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REVERSIBILITY OF CHORDAL SLE

By DAPENG ZHAN
University of California, Berkeley

We prove that the chordal SLE, trace is reversible for x € (0,4].

1. Introduction. Stochastic Loewner evolutions (SLEs) are introduced
by Oded Schramm [11] to describe the scaling limits of some lattice models,
whose scaling limits satisfy conformal invariance and Markov property. The
basic properties of SLE are studied in [9]. There are several different versions
of SLE. A chordal SLE is defined in a simply connected domain, which is
about some random curve in the domain that grows from one boundary
point to another.

So far it has been proved that the chordal SLEg is the scaling limit of
the explorer line of the site percolation on the triangular lattice with half
open and half closed boundary conditions ([13] and [2]); the chordal SLEg is
the scaling limit of UST Peano curve with half free and half wired boundary
conditions [6]; the chordal SLE, is the scaling limit of the contour line of the
two-dimensional discrete Gaussian free field with suitable boundary values
[12]; and the chordal SLE; is the scaling limit of LERW started near one
boundary point, conditioned to leave the domain near the other boundary
point [17]. In [5], the SLEg/3 is proved to satisfy the restriction property.
From these results, we know that the chordal SLE, trace is reversible for
k=6,8,4,2,8/3.

In [9], it is conjectured that the chordal SLE, trace is reversible for all
k € [0,8]. Scott Sheffield proposed that the reversibility can be derived from
the relationship with the Gaussian free field [10]. In this paper we will prove
this conjecture for x € (0,4] using only techniques of probability theory and
stochastic processes. The main idea of this paper is as follows.

Suppose (3(t)) is a chordal SLE, trace in a simply connected domain D
from a prime end a to another prime end b. From the Markov property of
SLE, for a fixed time ¢y, conditioned on the curve (3([0,tg]), the rest of the
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curve (((t):t > tp) has the same distribution as a chordal SLE, trace in
Dy, =D\ 5(]0,to]) from [((top) to b. Assume that the chordal SLE,; trace
is reversible. Then the reversal of (((t):t¢ > ty) has the same distribution
as the chordal SLE, trace in Dy, from b to ((tp). On the other hand, since
(B(t):t > tg) is a part of the SLE, trace in D from a to b, so from the
reversibility, the reversal of (5(t):t > ty) should be a part of SLE, trace in
D from b to a. Suppose v is an SLE, trace in Dy, from b to ((tp). From
the above discussion, if we integrate v against all possible curves 3([0,tg]),
we should get a part of the SLE, trace in D from b to a, assuming that the
chordal SLE,, trace is reversible.

To prove the reversibility, we want to find a coupling of two SLE,; traces,
one is from a to b, the other is from b to a, such that the two curves visit
the same set of points. If such coupling exists, we choose a pair of disjoint
hulls, each of which contains some neighborhood of a or b in H, and stop
the two traces when they leave one of the two hulls, respectively. Before
these stopping times, the two traces are disjoint from each other. The joint
distribution of the two traces up to these stopping time should agree with
that of § and ~ discussed in the last paragraph up to the same stopping
times. The Girsanov Theorem suggests that this distribution is absolutely
continuous w.r.t. that of two independent chordal SLE, traces (one from
a to b, the other from b to a) stopped on leaving the above two hulls.
And the Radon—-Nikodym derivative is described by a two-dimensional local
martingale, which has the property that when one variable is fixed, it is a
local martingale in the other variable. This is the M (,-) in Theorem 4.1. It
is closely related with Julien Dubédat’s work about commutation relations
for SLE [3].

Using the M(-,-), we may construct a portion of the coupling up to cer-
tain stopping times. To construct the global coupling, the difficulty arises
when the two hulls collide, and the absolute continuity blows up after that
time. In fact, we can not expect that the global coupling we are looking
for is absolutely continuous w.r.t. two independent SLE. Instead, the cou-
pling measure will be the weak limit of a sequence of absolutely continuous
coupling measures. Each measure in the sequence is generated from some
two-dimensional bounded martingale, which is the M,(-,-) in Theorem 6.1.
The important property of M, is that, on the one hand, it carries the in-
formation of M as much as we want; on the other hand, it is uniformly
bounded, and remains to be a martingale even after the two hulls collide.
So M, can be used as the Radon—Nikodym derivative to define a global
coupling measure.

It is known that, for x > 8, the chordal SLE,; trace is not reversible [15].
So far the reversibility for x € (4,8) is still unknown. Although the results
about martingales in this paper hold for all x > 0, the argument in the
last step of the proof essentially uses the property that, for x € (0,4], the
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chordal SLE, trace does not touch the boundary other than the initial and
end points.

The technique developed in this paper may have other usage. For example,
it is used in [15] to prove the Duplantier’s duality conjecture about SLE. It
may also be used to study the reversal of the trace of other variations of
SLE, for example, SLE(k, p) [5], continuous LERW [14] and annulus SLE
[15, 16].

This paper is organized in the following way. In Section 2 we give the
definition of the chordal SLE and some other basic notation, and then
present the main theorem of this paper. In Section 3 we study the rela-
tions of two SLE that grow in the same domain. In Section 4 we present
the two-dimensional local martingale M, and check its property by direct
calculation of stochastic analysis. In Section 5 we give some stopping times
up to which M is bounded. And at the end of Section 5 we give a detailed
explanation of the meaning of M. In Section 6 we use the local martingale
to construct some two-dimensional bounded martingale M,. In Section 7
we use M, to construct a sequence of coupling measures. The limit of these
measures in some suitable sense is also a coupling measure. We finally prove
that, under the limit measure, the two SLE, traces coincide with each other.

2. Chordal Loewner equation and chordal SLE. Let H={z€ C:Imz >
0} denote the upper half complex plane. If H is a bounded closed subset of
H such that H\ H is simply connected, then we call H a hull in H w.r.t. co.
For such H, there is a unique ¢g that maps H\ H conformally onto H such
that g (z) =2+ £+ 0(1/2?) as z — oo for some ¢ > 0. Such c is called the
half-plane capacity of H, and is denoted by hcap(H).

PROPOSITION 2.1. Suppose Q) is an open neighborhood of xg € R in H.
Suppose W maps Q conformally into H such that, for some r >0, if z —
(xg —ryxo + 1) in Q, then W(z) — R. So W extends conformally across
(xo — ryxg + 1) by the Schwarz reflection principle. Then for any & > 0,
there is some § > 0 such that if a hull H in H w.r.t. oo is contained in
{z€H:|z— x| <}, then W(H) is also a hull in H w.r.t. 0o, and

[heap(W(H)) — W' (zo)* heap(H)| < e[ heap(FT)].
ProOOF. This is Lemma 2.8 in [4]. O

For a real interval I, let C(I) denote the real-valued continuous function
on I. Suppose £ € C(]0,T)) for some T € (0,400]. The chordal Loewner
equation driven by £ is as follows:

2

(2.1) Orp(t, z) = o.2) —€@)’

©(0,2) = z.
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For 0 <t < T, let K(t) be the set of z € H such that the solution ¢(s,z)
blows up before or at time ¢t. We call K(¢) and ¢(¢,-), 0 <t < T, chordal
Loewner hulls and maps, respectively, driven by £. Then for each t € [0,T),
©(t,-) maps H \ K(t) conformally onto H. Suppose for every ¢ € [0,T),
- ; -1
B(t) = LI o(t,-)" (z) e HUR

exists, and 3(t), 0 <t < T, is a continuous curve. Then for every ¢ € [0,T),
K(t) is the complement of the unbounded component of H \ 3((0,¢]). We
call § the chordal Loewner trace driven by £. In general, such trace may not
exist.

