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Abstract

An annulus SLEκ trace tends to a single point on the target circle, and the

density function of the end point satisfies some differential equation. Some mar-

tingales or local martingales are found for annulus SLE4, SLE8 and SLE8/3. From

the local martingale for annulus SLE4 we find a candidate of discrete lattice model

that may have annulus SLE4 as its scaling limit. The local martingale for annulus

SLE8/3 is similar to those for chordal and radial SLE8/3. But it seems that annulus

SLE8/3 does not satisfy the restriction property.

1 Introduction

Schramm-Loewner evolution (SLE) is a family of random growth processes invented by
O. Schramm in [12] by connecting Loewner differential equation with a one-dimentional
Browinian motion. SLE depend on a single parameter κ ≥ 0, and behaves differently
for different value of κ. Schramm conjectured that SLE(2) is the scaling limit of some
loop-erased random walks (LERW) and proved his conjuecture with some additional
assumptions. He also suggested that SLE(6) and SLE(8) should be the scaling limits of
certain discrete lattice models.

After Schramm’s paper, there were many papers working on SLE. In the series of
papers [4][5][6], the locality property of SLE(6) was used to compute the intersection
exponent of plane Brwonian motion. In [14], SLE(6) was proved to be the scaling limit
of the cite percolation explorer on the triangle lattice. It was proved in [7] that SLE(2) is
the scaling limit of the corresponding loop-erased random walk (LERW), and SLE(8) is
the scaling limit of some uniform spanning tree (UST) Peano curve. SLE(4) was proved
to be the scaling limit of the harmonic exploer in [13]. SLE(8/3) satisfies restriction
property, and was conjectured in [8] to be the scaling limit of some self avoiding walk
(SAW). Chordal SLE(κ, ρ) processes were also invented in [8], and they satisfy one-sided
restriction property. For basic properties of SLE, see [11], [3], [16], [15].
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The SLE invented by O. Schramm has a chordal and a radial version. They are all
defined in simply connected domains. In [17], a new version of SLE, called annulus SLE,
was defined in doubly connected domains as follows.

For p > 0, let the annulus

Ap = {z ∈ C : e−p < |z| < 1},

and the circle
Cp = {z ∈ C : |z| = e−p}.

Then Ap is bounded by Cp and C0. Let ξ(t), 0 ≤ t < p, be a real valued continuous
function. For z ∈ Ap, solve the annulus Loewner differential equation

∂tϕt(z) = ϕt(z)Sp−t(ϕt(z)/ exp(iξ(t))), 0 ≤ t < p, ϕ0(z) = z, (1)

where for r > 0,

Sr(z) = lim
N→∞

N∑

k=−N

e2kr + z

e2kr − z
.

For 0 ≤ t < p, let Kt be the set of z ∈ Ap such that the solution ϕs(z) blows up before or
at time t. Then for each 0 ≤ t < p, ϕt maps Ap \Kt conformally onto Ap−t, and maps Cp

onto Cp−t. We call Kt and ϕt, respectively, 0 ≤ t < p, the annulus LE hulls and maps,
respectively, of modulus p, driven by ξ(t), 0 ≤ t < p. If (ξ(t)) =

√
κB(t), 0 ≤ t < p,

where κ ≥ 0 and B(t) is a standard linear Brownian motion, then Kt and ϕt, 0 ≤ t < p,
are called standard annulus SLEκ hulls and maps, respectively, of modulus p. Suppose
D is a doubly connected domain with finite modulus p, a is a boundary point and C
is a boundary component of D that does not contain a. Then there is f that maps Ap

conformally onto D such that f(1) = a and f(Cp) = C. Let Kt, 0 ≤ t < p, be standard
annulus SLEκ hulls. Then (f(Kt), 0 ≤ t < p) is called an annulus SLEκ(D; a→ C) chain.

