,7_)), we use
X| (resp. X|;) to denote the function obtained from X by restricting the first (resp. second)
variable to be s. For example, X|; is the function ¢ — X (¢, s) with definition domain [0, T'P(s)).
We also view X|T as functions defined on D. For example, X | (t4,t_) = X(0,t_).

For each (t4,t_) € D, we define K(t4,t_) = K4 (t4+) U K_(t_), which is an H-hull, and

Koy, (te) = K(t4,t-)/ K o(t—5) = gKfa(tfa)(KU(tU)% oef{+ -}

Then we have
IKypq (t2) O YK (t-) = IK(t4t-) = IK_, (t-) © IK, (t4)- (4.3)

Let not_,(to) = 9x_, (t_,)(No(ts)). Then (Kyy_,(ts)) are the chordal Loewner hulls generated
by Not_os O € {+> _}'
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Fix 0 #v € {+,—} and t, € [0,T,). Let myy, (o) = hcapy(Koy, (ts)). Since gk, (¢,) maps
H\ K,(t,) conformally onto H, by Proposition Not, (to), 0 < t < TP(t,), is a chordal
Loewner curve with speed dm,,. For ¢, > t, € [0,TP(t,)), by (4.3) we have

Ko, (th)/ Ko, (te) = 9rc, 1 (te) Kot (th) \ Kot (to)) = 9k, 4 (1) © gKV(tV)<KU(t:7) \ Ko (o))

= 9K, 4, (t,) © QKU(tU)(Ka(t;) \ Ks(ts)) = gKu,tU(t,,)(Ka(t;)/Ka(ta))-
By Proposition Nt se, Ko(th)/Ks(ts) = {Ws(ts)}. Thus, the chordal Loewner driving
function with speed dmg;, for 1,4, is

Wo(tst-) = g, (Wo(ts)), 0 <to <TP(t). (4.4)

Note that W, |§ = w,. Since heapy (K, (t)/Ky(to)) =t —ts, and heapy (Ko y, (1)) /Ko, (to)) =
Mgy, (1)) — mey, (tr), by sending ¢ — t}, we use Proposition [2.5 to conclude that m,;, has a
right-hand derivative at t,, which is equal to g}(w (Wy(ty))?. Since gk, ,, and W, are continuous
in t,, the right-hand derivatives are actually two-sided derivatives. We now define

As3 3 (AUQ ) 2’

Aa,l

Apn(tit ) =g\ (D4(ts)), n=1,2,3; Agg=
vto Aa,l 2

(4.5)
where the superscript (n) stands for n-th derivative. So A, g(t4,t—) is the Schwarzian derivative
of gk, ., at W,(t,). Then we get

2AU’1(t+, tf)z .
Gy s (t5)(2) = Wolty,to)

Let X, = Wy — W, and XZ%, = Ay1/X,,. Setting z = @,(t,) in (4.6), and using (4.4), we
get

3tggK(,,tV(t(,)(Z) = (4.6)

O, Wy = —2A2 /X, = —24,1 X2, (4.7)
Differentiating w.r.t. z, we get
O, 9] (2) 24,1 (ty,t )2
O, log (g, , (1,)(2) = g,KK(t“)()Z) = ) (";)(_+ngt+’ LR (4.8)
Setting z = w,(t,) in , we get by (4.4 .,.
Api/Avy = —2(X2)2 (4.9)
Differentiating further w.r.t. z twice and setting z = w,(t,), we get by
O, Avys = —12(X 2 )2 (X[E)2. (4.10)
Define Ig on D by
ty pt
Is(ts,t_) = exp ( - 12/0 0 X2 (54,5 )2X 2 (51, s_)st_ds+). (4.11)
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By (4.10) and that A, s|g = 1 we get

O, Is/Is = Aqs. (4.12)
Differentiating 1} w.r.t. to, using 1’ and setting ¢ = gKU(tg)(Z)7 we get
29K, 1 (1) (©) 29,1, (1) (@o (t0))?

atagKV,tG (ty)(() = C — {Da(to) (413)

9Ky (0)(C) = s, (1) (W (te))

Differentiating the above formula w.r.t. ¢, we get

o, g, (C) _ 29/1/(”0 (ty)(g) _ 29;(“0 (tu)(C) + 29}(”0 (ty)(ﬁ)\g(tg))Qg}(V’to (ty)(C) (4 14)
Kt (t) ¢— fv\a(to) (C - @U(ta))Q (gKV7t0 (t,,)(o — 9K, ., (tl,)(ﬁ}\a(tff)))2

Sending ¢ — W, (t,) in (4.13]) and (4.14) respectively, we get

8tggKy,ta(t,, (¢ )|C Do (to) = —3A52(t+,t-); (4.15)
M(t)(o‘ _ LAl t))? ddusltet) )
Ty @)(©) Ne=tnte) 2\ Aga(ty,t-) 3 Ay (tr t )

Recall the g} in Definition For j € Nt and o € {+, —}, we call 97 (t5) := g~ ta)(vj)’
0 <ty < T, the force point process started from v; driven by 7n,. We are going to define the
force point process started from v; jointly driven by 14 and n_, which is a function V; defined
on D. We need the following proposition.

Proposition 4.2. For any (ty,t_) € D and v € (w_,wy) U {w’, wi},

N+t (0) —(0) N, (0) (0)
iy o (e4) © 9k (t)(0) = i oy O 9K (1) (0)- (4.17)

Proof. Suppose v € (w_,w4) U{w, wi}. Since K4 (ty) N K_(t_) = (), there are three cases.
Case 1. v & K (t+)UK_(t—). In this case, g}?((o) )(v) = 9gx_(+_)(v), which is not contained

. (0)
in the closure of gr_(_)(K+(t+)) = Ky (t4), and so 9717;: (t+) gK (?) )( v) = gKH t+) o

9xk_(t_)(v). Symmetrically, the RHS equals 9K 4, (t-) © 9K, (t.)(v). So we get by
Case 2. v € K¢ (ty). Then g () | (v) = e, (1, Since Ky (t)NK_(t-) =0, [CK+(t+),dK+(t+)]
is disjoint from the closure of gr, . )(K-(t-)) = K_4 (t-). Thus,

n—t (0) 1+ (0) - . .
95y 1) O IK o) (V) = 91 ) Oy ) = ot IK-e 1) © 9K (14) ().

On the other hand, since v ¢ K_(t_), gr ((t) )( v) = gk_(+_)(v), which is contained in the closure
of g () (K+(14)) = K44 (t+), and is less than gre(;_)(w4) = 14 (0). Thus,

Tt (O) — (O) (’U)

I 4 () Ikt H)\V) = CRye (t4) = lim gK+,t_(t+)(y)

ytak, , (¢y)
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pu— l.
magﬂ(m K1 (t4) © 9K () (%),

where we used gx_(_y(ax (1,)) = ax., (). Combining the above two displayed formulas
with 1) we get 1} in Case 2. The last case, i.e., v € Ka(t2), is symmetric. O

Because of the proposition, we define gﬁ((t u;_)) on (w—,wy) U{w™, wi} by

(wiw-) _ .t (0) n-(0) 040 0 (0)

IRt ) = Ik (1) O Th () = Ik ey O TRty (Lot-) ED. (4.18)

By Remark , ;& p )) is nondecreasing and a contraction for any (t4,t_) € D. We now

define V; on D, j € N9, by Vj(t4,t-) = g%”(: : ))(vj) Then W_ < Voo <V, <--- < Vi < W,
Let 0 # v € {+, —} be fixed as before. Then
Ui = Vilgs Vilte1-) = 9k, (1) (V5 (1)) (4.19)

Let X j =W, —V;and X; =V; —V}. Let Xﬁ} = 1{Xa,j¢0}Ag,1/Xg7j. Since the Lebesuge
measure of 17, N R is zero, the Lebesgue measure of 7, -, N R is also zero. By Proposition m
and (4.1814.19), for any ¢, € [0,T,), V;|{ is absolutely continuous with

O, V; = =242,/ X0; = —24,1X2 ae. (4.20)
Combining (4.7)) and -, we get
O, X = —2Xy; X0 X255, 0, Xjp = —2X,, XX, ae. (4.21)

Define Y, ; on D by

(t);
VY (ty).