We say (K (t),0<t<T)is a Loewner chain in H w.r.t. oo, if each K(t)
is a hull in H w.r.t. co; K(0) =@; K(s) & K(t) if s <t; and for each fixed

€ (0,7), the extremal length [1] of the curve in H\ K (t+¢) that disconnects
K(t+¢)\ K(t) from oo tends to 0 as € — 0T, uniformly in ¢ € [0, a]. If u(t),
0<t<T,is a continuous (strictly) increasing function, and satisfies u(0) =
0, then (K(u=%(t)),0 <t <u(T)) is also a Loewner chain in H w.r.t. oo,
where u(T) :=supu([0,7")). It is called the time-change of (K (t)) through
u. Here is a simple example of the Loewner chain. Suppose (3(t), 0 <t < T, is
a simple curve with 4(0) € R and §(t) € H for t € (0,7T). Let K(t) = 3((0,t])
for 0<t<T.Then (K(t),0<t<T)is a Loewner chain in H w.r.t. co. It is
called the Loewner chain generated by (3.

If Hy C Hy are two hulls in H w.r.t. oo, let Hy/H; := @, (H2 \ Hy). Then
Hjy/Hy is also a hull in H w.r.t. 00, ¢,/ = ¢H, ocpl_ﬁ, and hcap(Hz/Hy) =
hcap(Hsz) — heap(Hy). If Hy C Hy C Hj are three hulls in H w.r.t. oo, then
Hg/Hl C Hg/Hl and (Hg/Hl)/(Hg/Hl) = H3/H2.

PROPOSITION 2.2. (a) Suppose K(t) and p(t,-), 0<t<T, are chordal
Loewner hulls and maps, respectively, driven by § € C([0,T)). Then (K (t),0 <
t <T)is a Loewner chain in H w.r.t. 0o, pg ) = ¢(t,-), and hcap(K(t)) = 2t
for any 0 <t <T. Moreover, for everyte[0,T),

(2.2) {emy= () Kl+eo)/K(®).
e€(0,7—t)

(b) Let (L(s),0 <s<S) be a Loewner chain in H w.r.t. co. Let v(s) =
hcap(L(s))/2, 0 < s < S. Then v is a continuous increasing function with
w(0)=0. Let T =v(S) and K(t) = L(v™'(t)), 0 <t <T. Then K(t),0<t <
T, are chordal Loewner hulls driven by some & € C([0,T)).

PrOOF. This is almost the same as Theorem 2.6 in [4]. O

Let B(t) be a (standard linear) Brownian motion, x € (0,00), and &(t) =
VEB(t), 0 <t <oo.Let K(t) and p(t,-), 0 <t < oo, be the chordal Loewner
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hulls and maps, respectively, driven by £. Then we call (K (t)) the standard
chordal SLE,. From [9], the chordal Loewner trace (), 0 <t < oo, driven
by £ exists almost surely. Such (3 is called the standard chordal SLE, trace.
We have (3(0) =0 and limy_. 5(t) = co. If Kk € (0,4], then ( is a simple
curve, 3(t) € H for t >0, and K (t) = 3((0,t]) for t > 0; if xk € (4,00), then
is not a simple curve. If x € [8,00), then 3 visits every z € H; if & € (0,8),
then the Lebesgue measure of the image of 3 in C is 0.

Suppose D ; C is a simply connected domain, and a # b are two prime
ends [1] of D. Then there is W that maps (H; 0, co) conformally onto (D;a,b).
We call the image of the standard chordal SLE, under W the chordal SLE,
in D from a to b, which is denoted by SLE,(D;a — b). Such W is not
unique, but the SLE,(D;a — b) defined through different W have the same
distribution up to a linear time-change because the standard chordal SLE
satisfies the scaling property. The main theorem in this paper is as follows.

THEOREM 2.1. Suppose k€ (0,4], f1(t), 0 <t < oo, is an SLE,(D;a —
b) trace, and (5(t), 0 <t < oo, is an SLE.(D;b— a) trace. Then the set
{P1(t):0 <t < oo} has the same distribution as {F2(t):0 <t < oco}.

3. Ensemble of two chordal Loewner chains. In this section we study the
relations of two chordal Loewner chains that grow together. Some computa-
tions were done in [3, 4, 5] and other papers. We will give self-contained ar-
guments for all results in this section. Suppose K;(t) and ¢;(t,-), 0 <t < S5},
are chordal Loewner hulls and maps, respectively driven by ¢; € C([0,5;)),
j=1,2. Assume that for any ¢; € [0,51) and t2 € [0,52), Ki(t1) N Ka(t2) =
@, then Ki(t1) U Ka(te) is a hull in H w.r.t. co. Fix j # k € {1,2} and
to € [0,S). For 0 <t <Sj, let

(3.1) K, (t) = (K;(t) U Ki(to))/ Kk (to) = wx(to, K;(t)).

Since @ (to,-) maps H\ Kg(ty) conformally onto H, so from conformal in-
variance of extremal length, (K (t),0 <t < S;) is also a Loewner chain
in H w.r.t. co. Let v, (t) = hcap(K 4, (t))/2 for 0 <t < S;j, and Lj4,(t) =
K, (v;tlo (t)) for 0 <t < Sj+, :=vj+,(S;). From Proposition 2.2, L;,(t), 0 <
t < Sj4,, are chordal Loewner hulls driven by some n;, € C([0,S;4,)). Let
Yjto(t, ), 0 <t < Sjy,, denote the corresponding chordal Loewner maps. Let
&jto (8) = Mjto (Vj,10 (1)) and @1 (t,+) = ;10 (V)20 (t),-) for 0 <t <.S;. Since
Yt (t,) = PL; 1) for 0 <t <S54, 50 @i (t,-) = Prc; (1) for 0 <t < Sj
We use 01 and 0, to denote the partial derivatives of ¢;(-,-) and ¢j 4 (-,)
w.r.t. the first (real) and second (complex) variables, respectively, inside the
bracket; and use Jy to denote the partial derivative of ;4 (-,-) w.r.t. the
subscript tg.
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Fix j# ke {1,2},t€10,5;) and s € [0, Sk). Since @i (s, ) = P, (s)> @5 (t,) =
K1) Pis(t) = @K, ) and pr(s,) = @K, (s), so from (3.1), for any
z € H\ (Kj(t) U Kj(s i}

(3.2) PK; ()UK (s)(2) = Prt(8, 05 (8, 2)) = @j,s(t, ok (s, 2))-

Fix € € (0,5; —t). Since Kj (1) = (K;(r) U Ki(s))/Kj(s) for r € [0,5;), s
L s(vjs(t+¢)) _ K;(t+e) _K; i(t+¢e) U Kg(s)
5.5 (Vis (1)) Kjs(t) K;(t) U Ky (s)

(3.3) = K, (U, (s) (K (t +€) \ Kj(t))
= k(s Kj(t +¢)/K;(t)).
From Proposition 2.2 and (3.3), we have

(3.4) {6}y = Kt +e)/K;(1)
e>0
and
(35)  {&s(0)} = {mjs(vs ()} = () Ljs(vjs(t +€))/Ljs(vss(t))
e>0
(36) - NG+ DK@/ (K@ UK.
e>0
From (3.3)-(3.5), we have
(3.7) &j.s(t) = ort(s,65(t)).

From Proposition 2.2 again, we have hcap(K;(t+¢)/K;(t)) = 2¢ and
heap(Lj,s(vjs(t+€))/Ljs(vj,5() = 2(vjs (E + €) — vjs(£))-

So from Proposition 2.1 and (3.3), we have

(3.8) V) (1) = 02 01.4(s,&5(1))°.
Since ¢ s(t,2) =1} s(vjs(t), 2), so for fixed s € [0,5%), (t,2) — @;s(t,2) is
C1@ differentiable, where the superscript “a” means analytic, and

2,0_;,5(t)
T (P 3 RO 3)
__ 20:0k4(5,85(1)?
a (pj,s(t7z) - @k,t(sﬂfj(t)) .
From (3.2), we see that (s,t,2) — ¢;s(t,2) is Cb1@ differentiable. Differen-
tiate (3.9) using 0., and then divide both sides by 0.¢; s(t,2). We get

-2 achk,t(s’ gj (t))2
(#5,5(t,2) — pre(s,&5(1)))*

(3.9)