It is known in [17] that annulus SLEκ is weakly equivalent to radial SLEκ. so from
the existence of radial SLEκ trace, we know the existence of a standard annulus SLEκ

trace, which is β(t) = ϕ−1
t (exp(iξ(t))), 0 ≤ t < p. Almost surely β is a continuous curve

in Ap, and for each t ∈ [0, p), Kt is the hull generated by β((0, t]), i.e., the complement
of the component of Ap \ β((0, t]) whose boundary contains Cp. It is known that when
κ = 2 or κ = 6, limt→p β(t) exists and lies on Cp almost surely. In this paper, we prove
that this is true for any κ > 0. And we discuss the density function of the distribution
of the limit point. The density function should satisfy some differential equation.

When κ = 2, 8/3, 4, 6, or 8, radial and chordal SLEκ satisfy some special properties.
Radial SLE6 satisfies locality property. Since annulus SLE6 is (strongly) equivalent to
radial SLE6, so annulus SLE6 also satisfies the locality property. Annulus SLE2 is the
scaling limit of the corresponding loop-erased random walk. In this paper, we discuss
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the cases κ = 4, 8, and 8/3. We find martingales or local martingales for annulus SLEκ

in each of these cases. From the local martingale for annulus SLE4, we may construct
a harmonic explorer whose scaling limit is annulus SLE4. The martingales for annulus
SLE8/3 are similar to the martingales for radial and chordal SLE8/3, which are used
to show that radial and chordal SLE8/3 satisfy the restriction property. However, the
martingales for annulus SLE8/3 does not help us to prove that annulus SLE8/3 satisfies
the restriction property. On the contrary, it seems that annulus SLE8/3 does not satisfy
the restriction property.

2 Annulus Loewner Evolution in the Covering Space

We often lift the annulus Loewner evolution to the covering space. Let ei denote the
map z 7→ eiz. For p > 0, let Sp = {z ∈ C : 0 < Im z < p}, Rp = ip + R, and
Hp(z) = 1

i
Sp(e

i(z)). Then Sp = (ei)−1(Ap) and Rp = (ei)−1(Cp). Solve

∂tϕ̃t(z) = Hp−t(ϕ̃t(z) − ξ(t)), ϕ̃0(z) = z. (2)

For 0 ≤ t < p, let K̃t be the set of z ∈ Sp such that ϕ̃t(z) blows up before or at time

t. Then for each 0 ≤ t < p, ϕ̃t maps Sp \ K̃t conformally onto Sp−t, and maps Rp onto

Rp−t. And for any k ∈ Z, ϕ̃t(z + 2kπ) = ϕ̃t(z) + 2kπ. We call K̃t and ϕ̃t, 0 ≤ t < p, the
annulus LE hulls and maps, respectively, of modulus p in the covering space, driven by
ξ(t), 0 ≤ t < p. Then we have K̃t = (ei)−1(Kt) and ei ◦ ϕ̃t = ϕt ◦ ei. If (ξ(t))0≤t<p has

the law of (
√
κB(t))0≤t<p, then K̃t and ϕ̃t, 0 ≤ t < p, are called standard annulus SLEκ

hulls and maps, respectively, of modulus p in the covering space.
It is clear that Hr is an odd function. It is analytic in C except at the set of simple

poles {2kπ + i2mr : k,m ∈ Z}. And at each pole z0, the principle part is 2
z−z0

. For each
z ∈ C, Hr(z + 2π) = Hr(z), and Hr(z + i2r) = Hr(z) − 2i.

Let
fr(z) = i

π

r
Hπ2/r(i

π

r
z).

Then fr is an odd function. It is analytic in C except at the set of simple poles {z ∈ C :
iπ

r
z = 2kπ+ i2mπ2/r, for some k,m ∈ Z} = {2mπ− i2kr : m, k ∈ Z}. And at each pole

z0, the principle part is 2
z−z0

. We then compute

fr(z + 2π) = i
π

r
Hπ2/r(i

π

r
z + i2π2/r) = i

π

r
(Hπ2/r(i

π

r
z) − 2i) = fr(z) + 2

π

r
;

fr(z + i2r) = i
π

r
Hπ2/r(i

π

r
z − 2π) = i

π

r
Hπ2/r(i

π

r
z) = fr(z).
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Let gr(z) = fr(z) − Hr(z). Then gr is an odd entire function, and satisfies

gr(z + 2π) = gr(z) + 2π/r, gr(z + i2r) = gr(z) + 2i,

for any z ∈ C. Thus gr(z) = z/r. So we have

Hr(z) = fr(z) − gr(z) = i
π

r
Hπ2/r(i

π

r
z) − z

r
. (3)