Recall that @, (t,) = W, |5(t,) & Kou, (to). By (4.414.19), Y, ; is well defined, continuous, and
positive on D. By (4.9 ,

BN

Xt t2) /X0 l5 (1), if @, (t,) # 0

nﬂ”mJ:{%wmA@@mzAum¢>,ﬁmxw (4.22)

SN

0, Yo /Yo = —2X20 X2 ae. (4.23)
We then define E,,j on D by E, ; = YYW",. Let X0 = X2 |6 and X250 = XM |6, By (4.23),
v,J10 ) ’ ), .
Eyj/Byj = —2X0, X005 +2X0 X0, ae. (4.24)

If {vj, v} ¢ Ky (ty), then {v7(t5), v} (t5)} ¢ Ky, (1), and we define Y7, on D by

Xjr(te, t-)/ Xjnlg(ts), i 07 (ts) # UF (to);
YO (ty,t_) = J’ o o k 4.25
Doty t-) { G, o) (@ (t0)), if 07 (1) = 37 (ts): (4.25)
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By (4.19)), Yfk is well defined, continuous, and positive on the set of (t4,t_) € D such that
{Ujavk‘} ¢ Kl/(tl/)‘ By (4.21)
O, Y1 /Y = —2X X2 aes 0,V /Y = —2X XA 42X 20X ae. (4.26)

We then define E;; on D by

Bty = | Yok t)/VEO L), i (v, u} ¢ K ()
e Yy,k(t%t—)/Yj}(%O), if {vj, 00} ¢ K1 (ts).

The Ej, is well defined because if {vj, v} ¢ Ky (t4) and {v;,vx} ¢ K_(t—) both hold, then

if v; # v, both lines of the RHS of (4.27) equal ﬁj:gi:g}){)jﬁé’if)g, and if v; = vy, both lines

(4.27)

gl]{(t Jt_ )( )
equal i
RSN SN 1)

and Yj ;. are positive and continuous on their respective domains. By lb we have

. Moreover, Ej is positive and continuous on D because both Yj';

Oy Ej/Ej = —2X25 X205 +2X20 X240 ae. (4.28)

Proposition 4.3. Let ({4,¢-) € E. There is C € (1,00) depending only on &,,&_ such that
the restrictions of Ag1, Xy —, Is, Eqj, and E;i, 0 € {+,—}, j,k € N7, to [O,Tg) X [077'51),
are all bounded from above by C and from below by 1/C.

Proof. Throughout the proof, a constant is a number depending only on &4, &_. By symmetry,
assume that o = +. Fix (t4,t-) € [0,7; ) x [0,7; ). Let 4 be the endpoint of {1 that lies on
(w—,wy), and zg = (z4 +x_)/2. Slnce K(t+,t,) C Hull(§4 UE-), we have 1 > g’[((t+’t_)(xo) >
9'Huu(g+og_)(330) > 0, which implies that |log g}((t+7t_)(a@0)| is bounded by a constant. By
and that K(t4,0) = K (t4), |logg}(_’t+(t_)(gK+(t+)(:co))| is bounded by a constant. Since
g’K_’t+ ) € (0,1], and is increasing on [bK77t+ (t_), 00), we see that |log g;(_’t+ (t_)| is bounded
by a constant on [gx, (¢, )(70),00) =: I+. By Proposition W4 (t4) € L. Since Ay 1 (t4,1-) =
g/K_,t+ (t_)(ﬂ7+(t+)), we see that |log Ay 1(t4,t-)| is bounded by a constant.

The quantity X _(t4,t-) = Wy (t4,t-)—W_(t4,t-) is bounded from above by dg(;, ;) —
CK(ts,t_)» Which is further bounded by the constant dyu(y,un_) — CHull(,uy_) DY Proposition
For the lower bound, pick any 71 < z2 € (z—,z4). Then X _(t4,t-) > ggq, ¢ )(z2) —
gK(tJr,t_)(:cl), which is further bounded from below by the positive constant gy, uy_)(z2) —
Gituli(ny un_)(71) due to the fact that gﬁull(mun VK () |[x17$2] € (0,1].

From what we have proved, | X4 | = |A;1/X; _| and ]XA+| |A_1/X_ 4| are uniformly
bounded by a constant on [0,7] X [0 t_]. We also know that ¢4 is bounded by the constant
hcap,(Hull(£41)). By we see that |log Is(t4,t_)| is bounded by a constant.

For E, ;, consider two cases. Case 1. v; > x9. We have seen that | log g/K—,tJr (L)\ is bounded

by a constant on Iy = [gk, (+,)(%0),00), and @, (ty) € Iy. Since v (t+) = g}lg(t”(vj) €1y,
by (4.22)), |log Yy j(t4,t—)| is bounded by a constant.
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Case 2. vj < zg. Let yy = (29 +24)/2. Then

ﬁ;(ﬁ) = 9k, (t4)(V5) < 9r, (1) (T0) < iy (00 (U+) < Cryey) S Wi (),

which implies by that Vj(ty,t-) < gry ) (o) < 9y )(Y+) < Wity to).
Since g/[((t+,t_) 2 Jhune,ue) > O 9K (t4t—)(Y+) — 9K (. +_)(20) is bounded from below by the
positive constant grun(e, ue_) (Y+) —grun(e, ve_) (To). So Xy j(t4,t-) = Wi (t4,t-)—V;(t4,t-)is
bounded from below by a positive constant. On the other hand, by Proposmonm X4ty to)
is bounded from above by the constant dHull( €,U6_) — CHull(e,ue_)- Lhese properties are also
satisfied by X, ;(t+,0). By -, |log Yy j(t4+,t-)| is bounded by a constant.

Thus, in both cases, |logY, j(t4,t_)| is bounded by a constant. This property is also

satisfied by |log Y, ;(0,t_)|. Since E j(t4,t_) = % |log E j(t4,t—)| is also bounded
by a constant.

For Ejj, by symmetry and relabeling, we may assume that v; > v, V x¢. Let y_ =
(xo +2-)/2. Consider two cases. Case 1. vy > y_. Using the proof of Case 1 for E ; with y_

in place of xy, we see that |log g}( | is bounded by a constant on [gx (¢, )(y-), 00), which
+

contains both v (ty) and U (t4). So by , | log YJr (t+,t_)| is bounded by a constant. Case

2. v <wy_. Usmg the proof of Case 2 for E+ j with xg and y— in place of y4 and xg, respectively,

we see that grun(e, ue_) (o) — grune,ve) (Y-) < Xjk(t4,t-) < daune, ve_) — CHUN(E, Ue_ ) Which
implies that |log YJr w(t4,t_)| is again bounded by a constant. Thus, |log Ej(t4,1-)| is also
bounded by a constant by - O

For j € Ny, define R; on D by R; = =L - 3= if X+OOX,J #0; and R = 1 if
—J

Xt o00oX_j=0. Let R= (Ry,...,Ry). It is clear that 0 < Ry < --- < R;, < 1. So R takes
values in A,,,.

Lemma 4.4. Every R; is continuous on D, and so is R.

Proof. Fix j € N,,. Let Tt be the first time that 1 reaches (—00,vs]. We understand T3 as
T if such time does not exist; and as 0 if v, = w7 . Similarly, let T, be the first time that
1 reaches [vj,00). Let D; = DN ([0,T5%) x [0,7;)). Then X; cX_; # 0 on Dy, and so R;
is continuous on D;. If Tf < Ty, then w4 (1) = v (T5), which 1mphes that © AJF = 0L on
[T5,T4). By (4.19 -7 we see that, on DN {(ty,t-) : t4 > TL}, V; = Vi, which 1mphes that
Rj = 1. Similarly, we have Rj =1 on DN {(ty,t-):t- > T, }.

If TF or Tj_ equals 0, then R; is constant 1, and its continuity is trivial. Suppose 7% and
T are both positive. Then (T+,Tx) € D because K (Tx) and K_ (T ) both contain [vs, vj].
It suffices to show that (i) if 0 < T.f < T, then as ty T T, R; (t+, —) — 1 uniformly in

_ € [0,TP(T)); and (ii) if 0 < T; < T, then as t_ 1 T, R;(t4,t-) — 1 uniformly in
ty €0, Tf(Tj_)). They follow from an extremal distance argument shown below.