(310) o1 ln(az(-ﬂj,s (t7 Z)) =
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Differentiate (3.10) using 0,. We get
82290]'75(15, 2) _ 482‘Pk,t(37§j(t))2 024055, 2)
(3.11) ) - .
9:05,5(t, ) (¢5,5(t, 2) — pre(s,€5(1)))
Differentiate (3.11) using 0,. We get
83909',3@7 Z)) _ 48z90k,t(87 gj(t))2 8z2‘pj,s(tv Z)
02pj,5(t,2) (@1.5(t,2) — pre(s,&5(1)))3

o 12 azgpk,t(sv gj(t))2 8z90j,s(t7 Z)2
(('pj,S(tv Z) - Spk,t(&gj(t)))él ‘

8182<
(3.12)

LEMMA 3.1. For any j# k€ {0,1}, t€[0,5;) and s € [0,Sk), we have
(3.13)  Downe(s,&(1) = =302 pnu(s,&5(1));

(3.14) 9 Ozpra(s,§5(t) 1 <5§¢k7t(8,€j(t)))2 4 Bora(s, &)
az(pk,t(s7£j(t)) 2 az(pk,t(s7£](t)) 3 82(10k,t(87£j(t))
ProoF. Differentiating both sides of the second “=” in (3.2) w.r.t. ¢,
we get

Dopr,t(s,05(t, 2)) + 0= 01,4 (s5, 05 (t, 2)) Orp5(t, 2) = D1pj,(E, i (5, 2))

for any z € H\ (K;(t) U Kj(s)). So from (2.1), (3.2) and (3.9),
20.08,4(5,§5(t)° _ 20:014(s, 94(t,2))
Prt(8,05(t,2)) = ra(s, &) wj(t,2) = &;(E)
for any z € H\ (K;(t) U Ki(s)). Since ¢;(t,-) maps H\ (K;(t) U Kj(s)) con-
formally onto H \ K} ((s), so for any w e H\ K} (s),
28290k,t(87£j(t))2 o 28z(10k,t(87w)

Pr(s,w) = (s, &) w—g(t)

In the above equation, let w — §;(¢) in H \ K (s). From the Taylor expan-
sion of ¢y +(s,-) at &;(t), we get (3.13). Differentiating (3.15) using 0., we
get

Qor,i(s,05(t,2)) =

(3.15)  Ooprt(s,w)=

- 2 82(10k,t(87 5] (t))2 82(10k,t(87 ’(U)
(Pr,t(s,w) — @r(s,€5(1)))?
o 262(10k,t(87w) 28z(10k,t(87w)
w —&;(t) (w—¢&(t))?
Let w — &;(t) in H\ Ky +(s), then we get (3.14) from the Taylor expansion.
(]

1)) az‘pk,t('s’ w) =
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4. Two-dimensional continuous local martingale. Let x € (0,4] and z1 <
x9 € R. Let X (t) and X5(t) be two independent Bessel process of dimension
3 — 8/k started from (xg —x1)//k. Let T; denote the first time that X;(¢)
visits 0, which exists and is finite because 3—8/x < 1. For j =1,2,let Y;(t) =
VEX(t), 0 <t <Tj. Then there are two independent Brownian motions
B (t) and Bs(t) such that, for j =1,2 and 0 <t <1Tj,

—4

Yy(s)

Yi(t) = (e ex) + ()R + [

Fix j #k € {1,2}. For 0<¢ <Tj, let

gj(t):xj+\/EBj(t)+(—1)j/0 .

p;(t) =xp — (—1) /Ot Yf(s) ds.

Then &;(0) =z, p;(0) =z and &;(t) —p;(t) = (—1)7Y;(t), 0 <t < Tj. Thus,

k—0 2dt
RO T AN W Ty

for 0 <t <T. Let K;(t) and ¢;(t,-), 0 <t <Tj, denote the chordal Loewner
hulls and maps driven by §;(t), 0 <t <Tj. Then (K;(t),0 <t <Tj) are an
SLE(k,x — 6) process [5] started from x; with force point at xy; T} is the
first time that x, is swallowed by K;(t); and ¢;(t,x;) =p;(t), 0 <t <Tj. It
is well known (e.g., [3]) that after a time-change, (K;(t),0 <t <T}) has the
same distribution as a chordal SLE, (H;x; — xj). Since x <4, so there is a
crosscut (;(t), 0 <t <Tj, in H from z; to xy, such that K;(t) = 3;((0,1])
for 0 <t < T} [9]. Here a crosscut in H from a € R to b € R is a simple curve
B(t), 0 <t <T, that satisfies 3(0) =a, 3(T) =0, and f(t) e Hfor 0 <t <T.

For j = 1,2, let (F/) denote the filtration generated by (B;(t)). Then (&)
is (F})-adapted, and T} is an (F})-stopping time. Let

(4.1) d&;(t) =VkdBj(t)

D= {(tl,tz) € [O,Tl) X [O,Tg) ZKl(tl) N KQ(tg) = @}

For 0 <ty < T}, let Tj(t;) € (0,7}] be the maximal such that K;(t) N Ky (ty) #
@ for 0 <t < Tj(ty). Now we use the notation in the last section. Let
(ti,t2) € D. Since g (trs-) = Py, (1) 50 Phot; (k) maps H\ Ky, ()
conformally onto H. By the Schwarz reflection principle, py ¢, (tx,-) extends
conformally to EKk,tj(tk)7 where for a hull H in H wa.t. oo, ¥g =C\
(HU{z:z€ H}U[inf(HNR),sup(H NR)]) (cf. [17]). For j # k € {0,1} and
h € Z>o,let Ajp(t1,t2) = OQQDW (tr,&;(tj)). The definition makes sense since
&(ty) € EKk:,tj (t,)- Moreover, we have A;j, € R for any h > 0 since pg ¢ (g, -)
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is real valued on a real open interval containing &;(t;). From (3.2), we see
that Ajo(t1,t2) = @, (t)UKa () (B5(t5)), 5 =1,2. Since K;(t1) lies to the left
of Ka(ta), so A1p(t1,t2) < Agp(ti,t2). Since wpy, (tr,-) maps a part of the
upper half plane to the upper half plane, so A;;(t1,t2) >0, j =1,2. For
(tl,tQ) € D, define E(tl,tg) = Ag,o(tl,tg) — Al,o(tl,tQ) >0,

t1,t9) Ao 1 (11,1t A1 1(t1,t9) A1 (11,
(4.2) N(t1,t2) = A1ty 02)Aza(tyta) _  Ara(tt)Asa(tite)

E(t1,t2)? (Ago(t1,t2) — A1 o(t1,t2))?

and

M(t1,t2)

(4.3)
(U0 [ Pt

where

(4.4) a=a(k) = 62_%%, A=Ak) = W

Note that M (t1,0) = M (0,t2) =1 for any 0 <t <Tj and 0 <t9 < T5.

REMARK. If k< 8/3, that is, A > 0, then

t1 pto
exp(—)\/ 2N(31,32)2 dssy d31>
o Jo

is the probability that in a loop soup [7] in H with intensity A, there is no
loop that intersects both Ki(t1) and Ka(t2).

THEOREM 4.1. (i) For any fived (F?)-stopping time to with to < T,
(M (t1,82),0 <ty <Ti(f2)) is a continuous (F}, x fé)tlzo—local martingale,
and

81M o (3 . E) (<A172 + 2A171 ) _ 2 )
M ¢ 5 2 A Aso— A0/l pi(t) —&i(t)
" 0B (t1)
N

(ii) For any fized (F})-stopping time t, with t; < Th, (M(t1,t2),0 <ty <
Ty(t1)) is a continuous (ft—ll X FE )ty>0-local martingale, and

C (e
(F1,t2) 2 A1 Ay —Azp

M
o E?Bg(tg)'

NG

N ;)
(t1,t2) pa(ta) — &a(ta)
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PROOF. Since a4, (0,-) =idn, ¢1,0(t1,-) = @1(t1,-), and &(0) = x2, so
A10(t1,0) = @24, (0,&1(t1)) = &1 (1), A1 1(t1,0) =1,

Az 0(t1,0) = p1,0(t1,€(0)) = p1(t1,x2) = pi(t1),  A21(t1,0) = 01 (t1, 22).
Thus, N(t1,0) = 0.1 (t1,22)/(p1(t1) — &€1(t1))%. From the chordal Loewner
equation, we get

 =20.01(t1,m2)  —20.01(t1,72)
Oy Ozp1 (1, 2) = (p1(t1,m2) —&1(t1))?  (pa(ty) — &u(t1))?