3 Long Term Behaviors of Annulus SLE Trace

In this section we fix κ > 0 and p > 0. Let ϕt and Kt, 0 ≤ t < p, be the annulus LE
maps and hulls, respectively, of modulus p driven by ξ(t) =

√
κB(t), 0 ≤ t < p. Let ϕ̃t

and K̃t be the corresponding annulus LE maps and hulls in the covering space. Let β(t)
be the corresponding annulus SLEκ trace.

Let Zt(z) = ϕ̃t(z) − ξ(t). Then we have

dZt(z) = Hp−t(Zt(z))dt−
√
κdB(t).

Let Wt(z) = π
p−t
Zt(z). Then Wt maps (Sp \K̃t,Rp) conformally onto (Sπ,Rπ). From Ito’s

formula and equation (3) we have

dWt(z) =
πdZt(z)

p− t
+

πZt(z)

(p− t)2
= −π

√
κdB(t)

p− t
+

π

p− t
(Hp−t(Zt(z)) +

Zt(z)

p− t
)dt

= −π
√
κdB(t)

p− t
+

π

p− t
i
π

p− t
Hπ2/(p−t)(i

π

p− t
Zt(z))dt

= −π
√
κdB(t)

p− t
+

iπ2

(p− t)2
Hπ2/(p−t)(iWt(z))dt.

Now we change variables as follows. Let s = u(t) = π2/(p− t). Then u′(t) = π2/(p− t)2.

For π2/p ≤ s < ∞, let Ŵs(z) = Wu−1(s)(z). Then there is a standard one dimensional
Brownian motion (B1(s), s ≥ π2/p) such that

dŴs(z) =
√
κdB1(s) + iHs(iŴs(z))ds,

Let ϕ̂s(z) = Ŵs(z) −
√
κB1(s). Then ∂sϕ̂s(z) = iHs(iŴs(z)). Let Xs(z) = Re Ŵs(z).

For z ∈ Rp, we have Ŵs(z), ϕ̂s(z) ∈ Rπ, so Ŵs(z) = Xs(z) + iπ. Thus for z ∈ Rp,

∂sRe ϕ̂s(z) = Re ∂sϕ̂s(z) = Re (iHs(i(Xs(z) + iπ))) = lim
M→∞

M∑

k=−M

eXs(z) − e2ks

eXs(z) + e2ks
. (4)
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Note that Ŵ ′
s(z) = ϕ̂′

s(z). So for z ∈ Rp,

∂sϕ̂
′
s(z) =

∞∑

k=−∞

2eXs(z)e2ks

(eXs(z) + e2ks)2
ϕ̂′

s(z),

which implies that

∂s ln |ϕ̂′
s(z)| =

+∞∑

k=−∞

2eXs(z)e2ks

(eXs(z) + e2ks)2
. (5)

Lemma 3.1 For every z ∈ Rp, Xs(z) is not bounded on [π2/p,∞) almost surely.

Proof. Suppose the lemma is not true. Then there is z0 ∈ Rp and a > 0 such that the
probability that |Xs(z0)| < a for all s ∈ [π2/p,∞) is positive. Let Xs denote Xs(z0).
Then we have

dXs =
√
κdB1(s) +

(
lim

M→∞

M∑

k=−M

eXs − e2ks

eXs + e2ks

)
ds.