(i) Since 14 does not visit veo, To 1= N4 (T5) € (W—,vs0). Let 0 < & < |zg — voo|- Suppose
t, < TZ is such that diam(ny ([ty,T%])) < 6. Then for t_ € [0,7P(T%)), any curve in
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H \ K(t4+,t—) connecting the line segment [voo,v; A min(n4([0,¢4]) NR)], denoted by I, and
the union of the right side of 74 ([0,%4]), [w4,o0], (—oo,w_], and the left side of n_([0,¢_]),
denoted by U, must cross the semi-annulus {z € H: 0 < |z — x| < |veo — Zo|}. By comparison
principle of extremal length, the extremal distance between I and U in H\ K (t4,t_) is at least
log(|vee — @ol/d). Since gg (s, ¢y maps H\ K(t,t-) conformally onto H, and maps I and U
respectively to [Voo(ty,t—), Vj(t4,t-)] and (—oo, W_(t4,t_)] U [Wi(t4,t-),00), the extremal
distance between the latter two sets in H, which can be expressed as a function f of R;(t4,t_),
is at least log(|vee — z0|/0). Since the function f is bounded on (0,1 —¢] for any £ > 0, we then
finish the proof of (i). The proof of (ii) is similar. O

4.2 Stochastic ensemble

We adopt the assumption and notation in the previous subsection. Let x > 0 and p;, j € N}
be as in Theorem [4.1] Let p; = p;/k, j € NS,

Suppose w4 (t4) and W_(t_) are independent semimartingales with quadratic variation be-
ing (1), = kt, 0 < t < Tx. Let F* be the filtration generated by wx. Fix o # v € {+,—} and
two FV-stopping times 7, and 7/, with 7, < 7/, and 7, < T,,. Since F* and F~ are independent,
Wy (ty) is also an (Ff x FZ, )ta>0 semimartingale. We will repeatedly apply Itd’s formula in
this subsection, where the underlylng filtration is alwarys (Fy. x FZ, )t0>0, the time parameter

t, is fixed to be 7, and the time parameter t, runs from 0 to 7.7 (T,, By (4.4) and (4.15), W,
satisfies the SDE .
0, Wy = Ag 100, + (5 - 3) Agadty. (4.29)

By (4.5{4.16)), we get

Pees Ay (e (5 )

Let A2l = A, 2/A,1 and
b=

The previous formula implies that

Os A1 /AL, = DAZ 0w, + (c/6) - Ay 50t (4.30)

From (4.7]4.2044.29), we get
O X/ Xow = X200, — kb X2 AZ10t, + 2(X25,) 0ty (4.31)
0 X0/ Xoj = X2i0Ws — kb X5 AZ O, + 2(X25)20t,. (4.32)

Here (4.31) holds throughout, and (4.32)) holds up to the time that X, ; = 0.
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Define positive continuous functions £, F_,F, _ on D by E, = ﬁ, o€ {+,—}, and

L X (X0 (00)
By (t,t) = ¥ gy By (4.914.3004.31),

0, EL/EY = —2b((X2)? — (X292)0ty;  0,EL/EL = bAZ 0@, + (c/6) - AgsOts.  (4.33)

o,V

0 B2 [ BY2P = —2b(X7, — X;ff,;o) Oy + 26 b2 XA AZ1 01,

+2b((X2)?2 — (X2D)H)0t, — 4rb? X 20X 2 — X210)0t,. (4.34)

Let Fgy, = I;%EﬁEEE;?_b. Combining (4.33}4.34)) with (4.12)), we get

9sEsp/Esp = (b AZ' — 2b(X2Y, — X250)) (0@, + 26 b X500t ,). (4.35)

Recall the R;, E j, and E;} defined before. Since R; = (;gg"; : );;”—V"’;)"'l, by (4.21{4.32]),
R; satisfies the following SDE up to the time that it equals 1: ’

OsRj/Rj = o(X 2 — X2 )00, + o(X25 — X2 ) (kb A2 ot + 2X 2 0t,)

+o(X2E - X222 - K/2+ 0k/2) X2 + (2 — £/2 — 0k/2) X2 Ot (4.36)
Since E,; = % and Y, ; = %ZJIS (the generic case), by (4.2414.32), for j € NS°,
0s(Ey;/E, ; . O . _ 0 oA
OB i/ B ) jf/ ”jﬂ) = (X5 — X200, — kb X5 AZ Oty + 2(X 5 X255 — XD X D)0t
EU,J/EV»J

A:N2 A:0\2 A:0 A: A:0
+ (X2 = 22Xt — kXX — X2 ot,. (4.37)
Recall that p; = p;/k. Define

Eyi\% / E,/Ey; \oF ,
Ej,oo,ﬁ: H ( 5, ) — ( ‘77]/ v,] ) ’ 1 S] S m.

sl -} §,00 Ea,oo/Ey,oo
By (4.37),
OEjp  ~ 1ok i . O\ o ek A
ot = opl(Xg — X5h) — (X5 — XTR)0Ws — opnb AT (XTS5 — X750)0ts
7,00,p

20 P (X2 (X2 — X)) = XX — X20)ot,
F2075[(X25)? = (X250)%) — (X25)? — (X229)%)ots
—o iR X e (X — X20) + XA (XY — X25)ot,
—opR[(X2 — XAO)N (X2 — X)) — (X&) = (X297 ots
—koP (X — XEON(X Y — X25) — (X2 — X220t

g,
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+ (w/2)0pi(0p; — DIX55 — Xoie) = (X0 — Xo )0t (4.38)

Let o, B4, ..., Bm, 7y be defined by . Then they satisfy the parameter assumption. Let F
be the hypergeometric function F(«, 81, ..., Bm,7;"). By Theoremm it extends to a positive
continuous function on A,,. So F'(R) is a positive continuous function defined on D. Since F' is
smooth in (—1,1)™, F(R) is a local martingale up to the first time that R exits (—1,1)™. Recall

the G defined by (3.20)). Combining ([2.18)/2.19}f2.20]) with (4.36)), we see that F'(R) satisfies the

following SDE up to the first time that R exits (—1,1)™:

0, F(R)
F(R)

=0 Y (X - X2 )G(R)0T, — 0> kb AZHXL — X1 )G, (R)0ts
J J

—r SO = XA 2b X + 0 ST (X2 — X2 Gy ()0t
k

J

p'(li — 4) : : : : : : :
—o ) T (Ko = Xaua)2XGs + o(X5) = X5i) = (X5 + Xgio)loto. (4.39)
J

We now argue that F'(R) satisfies throughout [0, 7P (7,)). We need to deal with the case
that some R; equals 1. In fact, if on some interval there is m’ < m such that R;[Y =1 for
m/+1 < j<m,and R;|Y <1forl<j<m, then by , F(R) equals some constant times
F(R), where R = (Ry,...,R,) and F is the hypergeometric function F(a, B, .., Bm,7 —

. 9 F(R 9o F(R .
Z;n:m/+1 Bm; ). So on that interval F(éT) = ﬁ(éy)’ and we may get (4.39) by applying

{2.18”2.19”2.20) to F and using the facts that for j < m’, R; satisfies (4.36]), and the terms on
the RHS of (4.39) for j > m/ vanish because G;(R) and Xﬁ}- — Xf,;o both vanish.

111 3 3 — F(E(t ,t_))F(E(0,0))

Define another positive continuous function Fr on D by Fr(t4,t-) = F(E(ti,O))F(E(O,t,))‘

By (4.39), Fr satisfies the following SDEs:

0y Fr o

= o 0 (X4 - XEOGHB) — (X0 — X2R)G(BIE) |0,

o> Rb(AZT = 2(X 2k, - XAN)(X4k - Xi5 )Gy (R)ok
—r S = X (3 ae(X e - Xi) ) G (R)t,

k
o 3 - XA9) (DT (X - X)) Gy(RIG ot

i(k—4 . . . . . . .
= pslr—4) (X255 — X)X + o(X2Y — X20) — (X255 + X25))ot,
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14 '(’V”' — 4) : : : : : : :
+o Z S — (X0 - XTRRXET + o(X0P = XoR) — (X535 + X520))0to

J
— k(X — XER)G(BI) (X2 = XeE )G (R) — (Xo5 = X0)G (RJf)| 0t (4.40)
5.k

Here the terms in the last line of come from the quadratic covariation, and other terms
on the RHS of come from the difference between the RHS of and the function
obtained by replacing the 7, by 0 in the RHS of . Note that A%y =

Define M on D by

pj(4—K) PiPk
M = FREg), H [Ejop (BjjEocioo/Else)” ] H B (4.41)
JENp, J,keNg?