From (4.1), we get

O (p1(t1) — &1 (t1)) = =061 (t1) + 20t

pi(t1) —&i(tr)

From the above two formulas and It6’s formula, we get

(4.7) LN (t1,0)*/(aN (t1,0)%) = 20&1(t1)/(pr(t1) — &1(t1))-

Now fix an (F7?)-stopping time 3 with #3 < Th. Then we get a filtra-
tion (F} x F? ~Ji>0. Since Bi(t) and Bs(t) are independent, so Bi(t) is an
(F} x F? )t>0 Brownian motion. Then T (%) is an (F} x F? - Ji>0-stopping
time, Aj,h(t t2), j=1,2, E(t,t2), N(t,t2) and M(t,t2) are deﬁned for t €
[0,T1(f2)). From the chordal Loewner equation and (3.2), ¢y, (t,-) and
©a1(t2,), 0 <t <Ti(ta), are (FL x ]-'2 )e>o-adapted. Since A, h(t to) =
Mipa, t(fg,&( )), so from Itd’s formula, (Al,h(tl,t2) 0 <t; <Ti(tz)) satisfies
the (F} x F? - Jt>0-adapted SDE:

O1 A (t1,t2) = Ay g1 (1, t2) 061 (t1)

+ <30 Moo, (t2,&1(t1)) + gA1,h+2(75,t2)> oty.

From (3.9) and (3.10), we have

2411 (t1,t2)?

O1A20(t1,t2) = oty

E(t1,t2)

(4.9)

O Aza(ti,te)  2414(tto)° ot

Az 1(th,t2) BE(t1,t2)? '
From (4.8), (4.9) and Lemma 3.1, we have
K

(4.10) A0 =A110& () + <§ - 3> A1,20t
and

A1 Ao 1 [Ap)\? ko 4\ Az
am G =g on (3 (52) +(5-5) 1) on.
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where “(t1,t2)” are omitted. Since E = Ay — A; o, from (4.9) and (4.10),
we have
i

2A 1 K
(4.12) OE=-A1, 061 (t1) + ( I + (3 - 5)141,2) otq.

Let C, = Ay, for h € Z>¢. From (4.9)-(4.12) and Itd’s formula, we have
N (O, 201> (1 2 o1 (13)
= (2 agt)+(8—3r) (=2 —~. 22 ) oty

aNa <01 g )+ @3- - )0
The above SDE is (F} x fé)tzo—adapted. Now (4.7) is also an (F} x -7‘}22)1&20-
adapted SDE since B (t) is an (F} x .}%)tZO—Brownian motion. Thus, from
(4.1), (4.7), (4.13) and Itd’s formula, we have

O1 (N (t1,b2) /N (t1,0))*

a(N(t1,t2)/N(t1,0))*

Co(ty,t2) | 2C1(t1,12) 2

(4.14) B (Cl(tl7£2) * E(ti,t2)  pi(t) —51(t1)>\/EaBl(tl)

(4.13)

1 Oy(ty,t0)? 1 Cg(tl,tg))
+(8 3H)<4 Ci(ti,t2)?> 6 Ci(ti,t2) dt1.

Since Cj(t1,t2) = &y, (t2,&1(t1)), s0 00 (t1,t2) = 01 Doy, (ta, &1 (1)),

and
((Go1oy 1

(t1,t2) 12

_ éaz(ag/az)m,m (t2,&1(11)).

(02/02) @24, (t2,1(t1))?

From (3.11) and (3.12), we have

—[(8?/0. ta,&1(t))?] = —=— :
Bt [(07/0:)pat (t2,&1(t1))7] B )
a—h[az(az/az)(pztl (t27§1(t1))] - ( E3 - E4 ) (tl’tz).
From the above three formulas, we get
52<EC_22_1@> :% = 2N (t1,t2)°.
1706 Ol BT L ’

Since a4, (0,-) = idm, so Moy, (0,-) =0 for j > 2. Thus, Cy(t1,0) =
03(751,0) =0. So
Co(ti,t2)> 1 Cs(ty,t2)

4.15 ——-
(4.15) Ci(t1,t2)?> 6 Ci(ty,ta)

t2
:/ 2N(t1,82)2 dSQ.
0

-
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Then (4.5) follows from (4.3)—(4.4) and (4.14)—(4.15); (4.6) follows from the
symmetry. [

Now we make some improvement over the above theorem. Let 5 be an
(F2)-stopping time with o < Th. Suppose R is an (F} x .%)tzo-stopping
time with R < T1(f2). Let Fgrgz denote the o-algebra obtained from the
filtration (F} x .7-;—22)t20 and its stopping time R, that is, & € Fpg, iff for
any t >0, EN{R <t} € F} ><.7-;—22. For every t >0, R+t is also an (F} x
%)tzo—stopping time. So we have a filtration (Fpi¢z,)i>0. Since (&1(t))
and (py(t)) are (F} x %)tzo—adapted, so (&1(R4+1),t>0), (p1(R+1),t>0),
(p1(R+t,-),t>0)) and (K1 (R+t),t > 0) are (Fry4 7, )i>0-adapted. Suppose
I €[0,t5] is F z,-measurable. From I <t; we have T1(I) > Ti(t2) > R. Then
o1 1(R+1t,-) and @9 pit(1,-) are defined for 0 <t <Ty(I) — R.

LemMMA 4.1, Ty(I) — R is an (Fryiz,)i>0-stopping time and (¢1,7(R +
t,-),0 <t <T1(I) = R) and (p2,r4(1,-),0 <t <T1(I) = R) are (Fpyrz,)e=0-
adapted.

Proor. Since T1(I)— R > tifft Kij(R+t)NKy(I) = @, and that (¢ (R+
t,-)), and (K1(R+1t)) are Fpyyj,-adapted, so from (3.2), we suffice to show
that @([,-) is Fpz,-measurable. Fix n € N. Let I, = [nI]/n. For m € NU
{0}, let &,(m) = {m/n < I, < (m+1)/n}. Then &,(m) is Fg z,-measurable,
and I,, =m/n on &,(m). Since m/n <ty and I, = m/n on &,(m), so I,
agrees with (m/n) Aty on &,(m). Now (m/n) Aty is an (F7)-stopping time,
and *7:(2m/n)/\fg C *7:522 C Fri,- So @a((m/n) Ata,-) is Fgz,-measurable. Since
02(In,-) = pa((m/n) AN ta,-) on Ey(m), and &,(m) is Fpz,-measurable for
each m € NU{0}, so @a(Iy,) is Fpg,-measurable. Since @3(I,,-) — p2(I,)
as n — 00, 80 pa(I,-) is also Fpz,-measurable. Then we are done. [

Let Bff(t) = Bi(R +1t) — B1(R), 0 <t < co. Since Bi(t) is an (F} x
,fi)tZO—Brownian motion, so Bf(t) is an (Fgry4z,)i>0-Brownian motion.
Then (£ (R +1t)) satisfies the (Fry 7, )i>0-adapted SDE:

K —6
dé1(R+1t) = VrdB{{(t) + dt.
The SDEs in the proof of Theorem 4.1 still hold if ¢; is replaced by R+t, to
is replaced by I, and By (t;) is replaced by Bf¥(t;). The difference is that the
SDEs now are all (Fryz,)t>0-adapted. So we have the following theorem.

THEOREM 4.2. (i) Suppose ty is an (F?)-stopping time with ty < Ty.
Suppose R is an (F} x fé)tzo—stoppmg time with R <T(t2). Let I € [0,12]
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be Fri,-measurable. Then (M(R+1,1),0<t<Ti(I)— R) is a continuous
(Fret,)t>0-local martingale.

(ii) Suppose t is an (F})-stopping time with t; < Ty. Suppose I is an
(ft—ll X F£)i=0-stopping time with I < Ty(t1). Let R € [0,1] be Fy, ;-measurable.
Then (M(R,1+1t),0 <t <T3(R)—1) is a continuous (F, 14+)t>0-local mar-
tingale.