Let Ta be the first time that |Xs| = a. If such time does not exist, then let Ta = ∞. Let
f(x) =

∫ x

−∞
cosh(s/2)−4/κds. Then f maps R onto (0, C(κ)) for some C(κ) < ∞, and

f ′(x) = cosh(x/2)−4/k. So f ′(x) ex−1
ex+1

+ κ
2
f ′′(x) = 0. Let Us = f(Xs). Then

dUs = f ′(Xs)dXs +
κ

2
f ′′(Xs)ds

= f ′(Xs)
√
κdB1(s) + f ′(Xs) lim

M→∞

(
1∑

k=−M

eXs − e2ks

eXs + e2ks
+

M∑

k=1

eXs − e2ks

eXs + e2ks

)
ds

= f ′(Xs)
√
κdB1(s) + f ′(Xs)

∞∑

k=1

2 sinh(Xs)

cosh(2ks) + cosh(Xs)
ds.

Let v(s) =
∫ s

π2/p
f ′(Xt)

2dt for π2/p ≤ s < Ta. Let T̂a = v(Ta). For 0 ≤ r < T̂a, let

Ûr = Uv−1(r). Then

dÛr =
√
κdB2(r) + f ′(Xv−1(r))

−1

∞∑

k=1

2 sinh(Xv−1(r))

cosh(2ks) + cosh(Xv−1(r))
dr,

where B2(r) is another standard one dimensional Brownian motion. And T̂a is a stopping
time w.r.t. B2(r). Let

A(r) = f ′(Xv−1(r))
−1

∞∑

k=1

2 sinh(Xv−1(r))

cosh(2ks) + cosh(Xv−1(r))
;

5



M(r) = exp

(
−
∫ r

0

A(s)
√
κdB2(s) −

κ

2

∫ r

0

A(s)2ds

)
.

For 0 ≤ r < T̂a, |Xv−1(r)| < a, so |f ′(Xv−1(r))
−1| ≤ cosh(a/2)4/κ. And

∣∣∣∣∣

∞∑

k=1

2 sinh(Xv−1(r))

cosh(2ks) + cosh(Xv−1(r))

∣∣∣∣∣ ≤
∞∑

k=1

2 sinh(a)

e2ks/2
=

4 sinh(a)

e2s − 1
.

Thus the Nivikov’s condition

E [exp(
κ

2

∫ T̂a

0

A(s)2ds)] <∞

is satisfied. Let P denote the original measure for B2(r). Define Q on F̂T̂a
such that

dQ (ω) = MT̂a
(ω)dP (ω). Then (Ûr, 0 ≤ r < T̃a) is a one dimensional Brownian motion

started from 0 and stopped at time T̂a w.r.t. the probability law Q . For 0 ≤ s < Ta,
|Xs| ≤ a, so |f ′(Xs| ≥ cosh(a/2)−4/κ. Thus if Ta = ∞, then T̂a = ∞ too. From

the hypothesis of the proof, P {Ta = ∞} > 0, so P {T̂a = ∞} > 0. Since (Ûr, 0 ≤
r < T̂a) is a one dimensional Brownian motion w.r.t. Q , so on the event that T̂a =

∞, Q {lim supr→∞ |Ûr| < ∞} = 0. Thus Q {lim supr→∞ |Ûr| = ∞} > 0. Since P

and Q are equivalent probability measures, so P {lim supr→T̂a
|Ûr| = ∞} > 0. Thus

P {lim sups→Ta
|Us| = ∞} > 0. This contradicts the fact that for all s ∈ [π2/p,∞),

Us ∈ (0, C(κ)) and C(κ) <∞. Thus the hypothesis is wrong, and the proof is completed.
2

From this lemma and the definition of Xt, we know that for any z ∈ Rp, (Re ϕ̃t(z) −√
κB(t))/(p − t) is not bounded on t ∈ [0, p) a.s.. Since for any k ∈ Z and z ∈ Rp,

ϕ̃t(z) − 2kπ = ϕ̃t(z − 2kπ), so (Re ϕ̃t(z) − 2kπ −√
κB(t)))/(p− t) = (Re ϕ̃t(z − 2kπ) −√

κB(t))/(p− t) is not bounded on t ∈ [0, p) a.s., which implies that Xs(z) − 2ks is not
bounded on s ∈ [π2/p,∞) a.s..

