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We prove that the chordal SLEκ trace is reversible for κ ∈ (0,4].

1. Introduction. Stochastic Loewner evolutions (SLEs) are introduced
by Oded Schramm [11] to describe the scaling limits of some lattice models,
whose scaling limits satisfy conformal invariance and Markov property. The
basic properties of SLE are studied in [9]. There are several different versions
of SLE. A chordal SLE is defined in a simply connected domain, which is
about some random curve in the domain that grows from one boundary
point to another.

So far it has been proved that the chordal SLE6 is the scaling limit of
the explorer line of the site percolation on the triangular lattice with half
open and half closed boundary conditions ([13] and [2]); the chordal SLE8 is
the scaling limit of UST Peano curve with half free and half wired boundary
conditions [6]; the chordal SLE4 is the scaling limit of the contour line of the
two-dimensional discrete Gaussian free field with suitable boundary values
[12]; and the chordal SLE2 is the scaling limit of LERW started near one
boundary point, conditioned to leave the domain near the other boundary
point [17]. In [5], the SLE8/3 is proved to satisfy the restriction property.
From these results, we know that the chordal SLEκ trace is reversible for
κ= 6,8,4,2,8/3.

In [9], it is conjectured that the chordal SLEκ trace is reversible for all
κ ∈ [0,8]. Scott Sheffield proposed that the reversibility can be derived from
the relationship with the Gaussian free field [10]. In this paper we will prove
this conjecture for κ ∈ (0,4] using only techniques of probability theory and
stochastic processes. The main idea of this paper is as follows.

Suppose (β(t)) is a chordal SLEκ trace in a simply connected domain D
from a prime end a to another prime end b. From the Markov property of
SLE, for a fixed time t0, conditioned on the curve β([0, t0]), the rest of the
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2 D. ZHAN

curve (β(t) : t ≥ t0) has the same distribution as a chordal SLEκ trace in
Dt0 := D \ β([0, t0]) from β(t0) to b. Assume that the chordal SLEκ trace
is reversible. Then the reversal of (β(t) : t ≥ t0) has the same distribution
as the chordal SLEκ trace in Dt0 from b to β(t0). On the other hand, since
(β(t) : t ≥ t0) is a part of the SLEκ trace in D from a to b, so from the
reversibility, the reversal of (β(t) : t≥ t0) should be a part of SLEκ trace in
D from b to a. Suppose γ is an SLEκ trace in Dt0 from b to β(t0). From
the above discussion, if we integrate γ against all possible curves β([0, t0]),
we should get a part of the SLEκ trace in D from b to a, assuming that the
chordal SLEκ trace is reversible.

To prove the reversibility, we want to find a coupling of two SLEκ traces,
one is from a to b, the other is from b to a, such that the two curves visit
the same set of points. If such coupling exists, we choose a pair of disjoint
hulls, each of which contains some neighborhood of a or b in H, and stop
the two traces when they leave one of the two hulls, respectively. Before
these stopping times, the two traces are disjoint from each other. The joint
distribution of the two traces up to these stopping time should agree with
that of β and γ discussed in the last paragraph up to the same stopping
times. The Girsanov Theorem suggests that this distribution is absolutely
continuous w.r.t. that of two independent chordal SLEκ traces (one from
a to b, the other from b to a) stopped on leaving the above two hulls.
And the Radon–Nikodym derivative is described by a two-dimensional local
martingale, which has the property that when one variable is fixed, it is a
local martingale in the other variable. This is the M(·, ·) in Theorem 4.1. It
is closely related with Julien Dubédat’s work about commutation relations
for SLE [3].

Using the M(·, ·), we may construct a portion of the coupling up to cer-
tain stopping times. To construct the global coupling, the difficulty arises
when the two hulls collide, and the absolute continuity blows up after that
time. In fact, we can not expect that the global coupling we are looking
for is absolutely continuous w.r.t. two independent SLE. Instead, the cou-
pling measure will be the weak limit of a sequence of absolutely continuous
coupling measures. Each measure in the sequence is generated from some
two-dimensional bounded martingale, which is the M∗(·, ·) in Theorem 6.1.
The important property of M∗ is that, on the one hand, it carries the in-
formation of M as much as we want; on the other hand, it is uniformly
bounded, and remains to be a martingale even after the two hulls collide.
So M∗ can be used as the Radon–Nikodym derivative to define a global
coupling measure.

It is known that, for κ > 8, the chordal SLEκ trace is not reversible [15].
So far the reversibility for κ ∈ (4,8) is still unknown. Although the results
about martingales in this paper hold for all κ > 0, the argument in the
last step of the proof essentially uses the property that, for κ ∈ (0,4], the
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chordal SLEκ trace does not touch the boundary other than the initial and
end points.

The technique developed in this paper may have other usage. For example,
it is used in [15] to prove the Duplantier’s duality conjecture about SLE. It
may also be used to study the reversal of the trace of other variations of
SLE, for example, SLE(κ,ρ) [5], continuous LERW [14] and annulus SLE
[15, 16].

This paper is organized in the following way. In Section 2 we give the
definition of the chordal SLE and some other basic notation, and then
present the main theorem of this paper. In Section 3 we study the rela-
tions of two SLE that grow in the same domain. In Section 4 we present
the two-dimensional local martingale M , and check its property by direct
calculation of stochastic analysis. In Section 5 we give some stopping times
up to which M is bounded. And at the end of Section 5 we give a detailed
explanation of the meaning of M . In Section 6 we use the local martingale
to construct some two-dimensional bounded martingale M∗. In Section 7
we use M∗ to construct a sequence of coupling measures. The limit of these
measures in some suitable sense is also a coupling measure. We finally prove
that, under the limit measure, the two SLEκ traces coincide with each other.

2. Chordal Loewner equation and chordal SLE. Let H = {z ∈ C : Imz >
0} denote the upper half complex plane. If H is a bounded closed subset of
H such that H \H is simply connected, then we call H a hull in H w.r.t. ∞.
For such H , there is a unique ϕH that maps H \H conformally onto H such
that ϕH(z) = z+ c

z +O(1/z2) as z→∞ for some c≥ 0. Such c is called the
half-plane capacity of H , and is denoted by hcap(H).

Proposition 2.1. Suppose Ω is an open neighborhood of x0 ∈ R in H.

Suppose W maps Ω conformally into H such that, for some r > 0, if z→
(x0 − r,x0 + r) in Ω, then W (z) → R. So W extends conformally across

(x0 − r,x0 + r) by the Schwarz reflection principle. Then for any ε > 0,
there is some δ > 0 such that if a hull H in H w.r.t. ∞ is contained in

{z ∈ H : |z− x0|< δ}, then W (H) is also a hull in H w.r.t. ∞, and

|hcap(W (H))−W ′(x0)
2 hcap(H)| ≤ ε|hcap(H)|.

Proof. This is Lemma 2.8 in [4]. �

For a real interval I , let C(I) denote the real-valued continuous function
on I . Suppose ξ ∈ C([0, T )) for some T ∈ (0,+∞]. The chordal Loewner
equation driven by ξ is as follows:

∂tϕ(t, z) =
2

ϕ(t, z)− ξ(t)
, ϕ(0, z) = z.(2.1)
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For 0 ≤ t < T , let K(t) be the set of z ∈ H such that the solution ϕ(s, z)
blows up before or at time t. We call K(t) and ϕ(t, ·), 0 ≤ t < T , chordal
Loewner hulls and maps, respectively, driven by ξ. Then for each t ∈ [0, T ),
ϕ(t, ·) maps H \K(t) conformally onto H. Suppose for every t∈ [0, T ),

β(t) := lim
z∈H,z→ξ(t)

ϕ(t, ·)−1(z) ∈ H∪R

exists, and β(t), 0 ≤ t < T , is a continuous curve. Then for every t ∈ [0, T ),
K(t) is the complement of the unbounded component of H \ β((0, t]). We
call β the chordal Loewner trace driven by ξ. In general, such trace may not
exist.

We say (K(t),0 ≤ t < T ) is a Loewner chain in H w.r.t. ∞, if each K(t)
is a hull in H w.r.t. ∞; K(0) = ∅; K(s) $K(t) if s < t; and for each fixed
a ∈ (0, T ), the extremal length [1] of the curve in H\K(t+ε) that disconnects
K(t+ ε) \K(t) from ∞ tends to 0 as ε→ 0+, uniformly in t ∈ [0, a]. If u(t),
0 ≤ t < T , is a continuous (strictly) increasing function, and satisfies u(0) =
0, then (K(u−1(t)),0 ≤ t < u(T )) is also a Loewner chain in H w.r.t. ∞,
where u(T ) := supu([0, T )). It is called the time-change of (K(t)) through
u. Here is a simple example of the Loewner chain. Suppose β(t), 0 ≤ t < T , is
a simple curve with β(0) ∈ R and β(t) ∈ H for t ∈ (0, T ). Let K(t) = β((0, t])
for 0≤ t < T . Then (K(t),0 ≤ t < T ) is a Loewner chain in H w.r.t. ∞. It is
called the Loewner chain generated by β.

If H1 ⊂H2 are two hulls in H w.r.t. ∞, let H2/H1 := ϕH1(H2 \H1). Then
H2/H1 is also a hull in H w.r.t. ∞, ϕH2/H1

= ϕH2 ◦ϕ−1
H1

, and hcap(H2/H1) =
hcap(H2)− hcap(H1). If H1 ⊂H2 ⊂H3 are three hulls in H w.r.t. ∞, then
H2/H1 ⊂H3/H1 and (H3/H1)/(H2/H1) =H3/H2.

Proposition 2.2. (a) Suppose K(t) and ϕ(t, ·), 0 ≤ t < T , are chordal

Loewner hulls and maps, respectively, driven by ξ ∈C([0, T )). Then (K(t),0 ≤
t < T ) is a Loewner chain in H w.r.t. ∞, ϕK(t) = ϕ(t, ·), and hcap(K(t)) = 2t
for any 0≤ t < T . Moreover, for every t ∈ [0, T ),

{ξ(t)} =
⋂

ε∈(0,T−t)

K(t+ ε)/K(t).(2.2)

(b) Let (L(s),0 ≤ s < S) be a Loewner chain in H w.r.t. ∞. Let v(s) =
hcap(L(s))/2, 0 ≤ s < S. Then v is a continuous increasing function with

u(0) = 0. Let T = v(S) and K(t) =L(v−1(t)), 0 ≤ t < T . Then K(t), 0≤ t <
T , are chordal Loewner hulls driven by some ξ ∈C([0, T )).