PrOOF. (i) follows from the above argument. (ii) follows from the sym-
metry. [

5. Boundedness. We now use the notation and results in Section 5.2 of
[17]. Let H be a nonempty hull in H w.r.t. co. Then ay = inf{H N R},
by =sup{HNR}, Xy =C\ (HU{z:2€ H}U|ay,by]), and H(H) is the set
of hulls in H w.r.t. co that are contained in H. From Lemma 5.4 in [17], any
sequence (K,,) in H(H) contains a subsequence (L,,) such that ¢r, Lo, VK
(converges locally uniformly) in Xz for some K € H(H). We now make some
improvement over this result. Let Qg = H NR. Then Qg is a closed subset
of [ag,bp]. Let

E*HZEHU([CLH,Z)H]\QH):C\(HU{EZZEH}UQH),

which may strictly contain X . For any K € H(H), ¢k extends conformally
to 37, by the Schwarz reflection principle, and ¢/ (x) > 0 for any z € R\ Qg
from (5.1) in [17], so ¢ preserves the order on R\ Qp.

LEMMA 5.1. Suppose (K,,) is a sequence in H(H). Then it contains
some subsequence (Ly,) such that or,, LN oK in Xy for some K € H(H).

PROOF. From the argument after Corollary 5.1 in [17], there is My >0
such that |pg(z) — z| < My for any K € H(H) and z € Y. After the
extension, we have |px(z) — z| < My for any K € H(H) and z € ¥};. So
{¢K, (2) —z:n € N} is a normal family in X7};. Then (K,) contains a sub-

sequence (L) such that ¢, (2) — 2z Lo, f(z) in ¥}, for some f that is ana-
lytic in ¥%. So ¢r,, &g in ¥, where g(z) := z + f(z) is analytic in ¥7};.

From Lemma 5.4 in [17], we may assume that ¢ Lu, ¢k in X for some
K € H(H). Thus, g = ¢k in Y. Since they are both analytic in X%, so

g=¢Kk in ¥} . Thus, ¢r,, Lu, vr in X3, O
LEMMA 5.2. Ifyi <y2<am or y1 >y2 >bm, then ¢y (y1) > ¢’y (y2).

ProOF. This follows from differentiating (5.1) in [17] for z € R\ [cq, dn],
and the fact that ¢ is increasing on (—oo, ag) and (bg, 00), and maps them
to (—oo,cpr) and (dg,0), respectively. [



14 D. ZHAN

Let HP denote the set of (Hy, Hs) such that H; is a hull in H w.r.t. oo
that contains some neighborhood of z; in H, j =1,2, and Hy N Hy = @.
Let (Hy,Hz) € HP. Then by, < ap,, H1 U Hy is a hull in H w.r.t. co, and
Quum, = Qm, YQm, Clam,,bu,]Uam,,br,]. Let T;(Hj) be the first time
that K;(t) "H\ H; # @, j =1,2. Then Tj(H;) is an (F])-stopping time,
0<T;(H;)<Tj,and K;(t) C H; for 0 <t <T;(H;). Thus,

(5.1) T;(H;) =heap(K;(Tj(H;)))/2 < hcap(H;)/2.

THEOREM 5.1.  For any (Hy,Hs) € HP, there are Cy > Cy > 0 depend-
ing only on Hy and Hs such that M(t1,te) € [C1,Cs] for any (t1,t2) €
[0, T (H1)] x [0, T2(H2)]-

PRrOOF. Let (Hy,Hs) € HP and H = H; U Hy. Throughout this proof,
we use Cp, n € N, to denote some positive constant that depends only on
H; and Hj. From (4.3) and (5.1), we suffice to show that for some Cy >
C3>0, N(tl,tg) S [Cg,C4] for (tl,tg) S [O,Tl(Hl)] X [O,TQ(HQ)]. Fix (tl,tg) S
[0,T1(H1)] x [0,T2(H2)]. First suppose t1,t2 > 0. Fix j # k € {1,2}. For any
sj €10,t;), from (3.4) we have &;(s;) € K;(t;)/K;(s;), so

fj(sj) € [aKj (tj)/Kj(sj)s bKj (tj)/K; (Sj)]
C lere; )75 (55)> A (1)1 655)) C 185> A 1))

where the second and third inclusions follow from Lemma 5.2 and Lemma
5.3 in [17]. Let s; —t;. We get &;(t)) € [ck; (1), dK;(t;)]- For s; € [0,1;), from
(3.6) and (3.7),

Ajo(sjrti) = Pr,s; (L &5(85)) € (K (t) U Ky(tr)) /(K (s5) U K (tk)),

which implies that Ajp(Sj,tk) € [CKj(tj)UKk(tk)7dKj(tj)UKk(tk)] C cm,dy]. Let
sj —tj. We get Ajo(tj,tx) € [cu,dn]. This also holds for Ay o(t;,tx). Thus,

(5.2) \E(tj,tr)| = |Aj0(tj te) — Apo(ts, te)| < dg —cu.

Fix ¢1,q2,71,m2 € R with r; < apg, <bmg, <q1 <q2 <amg, <bg, <ry. From
Lemma 5.1, there are Cg > C5 > 0 such that, for x = q1,q2,71,72,
020K, ()UK (t2) (T), Oz0p1(t1, ) and 0,2 (t2,x) all lie in [Cs, Cg]. Fix j #k €
{1,2}. From (3.2) there are Cg > C7 > 0 such that, for x = q;,7;, 0., (tr,
pj(tj,x)) € [C7,Cs]. Since [ag; (1), bk, (t;)] C lan;,bu;], so rj is disconnected
from g; in R by [ak, (), bx;(t;)]- Since p;(tj,-) = @, (t,), 50 @;(t;,75) is dis-
connected from ¢;(t;,q;) in R by [cx(¢,), drc; (1)) Since §;(t5) € [k, 1), i, (1))
so &(t;) lies between ¢;(t;,7;) and ¢;(t;,q;). Since r; and g; lie on the same
side of Kj(tx), so ¢;(tj,r5), &(t;), and ¢;(t;,q;) lie on the same side of
©j(ts, Ki(tr)) = Ky, (t). Since @ ¢ (tr, ") = PR, (1) SO from Lemma 5.2,
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020k, (th, &;(t;)) lies between 0.k ¢ (tk, ;5 (t5,75)) and Oz p 1, (th, 95 (5, q5))-
Thus,

(5.3) Aja(ty,tr) = Oxpm e, (tr, €(t5)) € [Cr, C].
From (3.2) and the above argument, we see that A; o(t;,tx) = @r.t; (tr, &;(t;))

lies between w1 yur, (1) (75) and Qi (1, Uk, (4, (q5) for j=1,2. Since ry <
q1 < g2 <712, SO

(pKl(tz)UKQ(tz)(rl) < @Kl(tl)UKz(tg)(ql) < @Kl(tl)UKz(tg)(q2) < @Kl(tl)UKz(tg)(Té)‘

From Lemma 5.1, there is Cg >0 such that 0,¢x, (4, )uK,(ts)(®) = Co for
x € [q1,q2]. So

(54) ‘E(t17t2)’ 2 ¢K1(t1)UK2(t2)(QQ) - le(tl)UKz(tg)(ql) 2 C9(Q2 - ql)
From (5.2), (5.3) and (5.4), we have Cy > C3 > 0 such that N(t1,t3) €
[C5,Cy] for (t1,t2) € (0,T1(Hy)] x (0,T5(Hs2)]. By letting ¢1 or to tend to
0, we obtain the above inequality in the case t1 or t5 equals to 0. So we are
done. [J

Now we explain the meaning of M(t1,t2). Fix (H;,Hs) € HP. Let u
denote the joint distribution of (£1(¢):0 <t <T)) and (&(t):0 <t < Ty).
From Theorem 4.1 and Theorem 5.1, we have [ M (Ty(H1),To(H2))dp =
E[M(Tl(Hl),TQ(HQ))] = M(0,0) = 1. Note that M(Tl (Hl),TQ(HQ)) > 0. Sup—
pose v is a measure on ‘7:%1(H1) X .7:%2(1{2) such that dv/dp = M(Ty(H;),T>(Ha)).
Then v is a probability measure. Now suppose the joint distribution of
(&1(t),0 <t <Ty(H1)) and (&(t),0 <t <Th(H2)) is v instead of u. Fix an
(F?)-stopping time t5 with f5 < Ty(Hz). From (4.1), (4.5) and the Girsanov
theorem [8], there is an (F} x .7-;—22 )-Brownian motion B (t) such that & (¢;)
satisfies the (F} x .?%)—adapted SDE for 0 <t <Ty(H;):

déi (t1) = V/kdBi(t)

K\ [ A12(t1,12) 24 1(t1,t2)
+ 3——>< e — )dt-
< 2)\A11(ti,t2)  Asgp(ti,t2) — Aio(ti,t2) !