Lemma 3.2 For every z ∈ Rp, almost surely lims→∞Xs(z)/s exists and the limit is an

odd integer.

Proof. Fix ε0 ∈ (0, 1/2) and z0 ∈ Rp. Let Xs denote Xs(z0). There is b > 0 such
that the probability that |√κB(t)| ≤ b + ε0t for any t ≥ 0 is greater than 1 − ε0. Since
coth(x/2) → ±1 as x ∈ R and x → ±∞, so there is R > 0 such that when ±x ≥ R,
± coth(x/2) ≥ 1 − ε0. Let T = R + b + 1. If for any s ≥ 0, |Xs − 2ks| < T for some
k = k(s) ∈ Z, then there is k0 ∈ Z such that |Xs − 2k0s| < T for all s ≥ T . From the
argument after Lemma 3.1, the probability of this event is 0. Let s0 be the first time
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that |Xs − 2ks| ≥ T for all k ∈ Z. Then s0 is finite almost surely. There is k0 ∈ Z

such that 2k0s0 + T ≤ Xs0
≤ 2(k0 + 1)s0 − T . Let s1 be the first time after s0 such that

Xs = 2k0s + R or Xs = 2(k0 + 1)s − R. Let s1 = ∞ if such time does not exist. For
s ∈ [s0, s1), we have Xs ∈ [2k0s+R, 2(k0+1)s−R]. Note that (ex−e2ks)/(ex+e2ks) → ∓1
as k → ±∞. So

lim
M→∞

M∑

k=−M

eXs − e2ks

eXs + e2ks
= 2k0 + lim

M→∞

k0+M∑

k=k0−M

eXs − e2ks

eXs + e2ks

= 2k0 + lim
M→∞

M∑

j=−M

eXs−2k0s − e2js

eXs−2k0s + e2js

= 2k0 + coth(
Xs − 2k0s

2
) +

∞∑

j=1

2 sinh(Xs − 2k0s)

cosh(2js) + cosh(Xs − 2k0s)

≥ 2k0 + coth(
Xs − 2k0s

2
) ≥ 2k0 + 1 − ε0;

and

lim
M→∞

M∑

k=−M

eXs − e2ks

eXs + e2ks
= 2(k0 + 1) + lim

M→∞

M∑

j=−M

eXs−2(k0+1)s − e2js

eXs−2(k0+1)s + e2js

= 2k0 + 2 + coth(
Xs − 2(k0 + 1)s

2
) +

∞∑

j=1

2 sinh(Xs − 2(k0 + 1)s)

cosh(2js) + cosh(Xs − 2(k0 + 1)s)

≤ 2k0 + 2 + coth(
Xs − 2(k0 + 1)s

2
) ≤ 2k0 + 2 + (−1 + ε0) = 2k0 + 1 + ε0.

From equation (4), we have that for s ∈ [s0, s1),

(2k0 + 1 − ε0)(s− s0) ≤ Re ϕ̂s(z0) − Re ϕ̂s0
(z0) ≤ (2k0 + 1 + ε0)(s− s0).

Note thatXs = Re ϕ̂s(z0)−
√
κB1(s), and (

√
κB1(s)−

√
κB1(s0), s ≥ s0) has the same dis-

tribution as (
√
κB(s−s0), s ≥ s0). Let Eb denote the event that |√κB1(s)−

√
κB1(s0)| ≤

b+ ε0(s− s0) for all s ≥ s0. Then P (E) > 1 − ε0. And on the event Eb, we have

(2k0 + 1 − ε0)(s− s0) − b− ε0(s− s0) ≤ Xs −Xs0

≤ (2k0 + 1 + ε0)(s− s0) + b+ ε0(s− s0),

from which follows that

Xs ≤ Xs0
+ (2k0 + 1 + ε0)(s− s0) + b+ ε0(s− s0)

7



≤ 2(k0 + 1)s0 − T + (2k0 + 1 + ε0)(s− s0) + b+ ε0(s− s0)

= 2(k0 + 1)s− T + b− (1 − 2ε0)(s− s0) ≤ 2(k0 + 1)s− R− 1

and
Xs ≥ Xs0

+ (2k0 + 1 − ε0)(s− s0) − b− ε0(s− s0)

≥ 2k0s0 + T + (2k0 + 1 − ε0)(s− s0) − b− ε0(s− s0)

= 2k0s+ T − b+ (1 − 2ε0)(s− s0) ≥ 2k0s+R + 1.