Proof. This is almost the same as Theorem 2.6 in [4]. �

Let B(t) be a (standard linear) Brownian motion, κ ∈ (0,∞), and ξ(t) =√
κB(t), 0≤ t <∞. Let K(t) and ϕ(t, ·), 0≤ t <∞, be the chordal Loewner
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hulls and maps, respectively, driven by ξ. Then we call (K(t)) the standard
chordal SLEκ. From [9], the chordal Loewner trace β(t), 0 ≤ t <∞, driven
by ξ exists almost surely. Such β is called the standard chordal SLEκ trace.
We have β(0) = 0 and limt→∞ β(t) = ∞. If κ ∈ (0,4], then β is a simple
curve, β(t) ∈ H for t > 0, and K(t) = β((0, t]) for t≥ 0; if κ ∈ (4,∞), then β
is not a simple curve. If κ ∈ [8,∞), then β visits every z ∈ H; if κ ∈ (0,8),
then the Lebesgue measure of the image of β in C is 0.

Suppose D $ C is a simply connected domain, and a 6= b are two prime
ends [1] ofD. Then there isW that maps (H; 0,∞) conformally onto (D;a, b).
We call the image of the standard chordal SLEκ under W the chordal SLEκ

in D from a to b, which is denoted by SLEκ(D;a→ b). Such W is not
unique, but the SLEκ(D;a→ b) defined through different W have the same
distribution up to a linear time-change because the standard chordal SLEκ

satisfies the scaling property. The main theorem in this paper is as follows.

Theorem 2.1. Suppose κ ∈ (0,4], β1(t), 0 ≤ t <∞, is an SLEκ(D;a→
b) trace, and β2(t), 0 ≤ t <∞, is an SLEκ(D; b→ a) trace. Then the set

{β1(t) : 0< t<∞} has the same distribution as {β2(t) : 0< t <∞}.

3. Ensemble of two chordal Loewner chains. In this section we study the
relations of two chordal Loewner chains that grow together. Some computa-
tions were done in [3, 4, 5] and other papers. We will give self-contained ar-
guments for all results in this section. Suppose Kj(t) and ϕj(t, ·), 0 ≤ t < Sj ,
are chordal Loewner hulls and maps, respectively driven by ξj ∈ C([0, Sj)),

j = 1,2. Assume that for any t1 ∈ [0, S1) and t2 ∈ [0, S2), K1(t1)∩K2(t2) =
∅, then K1(t1) ∪ K2(t2) is a hull in H w.r.t. ∞. Fix j 6= k ∈ {1,2} and
t0 ∈ [0, Sk). For 0≤ t < Sj , let

Kj,t0(t) = (Kj(t)∪Kk(t0))/Kk(t0) = ϕk(t0,Kj(t)).(3.1)

Since ϕk(t0, ·) maps H \Kk(t0) conformally onto H, so from conformal in-
variance of extremal length, (Kj,t0(t),0 ≤ t < Sj) is also a Loewner chain
in H w.r.t. ∞. Let vj,t0(t) = hcap(Kj,t0(t))/2 for 0 ≤ t < Sj , and Lj,t0(t) =
Kj,t0(v

−1
j,t0

(t)) for 0 ≤ t < Sj,t0 := vj,t0(Sj). From Proposition 2.2, Lj,t0(t), 0≤
t < Sj,t0 , are chordal Loewner hulls driven by some ηj,t0 ∈ C([0, Sj,t0)). Let
ψj,t0(t, ·), 0 ≤ t < Sj,t0, denote the corresponding chordal Loewner maps. Let
ξj,t0(t) = ηj,t0(vj,t0(t)) and ϕj,t0(t, ·) = ψj,t0(vj,t0(t), ·) for 0 ≤ t < Sj . Since
ψj,t0(t, ·) = ϕLj,t0

(t) for 0 ≤ t < Sj,t0 , so ϕj,t0(t, ·) = ϕKj,t0
(t) for 0 ≤ t < Sj .

We use ∂1 and ∂z to denote the partial derivatives of ϕj(·, ·) and ϕj,t0(·, ·)
w.r.t. the first (real) and second (complex) variables, respectively, inside the
bracket; and use ∂0 to denote the partial derivative of ϕj,t0(·, ·) w.r.t. the
subscript t0.
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Fix j 6= k ∈ {1,2}, t ∈ [0, Sj) and s ∈ [0, Sk). Since ϕk(s, ·) = ϕKk(s), ϕj(t, ·) =
ϕKj(t), ϕj,s(t, ·) = ϕKj,s(t) and ϕk,t(s, ·) = ϕKk,t(s), so from (3.1), for any

z ∈ H \ (Kj(t)∪Kk(s)),

ϕKj(t)∪Kk(s)(z) = ϕk,t(s,ϕj(t, z)) = ϕj,s(t,ϕk(s, z)).(3.2)

Fix ε ∈ (0, Sj − t). Since Kj,s(r) = (Kj(r)∪Kk(s))/Kk(s) for r ∈ [0, Sj), so

Lj,s(vj,s(t+ ε))

Lj,s(vj,s(t))
=
Kj,s(t+ ε)

Kj,s(t)
=
Kj(t+ ε)∪Kk(s)

Kj(t)∪Kk(s)

= ϕKj(t)∪Kk(s)(Kj(t+ ε) \Kj(t))(3.3)

= ϕk,t(s,Kj(t+ ε)/Kj(t)).

From Proposition 2.2 and (3.3), we have

{ξj(t)} =
⋂

ε>0

Kj(t+ ε)/Kj(t)(3.4)

and

{ξj,s(t)} = {ηj,s(vj,s(t))} =
⋂

ε>0

Lj,s(vj,s(t+ ε))/Lj,s(vj,s(t))(3.5)

=
⋂

ε>0

(Kj(t+ ε) ∪Kk(s))/(Kj(t)∪Kk(s)).(3.6)

From (3.3)–(3.5), we have

ξj,s(t) = ϕk,t(s, ξj(t)).(3.7)

From Proposition 2.2 again, we have hcap(Kj(t+ ε)/Kj(t)) = 2ε and

hcap(Lj,s(vj,s(t+ ε))/Lj,s(vj,s(t))) = 2(vj,s(t+ ε)− vj,s(t)).

So from Proposition 2.1 and (3.3), we have

v′j,s(t) = ∂zϕk,t(s, ξj(t))
2.(3.8)

Since ϕj,s(t, z) = ψj,s(vj,s(t), z), so for fixed s ∈ [0, Sk), (t, z) 7→ ϕj,s(t, z) is
C1,a differentiable, where the superscript “a” means analytic, and

∂1ϕj,s(t, z) =
2v′j,s(t)

ψj,s(vj,s(t), z)− ηj,s(vj,s(t))
(3.9)

=
2∂zϕk,t(s, ξj(t))

2

ϕj,s(t, z)− ϕk,t(s, ξj(t))
.

From (3.2), we see that (s, t, z) 7→ ϕj,s(t, z) is C1,1,a differentiable. Differen-
tiate (3.9) using ∂z , and then divide both sides by ∂zϕj,s(t, z). We get

∂1 ln(∂zϕj,s(t, z)) =
−2∂zϕk,t(s, ξj(t))

2

(ϕj,s(t, z)−ϕk,t(s, ξj(t)))2
.(3.10)
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Differentiate (3.10) using ∂z . We get

∂1

(
∂2

zϕj,s(t, z)

∂zϕj,s(t, z)

)
=

4∂zϕk,t(s, ξj(t))
2 ∂zϕj,s(t, z)

(ϕj,s(t, z)− ϕk,t(s, ξj(t)))3
.(3.11)

Differentiate (3.11) using ∂z . We get

∂1∂z

(
∂2

zϕj,s(t, z)

∂zϕj,s(t, z)

)
=

4∂zϕk,t(s, ξj(t))
2 ∂2

zϕj,s(t, z)

(ϕj,s(t, z)− ϕk,t(s, ξj(t)))3

(3.12)

− 12∂zϕk,t(s, ξj(t))
2 ∂zϕj,s(t, z)

2

(ϕj,s(t, z)−ϕk,t(s, ξj(t)))4
.

Lemma 3.1. For any j 6= k ∈ {0,1}, t∈ [0, Sj) and s ∈ [0, Sk), we have

∂0ϕk,t(s, ξj(t)) = −3∂2
zϕk,t(s, ξj(t));(3.13)

∂0 ∂zϕk,t(s, ξj(t))

∂zϕk,t(s, ξj(t))
=

1

2
·
(
∂2

zϕk,t(s, ξj(t))

∂zϕk,t(s, ξj(t))

)2

− 4

3
· ∂

3
zϕk,t(s, ξj(t))

∂zϕk,t(s, ξj(t))
.(3.14)

Proof. Differentiating both sides of the second “=” in (3.2) w.r.t. t,
we get

∂0ϕk,t(s,ϕj(t, z)) + ∂zϕk,t(s,ϕj(t, z))∂1ϕj(t, z) = ∂1ϕj,s(t,ϕk(s, z))

for any z ∈ H \ (Kj(t) ∪Kk(s)). So from (2.1), (3.2) and (3.9),

∂0ϕk,t(s,ϕj(t, z)) =
2∂zϕk,t(s, ξj(t))

2

ϕk,t(s,ϕj(t, z))− ϕk,t(s, ξj(t))
− 2∂zϕk,t(s,ϕj(t, z))

ϕj(t, z)− ξj(t)

for any z ∈ H \ (Kj(t)∪Kk(s)). Since ϕj(t, ·) maps H \ (Kj(t)∪Kk(s)) con-
formally onto H \Kk,t(s), so for any w ∈ H \Kk,t(s),

∂0ϕk,t(s,w) =
2∂zϕk,t(s, ξj(t))

2

ϕk,t(s,w)−ϕk,t(s, ξj(t))
− 2∂zϕk,t(s,w)

w− ξj(t)
.(3.15)

In the above equation, let w→ ξj(t) in H \Kk,t(s). From the Taylor expan-
sion of ϕk,t(s, ·) at ξj(t), we get (3.13). Differentiating (3.15) using ∂z, we
get

∂0 ∂zϕk,t(s,w) = −2∂zϕk,t(s, ξj(t))
2 ∂zϕk,t(s,w)

(ϕk,t(s,w)−ϕk,t(s, ξj(t)))2

− 2∂2
zϕk,t(s,w)

w− ξj(t)
+

2∂zϕk,t(s,w)

(w− ξj(t))2
.