From (4.10) and (5.5), we have

(6 — H)Al,l(tla 52)2 dtl
A o(t1,t2) — Aro(t1,t2)

Recall that Ajo(ti,t2) = @21, (f2,&1(t)) = &5 (f1) = N1 (V1,5 (f1)), and
Vi, (t) = Aq1(t1,t2)? [see (3.8)]. From (5.6), there is a Brownian motion

Bi(t;) such that

(56) dAL()(tl,t_g) = A171(t1,l?2)\/gd§1(t) +

(k—6)dsy
My (s1) = Azo(vy g (51),F2)

(5.7) dm 5, (s1) = VK dBi(s1) +
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Since Ag o(vy 7 (s1),12) = @15, (v, (51), E2(F2)) = Y15, (51, €2(F2)) and ¢y g, (s, ),
0 <s <y (T1(Hy)), are chordal Loewner maps driven by 7, z,(s), so the
chordal Loewner hulls Ly z,(s), 0 < s < vy g, (T1(H1)), driven by 7, z,(s) are
a part of the chordal SLE(k, k — 6) process started from 1, z,(0) = @2 (t2,71)
with force point at A270(Ul_7tl2(0)7£2) = &(t2). Thus, after a time-change,
it is a chordal SLE, in H from ¢o(f2,71) to &2(f2). Note that og(fa,-) ™
maps H conformally onto H \ 82((0,%2]), maps Ly z,(vy z,(t1)) onto Ki(t1) =
B1((0,t1]), and takes @a(te,z1) and &(t2) to x1 and [a(t2), respectively.
Thus, Bi(t), 0 <t <Ty(H;), is the time-change of a chordal SLE,, trace
in H\ B2((0,%2]) from x; to Ba(t2), stopped on hitting H\ H;. Similarly,
for any (F})-stopping time #; with #; < T1(Hy), fa(t), 0 <t < Th(Hy), is
a time-change of a chordal SLE, trace in H\ £1((0,1]) from 25 to (1(t1)
stopped on hitting H \ Hs.

6. Constructing new martingales.

THEOREM 6.1. For any (H{*,H3") € HP, 1 <m <mn, there is a con-
tinuous function M, (t1,t2) defined on [0,00]? that satisfies the following
properties: (1) My, =M on [0,T1(HT")] x [0,To(H5")] for m=1,...,n; (i)
M, (t,0) = M,(0,t) =1 for any t > 0; (iii) M.(t1,t2) € [C1,Ca] for any ti,te >
0, where Cy > C1 > 0 are constants depending only on H", j=1,2,1<m <
n; (iv) for any (F?)-stopping time ta, (M. (t1,t2),t1 > 0) is a bounded con-
tinuous (F x fi)tlzo—martmgale; and (v) for any (F})-stopping time t1,
(M. (t1,t2),t2 > 0) is a bounded continuous (,7-;—11 X FE )ts>0-martingale.

Proor. We will first define M, and then check its properties. The first
quadrant [0, 00]? is divided by the horizontal or vertical lines {x; = T;(H}")},
1<m<n, j=1,2, into small rectangles, and M, is piecewise defined on
each rectangle. Theorem 4.2 will be used to prove the martingale properties.

Let N,, :={k € N:k <n}. Write T]k for T](Hf), keN,,j=1,2.Let SC
Ny, be such that Uyeg[0, 71] x [0, 5] = U=, [0, TF] x [0, 7§], and Tpegk <
Y res k if §" C N, also satisfies this property. Such S is a random nonempty
set, and |S| € N,, is a random number. Define a partial order “<” on [0, 00]?
such that (s1,s2) = (t1,t2) iff 51 <t; and s < to. If (s1,82) =< (t1,t2) and
(s¢,82) # (t1,t2), we write (s1,82) < (t1,t2). Then for each m € N,,, there is
k € S such that ({7, T3") < (TF,T§); and for each k € S, there is no m € N,,
such that (TF,T%) < (T, T3").

There is a map o from {1,...,|S|} onto S such that if 1 <k < ky <|S|,
then

(6.1) Tl"(kl) < TIU(]@)7 T;(kl) > T;(k2).
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Define Tf(o) = T;(lsH_l) =0 and Tf(‘slﬂ) = T;(O) = 00. Then (6.1) still holds
for0§k1<k2§]5]+l.

Extend the definition of M to [0, 00] x {0} U{0} x [0, c0] such that M (¢,0) =
M(0,t) =1 for t > 0. Fix (t1,t2) € [0,00]?. There are k; € Njgj41 and ky €
Njg U {0} such that

(62) Ty <o <y gttt <y <y,
If ky < ky, let
(63) M, (t1,t2) = M(ty, t3).
It ky > ko + 1, let
M, (b, t2) = (M(T7*) )M (17520 7702

(6.4) (D T ) M, 15))
x (M(1y*) 1)

. -M(Tf(k1_2),T;(kl_l))M(Tlo(kl_l),T;(kl)))_l.

In the above formula, there are k1 — k9 + 1 terms in the numerator, and
k1 — ko terms in the denominator. For example, if k1 — ko = 1, then

M. (ty,t2) = M(Tf(k2)7t2)M(t1,T;(kl))/M(Tla(kz)’T;(kl)).

We need to show that M, (t1,t2) is well defined. First, we show that the
M(-,-) in (6.3) and (6.4) are defined. Note that M is defined on

s (k) (k)
Z:= |J 0,17 x[0,75].
k=0

If ky < ko, then t; < 77" < 77®2) and 1, < 9™ 5o (t1,t2) € Z. Thus,
M (tq1,t2) in (6.3) is defined. Now suppose k1 > ko + 1. Since t9 < T;(kQ) and
t1 < Tf(kl), SO (Tf(kz),tg), (tl,T;(kl)) € Z. It is clear that (Tf(k),T;(k)) €z
for ko +1 <k < k; — 1. Thus, the M(-,-) in the numerator of (6.4) are
defined. For ko <k <k —1, Tf(k) < Tf(k+1), SO (Tf(k),TQU(kH)) € Z. Thus,
the M(-,-) in the denominator of (6.4) are defined.

Second, we show that the value of M, (t1,t2) does not depend on the choice
of (k1,ke) that satisfies (6.2). Suppose (6.2) holds with (k1, ks2) replaced by
(kq,k2), and k| # ky. Then |k} — k1| = 1. We may assume k] = k1 + 1. Then
t1 = Tf(kl). Let M/ (t1,t2) denote the M, (t1,t2) defined using (K}, k2). There
are three cases.

Case 1. k1 < kll < ko. Then from (63), Mi(tl,tg) = M(tl,tg) = M*(tl,tg).
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Case 2. k1 = kg and k] — ko = 1. Then Tf(kz) = Tf(kl) =t1. So from (6.3)
and (6.4),

ML (t1,t5) = M(T{ ™ ) M (11, T5 ") /M (17 ) 19 )
= M(t,t2) = M. (t1,t2).
Case 3. k} > ki > ko. From (6.4) and that Tf(kl) =11, we have
M (t1,t2)
MY, i) (7™ 1) My 1) M, T )

- o(k o(ka+1 o(k1—1 o(k o(k o(k1+1
My )y o p ) T )

M@ )My Ty ) e, T
M(Tf’(kz),T;(kz-i-l)) o M(Tf(kl 1)7 TS (kl))

Similarly, if (6.2) holds with (ki, ko) replaced by (ki,k5), then M. (t1,t2)
defined using (k1,k%) has the same value as M(t1,t2). Thus, M, is well
defined.