So on the event Eb we have s1 = ∞, which implies that 2k0s+R ≤ Xs ≤ 2(k0 + 1)s−R
for all s ≥ s0, and so ∂sRe ϕ̂s(z0) ∈ (2k0 + 1 − ε0, 2k0 + 1 + ε0) for all s ≥ s0. Thus the
event that

2k0 + 1 − ε0 ≤ lim inf
s→∞

Re ϕ̂s(z0)/s ≤ lim sup
s→∞

Re ϕ̂s(z0)/s ≤ 2k0 + 1 + ε0

has probability greater than 1− ε0. Since we may choose ε0 > 0 arbitrarily small, so a.s.
lims→∞ Re ϕ̂s(z0)/s exists and the limit is 2k0 + 1 for some k0 ∈ Z. The proof is now
finished by the facts that Xs(z0) = Re ϕ̂s(z0) +

√
κB1(s) and lims→∞B1(s)/s = 0. 2

Let
m− = sup{x ∈ R : lim

s→∞
Xs(x+ ip)/s ≤ −1}

and
m+ = inf{x ∈ R : lim

s→∞
Xs(x+ ip)/s ≥ 1}.

Since Xs(x1 + ip) < Xs(x2 + ip) if x1 < x2, so we have m− ≤ m+. If the event that
m− < m+ has a positive probability, then there is a ∈ R such that the event that
m− < a < m+ has a positive probability. From the definitions, m− < a < m+ implies
that lims→∞Xs(a+ ip)/s ∈ (−1, 1), which is an event with probability 0 by Lemma 3.2.

This contradiction shows that m− = m+ a.s.. Let m = m+. For any t ∈ [0, p), z ∈ Sp\K̃t

and k ∈ Z, since ϕ̃t(z + 2kπ) = ϕ̃t(z) + 2kπ, so Zt(z + 2kπ) = Zt(z) + 2kπ, then we
have Wt(z + 2kπ) = Wt(z) + 2kπ2/(p − t). Thus Xs(z + 2kπ) = Xs(z) + 2ks for any

s ∈ [π2/p,∞), z ∈ Sp \ K̃p−π2/s and k ∈ Z. If x ∈ (m + 2kπ,m + 2(k + 1)π) for some
k ∈ Z, then x− 2kπ > m and x− 2(k + 1)π < m. So

lim
s→∞

Xs(x+ ip)/s = lim
s→∞

(Xs(x− 2kπ + ip) + 2ks)/s ≥ 2k + 1

and

lim
s→∞

Xs(x+ ip)/s = lim
s→∞

(Xs(x− 2(k + 1)π + ip) + 2(k + 1)s)/s ≤ 2k + 1.

Therefore lims→∞Xs(x+ ip)/s = 2k + 1.

Let Kp = ∪0≤t<pKt and K̃p = ∪0≤t<pK̃t. Then Kp = ei(K̃p), and so Kp = ei(K̃p).
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Lemma 3.3 Kp ∩Cp = {e−p+im} almost surely.