Lemma 4.5. (i) The function M is positive and continuous on D, and takes value 1 on [0,T) X
{0} and {0} x [0,T-). (ii) Eor any (£4,€-) € Z, |log M| on [O,Tg:) x [0, 7 ) is uniformly
bounded by a constant depending only on &4,&_.

Proof. (i) This holds because every factor on the RHS of (4.41]) is positive and continuous on
D. (ii) This follows from Proposition and the fact that F' is continuous and positive on the
compact set A,,. 0

We may now calculate that M satisfies the following SDE:

O M . . . . ,
“ = (DX — XEIGH(R) — o Y (X - XA0)Gy(RIE)
J

J

b AZ = 2b(XF - XAY) + 0 >0 pl(Xal - Xe) = (X - XA9)]) x
J

X (a@, + 26D X500, — 0 S (XA — X20)[or + #Gy (E]S)]at(,). (4.42)
k

The computation is tedious but straightforward. First, we note that the coefficients of dw, in

the SDEs (4.3514.38}}4.40) sum up to the coefficients of 0w, in (4.42)). Since O(wW,) = Kkdt,, the

SDEs contribute the following covariation terms:
(o b(AZ! = 20Xz — XA0) + 3 prl(Xeki = XA0) — (XAL - X22))
k
XD (X = XE)GH(R) — (XA — XA2)G(RIg) | ot
J

+ob(AF —2(X2, = X20)) Y pl(X55 — Xoke) — (X2 — XJ%)]0ts. (4.43)
i
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By 1' and the fact that ZjeN% p; = 0, we have

Pj (4 )

0 T1, (B B e/ F2.0)
(T, By Eooroo/ E2 >p"( =

_ Pj (4 B /i) A: A \2 A:0 A:0\2 .
- Z T {(Xa,j _Xa,oo) - (Xa,j _Xa,oo) ]at(ﬂ (444)
J

PjPk
60'1_[‘keNoo‘E'i,€ 1 . 2
PR = — (D i~ X ) Do+ — <Zp] X0 - X0)) oty (4.45)
I renge Eji" i

It remains to show that the sum of the coefficients of 0t, in (4.354.38)14.40}44.43}l4.44)4.45)) is
equal to the sum of the coefficients of 0t, in . For that purpose, the interested reader
may first compare all terms containing the factor G;(R) or G;(R|f), and then all remaining
terms containing the factor A%!, X4: or XA and finally all other terms.

o,V o,V )

4.3 Construction of the couplings

Suppose 74 follows the law P, n_ follows the law P_, and 4 and 7_ are independent. Then
they almost surely satisfy the assumptions in the previous subsections, and we then adopt the
notation there.

By Proposition 3.8 @ and @_ satisfy (3.24) and (3.25)) for a pair of independent Brownian
motions By and B_. Let 0 # v € {+,—}. We may rewrite the SDEs as:

Ay = v/kdBy — 26 b X dty + 0> (X2 — X0 [p; + G5 (BY))dts (4.46)

Combining (4.42)) and (4.46]), we obtain the following lemma.

Lemma 4.6. Let 0 # v € {+,—}. Then for any F"-stopping times 7, and 7,, with 7, < 7., and
7, < Ty, MY is an (F{. V FY )i, >0-local martingale up to TP (7).

Let P* denote the law of (1ny,n_). Since 7y and 7_ are independent, P* = P, x P_ is the
independent coupling of Py and P_. Fix { = ({;,£-) € Z. Combining Lemmas and
we find that for any o # v € {+, =}, to — M(t4 A T—:,t_ AT ) is a bounded (Ff V Fy )i, >0-
martingale. Since M (t; AT, AT - ) — M( + Tgi) astq,t_ — 00, by dominated convergence
theorem, we get M (t4 AT, ,t A1) =E(M ( + - )\.7-"{: V F, ] for ty,t— > 0. This means
that (ty,t_) — M(ty AT ,t AT ) is an (f \/ f ~ )-martingale closed by M(Tg;,Tgi). In
particular, we have E‘[M ( 5 ,7¢ )] = M(0,0) = 1. So we may define another probability
measure P¢ by dPg = M (rF e o Te " )dP.

Suppose now (77+, _) follows the law ]P’g instead of P*. We now describe the properties of

(n+,m-). By the martingale property of M, we have E[M (7.~ e Te )F&] = Mg(7g)) = 1, which
implies that P is also a coupling of P, and P_.
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Fix o # v € {+,—}. Let 7, be an F"”-stopping time with 7, < 7¢ . By the martingale
property of M, we see that for any t, > 0,

d(Ple, e )| Ftonrg vV Fr,) = M7 (Lo A7¢,)d (P'| 77, g VFT)-

By (4.42)4.46) and Girsanov Theorem, there is an (‘Fg,/\rg V FY )t,>0-Brownian motion Eg"

under IP)fer ) such that w, satisfies the following SDE up to T
Aty = VRAB + (kb AZ')Z, — 26D X2 |1 + HZ 417, = X2l )los + RG(BIY,)] ) dt.

By 1) W, satisfies the following SDE up to 77 (with the variable ¢, fixed being 7,):

Az
T )[pj + KG;(R))ts.

. (R—6)A2 AS
0, Wy = Ay VROBY + S0l +Z(W 7

Note that 7, -, and (K, (-)) are chordal Loewner curve and chordal Loewner hulls, respec-
tively, driven by W|¥ with speed A2,|” , the Brownian motion B” is independent of FY ,
and the processes W, |Y and Vj|¥ are force point processes for this famlly of Loewner hulls
started from w,(7,) and 5;(7',,). By Proposition we see that, conditionally on F? , after a
reparametrization by half-plane capacity, the law of the part of 75 -, up to the time that it hits
9K, (n) (&) agrees with that of an iSLE, ( p) (if o =+) or 1SLE’"( p) (if o = —) curve in H under
chordal coordinate from g, (-,)(ws) to W, (7',/) with force points v}/ (7,,), j € Ni7, up to the same

hitting time. Applying the conformal map gKV ()7 We then conclude that 7, satisfies Theorem

(i) (if o = +) or Theorem (4.1 . (ii) (if o = —) up to 7¢ with the additional assumption that
Ty S TE . So IP’ is a local commutatlon coupling of P, and P_ within .

Lemma 4.7. Let ny and n— be two random Loewner curves started from wy and w_, respec-
tively. Let ({4,&-) € E. Let 0 # v € {+,—}. Suppose that the law of n, restricted to .F”

agrees with P, and conditionally on F, v 5 Mo satisfies Theorem. (z) up to 7' if o=+, or
Theorem. (m) up to 7, ifo=—. Then the law of n, restricted to .7-""€ agrees with Py.

Proof. We know the law of 77,,][0775 j and the conditional law of ng|[077g ] given 77,,|[0775u ], which
together determine the joint law of 770|[0,T€a] and 17,,][0775 ] So the joint law of ni and n-

restricted to f+ \% .7-" is also determined, which has to agree with the local commutation
Te_
coupling IP’C So the law of 7, restricted to .7-' - agrees with P,. O

We now use the local commutation couplings to construct a global commutation coupling,
and finish the proof of Theorem [4.1] First, we observe that, for any (£4,£_) € E, if any coupling
P of Py and P_ agrees with PE& ¢ )on F \/]-" _ , then PP is also a local commutation coupling

T§+ Te_
of P4 and P_ within (§4,&-).
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Let §k = ({fﬁ,fﬁ) € E,1 <k <n. By [23, Theorem 6.1], there is a bounded positive
continuous (]—";; \Y ]:t__)(t+7t7)eRi—martingale M™(ty,t_), t4,t— > 0, such that M"(¢,0) =
M™(0,t) =1 for any ¢t > 0, and for any 1 < k < n, M"™ agrees with M on [O,Tg,z] X [O,Tgk].