Let w→ ξj(t) in H \Kk,t(s), then we get (3.14) from the Taylor expansion.
�
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4. Two-dimensional continuous local martingale. Let κ ∈ (0,4] and x1 <
x2 ∈ R. Let X1(t) and X2(t) be two independent Bessel process of dimension
3− 8/κ started from (x2 − x1)/

√
κ. Let Tj denote the first time that Xj(t)

visits 0, which exists and is finite because 3−8/κ≤ 1. For j = 1,2, let Yj(t) =√
κXj(t), 0 ≤ t ≤ Tj . Then there are two independent Brownian motions

B1(t) and B2(t) such that, for j = 1,2 and 0≤ t≤ Tj ,

Yj(t) = (x2 − x1) + (−1)j
√
κBj(t) +

∫ t

0

κ− 4

Yj(s)
ds.

Fix j 6= k ∈ {1,2}. For 0≤ t≤ Tj , let

ξj(t) = xj +
√
κBj(t) + (−1)j

∫ t

0

κ− 6

Yj(s)
ds,

pj(t) = xk − (−1)j
∫ t

0

2

Yj(s)
ds.

Then ξj(0) = xj , pj(0) = xk and ξj(t)− pj(t) = (−1)jYj(t), 0≤ t≤ Tj . Thus,

dξj(t) =
√
κdBj(t) +

κ− 6

ξj(t)− pj(t)
dt and dpj(t) =

2dt

pj(t)− ξj(t)
(4.1)

for 0≤ t < T . Let Kj(t) and ϕj(t, ·), 0≤ t≤ Tj , denote the chordal Loewner
hulls and maps driven by ξj(t), 0 ≤ t≤ Tj . Then (Kj(t),0 ≤ t < Tj) are an
SLE(κ,κ− 6) process [5] started from xj with force point at xk; Tj is the
first time that xk is swallowed by Kj(t); and ϕj(t, xk) = pj(t), 0≤ t < Tj . It
is well known (e.g., [3]) that after a time-change, (Kj(t),0≤ t < Tj) has the
same distribution as a chordal SLEκ(H;xj → xk). Since κ≤ 4, so there is a
crosscut βj(t), 0 ≤ t ≤ Tj , in H from xj to xk, such that Kj(t) = βj((0, t])
for 0≤ t < Tj [9]. Here a crosscut in H from a ∈ R to b ∈ R is a simple curve
β(t), 0 ≤ t≤ T , that satisfies β(0) = a, β(T ) = b, and β(t) ∈ H for 0< t < T .

For j = 1,2, let (F j
t ) denote the filtration generated by (Bj(t)). Then (ξj)

is (F j
t )-adapted, and Tj is an (F j

t )-stopping time. Let

D = {(t1, t2) ∈ [0, T1)× [0, T2) :K1(t1)∩K2(t2) = ∅}.

For 0 ≤ tk <Tk, let Tj(tk) ∈ (0, Tj ] be the maximal such thatKj(t)∩Kk(tk) 6=
∅ for 0 ≤ t < Tj(tk). Now we use the notation in the last section. Let
(t1, t2) ∈ D. Since ϕk,tj(tk, ·) = ϕKk,tj

(tk), so ϕk,tj(tk, ·) maps H \Kk,tj (tk)

conformally onto H. By the Schwarz reflection principle, ϕk,tj (tk, ·) extends
conformally to ΣKk,tj

(tk), where for a hull H in H w.r.t. ∞, ΣH = C \
(H ∪{z : z ∈H} ∪ [inf(H ∩R), sup(H ∩R)]) (cf. [17]). For j 6= k ∈ {0,1} and
h ∈ Z≥0, let Aj,h(t1, t2) = ∂h

zϕk,tj (tk, ξj(tj)). The definition makes sense since
ξj(tj) ∈ΣKk,tj

(tk). Moreover, we have Aj,h ∈ R for any h≥ 0 since ϕk,tj (tk, ·)
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is real valued on a real open interval containing ξj(tj). From (3.2), we see
that Aj,0(t1, t2) = ϕK1(t1)∪K2(t2)(βj(tj)), j = 1,2. Since K1(t1) lies to the left
of K2(t2), so A1,0(t1, t2) < A2,0(t1, t2). Since ϕk,tj(tk, ·) maps a part of the
upper half plane to the upper half plane, so Aj,1(t1, t2) > 0, j = 1,2. For
(t1, t2) ∈D, define E(t1, t2) =A2,0(t1, t2)−A1,0(t1, t2)> 0,

N(t1, t2) =
A1,1(t1, t2)A2,1(t1, t2)

E(t1, t2)2
=

A1,1(t1, t2)A2,1(t1, t2)

(A2,0(t1, t2)−A1,0(t1, t2))2
> 0(4.2)

and

M(t1, t2)
(4.3)

=

(
N(t1, t2)N(0,0)

N(t1,0)N(0, t2)

)α

exp

(
−λ

∫ t1

0

∫ t2

0
2N(s1, s2)

2 ds2 ds1

)
> 0,

where

α= α(κ) =
6− κ

2κ
, λ= λ(κ) =

(8− 3κ)(6 − κ)

2κ
.(4.4)

Note that M(t1,0) =M(0, t2) = 1 for any 0≤ t1 < T1 and 0 ≤ t2 <T2.

Remark. If κ < 8/3, that is, λ > 0, then

exp

(
−λ

∫ t1

0

∫ t2

0
2N(s1, s2)

2 ds2 ds1

)

is the probability that in a loop soup [7] in H with intensity λ, there is no
loop that intersects both K1(t1) and K2(t2).

Theorem 4.1. (i) For any fixed (F2
t )-stopping time t̄2 with t̄2 < T2,

(M(t1, t̄2),0 ≤ t1 < T1(t̄2)) is a continuous (F1
t1 ×F2

t̄2
)t1≥0-local martingale,

and

∂1M

M

∣∣∣∣
(t1,t̄2)

=

(
3− κ

2

)((
A1,2

A1,1
+

2A1,1

A2,0 −A1,0

)∣∣∣∣
(t1,t̄2)

− 2

p1(t1)− ξ1(t1)

)

(4.5)

× ∂B1(t1)√
κ

.

(ii) For any fixed (F1
t )-stopping time t̄1 with t̄1 < T1, (M(t̄1, t2),0 ≤ t2 <

T2(t̄1)) is a continuous (F1
t̄1
×F2

t2)t2≥0-local martingale, and

∂2M

M

∣∣∣∣
(t̄1,t2)

=

(
3− κ

2

)((
A2,2

A2,1
+

2A2,1

A1,0 −A2,0

)∣∣∣∣
(t̄1,t2)

− 2

p2(t2)− ξ2(t2)

)

(4.6)

× ∂B2(t2)√
κ

.
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Proof. Since ϕ2,t1(0, ·) = idH, ϕ1,0(t1, ·) = ϕ1(t1, ·), and ξ2(0) = x2, so

A1,0(t1,0) = ϕ2,t1(0, ξ1(t1)) = ξ1(t1), A1,1(t1,0) = 1;

A2,0(t1,0) = ϕ1,0(t1, ξ2(0)) = ϕ1(t1, x2) = p1(t1), A2,1(t1,0) = ∂zϕ1(t1, x2).

Thus, N(t1,0) = ∂zϕ1(t1, x2)/(p1(t1) − ξ1(t1))
2. From the chordal Loewner

equation, we get

∂t1∂zϕ1(t1, x2) =
−2∂zϕ1(t1, x2)

(ϕ1(t1, x2)− ξ1(t1))2
=

−2∂zϕ1(t1, x2)

(p1(t1)− ξ1(t1))2
.

From (4.1), we get

∂t1(p1(t1)− ξ1(t1)) = −∂ξ1(t1) +
2∂t1

p1(t1)− ξ1(t1)
.

From the above two formulas and Itô’s formula, we get

∂1N(t1,0)
α/(αN(t1,0)

α) = 2∂ξ1(t1)/(p1(t1)− ξ1(t1)).(4.7)

Now fix an (F2
t )-stopping time t̄2 with t̄2 < T2. Then we get a filtra-

tion (F1
t × F2

t̄2
)t≥0. Since B1(t) and B2(t) are independent, so B1(t) is an

(F1
t ×F2

t̄2
)t≥0-Brownian motion. Then T1(t̄2) is an (F1

t ×F2
t̄2

)t≥0-stopping

time, Aj,h(t, t̄2), j = 1,2, E(t, t̄2), N(t, t̄2) and M(t, t̄2) are defined for t ∈
[0, T1(t̄2)). From the chordal Loewner equation and (3.2), ϕ1,t̄2(t, ·) and
ϕ2,t(t̄2, ·), 0 ≤ t < T1(t̄2), are (F1

t × F2
t̄2

)t≥0-adapted. Since A1,h(t, t̄2) =

∂h
zϕ2,t(t̄2, ξ1(t)), so from Itô’s formula, (A1,h(t1, t̄2),0 ≤ t1 < T1(t̄2)) satisfies

the (F1
t ×F2

t̄2
)t≥0-adapted SDE:

∂1A1,h(t1, t̄2) =A1,h+1(t1, t̄2)∂ξ1(t1)
(4.8)

+

(
∂0 ∂

h
zϕ2,t1(t̄2, ξ1(t1)) +

κ

2
A1,h+2(t, t̄2)

)
∂t1.

From (3.9) and (3.10), we have

∂1A2,0(t1, t2) =
2A1,1(t1, t2)

2

E(t1, t2)
∂t1,

(4.9)
∂1A2,1(t1, t2)

A2,1(t1, t2)
= −2A1,1(t1, t2)

2

E(t1, t2)2
∂t1.