Proof. We first show that m + ip ∈ K̃p. If this is not true, then there is a, b > 0

such that the distance between [m − a + ip,m+ a + ip] and K̃t is greater than b for all
t ∈ [0, p). From the definition of m, we have Xs(m ± a + ip) → ±∞ as s → ∞. Thus
Re ϕ̂s(m+ a+ ip)−Re ϕ̂s(m− a+ ip) → ∞ as s→ ∞. So there is c(s) ∈ (m− a,m+ a)

such that ϕ̂′
s(c(s) + ip) → ∞ as s → ∞. Since ϕ̂s maps (Sp \ K̃p−π2/s,Rp) conformally

onto (Sπ,Rπ), so by Koebe’s 1/4 theorem, the distance between c(s) + ip and K̃p−π2/s

tends to 0 as s→ ∞. This is a contradiction. Thus m+ ip ∈ K̃p.
Now fix x1 < x2 ∈ (m,m + 2π). Then Xs(xj + ip)/s → 1 as s → ∞ for j = 1, 2. So

there is s0 such that Xs(xj + ip) ∈ (s/2, 3s/2) for s ≥ s0 and j = 1, 2. So if x0 ∈ [x1, x2]
and s ≥ s0, then Xs(x0 + ip) ∈ (s/2, 3s/2), and so

+∞∑

k=−∞

eXs(x0+ip)e2ks

(eXs(x0+ip) + e2ks)2
≤

0∑

k=−∞

e2ks−Xs(x0+ip) +
+∞∑

k=1

eXs(x0+ip)−2ks

≤
0∑

k=−∞

e2ks−s/2 +

+∞∑

k=1

e3s/2−2ks =
2e−s/2

1 − e−2s
≤ 2e−s/2

1 − e−2π2/p
.

From equation (5), for all s ≥ s0,

∂s ln |ϕ̂′
s(x0 + ip)| ≤ 4e−s/2

1 − e−2π2/p
,

which implies that

ln |ϕ̂′
s(x0 + ip)| ≤ ln |ϕ̂′

s0
(x0 + ip)| + 8e−s0/2

1 − e−2π2/p
.

So there is M < ∞ such that |ϕ̂′
s(x0 + ip)| ≤ M for all x0 ∈ [x1, x2] and s ≥ s0. From

Koebe’s 1/4 theorem, we see that K̃t is uniformly bounded away from [x1 + ip, x2 + ip]

for t ∈ [0, p). Thus [x1 + ip, x2 + ip] ∩ K̃p = ∅. Since x1 < x2 are chosen arbitrarily from

(m,m+2π), so (m+ip,m+2π+ip)∩K̃p = ∅. Thus K̃p∩ [m+ip,m+2π+ip) = {m+ip}.
Since Cp = ei([m+ ip,m+ 2π + ip)), so Kp ∩ Cp = {ei(m+ ip)} = {e−p+im}. 2

Lemma 3.4 For every ε ∈ (0, 1), there is C0 > 0 depending on ε such that if q ∈ (0, 2π2

ln(2)
],

and Lt, 0 ≤ t < q, are standard annulus SLEκ hulls of modulus q, then the probability

that ∪0≤t<qLt ⊂ {eiz : |Re z| ≤ C0q} is greater than 1 − ε.
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Proof. Let q0 = 2π2

ln(2)
. Suppose q ∈ (0, q0]. Let Lt and ψt, 0 ≤ t < q, be the annulus LE

hulls and maps of modulus q driven by
√
κB(t), 0 ≤ t < q. Let L̃t and ψ̃t, 0 ≤ t < q, be

the corresponding annulus LE hulls and maps in the covering space. There is b = b(ε) > 0
such that the probability that |√κB(t)| ≤ b + t/4 for all t ≥ 0 is greater than 1 − ε.

Let R = ln(64) and C0 = (R + b + 1)/π. Let s0 = π2/q. Let Zt(z) = ψ̃t(z) −
√
κB(t),

Wt(z) = πZt(z)/(q − t) for 0 ≤ t < q. Let Ŵs(z) = Wq−π2/s(z) for s0 ≤ s < ∞. Then

there is another standard one dimensional Brownian motion B1(s), s ≥ s0, such that ψ̂s

defined by ψ̂s(z) = Ŵs(z) +
√
κB1(s) satisfies

∂sψ̂s(z) = lim
M→∞

M∑

k=−M

eŴs(z) + e2ks

eŴs(z) − e2ks

for s0 ≤ s < ∞. Let Eε be the event that |√κB1(s) −
√
κB1(s0)| ≤ b + (s − s0)/4 for

all s ≥ s0. Then P (Eε) > 1 − ε. Fix z0 ∈ Sq with C0q < Re z0 < 2π − C0q. We claim

that in the event Eε, ψ̃t(z0) never blows up for 0 ≤ t < q. If this claim is justified, then

on the event Eε, z0 6∈ L̃t for any 0 ≤ t < q and z0 ∈ Sq with C0q < Re z0 < 2π − C0q.