+ —
Moreover, M"™ takes random constant value, denoted by M"(c0), if t4 > T;,; and t_ > Tgk for
all 1 < k < n. So we have E'[M"(c0)] = M™(0,0) = 1, and may define another probability
measure P" by dP" = M"(c0)dP®. By the martingale property of M™, P" is also a coupling of
P, and P_, and for any 1 < k < n,
n| T+ — | T+ -\ — At ) — + =
d(P ’}—TJ% \/.FT,k )/d(P ‘}—Ti \/.7-'7,1c =M (Tﬂ,TSE) = M(Tfi’Téli)'
ek gk ek ek
Thus, P" agrees with ]P’gk on Fr. v ]:T__ for 1 < k < n, which implies that P" is a local
= Tek ek

commutation coupling of P, and P_ within §k forany 1 <k <n.

We may pick a countable subset Z* of Z such that for every ({1,£_) € Z, there is (£},£*) €
E" such that for o € {+, —}, Hull({,;) C Hull(§7), which then implies that 77 < 7¢.. Enumerate
=* by {§k : k € N}. By the previous paragraph, for each n € N, there is a coupling P" of P
and P_, which is a local commutation coupling of P, and P_ within ék forany 1 <k <n. We
let P> be a subsequential weak limit of the sequence P™ in some suitable topology. Then P> is
still a coupling of P, and P_, and for every k € N, it is a local commutation coupling of P and
P_ within £°. Finally, if (£4,£_) follows the law P>, then Theorem [4.1] (i) and (i) both hold.
This is because for 0 # v € {+,~} and 7, < T,,, TP (1) = sup{7{ : (&4,6-) €E" 7 < 7g }

5 Proofs of the Main Theorems

In this section, we will prove Theorem which contains Theorem as a special case. We
work on the cases k € (0,4] and x € (4,8) separately. Let N,,, = {1,...,m}, No° = N,;, U {0},

P = (plv"'7pm)a p; = —Pj J € N?ﬂo7 BT = (p§77p:n)7 v = (’Ula"'vvmavoo)7 U; = J(“])?
jeN® and v" = (v],...,v],,v5). By symmetry, we assume that o = —.

We only need to show that the time-reversal of J(n) has the same law as n" after a time-
change because the absolute continuity statement then follows from Lemma (iii) and the
fact that 1 a.s. does not visit any force point other than 0% and +oc.

5.1 The simple curve case

Proof of Theorem[1.3 in the case k < 4. Since K < 4 and ¢ = —, n a.s. does not intersect
(0,00). Let f(z) =1/(1 —2). Let uj = f(vj), j € N3Y, and v = (u1, ..., Un, Us). We use the

convention that f(07) =17 and f(—o0) = 0. Then ug > -+ > Uy, > uso € (0,1) U{0F,17},
and f(n) does not intersect (—o0,0). So f(n) does not separate 0 from oo before it ends. Thus,
we may reparametrize the complete f(n) by half-plane capacity to get an iSLE,(p) curve in H
under chordal coordinate from f(0) =1 to f(co) = 0 with force points wu. B
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Similarly, n" a.s. does not intersect (—00,0). Let f"(z) = fo J(z) = z/(z +1). Then

uj = f"(v}), j € N7, and f"(n") does not intersect (1,00). So f"(n") does not separate 1

from oo before it ends. Thus, we may reparametrize the complete f”(n") by half-plane capacity

to get an iSLE](p) curve in H under chordal coordinate from f"(0) = 0 to f"(co) = 1 with

force points u. Thus, f(n) and f7(n") have the same laws as the 1y and n_ in Theorem

respectively, with u in place of v. It now suffices to show that the 7 and 7 in Theorem [4.]]
are time-reversal of each other in the case x < 4.

Suppose 7— < T_ is an F~-stopping time. Then given F_ , up to a time-change, the part of
7+ up to TP (7_), which is the first time that it intersects K_(7_) or separates K_(7_) from oo,
is an iSLE,(p) curve in H\ K (7_) from wy to n_(7-) with force points v; Vmax{K_(7_) "R},
j € N2, also up to TP(7_). Since ny a.s. ends at w_, if the iSLE,(p) curve M+ 0.7 (r)) in
H\ K_(7_) does not land at its target n_(7_), then 14 (TP (7_)) belongs to one of the following
boundary arcs of H\ K_(7_): (i) Pg, the part of 9K_(7_) on the right of n_(7_), (ii) Pr, the
part of 0K_(7_) on the left of n_(7_), and (iii) Pg, the real interval (—oo, min{K_(7_) NR}].
The g (-_)-image of 14, TD(r_)) is an iSLE,(p) curve in H from W, (0,7_) to W_(0,7_) with
force points V;(0,7-), j € N , up to some time. Since W_ < Vo, < .-+ <V} < Wy, this
curve a.s. does not visit the intervals (W_(0,7_), Vo (0,7-)] and (—oo, W_(0,7_)), which are
respectively the gx_(;_)-images of Pr and P U Pg. So 1+ a.s. does not visit Pr U Pr, U Pg at
TP (7_), which implies that 7, a.s. visits n_(7_) at TP (7).

Consider countably many F~-stopping times: ¢ A7, , where ¢ € Q1 and {_ € =¥, Whlch is

the projection of Z* to Z_. Then a.s. n4 visits n_(q A 7’5_) for every ¢ € Q4 and £ € Z*. By
the denseness of Q in Ry and the continuity of 74 and 71—, we know that a.s. n—([0,7;_]) C
n+([0, 77 )) for every {- € 2, which further implies that a.s. n_([0,7_)) C n4([0,T%]). Since
N4+ a.s. does not visit (w4, 00), n— does not either. So n_ is a time-change of a complete
iSLE],(p) curve. Since 74 a.s. does not visit any of its force points other than w. or wh, n_
has the same property. By Lemma (iii), the law of n_ is absolutely continuous w.r.t. that of
a chordal SLE,(p", pL,) curve in H under chordal coordinate from w_ to w4 with force points
v. Thus, 7_ a.s. ends at w,, and we get 7_([0,7_]) = n4([0,T+]). From this we then conclude
that n_ is a time-reversal of 7. O

5.2 The non-simple curve case

The argument in the previous subsection does not work for x € (4,8) because for a commuting
pair of nonsimple curves, if we condition on a part of one curve, the first point that the second
curve will hit the given part of the first curve may not be the tip point.

Proof of Theorem in the case that k € (4,8). We now have Z?Zl pj > 5 — 2 for any 1 <
k < m. Let Py and [P denote the laws of n and 1", respectively, in the theorem. Let R denote
the space of chordal Loewner curves v from 0 to oo, such that the time-reversal of J(v) could
be parametrized to be a chordal Loewner curve, which will be denoted by J.(v). We also use
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Jx to denote the pushforward map induced by J,. Our goal is to show that Py is supported by
R, and J.(P2) = P5.

We first consider the case that all force points take values in (—o0,0), i.e., there are no
degenerate force points. Let Py denote the law of a chordal SLE, curve in H from 0 to co. By
reversibility of chordal SLE, for k € (4,8) (cf. [7]), Py is supported by R, and J.(Pg) = Py. We
will use an idea in [I7], which is to show that the both Py and P4 are absolutely continuous
w.r.t. Py, and the Radon-Nikodym derivatives are related by the map J,.

Let 1 denote the law of the chordal SLE(p, poo) curve in H from 0 to oo with force points
v. By Proposition Py < Py, and dPy/dPy is given by y the definition of iSLE(p)
curve, Py < Py, and dPy/dP; = M(Tw), which is given by (3.11l Thus, Py < Py, and so Py
is supported by R. Let Ey be the set of v € R such that v N [vs,v1] = 0. For v € Ejy, let
Do () be the connected component of H \ v, whose boundary contains [voo, 1)1] Let p; = pj/k,
R;(0) = vj/vs0, 1 < j < 'm, and R(0) = (R1(0), ..., Rin(0)). Combining (2.6) with (3.11]), we
get

m pj(pootr—4) PPk
@ 1E0 H <HDOO(UJ',UOO))*T H HDOO(U]',U/C))*? (5 1)
dPy et L |vj — vg| 2 o
<j<k<m

Let P| denote the law of the chordal SLE(p", p5,) curve in H from 0 to oo with force points

v". Since pl, = > "L p; > 5§ — 2, and for any 2 < k < m, pgo—i—zyl:kp’]fzzgc 11pj >5-2,
by Proposition P7 < Py. Let Ej be the set of v € R, which do not intersect [v],v]]. For

v € Ej, let DL () be the connected component of H \ 7, whose boundary contains [vgo,v{].
Let g. be a conformal map from D’ onto H such that max(9D., NR) is mapped to co. By