From (4.8), (4.9) and Lemma 3.1, we have

∂1A1,0 =A1,1 ∂ξ1(t1) +

(
κ

2
− 3

)
A1,2 ∂t1(4.10)

and

∂1A1,1

A1,1
=
A1,2

A1,1
∂ξ1(t1) +

(
1

2
·
(
A1,2

A1,1

)2

+

(
κ

2
− 4

3

)
· A1,3

A1,1

)
∂t1,(4.11)
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where “(t1, t̄2)” are omitted. Since E = A2,0 −A1,0, from (4.9) and (4.10),
we have

∂1E =−A1,1 ∂ξ1(t1) +

(
2A2

1,1

E
+

(
3− κ

2

)
A1,2

)
∂t1.(4.12)

Let Ch =A1,h for h ∈ Z≥0. From (4.9)–(4.12) and Itô’s formula, we have

∂1N
α

αNα
=

(
C2

C1
+

2C1

E

)
∂ξ1(t1) + (8− 3κ)

(
1

4
· C

2
2

C2
1

− 1

6
· C3

C1

)
∂t1.(4.13)

The above SDE is (F1
t ×F2

t̄2
)t≥0-adapted. Now (4.7) is also an (F1

t ×F2
t̄2

)t≥0-

adapted SDE since B1(t) is an (F1
t ×F2

t̄2
)t≥0-Brownian motion. Thus, from

(4.1), (4.7), (4.13) and Itô’s formula, we have

∂1(N(t1, t̄2)/N(t1,0))
α

α(N(t1, t̄2)/N(t1,0))α

=

(
C2(t1, t̄2)

C1(t1, t̄2)
+

2C1(t1, t̄2)

E(t1, t̄2)
− 2

p1(t1)− ξ1(t1)

)√
κ∂B1(t1)(4.14)

+ (8− 3κ)

(
1

4
· C2(t1, t̄2)

2

C1(t1, t̄2)2
− 1

6
· C3(t1, t̄2)

C1(t1, t̄2)

)
∂t1.

Since Cj(t1, t2) = ∂j
zϕ2,t1(t2, ξ1(t1)), so ∂2Cj(t1, t2) = ∂1 ∂

j
zϕ2,t1(t2, ξ1(t1)),

and
(

1

4
· C

2
2

C2
1

− 1

6
· C3

C1

)∣∣∣∣
(t1,t2)

=
1

12
(∂2

z/∂z)ϕ2,t1(t2, ξ1(t1))
2

− 1

6
∂z(∂

2
z/∂z)ϕ2,t1(t2, ξ1(t1)).

From (3.11) and (3.12), we have

∂

∂t2
[(∂2

z/∂z)ϕ2,t1(t2, ξ1(t1))
2] =

8A2
2,1C2

E3

∣∣∣∣
(t1,t2)

,

∂

∂t2
[∂z(∂

2
z/∂z)ϕ2,t1(t2, ξ1(t1))] =

(
4A2

2,1C2

E3
−

12A2
2,1C

2
1

E4

)∣∣∣∣
(t1,t2)

.

From the above three formulas, we get

∂2

(
1

4
· C

2
2

C2
1

− 1

6
· C3

C1

)∣∣∣∣
(t1,t2)

=
2A2

2,1C
2
1

E4

∣∣∣∣
(t1,t2)

= 2N(t1, t2)
2.

Since ϕ2,t1(0, ·) = idH, so ∂j
zϕ2,t1(0, ·) = 0 for j ≥ 2. Thus, C2(t1,0) =

C3(t1,0) = 0. So

1

4
· C2(t1, t2)

2

C1(t1, t2)2
− 1

6
· C3(t1, t2)

C1(t1, t2)
=

∫ t2

0
2N(t1, s2)

2 ds2.(4.15)
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Then (4.5) follows from (4.3)–(4.4) and (4.14)–(4.15); (4.6) follows from the
symmetry. �

Now we make some improvement over the above theorem. Let t̄2 be an
(F2

t )-stopping time with t̄2 < T2. Suppose R is an (F1
t × F2

t̄2
)t≥0-stopping

time with R < T1(t̄2). Let FR,t̄2 denote the σ-algebra obtained from the
filtration (F1

t × F2
t̄2

)t≥0 and its stopping time R, that is, E ∈ FR,t̄2 iff for

any t≥ 0, E ∩ {R ≤ t} ∈ F1
t ×F2

t̄2
. For every t ≥ 0, R+ t is also an (F1

t ×
F2

t̄2
)t≥0-stopping time. So we have a filtration (FR+t,t̄2)t≥0. Since (ξ1(t))

and (p1(t)) are (F1
t ×F2

t̄2
)t≥0-adapted, so (ξ1(R+ t), t≥ 0), (p1(R+ t), t≥ 0),

(ϕ1(R+ t, ·), t≥ 0)) and (K1(R+ t), t≥ 0) are (FR+t,t̄2)t≥0-adapted. Suppose
I ∈ [0, t̄2] is FR,t̄2 -measurable. From I ≤ t̄2 we have T1(I) ≥ T1(t̄2)>R. Then
ϕ1,I(R+ t, ·) and ϕ2,R+t(I, ·) are defined for 0 ≤ t < T1(I)−R.

Lemma 4.1. T1(I)−R is an (FR+t,t̄2)t≥0-stopping time and (ϕ1,I(R+
t, ·),0 ≤ t < T1(I)−R) and (ϕ2,R+t(I, ·),0 ≤ t < T1(I)−R) are (FR+t,t̄2)t≥0-

adapted.

Proof. Since T1(I)−R > t iff K1(R+ t)∩K2(I) = ∅, and that (ϕ1(R+
t, ·)), and (K1(R+ t)) are FR+t,t̄2 -adapted, so from (3.2), we suffice to show
that ϕ2(I, ·) is FR,t̄2 -measurable. Fix n ∈ N. Let In = ⌊nI⌋/n. For m ∈ N ∪
{0}, let En(m) = {m/n≤ In < (m+1)/n}. Then En(m) is FR,t̄2 -measurable,
and In = m/n on En(m). Since m/n ≤ t̄2 and In = m/n on En(m), so In
agrees with (m/n)∧ t̄2 on En(m). Now (m/n)∧ t̄2 is an (F2

t )-stopping time,
and F2

(m/n)∧t̄2
⊂F2

t̄2
⊂FR,t̄2 . So ϕ2((m/n)∧ t̄2, ·) is FR,t̄2 -measurable. Since

ϕ2(In, ·) = ϕ2((m/n) ∧ t̄2, ·) on En(m), and En(m) is FR,t̄2 -measurable for
each m ∈ N∪ {0}, so ϕ2(In, ·) is FR,t̄2 -measurable. Since ϕ2(In, ·)→ ϕ2(I, ·)
as n→∞, so ϕ2(I, ·) is also FR,t̄2 -measurable. Then we are done. �

Let BR
1 (t) = B1(R + t) − B1(R), 0 ≤ t < ∞. Since B1(t) is an (F1

t ×
F2

t̄2
)t≥0-Brownian motion, so BR

1 (t) is an (FR+t,t̄2)t≥0-Brownian motion.

Then (ξ1(R+ t)) satisfies the (FR+t,t̄2)t≥0-adapted SDE:

dξ1(R+ t) =
√
κdBR

1 (t) +
κ− 6

ξ1(R+ t)− p1(R+ t)
dt.

The SDEs in the proof of Theorem 4.1 still hold if t1 is replaced by R+ t, t̄2
is replaced by I , and B1(t1) is replaced by BR

1 (t1). The difference is that the
SDEs now are all (FR+t,t̄2)t≥0-adapted. So we have the following theorem.

Theorem 4.2. (i) Suppose t̄2 is an (F2
t )-stopping time with t̄2 < T2.

Suppose R is an (F1
t ×F2

t̄2
)t≥0-stopping time with R<T1(t̄2). Let I ∈ [0, t̄2]
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be FR,t̄2-measurable. Then (M(R+ t, I),0 ≤ t < T1(I) −R) is a continuous

(FR+t,t̄2)t≥0-local martingale.

(ii) Suppose t̄1 is an (F1
t )-stopping time with t̄1 < T1. Suppose I is an

(F1
t̄1
×F2

t )t≥0-stopping time with I < T2(t̄1). Let R ∈ [0, t̄1] be Ft̄1,I -measurable.

Then (M(R,I+ t),0≤ t < T2(R)− I) is a continuous (Ft̄1,I+t)t≥0-local mar-

tingale.

Proof. (i) follows from the above argument. (ii) follows from the sym-
metry. �

5. Boundedness. We now use the notation and results in Section 5.2 of
[17]. Let H be a nonempty hull in H w.r.t. ∞. Then aH = inf{H ∩ R},
bH = sup{H ∩R}, ΣH = C\ (H ∪{z : z ∈H}∪ [aH , bH ]), and H(H) is the set
of hulls in H w.r.t. ∞ that are contained in H . From Lemma 5.4 in [17], any

sequence (Kn) in H(H) contains a subsequence (Ln) such that ϕLn

l.u.−→ ϕK

(converges locally uniformly) in ΣH for some K ∈H(H). We now make some
improvement over this result. Let QH =H ∩R. Then QH is a closed subset
of [aH , bH ]. Let

Σ∗
H = ΣH ∪ ([aH , bH ] \QH) = C \ (H ∪ {z : z ∈H} ∪QH),

which may strictly contain ΣH . For any K ∈H(H), ϕK extends conformally
to Σ∗

H by the Schwarz reflection principle, and ϕ′
K(x)> 0 for any x ∈ R\QH

from (5.1) in [17], so ϕK preserves the order on R \QH .

Lemma 5.1. Suppose (Kn) is a sequence in H(H). Then it contains

some subsequence (Ln) such that ϕLn

l.u.−→ ϕK in Σ∗
H for some K ∈H(H).