From the definition, it is clear that for each k1 € N4, and kg € N|g/U{0},
M., is continuous on [Tlg(kl_l), Tlo(kl)] X [T;(kQH), Tlo(kQ)]. Thus, M, is contin-
uous on [0,00]?. Let (t1,t2) € [0,00]?. Suppose (t1,t2) € [0,77"] x [0, T4"] for
some m € N,,. There is k € N|g| such that (77", T3") =< (Tf(k),T;(k)). Then we
may choose k1 < k and kg > k such that (6.2) holds, so M, (t1,t2) = M (t1,t2).
Thus, (i) is satisfied. If t; =0, we may choose k1 =1 in (6.2). Then either
kl < kg or kg =0.If kl < kg, then M*(tl,tg) = M(tl,tg) =1 because tl =0.
If k5 =0, then

= M, (t1,t5).

M. (ty,t2) = M(TTO 1) M (ty, TS D) /(179 1§ W) =1

because Tlo( )=t =0. Similarly, M, (t1,t2) =0 if to =0. So (ii) is also sat-
isfied. And (iii) follows from Lemma 5.1 and the definition of M,.

Now we prove (iv). Suppose (t1,t2) € [0,00]% and to > \/1_, T5" = T;(l).
Then (6.2) holds with ko =0 and some k; € {1,...,|S|+1}. So k1 > ko + 1.
Since Tf(kQ) =0 and M(0,t) =1 for any ¢ >0, so from (6.4) we have

o(ka+1 o(ka+1 o(k 1 o(k1—1)
M(tl t2):M(T1(2+ ),T2(2+ ))M(Tl( 1— 1— ) tl,TQ ))
’ M(Tf(k2+1),T;(k2+2)) - M(TS U(kl 1) T o (k1 ))
The right-hand side of the above equality has no ts. So M, (t1,t2) = M, (tq,

m=113") for any to >\, T3". Similarly, M, (t1,t2) = M. (V51 11", 12)
for any t1 >/, 17"
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Fix an (F?)-stopping time fo. Since M, (-,f2) = M, (-,ta A (V1—q ),
and o A (V7_; T3") is also an (F?)-stopping time, so we may assume that
to <\ To". Let Iy =to. For s € NU{0}, define

Rs=sup{T{":m eN,,,Ty" > I,};
(6.5)
Isp1 =sup{Ty" :m e N, 15" < I,,T" > Rs}.

Here we set sup(@) = 0. Then we have a nondecreasing sequence (R;) and
a non-increasing sequence (I5). Let S and o(k), 0 <k <|S|+1, be as in the
definition of M,. From the property of S, for any s € NU {0},

(6.6) Ry=sup{TF:ke S, TF > I,}.

Suppose for some s € NU {0}, there is m € N,, that satisfies 75" < I5 and
T > Rs. Then there is k € S such that Tf =T, j=12 1t TS > I,

then from (6.6) we have Rs > le > T7", which contradicts that 77" > R;.
Thus, T§ < I,. Now T§ < I, TF > T/" > Ry, and T¥ > T3". Thus, for any
seNuU{0},

(6.7) Ioi1 =sup{Ty:k e S, T¥ < I, TF > R,}.

First suppose f3 > 0. Since t5 < \/J\_ T9" =Ty (0), so there is a unique
ka € Nig such that T;(kz) >ty > T;(k2+1). From (6.6) and (6.7), we have
R, = Tf(k2+s) for 0 <s<|S|—ko; Rs = Tf“s‘) for s > |S|—kq; Is = T;(k2+s)
for 1 <s<|S|—kg; and Iy =0 for s > |S| — ko2 + 1. Since Ry :Tf(kz) and
o < T;(kz), so from (i),

(68) M*(tl,t_g) = M(tl,t_g) for t € [O,RQ].

Suppose t1 € [Rs_1, Rs] for some s € Nig|—k,- Let k1 = ko +s. Then Tf(kl_l) <

ty <T7™) Since I, = Y"1 = 77" 6 from (6.4),
(6 9) M*(tly 52)/M* (Rs—la 7?2) = M(tla Is)/M(Rs—la Is)7

' for ¢; € [Re_1, Rs].
Note that if s > |S| — kg + 1, (6.9) still holds because Ry = Rs_1. Suppose
t1 > R,,. Since n > |S|— ko, so R, = Tf(‘SD =\1,—1 T7". From the discussion
at the beginning of the proof of (iv), we have
(6.10) M*(tl,fg) = M*(Rn,fg), for t; € [Rn,oo]
Ift3 =0, (6.8)—(6.10) still hold because all I, = 0 and so M, (t1,t2) = M(t1, I;)
M (t1,0) =1 for any t; > 0.

Let R_1 =0. We claim that for each s e NU {0}, Ry is an (F} x -7‘}22)1&20-

stopping time and I is Fp | z-measurable. Recall that Fr_ 3, is the o-

algebra obtained from the filtration (F} x .7-;—22 )e>0 and its stopping time
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Ry 1. Tt is clear that R_; =0 is an (F} x f%)tzo-stopping time, and Iy =ty
is F_, z,-measurable. Now suppose I is Fp_, z,-measurable. Since Iy <ty
and Rs_1 < Ry, so for any t >0, {Rs <t} ={Rs—1 <t} N&;, where

& = rn} (TP < LYU{T" <))
m=1

n
=N <U({T5”<q§fz}ﬂ{Q<Is})U{TF§t}>-
m=1 \qeQ

Thus, & € Fr,_, 5 V (F} x .7-}22), and so {Rs <t} € F} x .7-}22 for any t > 0.
Therefore, Ry is an (,7-}1 X .7-}22 )t>0-stopping time. Next we consider Is;. For
any h >0,

n

{Iiy1>hy= | ({h<T3" <L} N{T]" > R,})

m=1
=U (U({h<T2m<q<t2}ﬁ{q<ls})m{T{”>Rs}> € Fr. -
m=1 \qeQ

Thus, Is11 is Fpg, z,-measurable. So the claim is proved by induction.

Since to < \/1',_; T3" < T, so from Theorem 4.2, for any s € N,,, (M (Rs—1+
t,1,),0 <t <Ti(ls) — Rs—1) is a continuous (Fg, , 4+, )i>0-local martingale.
For m € N, if T9" > I, then T7" < T1(T3") <T1(I5). So from (6.5) we have
Rs < Ti(Is). From (6.9), we find that (M, (Rs—1 +t,t2),0 <t < Rs— Rs_1)
is a continuous (Fg, ,4.7,)t>0-local martingale for any s € N,,. From The-
orem 4.1 and (6.8), (M.(t,t2),0 <t < Rp) is a continuous (Fg,)s>o0-local
martingale. From (6.10), (M, (R, +1t,t2),t > 0) is a continuous (Fg, 4+, )t>0-
local martingale. Thus, (M, (t,t2),t > 0) is a continuous (F, z, );>o-local mar-
tingale. Since by (iii) M., (t1,t2) € [C1,C2], so this local martingale is a
bounded martingale. Thus, (iv) is satisfied. Finally, (v) follows from the
symmetry in the definition of (6.3) and (6.4) of M,. O

7. Coupling measures.

PROOF OF THEOREM 2.1. From conformal invariance, we may assume
that D =H, a =21 and b= xy. Let §;(t) and 3;(t), 0 <t <Tj, j=1,2, beas
in Section 4. For j = 1,2, let u; denote the distribution of (£;(t),0 <t < Tj).
Let = p1 X po. Then p is the joint distribution of &; and &», since they are
independent.

Let C=CU {oc} be the Riemann sphere with spherical metric. Let I's

denote the space of nonempty compact subsets of C endowed with the Haus-
dorff metric. Then F@ is a compact metric space. For a chordal Loewner trace
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B(t), 0<t<T, let G(B) :={B(t):0<t<T}els For j=1,2, let i denote
the distribution of G(f3;), which is a probability measure on I'z. We want to
prove that fi; = fie. Let i = fi1 X fig, which is the joint distribution of G((;)
and G(f2).