29,

GG , P £k
Py 15 H gi(v ) A H (|g*(vj) - g*(vk”) 2 (5.2)
dPO jeNge ’” ’pj/ﬁ j<keN%e |U§ o UIZ’ ’

We now express dPj/dPy in terms of boundary Poisson kernel and conformal radius, but

in a way different from |D First, we have Hpr (v ;,U};) = %, Jj < k € NY¥.
* J * k

When D7 is defined, let 27 denote the union of D._, its reflection about R, and the interval

(v, max(9DL, NR)). Then g« extends to a conformal map from €2} onto C\ (—o0, g«(v5,)]-

oy 90D —ge () 5
So we have crad%)(ﬁoo) = %. By l' and that }_;cnoo pj =0,

P (4 *) P} (Poo+4—r) o% o,

—_— T ™\—
HDT (U],Uoo) Ar H HDSO (vjavk) dr
Jj=1 1<j<k<m

dP;  1gy 1 4 _
d]P% =2 11 <Crad£§)(920)
where Z" > 0 is a constant given by

7‘7‘

" Pk
ZT::H H|v T| P H v} — vy, I
j=1

1<j<k<m

41



Recall the definition of M" in and the formula for I7 in (3-16). On the event Ef,
for j € Ny, as t 1 T3, = T7, Ri(t ) — 1 and crad( )(Q”) — cradq(;f_) (QL,) because €} tends to
Qgrjr = (1%, in the Carathéodory topology. Since p; = —p7, we get

F(1) crad(é-)(QT) )

M7 (00) = M"(TL) = —o ( ” E.
(OO) ( OO) F(ET(O)) e "U —r ’ ) on 0
Since R}(0) = vl /v}, we get
L (Poot+4—k) [
dP? 1p:F(1) o Hpr (V7,00 )\ -2 Hpr (v 0])\ -2~
E 0= r LLm07 () T () -
0 j=1 |v_7 Uoo| 1<j<k<m ‘,Uj _’Uk’
(5.3)
We compare (.1) with (5.3). Note that Ej = J.(Ep), J(Dso(7)) = DL (J«(7)) for v € Ey,
R"(0) = R(0) and p} = —p;. By conformal covariance of boundary Poisson kernel, we get

Hpy (7,03 (05, i) /10 = |72 = Hp () (v, 06) /Joj — o] 2, 1< j <k <m+1.

So we get (dP}/dPy) - M"(c0) = (dPy/dPy) o J;1. Since J.(Py) = Py and Py is a probability
measure, we get EJ[M"(c0)] = Eg[(dP}/dPy) - M"(o0)] = Eg[dP2/dPy] = 1. Since M" is a
positive supermartingale w.r.t. P], and M"(0) = 1, we then conclude that M" is a uniformly
integrable martingale w.r.t. P{. By Definition [3.4] and Lemma [A.T, we have Py < P}, and
P5/dP} = M7 (cc). Thus, P < Py, and dP}/dPy = (dP}/dP%) - Mr(oo) = (dPy/dPg) o J- 1.
Since J«(Pg) = Py, we then conclude that J,(IP2) = P5. This finishes the proof of the case that
none of the v;’s takes values 0% or 4o0.
Now suppose v1 = 0~ and all other v;’s including vs lie in (—o00,0). Let 0 < I < min{|v;| :
j € N°.j > 1}. Let 7 be the first time that 7 reaches {|z| = [}. By DMP of iSLE,(p)
curve, conditionally on F,, (7 +-) is an iSLE«(p) curve in H\ K, from 7(7;) to oo with force
points 07, v, ..., Uy, Vso. Note that n does not visit (—oo, 0] during the time interval (0, 7;]. So
n([0, 7)) does not separate any of va, ..., U, Vs from co. Thus, none of the force points for the
iSLE.(p) curve in H \ K, from n(7;) to oo is degenerate. By the reversibility result we have
derived, the conditional law given F, of the time-reversal of 7 up to the time of hitting n(7) is
that of an iSLE],(p) curve in H \ K, from oo to n(r) with force points 07, v, ..., vm, V. In
particular, this implies that a.s. the time-reversal of J(n) up to hitting the circle {|z| = 1/}
can be parametrized to be a chordal Loewner curve. By letting [ | 0, we see that the time-
reversal of the complete J(n) a.s. can be parametrized to be a chordal Loewner curve. So 7
a.s. belongs to R, and we may define J,(n). Given F;,, the part of J.(n) up to the time that it
reaches J(n(7;)) is then an iSLE](p) curve in J(H \ K7) from 0 to J(n(7;)) with force points

+00, V5, ..., Uy, V5o
Fix n € N. Let f,(2) = 1/(1 — nz) be a Mébius automorphism of H, which maps 0 and oo
to 1 and 0, respectively. Let u; = fn(v;), j € N3y, and w = (u1,...,Un, Uso). Then u;’s lie on

(0,1) except that u; = 17. We may reparametrize the part of f,(n) up to the time that it hits
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its target 0 or separates 0 from oo by half-plane capacity, and get a chordal Loewner curve 74,
which is an iSLE(p) curve in H under chordal coordinate from 1 to 0 with force points u. Let
fr(2) = fanoJ(2) = z/(z +n). We may reparametrize the part of f7(.J.(n)) up to the time that
it hits its target 1 or separates 1 from oo, and get a chordal Loewner curve 7_.

Let ¢ = fo({z € H: |z| =1}) € Z;. By the relation between 7 and J.(n) derived earlier,

we know that, for any £_ € =_ such that (5@,5_) € =, given the part of ny up to 7 gl , up to a
time-change, the part of n_ up to 7, is an iSLE](p) curve in H\ Hull(n.([0, T ])) from 0 to
ny (T4 Sl ) with force points 17, u  Um; Uoo, also up to 7, . By Lemma the part of n_ up

to 7 is an iSLE} (p) curve in H from 0 to 1 with force points w, up to 7" . Since this holds for

any £ € =_ such that (£+, ¢_) € E, we then conclude that the part of n_ up to hitting £+ is an
iSLE},(p) curve in H under chordal coordinate from 0 to 1 with force points u up to the same
hitting time. By letting [ | 0 and using the definition of 77_, we know that the part of fr(J«(n))
up to the time that it hits 1 or separates 1 from oo is an iSLEJ,(p) curve in H from 0 to 1 with
force points u up to the same time. Since f] maps —n, oo, and vf to 00, 1, and u;, respectively,
the part of J.(n) up to the first time that it separates —n from oo is an iSLE],(p) curve in H
from 0 to co with force points v” up to the same time. Letting n — oo, we conclude that the
whole J,(7) is an iSLE],(p) curve in H from 0 to oo with force points v". So J,(P2) = P5.

Finally, we consider the case vo, = —oo. It suffices to show that the law of Ji(n") is Ps in
the case that v’ is degenerate, i.e., 0. We have proved that this is true if v% is not degenerate.
Let I € (0,v},,) and let 7/ be the first time that n” hits {|z| = {}. By Lemma (iv), 7/ is
strictly less than the lifetime of #”. By DMP of iSLE] (p), conditionally on .7-""7, n" (] + )
is an iSLE],(p) curve in H \ K"(7]) from 7" (7]") to oo with force points vf,..., m,0+ Since
Poo = 5 — 2, none of the force pomts for the iSLE],(p) curve in H \ K7 7 s degenerate.

By the reversibility result we have derived, the conditional law given F "r of the time-reversal
of " up to the time of hlttlng n" (7)) is that of an iSLE,(p) curve in H \ K" from oo to 1" (7]")

with force points o], ..., v 0T. In particular, this implies that a.s. the tlme reversal of J(n")
up to hitting the circle {|z| = 1/I} can be parametrized to be a chordal Loewner curve. By
letting [ | 0, we see that a.s n” € R, and we may define J,(n"). Given Fres the part of J.(n")
up to the time that it reaches J(n"(7]")) is then an iSLE«(p) curve in J(H \ K;"[) from 0 to
J(n"(7]")) with force points vl, c ey Uy —O0.