Proof. From the argument after Corollary 5.1 in [17], there is MH > 0
such that |ϕK(z) − z| ≤ MH for any K ∈ H(H) and z ∈ ΣH . After the
extension, we have |ϕK(z) − z| ≤MH for any K ∈ H(H) and z ∈ Σ∗

H . So
{ϕKn(z) − z :n ∈ N} is a normal family in Σ∗

H . Then (Kn) contains a sub-

sequence (Ln) such that ϕLn(z)− z
l.u.−→ f(z) in Σ∗

H for some f that is ana-

lytic in Σ∗
H . So ϕLn

l.u.−→ g in Σ∗
H , where g(z) := z + f(z) is analytic in Σ∗

H .

From Lemma 5.4 in [17], we may assume that ϕLn

l.u.−→ ϕK in ΣH for some
K ∈ H(H). Thus, g = ϕK in ΣH . Since they are both analytic in Σ∗

H , so

g = ϕK in Σ∗
H . Thus, ϕLn

l.u.−→ ϕK in Σ∗
H . �

Lemma 5.2. If y1 < y2 < aH or y1 > y2 > bH , then ϕ′
H(y1)>ϕ′

H(y2).

Proof. This follows from differentiating (5.1) in [17] for z ∈ R\ [cH , dH ],
and the fact that ϕH is increasing on (−∞, aH) and (bH ,∞), and maps them
to (−∞, cH) and (dH ,∞), respectively. �
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Let HP denote the set of (H1,H2) such that Hj is a hull in H w.r.t. ∞
that contains some neighborhood of xj in H, j = 1,2, and H1 ∩ H2 = ∅.
Let (H1,H2) ∈ HP. Then bH1 < aH2 , H1 ∪H2 is a hull in H w.r.t. ∞, and
QH1∪H2 =QH1 ∪QH2 ⊂ [aH1 , bH1 ] ∪ [aH2 , bH2 ]. Let Tj(Hj) be the first time

that Kj(t) ∩ H \Hj 6= ∅, j = 1,2. Then Tj(Hj) is an (F j
t )-stopping time,

0<Tj(Hj)<Tj , and Kj(t)⊂Hj for 0≤ t≤ Tj(Hj). Thus,

Tj(Hj) = hcap(Kj(Tj(Hj)))/2 ≤ hcap(Hj)/2.(5.1)

Theorem 5.1. For any (H1,H2) ∈ HP, there are C2 > C1 > 0 depend-

ing only on H1 and H2 such that M(t1, t2) ∈ [C1,C2] for any (t1, t2) ∈
[0, T1(H1)]× [0, T2(H2)].

Proof. Let (H1,H2) ∈ HP and H =H1 ∪H2. Throughout this proof,
we use Cn, n ∈ N, to denote some positive constant that depends only on
H1 and H2. From (4.3) and (5.1), we suffice to show that for some C4 >
C3 > 0, N(t1, t2) ∈ [C3,C4] for (t1, t2) ∈ [0, T1(H1)]× [0, T2(H2)]. Fix (t1, t2) ∈
[0, T1(H1)]× [0, T2(H2)]. First suppose t1, t2 > 0. Fix j 6= k ∈ {1,2}. For any
sj ∈ [0, tj), from (3.4) we have ξj(sj) ∈Kj(tj)/Kj(sj), so

ξj(sj) ∈ [aKj(tj)/Kj(sj), bKj(tj)/Kj(sj)]

⊂ [cKj(tj )/Kj(sj), dKj(tj )/Kj(sj)] ⊂ [cKj(tj), dKj(tj )],

where the second and third inclusions follow from Lemma 5.2 and Lemma
5.3 in [17]. Let sj → tj . We get ξj(tj) ∈ [cKj(tj ), dKj(tj)]. For sj ∈ [0, tj), from
(3.6) and (3.7),

Aj,0(sj , tk) = ϕk,sj
(tk, ξj(sj)) ∈ (Kj(tj)∪Kk(tk))/(Kj(sj)∪Kk(tk)),

which implies that Aj,0(sj , tk) ∈ [cKj(tj)∪Kk(tk), dKj(tj)∪Kk(tk)]⊂ [cH , dH ]. Let
sj → tj . We get Aj,0(tj, tk) ∈ [cH , dH ]. This also holds for Ak,0(tj , tk). Thus,

|E(tj , tk)| = |Aj,0(tj , tk)−Ak,0(tj , tk)| ≤ dH − cH .(5.2)

Fix q1, q2, r1, r2 ∈ R with r1 < aH1 ≤ bH1 < q1 < q2 < aH2 ≤ bH2 < r2. From
Lemma 5.1, there are C6 > C5 > 0 such that, for x = q1, q2, r1, r2,
∂zϕK1(t1)∪K2(t2)(x), ∂zϕ1(t1, x) and ∂zϕ2(t2, x) all lie in [C5,C6]. Fix j 6= k ∈
{1,2}. From (3.2) there are C8 >C7 > 0 such that, for x= qj, rj , ∂zϕk,tj (tk,
ϕj(tj , x)) ∈ [C7,C8]. Since [aKj(tj), bKj(tj)]⊂ [aHj

, bHj
], so rj is disconnected

from qj in R by [aKj(tj ), bKj(tj )]. Since ϕj(tj, ·) = ϕKj(tj), so ϕj(tj , rj) is dis-
connected from ϕj(tj , qj) in R by [cKj(tj ), dKj(tj)]. Since ξj(tj) ∈ [cKj(tj), dKj(tj)],
so ξj(tj) lies between ϕj(tj, rj) and ϕj(tj , qj). Since rj and qj lie on the same
side of Kk(tk), so ϕj(tj, rj), ξj(tj), and ϕj(tj, qj) lie on the same side of
ϕj(tj ,Kk(tk)) =Kk,tj(tk). Since ϕk,tj (tk, ·) = ϕKk,tj

(tk), so from Lemma 5.2,
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∂zϕk,tj (tk, ξj(tj)) lies between ∂zϕk,tj (tk, ϕj(tj, rj)) and ∂zϕk,tj (tk, ϕj(tj, qj)).
Thus,

Aj,1(tj , tk) = ∂zϕk,tj (tk, ξj(tj)) ∈ [C7,C8].(5.3)

From (3.2) and the above argument, we see that Aj,0(tj , tk) = ϕk,tj (tk, ξj(tj))
lies between ϕKj(tj)∪Kk(tk)(rj) and ϕKj(tj )∪Kk(tk)(qj) for j = 1,2. Since r1 <
q1 < q2 < r2, so

ϕK1(t2)∪K2(t2)(r1)<ϕK1(t1)∪K2(t2)(q1)<ϕK1(t1)∪K2(t2)(q2)<ϕK1(t1)∪K2(t2)(r2).

From Lemma 5.1, there is C9 > 0 such that ∂zϕK1(t1)∪K2(t2)(x) ≥ C9 for
x ∈ [q1, q2]. So

|E(t1, t2)| ≥ ϕK1(t1)∪K2(t2)(q2)−ϕK1(t1)∪K2(t2)(q1)≥C9(q2 − q1).(5.4)

From (5.2), (5.3) and (5.4), we have C4 > C3 > 0 such that N(t1, t2) ∈
[C3,C4] for (t1, t2) ∈ (0, T1(H1)] × (0, T2(H2)]. By letting t1 or t2 tend to
0, we obtain the above inequality in the case t1 or t2 equals to 0. So we are
done. �

Now we explain the meaning of M(t1, t2). Fix (H1,H2) ∈ HP. Let µ
denote the joint distribution of (ξ1(t) : 0 ≤ t ≤ T1) and (ξ2(t) : 0 ≤ t ≤ T2).
From Theorem 4.1 and Theorem 5.1, we have

∫
M(T1(H1), T2(H2))dµ =

E[M(T1(H1), T2(H2))] =M(0,0) = 1. Note thatM(T1(H1), T2(H2))> 0. Sup-
pose ν is a measure on F1

T1(H1)×F2
T2(H2) such that dν/dµ=M(T1(H1), T2(H2)).

Then ν is a probability measure. Now suppose the joint distribution of
(ξ1(t),0 ≤ t≤ T1(H1)) and (ξ2(t),0 ≤ t≤ T2(H2)) is ν instead of µ. Fix an
(F2

t )-stopping time t̄2 with t̄2 ≤ T2(H2). From (4.1), (4.5) and the Girsanov

theorem [8], there is an (F1
t ×F2

t̄2
)-Brownian motion B̃1(t) such that ξ1(t1)

satisfies the (F1
t1 ×F2

t̄2
)-adapted SDE for 0 ≤ t1 ≤ T1(H1):

dξ1(t1) =
√
κdB̃1(t1)

(5.5)

+

(
3− κ

2

)(
A1,2(t1, t̄2)

A1,1(t1, t̄2)
+

2A1,1(t1, t̄2)

A2,0(t1, t̄2)−A1,0(t1, t̄2)

)
dt1.

From (4.10) and (5.5), we have

dA1,0(t1, t̄2) =A1,1(t1, t̄2)
√
κdB̃1(t) +

(6− κ)A1,1(t1, t̄2)
2 dt1

A2,0(t1, t̄2)−A1,0(t1, t̄2)
.(5.6)

Recall that A1,0(t1, t̄2) = ϕ2,t1(t̄2, ξ1(t1)) = ξ1,t̄2(t1) = η1,t̄2(v1,t̄2(t1)), and
v′1,t̄2

(t1) = A1,1(t1, t̄2)
2 [see (3.8)]. From (5.6), there is a Brownian motion

B̂1(t1) such that

dη1,t̄2(s1) =
√
κdB̂1(s1) +

(κ− 6)ds1

η1,t̄2(s1)−A2,0(v
−1
1,t̄2

(s1), t̄2)
.(5.7)
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Since A2,0(v
−1
1,t̄2

(s1), t̄2) = ϕ1,t̄2(v
−1
1,t̄2

(s1), ξ2(t̄2)) = ψ1,t̄2(s1, ξ2(t̄2)) and ψ1,t̄2(s, ·),
0 ≤ s ≤ v1,t̄2(T1(H1)), are chordal Loewner maps driven by η1,t̄2(s), so the
chordal Loewner hulls L1,t̄2(s), 0 ≤ s≤ v1,t̄2(T1(H1)), driven by η1,t̄2(s) are
a part of the chordal SLE(κ,κ− 6) process started from η1,t̄2(0) = ϕ2(t̄2, x1)

with force point at A2,0(v
−1
1,t̄2

(0), t̄2) = ξ2(t̄2). Thus, after a time-change,

it is a chordal SLEκ in H from ϕ2(t̄2, x1) to ξ2(t̄2). Note that ϕ2(t̄2, ·)−1

maps H conformally onto H \ β2((0, t̄2]), maps L1,t̄2(v1,t̄2(t1)) onto K1(t1) =
β1((0, t1]), and takes ϕ2(t̄2, x1) and ξ2(t̄2) to x1 and β2(t̄2), respectively.
Thus, β1(t), 0 ≤ t ≤ T1(H1), is the time-change of a chordal SLEκ trace
in H \ β2((0, t̄2]) from x1 to β2(t̄2), stopped on hitting H \H1. Similarly,
for any (F1

t )-stopping time t̄1 with t̄1 ≤ T1(H1), β2(t), 0 ≤ t ≤ T2(H2), is
a time-change of a chordal SLEκ trace in H \ β1((0, t̄1]) from x2 to β1(t̄1)
stopped on hitting H \H2.