Let HP, be the set of (H1, Hs) € HP such that, for j =1,2, H; is a poly-
gon whose vertices have rational coordinates. Then HP, is countable. Let
(H",H3"), m € N, be an enumeration of HP,. For each n € N, let M (¢1,t2)
be the M,(t1,t2) given by Theorem 6.1 for (H{", H3"), 1 <m <mn, in the
above enumeration.

For each n € N, define v = (vf,v4) such that dv"/du = M} (00, 0).
From Theorem 6.1, M (c0,00) >0 and [ M (00, 00) dp = E[M(c0,0)] =
1, so V" is a probability measure. Then dv}/du; = E[M](c0,00)|F2] =
M} (00,0) = 1. Thus, v{ = p;. Similarly, v§ = p2. So each v™ is a coupling
of uy and ps.

For each n € N, suppose (('(t),0 <t < S}) and (¢5(t),0 <t < S%) have
the joint distribution ™. Let ’y]”(t), 0<t<S;, j=1,2, be the chordal
Loewner trace driven by (7. Let 0" = (vp, vy) denote the joint distribution of
G(77) and G(73). Since 'z x I' is compact, so (7", n € N) has a subsequence
(™ : k € N) that converges weakly to some probability measure v = (1, i)
on I'z xI';. Then for j =1,2, D]T-”“ — vj weakly. For n € N and j = 1,2, since
vi' = pj, so v = pj. Thus, v; = py, j=1,2. So vj, j=1,2, is supported
by the space of graphs of crosscuts in H. From Proposition 2.2, there are
¢ € C([0,51]) and (2 € C(]0, S2]) such that the joint distribution of G(v1)
and G(vy2) is 7, where 7;(t) is the chordal Loewner trace driven by (;(?),
j=1,2.

Now fix m € N. From Theorem 4.1, M (T (H{"),T>(H35")) is positive and
Fr. (Hm) X f%z(H?)—measurable, and [ M(T\(HT"),T2(H5"))du = 1. Define

1

V(m) ON .7-"}1 () % ‘7:12“2(H§”) such that dv(,,) /dp = M (T1(HT"), T2(H3")). Then
V(m) is a probability measure. From Theorem 6.1, if n > m, then

dv™ . n 1 2
.. = E[M (00, 00)|Fp, (gmy X Fiy(rizmy)

2
1y (1) *F 1y ()

= M (Ty(H"), To(H3")) = M(Ty(HT"), To(H3")).

Thus, v(,,) equals the restriction of 1™ to .7-1}1( Himy X .7-"%2 (=) if n>m.

For a chordal Loewner trace v(¢),0 <t < S, and a hull H in H w.r.t. 0 that
contains some neighborhood of v(0) in H, let Gy (v) :=={y(t):0<t < Ty} €
'z, where Ty is the first ¢ such that y(t) € H\ H or t= 5. Then Gp(y) C
G (7). Let i3, denote the distribution of (Gup (1), Gup (7)) Then Uy 18
determined by the distribution of ((}", () restricted to .7-"%1( ) X ]-“%2 (Hp)»

which equals v(,,) if n>m. Let v, = 17(%). Then 17("m) = V() for n >m.
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Let T(TLTZ) denote the distribution of (G(71*), G(v5*), Gap (1), Grp (73*)).
Then T(TLTZ) is supported by =, which is the set of (L1, Lo, F1, Fb) € I‘% such
that F; C L; for j =1,2. It is easy to check that = is a closed subset of F%.

Then (ny) has a subsequence (n}) such that 7'(n be) converges weakly to some

probability measure 7(,,) on =. Since the marginal of 7'(n n’;) at the first two
variables equals 17"2, and 7% — U weakly, so the marginal of 7(,,) at the first

two variables equals . Since the marginal of 7'(n rZ) at the last two variables

equals Dz;’fL ) which equals 7, if nj, > m, so the marginal of T(m) at the last
two variables equals /().

Let the Z-valued random variable (L1, Lo, F1, F3) have the distribution
T(m)- Then ¥ is the distribution of (L1, L2) and 7, is the distribution of
(F1, Fy). Note that 7, is supported by the space of pairs of curves (a1, )
such that, for j = 1,2, a; is a simple curve whose one end is x;, the other
end lies on OH]" NH, and whose other part lies in the interior of H;".
For j =1,2, since L;j = G(v;), so from the properties of = and ,,), we
have Fj = Gpm (7;), which means that (G (71), Gy (v2)) has the distri-
bution 7). Since the distribution of (G (71), Guy(72)) determines the
distribution of ((1,(2) restricted to .7-"%1( ) X ‘7'—72“2( Hipy» SO the distribution
of (¢1,(2) restricted to f%l(H{n) X ‘7'—72“2(H;”) equals V(. Since dv(y,)/du =
M (T (H"), T>(HY")), so from the discussion after the proof of Theorem 5.1,
for any (F?)-stopping time fo with fo < To(HYY), (71(t),0 <t < Ty (HT)) is
a time-change of a chordal SLE,; trace in H \ 72((0,%2]) from z; to ~2(t2)
stopped on hitting H \ H{".

Now fix an (F?)-stopping time £y with fo < T5. Recall that Ty (f2) is the
maximal such that 1 ([0, 77 (f2))) is disjoint from ~2([0,#2]). For n € N, define

R, =sup{T\(H"):m € N, to < Th(H3")}.

Here we set sup(@) = 0. Then for any ¢ >0,
{Bn <t} = () ({f2 > To(H3")} U{TV(HT") < t}) € i X T,

m=1

So R, is an (F} x .%)tzo-stopping time for each n € N. For m € N,,, let
0 =ty A To(HYY). Then 5 is an (F7?)-stopping time, and #' < Th(H).
From the last paragraph, we conclude that v, (¢), 0 <t <Tj(H{"), is a time-
change of a part of the chordal SLE,; trace in H\ 71((0,%5]) from z; to
Y2 (t5). Let & = {t2 < To(HY")} N{R,, = T1(H{")}. Since on each &, .
to =t5" and R, =T1(H{"), and {R,, >0} =Up,—1 Enms s0 11(1), 0 <t < R,
is a time-change of a part of the chordal SLE, trace in H \ 71((0,%2]) from
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x1 to ya(t2). Let Roo = V5oq Ry Then 71(t), 0 <t < Ry, is a time-change
of a part of the chordal SLE,; trace in H \ v1((0,%2]) from 21 to y2(t2).

For each n € N and m € N,,, if ¢35 < Ty(H3"), then T1(HY") < Ti(t2), so
R, < Ti(t3). Thus, Ry < T1(f2). If Ry < Ti(f2), then 41((0, Roo]) is dis-
joint from ~2((0,%2]), so there is (H{*, HY") € HP, such that 1 ((0, Ro]) and
72((0,%2]) are contained in the interiors of H{"* and HZ", respectively. Then
to < Th(HE") and R, < Roo < T1(H{"), which contradicts the definition of
Ry,. Thus, Ry =Ti(t2). So 1(t), 0 <t < Ti(t2), is a time-change of a part
of the chordal SLE,; trace in H\ 71 ((0,2]) from 21 to v2(t2). From the defi-
nition of T} (t2) we have v1(T1(t2)) € G(72). Thus, v1(t), 0 <t < Ti(t2), is a
time-change of a full chordal SLE,; trace in H \ 71((0,%2]) from x1 to v2(t2).
Since « € (0,4], so almost surely v1(T(t2)) = v2(t2). Thus, vy2(t2) € G(71)
almost surely.

For n € N and q € Qxg, let t59 = g A To(HE). Then each 57 is an (F7)-
stopping time with #2" < Tb. Since N x Q> is countable, so almost surely
Y2 (t5™) € G(y1) for every n € N and g € Q>¢. Since Q> is dense in Rxg,
72 is continuous, and G(v1) is closed, so almost surely for every n € N,
v2([0,T2(H%)]) € G(71)- Since To = /72 To(HY), so G(y2) C G(v1) almost
surely. Similarly, G(v1) C G(72) almost surely. Thus, G(v1) = G(72) almost
surely. Since for j = 1,2, the distribution of G(v;) equals the distribution of
G(B;), which is the SLE,, trace in H from z; to x3_;, so we are done. [
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