Fixn € N. Let f;(2) = 1142, Wthh maps 0 and oo to 0 and 1, respectively. Let u; = f,’;(v;),
J € N and u = (u1,...,Un,Uso). Then uj’s lie on (0,1) except that us = 0. We may
reparametrize the part of f](n”) up to the time that it hits its target 1 or separates 1 from
oo by half-plane capacity, and get a chordal Loewner curve 7_ which is an iSLE,(p) curve in
H from 0 to 1 with force points u. Let f,(z) = f) o J(2) = .. We may reparametrize the
part of f,(J«(n")) up to the time that it hits its target 0 or separates 0 from oo by half-plane
capacity, and get a chordal Loewner curve 7.

Let ¢ = fr({z € H: |z| = 1}) € Z=_. By the relation between 1" and J,(n") derived earlier,
we know that, for any £, € Z, such that (&,,¢L) € E, given the part of n_ up to Tl , up to a
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time-change, the part of ny up to T§++ is an iSLE(p) curve in H \ Hull(n_([O,Tg ])) from 1 to
- (Tg ) with force points u. By Lemma the part of 4 up to Tg:_ is an iSLE,(p) curve in H
from 1 to 0 with force points u up to the same hitting time. Since this holds for any & € =
such that (£,,¢L) € =, we then conclude that the part of 7, up to hitting ¢ is an iSLE,(p)
curve in H from 1 to 0 with force points u up to the same hitting time. By letting I | 0 and
using the definition of 7, we know that the part of f,,(J«(n")) up to the time that it hits 0 or
separates 0 from oo is an iSLE,(p) curve in H from 1 to 0 with force points u up to the same
hitting time. Since f,, maps n and co to co and 0, respectively, the part of J, (n") up to the
first time that it separates n from oo is an iISLE,(p) curve in H from 0 to co with force points v
up to the same time. Letting n — oo, we conclude that the whole J, (1) is an iSLE,(p) curve
in H from 0 to oo with force points v. So Ji(P5) = Py. The proof is now complete. O

Corollary 5.1. Let 1, pi and ps satisfy (i) or (ii) of Theorem[1.1. Let v € R\ {0}, and let
o € {+, =} be the sign of v. Letn be a chordal SLE.(p1, p2) curve in H started from 0 with force
points 0° andv. Then the time-reversal of Jomn, where J(z) = —1/z, can be reparametrized to be
a chordal Loewner curve ", which is an iSLE) (p1, p2) curve in H from 0 to oo with force points
—000, J(v),077. Let (K}) be the chordal Loewner hulls generated by n"; let v (t) = g(}q (079),
vh(t) = g(}q(J(v)); and let R"(t) = %%ﬁ? before the first time that V5(t) = v, (t), and
equals 1 after that time. Then the driving function w" for " satisfies the SDE
~ P1 1 1
A" = VRdBT + i~ ( - )[p2 + kG (Rt (5.4)

T Sro_ T T
w w Vg w 00

where B” is a standard Brownian motion, G.(x) = xF|(z)/Fi(x), and Fy is the (single-variable)
hypergeometric function F(1 — %, 222 2011200%4, )

K’ K K ’

Proof. We apply Theorem [I.2] to the case that m = 2, v = 07, v3 = v, and vy = 000, and
derive a statement about the law of n". Then the driving function @w" of " solves the SDE
(3-22). Note that v] = J(v1) = —ooo, and so R} = 0. The R} in Theorem [I.2] agrees with the
R" here. Also note that for the function F' in Theorem [1.2] by we have F(0,-) = Fi.
Thus, G1(R}, R5) = 0 and G2(R], R}) = G(R"). Then (3.22) reduces to (5.4). O

Remark 5.2. The n" in the corollary is an SLE-type process with two force points, and may be
defined using a single-variable hypergeometric function. But it is different from the intermediate
SLE(p) process in [21], which is also defined using a single-variable hypergeometric function.

Appendices

A Laws of Stochastic Processes with Random Lifetime

This appendix can be viewed as a supplement of [19, Section 2], and we use the setup there
as follows. Let S be a Polish space, and ¥ = Up¢(g ) C([0,T),5). For each f € X, let Tx(f)
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be such that [0,7%(f)) is the domain of f. Let ¥, = {f € ¥ : Tx(f) > t}, 0 < t < o0,
and Yoo = (Ngcteno 2t = C([0,00),5). For 0 <t < oo, let F; be the o-algebra generated by
the family {f € X5 : f(s) € U} over all s € [0,¢] and U € B(S), and let Foo = Vo<t<ooFt-
A probability measure on (X, F) is viewed as the law of a continuous S-valued stochastic
process with random lifetime. For two probability measures p and v on X, we say that v is
locally absolutely continuous w.r.t. p, and write v < p, if for every ¢ > 0, v|r,nn, < p|l7ns,,
which means that for any A € F; with A C ¥4, pu(A) = 0 implies that v(A) = 0. Let M; be the
Radon-Nikodym derivative of v|r,ny, against p|r,nx,. We call (M) the density process. It is
clear that v < p implies that v < .

Now suppose that @ and v are probability measures on ¥, u is supported by >, and v <1 u
with (My) being the density process. Then each M; is p-integrable, and for any to > t; > 0
and A € Fy, C Fi,,

/ Mtzdu = / Mt2d,u = V(A N Etz) < V(A N Etl) = / Mtld,u = / Mtldﬂ‘
A AQEtZ Aﬂztl A

So (M) is a nonnegative supermartingale w.r.t. p. The following lemma provides us the exis-
tence of v given the measure p and the supermartingale M.

Lemma A.1. Let p be a probability measure supported by Xoo. Let (My)o<t<oo be a nonnegative
right-continuous (F;)-supermartingale w.r.t. p such that [ Modp = 1. Then there exists a
unique probability measure v on X such that v <y, and M 1is the density process. Moreover, we
have the following.

(i) The v is supported by Yoo if and only if M is a martingale w.r.t. .

(it) For any (Fi)-stopping time 7, v < p on Fr N{Tx > 7}, and M, is the Radon-Nikodym
derivative.

(iii) For any (Fi)-stopping time 7, v < p on Fr if and only if M(t AT), t > 0, is a uniformly
integrable martingale (w.r.t. (1); and then dv|g, /du|r, = M. Here on the event T = oo,
M is understood as Mso = limy_y00 Mynr, which p-a.s. converges. In particular, v < p
if and only if M is a uniformly integrable martingale; and then dv/du = M.

We say that the measure v is constructed by locally weighting the measure p by M.

Proof. Add an extra element, denoted by *, to S, and write S, for the union S U {x}. For
A C [0,00), an element f € S2 is called ordered if there do not exist \; < Ay € A such that
f(A1) = x and f(A2) € S. For any finite set A = {0 = tp < &1 < -+ < t,} C [0,00), we
define a measure v, on SA by the following. For 0 < k < n, let TAK © B — SA be defined by
mak(f) = (f(to), f(t1), ..., f(tr), *, ..., *). For any measurable subset A of S2, define

va(4) = :Z;:/ﬂ_l

Ak

Mtk - Mthrl)d,u + / Mtnd,u

( .
(A) ﬂ-A,n(A)
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Since M is a nonnegative supermartingale and [ Modp = 1, v is a probability measure. Since
T A, is the projection 7p from So onto SA, and 7 3. (S*) = 0 for k < n, we have va|ga < (1),
and M, is the Radon-Nikodym derivative. We also see that vy is supported by the set of ordered
elements of S2 since every mA,k takes values in ordered elements.