6. Constructing new martingales.

Theorem 6.1. For any (Hm
1 ,H

m
2 ) ∈ HP, 1 ≤ m ≤ n, there is a con-

tinuous function M∗(t1, t2) defined on [0,∞]2 that satisfies the following

properties: (i) M∗ =M on [0, T1(H
m
1 )] × [0, T2(H

m
2 )] for m = 1, . . . , n; (ii)

M∗(t,0) =M∗(0, t) = 1 for any t≥ 0; (iii) M∗(t1, t2) ∈ [C1,C2] for any t1, t2 ≥
0, where C2 >C1 > 0 are constants depending only on Hm

j , j = 1,2, 1≤m≤
n; (iv) for any (F2

t )-stopping time t̄2, (M∗(t1, t̄2), t1 ≥ 0) is a bounded con-

tinuous (F1
t1 ×F2

t̄2
)t1≥0-martingale; and (v) for any (F1

t )-stopping time t̄1,

(M∗(t̄1, t2), t2 ≥ 0) is a bounded continuous (F1
t̄1
×F2

t2)t2≥0-martingale.

Proof. We will first define M∗ and then check its properties. The first
quadrant [0,∞]2 is divided by the horizontal or vertical lines {xj = Tj(H

m
j )},

1 ≤m ≤ n, j = 1,2, into small rectangles, and M∗ is piecewise defined on
each rectangle. Theorem 4.2 will be used to prove the martingale properties.

Let Nn := {k ∈ N :k≤ n}. Write T k
j for Tj(H

k
j ), k ∈ Nn, j = 1,2. Let S ⊂

Nn be such that
⋃

k∈S [0, T k
1 ]× [0, T k

2 ] =
⋃n

k=1[0, T
k
1 ]× [0, T k

2 ], and
∑

k∈S k ≤∑
k∈S′ k if S′ ⊂ Nn also satisfies this property. Such S is a random nonempty

set, and |S| ∈ Nn is a random number. Define a partial order “�” on [0,∞]2

such that (s1, s2) � (t1, t2) iff s1 ≤ t1 and s2 ≤ t2. If (s1, s2) � (t1, t2) and
(st, s2) 6= (t1, t2), we write (s1, s2) ≺ (t1, t2). Then for each m ∈ Nn, there is
k ∈ S such that (Tm

1 , Tm
2 )� (T k

1 , T
k
2 ); and for each k ∈ S, there is no m ∈ Nn

such that (T k
1 , T

k
2 ) ≺ (Tm

1 , Tm
2 ).

There is a map σ from {1, . . . , |S|} onto S such that if 1 ≤ k1 < k2 ≤ |S|,
then

T
σ(k1)
1 <T

σ(k2)
1 , T

σ(k1)
2 >T

σ(k2)
2 .(6.1)
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Define T
σ(0)
1 = T

σ(|S|+1)
2 = 0 and T

σ(|S|+1)
1 = T

σ(0)
2 = ∞. Then (6.1) still holds

for 0 ≤ k1 < k2 ≤ |S|+ 1.
Extend the definition ofM to [0,∞]×{0}∪{0}× [0,∞] such thatM(t,0) =

M(0, t) = 1 for t≥ 0. Fix (t1, t2) ∈ [0,∞]2. There are k1 ∈ N|S|+1 and k2 ∈
N|S| ∪ {0} such that

T
σ(k1−1)
1 ≤ t1 ≤ T

σ(k1)
1 , T

σ(k2+1)
2 ≤ t2 ≤ T

σ(k2)
2 .(6.2)

If k1 ≤ k2, let

M∗(t1, t2) =M(t1, t2).(6.3)

It k1 ≥ k2 + 1, let

M∗(t1, t2) = (M(T
σ(k2)
1 , t2)M(T

σ(k2+1)
1 , T

σ(k2+1)
2 )

· · ·M(T
σ(k1−1)
1 , T

σ(k1−1)
2 )M(t1, T

σ(k1)
2 ))

(6.4)
× (M(T

σ(k2)
1 , T

σ(k2+1)
2 )

· · ·M(T
σ(k1−2)
1 , T

σ(k1−1)
2 )M(T

σ(k1−1)
1 , T

σ(k1)
2 ))−1.

In the above formula, there are k1 − k2 + 1 terms in the numerator, and
k1 − k2 terms in the denominator. For example, if k1 − k2 = 1, then

M∗(t1, t2) =M(T
σ(k2)
1 , t2)M(t1, T

σ(k1)
2 )/M(T

σ(k2)
1 , T

σ(k1)
2 ).

We need to show that M∗(t1, t2) is well defined. First, we show that the
M(·, ·) in (6.3) and (6.4) are defined. Note that M is defined on

Z :=

|S|+1⋃

k=0

[0, T
σ(k)
1 ]× [0, T

σ(k)
2 ].

If k1 ≤ k2, then t1 ≤ T
σ(k1)
1 ≤ T

σ(k2)
1 and t2 ≤ T

σ(k2)
2 , so (t1, t2) ∈ Z. Thus,

M(t1, t2) in (6.3) is defined. Now suppose k1 ≥ k2 + 1. Since t2 ≤ T
σ(k2)
2 and

t1 ≤ T
σ(k1)
1 , so (T

σ(k2)
1 , t2), (t1, T

σ(k1)
2 ) ∈ Z. It is clear that (T

σ(k)
1 , T

σ(k)
2 ) ∈ Z

for k2 + 1 ≤ k ≤ k1 − 1. Thus, the M(·, ·) in the numerator of (6.4) are

defined. For k2 ≤ k ≤ k1 − 1, T
σ(k)
1 ≤ T

σ(k+1)
1 , so (T

σ(k)
1 , T

σ(k+1)
2 ) ∈Z. Thus,

the M(·, ·) in the denominator of (6.4) are defined.
Second, we show that the value ofM∗(t1, t2) does not depend on the choice

of (k1, k2) that satisfies (6.2). Suppose (6.2) holds with (k1, k2) replaced by
(k′1, k2), and k′1 6= k1. Then |k′1 − k1|= 1. We may assume k′1 = k1 + 1. Then

t1 = T
σ(k1)
1 . Let M ′

∗(t1, t2) denote the M∗(t1, t2) defined using (k′1, k2). There
are three cases.

Case 1. k1 < k′1 ≤ k2. Then from (6.3), M ′
∗(t1, t2) =M(t1, t2) =M∗(t1, t2).
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Case 2. k1 = k2 and k′1 − k2 = 1. Then T
σ(k2)
1 = T

σ(k1)
1 = t1. So from (6.3)

and (6.4),

M ′
∗(t1, t2) =M(T

σ(k2)
1 , t2)M(t1, T

σ(k1)
2 )/M(T

σ(k2)
1 , T

σ(k1)
2 )

=M(t1, t2) =M∗(t1, t2).

Case 3. k′1 > k1 > k2. From (6.4) and that T
σ(k1)
1 = t1, we have

M ′
∗(t1, t2)

=
M(T

σ(k2)
1 , t2)M(T

σ(k2+1)
1 , T

σ(k2+1)
2 ) · · ·M(T

σ(k1)
1 , T

σ(k1)
2 )M(t1, T

σ(k1+1)
2 )

M(T
σ(k2)
1 , T

σ(k2+1)
2 ) · · ·M(T

σ(k1−1)
1 , T

σ(k1)
2 )M(T

σ(k1)
1 , T

σ(k1+1)
2 )

=
M(T

σ(k2)
1 , t2)M(T

σ(k2+1)
1 , T

σ(k2+1)
2 ) · · ·M(t1, T

σ(k1)
2 )

M(T
σ(k2)
1 , T

σ(k2+1)
2 ) · · ·M(T

σ(k1−1)
1 , T

σ(k1)
2 )

=M∗(t1, t2).

Similarly, if (6.2) holds with (k1, k2) replaced by (k1, k
′
2), then M∗(t1, t2)

defined using (k1, k
′
2) has the same value as M(t1, t2). Thus, M∗ is well

defined.
From the definition, it is clear that for each k1 ∈ N|S|+1 and k2 ∈ N|S|∪{0},

M∗ is continuous on [T
σ(k1−1)
1 , T

σ(k1)
1 ]× [T

σ(k2+1)
2 , T

σ(k2)
1 ]. Thus,M∗ is contin-

uous on [0,∞]2. Let (t1, t2) ∈ [0,∞]2. Suppose (t1, t2) ∈ [0, Tm
1 ]× [0, Tm

2 ] for

some m ∈ Nn. There is k ∈ N|S| such that (Tm
1 , Tm

2 )� (T
σ(k)
1 , T

σ(k)
2 ). Then we

may choose k1 ≤ k and k2 ≥ k such that (6.2) holds, soM∗(t1, t2) =M(t1, t2).
Thus, (i) is satisfied. If t1 = 0, we may choose k1 = 1 in (6.2). Then either
k1 ≤ k2 or k2 = 0. If k1 ≤ k2, then M∗(t1, t2) =M(t1, t2) = 1 because t1 = 0.
If k2 = 0, then

M∗(t1, t2) =M(T
σ(0)
1 , t2)M(t1, T

σ(1)
2 )/M(T

σ(0)
1 , T

σ(1)
2 ) = 1

because T
σ(0)
1 = t1 = 0. Similarly, M∗(t1, t2) = 0 if t2 = 0. So (ii) is also sat-

isfied. And (iii) follows from Lemma 5.1 and the definition of M∗.