We now check that {vy : 0 € A C [0,00),|A] < oo} is a consistent family. Let A = {0 =
to <ty <--- <ty}. Suppose A’ = AU{s} C [0,00) and s &€ A. Let A C S2 be measurable, and

A= Ax S S We need to show that vy (A’) = v (A). First, suppose s > t,,. Then for

each 0 <k <n, ﬂX,%k(A,) = wlek(A), and WX/lnH(A/) = wxln(A) So

z/A/(A’) = E (M, — Mtkﬂ)du + Mdp
T (A) T (A)
k=0""A"k A n+1

(M, — My)dp +/ Mdp = vpa(A).
T (A)

n—1
= Z/l (Mtk _Mtk+1)d:u'+/1
k=07 7ak(A)

Ak ﬂ—A,n(A)

Next, suppose tg,—1 < § < tg, for some 1 < ko < n. Then for any k < ko, 73, (A) = 73 1 (A),
and for any k > ko, wx,l’k(A’) = 7'['/11]671(14). Let ¢ =t for 0 < k < ko, t;CO = s, and t}, = tp_1
for ko <k <n+1. Then A" ={0=1t; <t) <--- <t 4} So

var(A) —Z/l (M —Mt;M)d/H/1 My, du
k=07 Tar (A7) Tty (A7)
ko—2
=> /1 (M, — My, )dp + /1 (M — My, _,)dp + /1 (My,, — M,)dp
k=0 71FA,Ic(A) 7l'A,Ico—l(A) ”A,kofl(A)

n

e[ O Myd [ M di= (4,
ko ” A ge—1(4) T (4)

By Kolmogorov extension theorem, there is an S,-valued process (Z;)o<t<co (defined on
some probability space) such that for any finite set A = {0 =ty < t; < -+ < t,} C [0,00), the
joint distribution of (Zy,, Zy,, ..., Zs,) is va. We now restrict our attention to (Z,)peq,. By
the properties of vp we know that for any p1 < ps € Q, if Z,, = * then a.s. Z,,, = x. Thus, by
excluding an event with probability zero, we may assume that (Z,),cq, takes values in ordered
elements. Let Ty, = inf{p € Q4 : Z, = *}. Then T%; is a random number such that Z; € S for
te€[0,75)NQ4 and Z; = * for t € (T, 00) N Q4.

Suppose (Y;)>0 is a continuous process with law p. Let tg € Q4. By the property of vy, the
law of (Z)pefo,to)nQ.. Testricted to the event that Z, € S, is absolutely continuous w.r.t. that of
(Yp)pe[o,t0)nQy » and the Radon-Nikodym derivative is My,. Since Y is continuous on [0, o), this
implies that on the event that Z;, € S, a.s. (Zp)pe[o,40jn0,. €Xtends to a (random) continuous
function Z() on [0,t0]. By excluding an event with probability zero, we may assume that this
is always true for every tg € Q. We may define a continuous function Z’ on [0, Tx;) such that

46



for any p € Q4, on the event {T% > p}, which is contained in {Z, € S}, we define Z’ = Z®)
on [0,p]. There is no contradiction in the definition because whenever p; < py € Q4, on the
event {Tx > po}, which is contained in {T% > pi}, we have Z(P1) = Z(pZ)‘[O,pl]- Then Z' is a
continuous stochastic process with a random lifetime Tx.

Let v be the law of Z’. We claim that v is the measure that we need. Fix t, > 0. We
need to show that v(A) = [, My du for any A € F;, N5, . For every finite set A C [0, 00), let

wa denote the natural projection from SLO’OO) onto S». We naturally embed ¥ into S,EO’OO) by
understanding the value of f(t) for t > Tx(f) as *. So my is also a mapping from ¥ into S2.
First, assume that there is A C QN [0,¢,] with 0 € A and |A| < oo such that A = 7, (Ax) Dy,
for some Ay € B(S™). Let (pn) be a sequence in QN (t,, 00) such that p,, | t.. By the definition
of T, we see that Z' € ¥, i.e., T > t, if and only if there is some m such that Z,, € S.
Also note that Z'(t) = Z(t) for t € A because A C Q. Thus,

v(A) =P[Z' € A =P[| {ma(2) € Ax, Z(pm) € S}] = Tim Plmagp,,)(Z) € Ax x 8]
m=1

For each m € N, since the law of myy¢p,.1(Z) 18 vaugp,,}, Whose restriction to SAUPm} s
absolutely continuous w.r.t. WAU{pm}(M) with Radon-Nikodym derivative M, , we get

P[”Au{pm}(z) € Ap X S] = VAu{pm}(AA X S) = /

™

M, dp = / M, dp.
Ao {pm} (A2 XS) 75 (An)

Here the last equality follows from that p is supported by ¥,. Since py, | t«, by right-continuity
of M and Fatou’s lemma,

/1 M, dp < lgri)iglof/l M, d.
Ty (Anr) w5 (Ar)

On the other hand, since M is an (F;)-supermartingale w.r.t. u, for all m € N,

/ My, dp < / My, dp.
7y (An) 7y (An)

Combining the last four displayed formulas and the fact that y is supported by Yo C 3, , we
get v(A) = fA My, dp. This holds for any A in the m-family

{m (AN NSy, s Ay € B(SM),A € [0,t]NQ, |A| < o0},

which generates the o-algebra F;, N3, in ¥;, thanks to the continuity of f € ¥4, on [0,%,].
By Dynkin’s 7 — A theorem, we get v(A) = fA M, dp for any A € F;, N3,,. The uniqueness of
such v also follows from Dynkin’s # — A theorem.

(i) If v is supported by X, then for any to > ¢; > 0 and A € F, C Fy,, we get v(A) =
v(ANYy;) = fAﬁEtj Mydp = [, My, dp, j =1,2. So B, [My,|Fy,] = My, ie., M is a martingale.
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On the other hand, if M is a martingale, then for any ¢ > 0, v(3;) = [ Mydu = [ Modp = 1.
So V(X)) = limyyeo ¥(X¢) = 1, i.e., v is supported by Y.

(ii) Let 7 be an (F;)-stopping time. Since M is right-continuous and adapted, it is pro-
gressive. So M, on {7 < oo} is Fr-measurable. First assume that 7 takes values in Q4. Let
Ae FrN{Tx >7}. Then for any t € Q4, AN{r =t} € FiN{Tx > t}. So we have

V(A):Zy(Am{T:t}):Z/A Mtdu:Z/A

MTd,u:/MTd,u.
teQy teQy teQy A

N{r=t} N{r=t}

Next, we do not assume that 7 takes values in Q,, but assume that there is a deterministic

number N € N such that 7 < N. For each n € N, define 7, such that if 7 € [£2L, &) for some
ke N, then 7, = 2% Then each 7, is a bounded stopping time taking values in Q4 , and 7, | 7.

Let A e FrN{Tx > 7}, and A,, = AN{Tx, > 7,,}. Then A =, Apn, and A,, € F,, N{Tx > 7,}
for each n. So we have v(A) = lim,, o0 ¥(Ay) = limy, 00 fAn M, dp = lim, fA M. du, where
the last “=’ follows from that u is supported by ... By right-continuity of M and Fatou’s
lemma, lim, .« [ A Mz dp > i) 4 Mrdp.  Applying Optional Stopping Theorem to the right-
continuous supermartingale M and the bounded stopping times 7 < 7,, we get [ A Mz, dp <
J4 Mrdp for each n. So lim, oo [, My, dp = [, Mydp, and we then get v(A) = [, M dpu.
Finally, we do not assume that 7 is uniformly bounded. Let A € F. N {Tx > 7}. Then for any
N € N, 7AN is a uniformly bounded stopping time, and AN{7 < N} € FranN{Tx > TAN}. So
v(An{r < N}) = fAm{T<N} M andp = fAm{r<N} M,du. By monotone convergence theorem,
we get V(A) = limy_oo V(AN {7 < N}) = [, M-dp, as desired.

(iii) First, suppose v < p on Fr with ¢ = d(v|F;)/d(p|Fr). Then for any t > 0, v < p on
.FT/\t with d(l/|f7—/\t)/d(u‘./_"7—/\t) = Eﬂ[q./_'.ﬂr/\t]. By (11), d(V|f7At)/d(ﬂ|fTAt) = M(T /\t) on ZT/\t'
Since 1 is supported by Yo C Xrps, we get Mray = E,[¢|Frae] for all t > 0. Thus, Mrae, t >0,
is a uniformly integrable martingale.

Next, suppose that M s+, t > 0, is a uniformly integrable martingale. Then lim; oo M At
converges a.s. to M., and for any t > 0, E,[M;|Frn;] = Mra¢. Define a measure v, on (X, Fr)
by dv; = M(r)dp. Since E,[M;| = E,[My] = 1, v; is a probability measure. For any ¢ > 0,
vr L pron Frag, and d(vr| Frae)/d(p| Frae) = Eu[M7|Frpae) = Mrae. On the other hand, by (ii)
d(v|Frae)/d(p| Frat) = Mrar on Xppe. Since vy and v are both probability measures, they must
agree on Frae. Since Uy~ Frae is a m-family, by Dynkin’s 7 — A theorem, v, and v agree on
VisoFrat = Fr. By the definition of v,, we get that d(v|F,)d(u|F,) = M.

The last statement of (iii) follows from the above equivalence by choosing 7 = oc. O
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