Now we prove (iv). Suppose (t1, t2) ∈ [0,∞]2 and t2 ≥
∨n

m=1 T
m
2 = T

σ(1)
2 .

Then (6.2) holds with k2 = 0 and some k1 ∈ {1, . . . , |S|+ 1}. So k1 ≥ k2 + 1.

Since T
σ(k2)
1 = 0 and M(0, t) = 1 for any t≥ 0, so from (6.4) we have

M∗(t1, t2) =
M(T

σ(k2+1)
1 , T

σ(k2+1)
2 ) · · ·M(T

σ(k1−1)
1 , T

σ(k1−1)
2 )M(t1, T

σ(k1)
2 )

M(T
σ(k2+1)
1 , T

σ(k2+2)
2 ) · · ·M(T

σ(k1−1)
1 , T

σ(k1)
2 )

.

The right-hand side of the above equality has no t2. So M∗(t1, t2) =M∗(t1,∨n
m=1 T

m
2 ) for any t2 ≥

∨n
m=1 T

m
2 . Similarly, M∗(t1, t2) = M∗(

∨n
m=1 T

m
1 , t2)

for any t1 ≥
∨n

m=1 T
m
1 .
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Fix an (F2
t )-stopping time t̄2. Since M∗(·, t̄2) = M∗(·, t̄2 ∧ (

∨n
m=1 T

m
2 )),

and t̄2 ∧ (
∨n

m=1 T
m
2 ) is also an (F2

t )-stopping time, so we may assume that
t̄2 ≤

∨n
m=1 T

m
2 . Let I0 = t̄2. For s ∈ N∪ {0}, define

Rs = sup{Tm
1 :m ∈ Nn, T

m
2 ≥ Is};

(6.5)
Is+1 = sup{Tm

2 :m ∈ Nn, T
m
2 < Is, T

m
1 >Rs}.

Here we set sup(∅) = 0. Then we have a nondecreasing sequence (Rs) and
a non-increasing sequence (Is). Let S and σ(k), 0≤ k ≤ |S|+ 1, be as in the
definition of M∗. From the property of S, for any s ∈ N ∪ {0},

Rs = sup{T k
1 :k ∈ S,T k

2 ≥ Is}.(6.6)

Suppose for some s ∈ N ∪ {0}, there is m ∈ Nn that satisfies Tm
2 < Is and

Tm
1 > Rs. Then there is k ∈ S such that T k

j ≥ Tm
j , j = 1,2. If T k

2 ≥ Is,

then from (6.6) we have Rs ≥ T k
1 ≥ Tm

1 , which contradicts that Tm
1 > Rs.

Thus, T k
2 < Is. Now T k

2 < Is, T
k
1 ≥ Tm

1 > Rs, and T k
2 ≥ Tm

2 . Thus, for any
s ∈ N ∪ {0},

Is+1 = sup{T k
2 :k ∈ S,T k

2 < Is, T
k
1 >Rs}.(6.7)

First suppose t̄2 > 0. Since t̄2 ≤ ∨n
m=1 T

m
2 = T

σ(0)
2 , so there is a unique

k2 ∈ N|S| such that T
σ(k2)
2 ≥ t̄2 > T

σ(k2+1)
2 . From (6.6) and (6.7), we have

Rs = T
σ(k2+s)
1 for 0≤ s≤ |S|−k2; Rs = T

σ(|S|)
1 for s≥ |S|−k2; Is = T

σ(k2+s)
2

for 1 ≤ s ≤ |S| − k2; and Is = 0 for s ≥ |S| − k2 + 1. Since R0 = T
σ(k2)
1 and

t̄2 ≤ T
σ(k2)
2 , so from (i),

M∗(t1, t̄2) =M(t1, t̄2) for t1 ∈ [0,R0].(6.8)

Suppose t1 ∈ [Rs−1,Rs] for some s ∈ N|S|−k2
. Let k1 = k2+s. Then T

σ(k1−1)
1 ≤

t1 ≤ T
σ(k1)
1 . Since Is = T

σ(k2+s)
2 = T

σ(k1)
2 , so from (6.4),

M∗(t1, t̄2)/M∗(Rs−1, t̄2) =M(t1, Is)/M(Rs−1, Is),
(6.9)

for t1 ∈ [Rs−1,Rs].

Note that if s ≥ |S| − k2 + 1, (6.9) still holds because Rs = Rs−1. Suppose

t1 ≥Rn. Since n≥ |S|−k2, so Rn = T
σ(|S|)
1 =

∨n
m=1 T

m
1 . From the discussion

at the beginning of the proof of (iv), we have

M∗(t1, t̄2) =M∗(Rn, t̄2), for t1 ∈ [Rn,∞].(6.10)

If t̄2 = 0, (6.8)–(6.10) still hold because all Is = 0 and soM∗(t1, t̄2) =M(t1, Is) =
M(t1,0) = 1 for any t1 ≥ 0.

Let R−1 = 0. We claim that for each s ∈ N∪ {0}, Rs is an (F1
t ×F2

t̄2
)t≥0-

stopping time and Is is FRs−1,t̄2 -measurable. Recall that FRs−1,t̄2 is the σ-

algebra obtained from the filtration (F1
t × F2

t̄2
)t≥0 and its stopping time
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Rs−1. It is clear that R−1 = 0 is an (F1
t ×F2

t̄2
)t≥0-stopping time, and I0 = t̄2

is FR−1,t̄2 -measurable. Now suppose Is is FRs−1,t̄2-measurable. Since Is ≤ t̄2
and Rs−1 ≤Rs, so for any t≥ 0, {Rs ≤ t}= {Rs−1 ≤ t} ∩ Et, where

Et =
n⋂

m=1

({Tm
2 < Is} ∪ {Tm

1 ≤ t})

=
n⋂

m=1

(
⋃

q∈Q

({Tm
2 < q ≤ t̄2} ∩ {q < Is}) ∪ {Tm

1 ≤ t}
)
.

Thus, Et ∈ FRs−1,t̄2 ∨ (F1
t ×F2

t̄2
), and so {Rs ≤ t} ∈ F1

t ×F2
t̄2

for any t≥ 0.

Therefore, Rs is an (F1
t ×F2

t̄2
)t≥0-stopping time. Next we consider Is+1. For

any h≥ 0,

{Is+1 >h} =
n⋃

m=1

({h < Tm
2 < Is} ∩ {Tm

1 >Rs})

=
n⋃

m=1

(
⋃

q∈Q

({h < Tm
2 < q < t̄2} ∩ {q < Is})∩ {Tm

1 >Rs}
)
∈ FRs,t̄2 .

Thus, Is+1 is FRs,t̄2-measurable. So the claim is proved by induction.
Since t̄2 ≤

∨n
m=1 T

m
2 <T2, so from Theorem 4.2, for any s ∈ Nn, (M(Rs−1+

t, Is),0≤ t < T1(Is)−Rs−1) is a continuous (FRs−1+t,t̄2)t≥0-local martingale.
For m ∈ Nn, if Tm

2 ≥ Is, then Tm
1 < T1(T

m
2 )≤ T1(Is). So from (6.5) we have

Rs < T1(Is). From (6.9), we find that (M∗(Rs−1 + t, t̄2),0 ≤ t≤Rs −Rs−1)
is a continuous (FRs−1+t,t̄2)t≥0-local martingale for any s ∈ Nn. From The-
orem 4.1 and (6.8), (M∗(t, t̄2),0 ≤ t ≤ R0) is a continuous (Ft,t̄2)t≥0-local
martingale. From (6.10), (M∗(Rn +t, t̄2), t≥ 0) is a continuous (FRn+t,t̄2)t≥0-
local martingale. Thus, (M∗(t, t̄2), t≥ 0) is a continuous (Ft,t̄2)t≥0-local mar-
tingale. Since by (iii) M∗(t1, t2) ∈ [C1,C2], so this local martingale is a
bounded martingale. Thus, (iv) is satisfied. Finally, (v) follows from the
symmetry in the definition of (6.3) and (6.4) of M∗. �

7. Coupling measures.

Proof of Theorem 2.1. From conformal invariance, we may assume
that D = H, a= x1 and b= x2. Let ξj(t) and βj(t), 0 ≤ t≤ Tj , j = 1,2, be as
in Section 4. For j = 1,2, let µj denote the distribution of (ξj(t),0 ≤ t≤ Tj).
Let µ= µ1 ×µ2. Then µ is the joint distribution of ξ1 and ξ2, since they are
independent.

Let Ĉ = C ∪ {∞} be the Riemann sphere with spherical metric. Let Γ
Ĉ

denote the space of nonempty compact subsets of Ĉ endowed with the Haus-
dorff metric. Then Γ

Ĉ
is a compact metric space. For a chordal Loewner trace
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β(t), 0≤ t≤ T , let G(β) := {β(t) : 0 ≤ t≤ T} ∈ ΓĈ. For j = 1,2, let µ̄j denote
the distribution of G(βj), which is a probability measure on ΓĈ. We want to
prove that µ̄1 = µ̄2. Let µ̄= µ̄1 × µ̄2, which is the joint distribution of G(β1)
and G(β2).

Let HP∗ be the set of (H1,H2) ∈ HP such that, for j = 1,2, Hj is a poly-
gon whose vertices have rational coordinates. Then HP∗ is countable. Let
(Hm

1 ,H
m
2 ), m ∈ N, be an enumeration of HP∗. For each n ∈ N, let Mn

∗ (t1, t2)
be the M∗(t1, t2) given by Theorem 6.1 for (Hm

1 ,H
m
2 ), 1 ≤m ≤ n, in the

above enumeration.
For each n ∈ N, define νn = (νn

1 , ν
n
2 ) such that dνn/dµ = Mn

∗ (∞,∞).
From Theorem 6.1, Mn

∗ (∞,∞)> 0 and
∫
Mn

∗ (∞,∞)dµ = E[Mn
∗ (∞,∞)] =

1, so νn is a probability measure. Then dνn
1 /dµ1 = E[Mn

∗ (∞,∞)|F2
∞] =

Mn
∗ (∞,0) = 1. Thus, νn

1 = µ1. Similarly, νn
2 = µ2. So each νn is a coupling

of µ1 and µ2.
For each n ∈ N, suppose (ζn

1 (t),0 ≤ t ≤ Sn
1 ) and (ζn

2 (t),0 ≤ t ≤ Sn
2 ) have

the joint distribution νn. Let γn
j (t), 0 ≤ t ≤ Sj , j = 1,2, be the chordal

Loewner trace driven by ζn
j . Let ν̄n = (ν̄n

1 , ν̄
n
2 ) denote the joint distribution of

G(γn
1 ) and G(γn

2 ). Since Γ
Ĉ
×Γ

Ĉ
is compact, so (ν̄n, n ∈ N) has a subsequence

(ν̄nk :k ∈ N) that converges weakly to some probability measure ν̄ = (ν̄1, ν̄2)
on Γ

Ĉ
×Γ

Ĉ
. Then for j = 1,2, ν̄nk

j → ν̄j weakly. For n ∈ N and j = 1,2, since
νn

j = µj , so ν̄n
j = µ̄j . Thus, ν̄j = µ̄j , j = 1,2. So ν̄j , j = 1,2, is supported

by the space of graphs of crosscuts in H. From Proposition 2.2, there are
ζ1 ∈ C([0, S1]) and ζ2 ∈ C([0, S2]) such that the joint distribution of G(γ1)
and G(γ2) is ν̄, where γj(t) is the chordal Loewner trace driven by ζj(t),
j = 1,2.

Now fix m ∈ N. From Theorem 4.1, M(T1(H
m
1 ), T2(H

m
2 )) is positive and

F1
T1(Hm

1 ) × F2
T2(Hm

2 )-measurable, and
∫
M(T1(H

m
1 ), T2(H

m
2 ))dµ = 1. Define

ν(m) on F1
T1(Hm

1 )×F2
T2(Hm

2 ) such that dν(m)/dµ=M(T1(H
m
1 ), T2(H

m
2 )). Then

ν(m) is a probability measure. From Theorem 6.1, if n≥m, then

dνn

dµ

∣∣∣∣
F1

T1(Hm
1

)
×F2

T2(Hm
2

)

= E[Mn
∗ (∞,∞)|F1

T1(Hm
1 ) ×F2

T2(Hm
2 )]

=Mn
∗ (T1(H

m
1 ), T2(H

m
2 )) =M(T1(H

m
1 ), T2(H

m
2 )).

Thus, ν(m) equals the restriction of νn to F1
T1(Hm

1 ) ×F2
T2(Hm

2 ) if n≥m.

For a chordal Loewner trace γ(t), 0≤ t≤ S, and a hullH in H w.r.t. 0 that
contains some neighborhood of γ(0) in H, let GH(γ) := {γ(t) : 0 ≤ t≤ TH} ∈
ΓĈ, where TH is the first t such that γ(t) ∈ H \H or t= S. Then GH(γ) ⊂
G(γ). Let ν̄n

(m) denote the distribution of (GHm
1

(γn
1 ),GHm

2
(γn

2 )). Then ν̄n
(m) is

determined by the distribution of (ζn
1 , ζ

n
2 ) restricted to F1

T1(Hm
1 ) ×F2

T2(Hm
2 ),

which equals ν(m) if n≥m. Let ν̄(m) = ν̄m
(m). Then ν̄n

(m) = ν̄(m) for n≥m.
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Let τnk

(m) denote the distribution of (G(γnk

1 ),G(γnk

2 ),GHm
1

(γnk

1 ),GHm
2

(γnk

2 )).

Then τnk

(m) is supported by Ξ, which is the set of (L1,L2, F1, F2) ∈ Γ4
Ĉ

such

that Fj ⊂Lj for j = 1,2. It is easy to check that Ξ is a closed subset of Γ4
Ĉ
.

Then (nk) has a subsequence (n′k) such that τ
n′

k

(m) converges weakly to some

probability measure τ(m) on Ξ. Since the marginal of τ
n′

k

(m) at the first two

variables equals ν̄n′
k , and ν̄n′

k → ν̄ weakly, so the marginal of τ(m) at the first

two variables equals ν̄. Since the marginal of τ
n′

k

(m) at the last two variables

equals ν̄
n′

k

(m), which equals ν̄(m) if n′k ≥m, so the marginal of τ(m) at the last

two variables equals ν̄(m).
Let the Ξ-valued random variable (L1,L2, F1, F2) have the distribution

τ(m). Then ν̄ is the distribution of (L1,L2) and ν̄(m) is the distribution of
(F1, F2). Note that ν̄(m) is supported by the space of pairs of curves (α1, α2)
such that, for j = 1,2, αj is a simple curve whose one end is xj , the other
end lies on ∂Hm

j ∩ H, and whose other part lies in the interior of Hm
j .

For j = 1,2, since Lj = G(γj), so from the properties of Ξ and ν̄(m), we
have Fj =GHm

j
(γj), which means that (GHm

1
(γ1),GHm

2
(γ2)) has the distri-

bution ν̄(m). Since the distribution of (GHm
1

(γ1),GHm
2

(γ2)) determines the

distribution of (ζ1, ζ2) restricted to F1
T1(Hm

1 ) ×F2
T2(Hm

2 ), so the distribution

of (ζ1, ζ2) restricted to F1
T1(Hm

1 ) × F2
T2(Hm

2 ) equals ν(m). Since dν(m)/dµ =

M(T1(H
m
1 ), T2(H

m
2 )), so from the discussion after the proof of Theorem 5.1,

for any (F2
t )-stopping time t̄2 with t̄2 ≤ T2(H

m
2 ), (γ1(t),0 ≤ t≤ T1(H

m
1 )) is

a time-change of a chordal SLEκ trace in H \ γ2((0, t̄2]) from x1 to γ2(t̄2)
stopped on hitting H \Hm

1 .
Now fix an (F2

t )-stopping time t̄2 with t̄2 < T2. Recall that T1(t̄2) is the
maximal such that γ1([0, T1(t̄2))) is disjoint from γ2([0, t̄2]). For n ∈ N, define

Rn = sup{T1(H
m
1 ) :m ∈ Nn, t̄2 ≤ T2(H

m
2 )}.

Here we set sup(∅) = 0. Then for any t≥ 0,

{Rn ≤ t}=
n⋂

m=1

({t̄2 >T2(H
m
2 )} ∪ {T1(H

m
1 ) ≤ t}) ∈ F1

t ×F2
t̄2
.

So Rn is an (F1
t × F2

t̄2
)t≥0-stopping time for each n ∈ N. For m ∈ Nn, let

t̄m2 = t̄2 ∧ T2(H
m
2 ). Then t̄m2 is an (F2

t )-stopping time, and t̄m2 ≤ T2(H
m
2 ).

From the last paragraph, we conclude that γ1(t), 0≤ t≤ T1(H
m
1 ), is a time-

change of a part of the chordal SLEκ trace in H \ γ1((0, t̄
m
2 ]) from x1 to

γ2(t̄
m
2 ). Let En,m = {t̄2 ≤ T2(H

m
2 )} ∩ {Rn = T1(H

m
1 )}. Since on each En,m,

t̄2 = t̄m2 and Rn = T1(H
m
1 ), and {Rn > 0} =

⋃n
m=1 En,m, so γ1(t), 0≤ t≤Rn,

is a time-change of a part of the chordal SLEκ trace in H \ γ1((0, t̄2]) from
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x1 to γ2(t̄2). Let R∞ =
∨∞

n=1Rn. Then γ1(t), 0 ≤ t < R∞, is a time-change
of a part of the chordal SLEκ trace in H \ γ1((0, t̄2]) from x1 to γ2(t̄2).

For each n ∈ N and m ∈ Nn, if t̄2 ≤ T2(H
m
2 ), then T1(H

m
2 ) < T1(t̄2), so

Rn < T1(t̄2). Thus, R∞ ≤ T1(t̄2). If R∞ < T1(t̄2), then γ1((0,R∞]) is dis-
joint from γ2((0, t̄2]), so there is (Hm

1 ,H
m
2 ) ∈HP∗ such that γ1((0,R∞]) and

γ2((0, t̄2]) are contained in the interiors of Hm
1 and Hm

2 , respectively. Then
t̄2 ≤ T2(H

m
2 ) and Rm ≤ R∞ < T1(H

m
1 ), which contradicts the definition of

Rm. Thus, R∞ = T1(t̄2). So γ1(t), 0 ≤ t < T1(t̄2), is a time-change of a part
of the chordal SLEκ trace in H \ γ1((0, t̄2]) from x1 to γ2(t̄2). From the defi-
nition of T1(t̄2) we have γ1(T1(t̄2)) ∈G(γ2). Thus, γ1(t), 0≤ t < T1(t̄2), is a
time-change of a full chordal SLEκ trace in H \ γ1((0, t̄2]) from x1 to γ2(t̄2).
Since κ ∈ (0,4], so almost surely γ1(T1(t̄2)) = γ2(t̄2). Thus, γ2(t̄2) ∈ G(γ1)
almost surely.

For n ∈ N and q ∈ Q≥0, let t̄n,q
2 = q ∧ T2(H

n
2 ). Then each t̄n,q

2 is an (F2
t )-

stopping time with t̄q,n
2 < T2. Since N × Q≥0 is countable, so almost surely

γ2(t̄
q,n
2 ) ∈ G(γ1) for every n ∈ N and q ∈ Q≥0. Since Q≥0 is dense in R≥0,

γ2 is continuous, and G(γ1) is closed, so almost surely for every n ∈ N,
γ2([0, T2(H

n
2 )]) ⊂G(γ1). Since T2 =

∨∞
n=1 T2(H

n
2 ), so G(γ2) ⊂G(γ1) almost

surely. Similarly, G(γ1) ⊂G(γ2) almost surely. Thus, G(γ1) =G(γ2) almost
surely. Since for j = 1,2, the distribution of G(γj) equals the distribution of
G(βj), which is the SLEκ trace in H from xj to x3−j , so we are done. �
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