So ∪0≤t<qL̃t is disjoint from {z ∈ C : C0q < Re z < 2π − C0q}. Since Lt = ei(L̃t), so
∪0≤t<qLq is disjoint from {eiz : C0q < Re z < 2π − C0q} on the event Eε. Then we are
done.

Assume the event Eε. Let Zt denote Zt(z0), Wt denote Wt(z0), Ŵs denote Ŵs(z0),

and ψ̂s denote ψ̂s(z0). If ψ̃t(z0) blows up at time t∗ < q, then Zt → 2kπ for some k ∈ Z

as t→ t∗. Then Ŵs−2ks→ 0 as s→ π2/(q− t∗). Since ReZ0 = Re z0 ∈ [C0q, 2π−C0q],

so Ŵs0
= W0 ∈ [C0π, 2s0 − C0π] ⊂ (R, 2s0 −R), and so there is a first time s1 > s0 such

that Re Ŵs1
∈ {R, 2s1 − R}. Then for s ∈ [s0, s1], we have Re Ŵs ∈ [R, 2s−R]. Then

| lim
M→∞

M∑

k=−M

eŴs + e2ks

eŴs − e2ks
− 1| ≤

0∑

k=−∞

|e
Ŵs + e2ks

eŴs − e2ks
− 1| +

∞∑

k=1

|e
Ŵs + e2ks

eŴs − e2ks
+ 1|

≤
0∑

k=−∞

2

|eŴs−2ks| − 1
+

∞∑

k=1

2

|e2ks−Ŵs| − 1
≤

0∑

k=−∞

4

eR−2ks
+

∞∑

k=1

4

e2ks−(2s−R)

≤ 8e−R

1 − e−2s
≤ 16e−R ≤ 1

4
,

where we use the fact that e−R ≤ 1
64

and e−2s ≤ e−2s0 = e−2π2/q ≤ e−2π2/q0 ≤ 1
2
. Thus

|(Ŵs1
− Ŵs0

) − (s1 − s0)| ≤ |(ψ̂s1
− ψ̂s0

) − (s1 − s0)| + |√κB1(s1) −
√
κB1(s0)|

≤ (s1 − s0)/4 + b+ (s1 − s0)/4 = b+ (s1 − s0)/2.
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Then we have

Re Ŵs1
≥ Re Ŵs0

+ (s1 − s0) − b− (s1 − s0)/2 ≥ C0π + (s1 − s0)/2 − b > R

and

Re Ŵs1
≤ Re Ŵs0

+ (s1 − s0) + b+ (s1 − s0)/2 ≤ 2s0 − C0π + b+ 3(s1 − s0)/2

= 2s1 − (s1 − s0)/2 − C0π + b < 2s1 − R.

This contradicts that Re Ŵs1
∈ {R, 2s1−R}. Thus ψ̃t(z0) does not blow up for t ∈ [0, q).

Then the claim is justified, and the proof is finished. 2

For two nonempty sets A1, A2 ⊂ Ap, we define the angular distance between A1 and A2

to be da(A1, A2) = inf{|Re z1−Re z2| : eiz1 ∈ A1, e
iz2 ∈ A2}. For a nonempty set A ⊂ Ap,

we define the angular diameter of A to be diama(A) = sup{da(z1, z2) : z1, z2 ∈ A}.
If A intersects both A1 and A2, then da(A1, A2) ≤ diama(A). In the above lemma,
∪0≤t<qLt ⊂ {eiz : |Re z| ≤ C0q} implies that diama(∪0≤t<qLt) ≤ 2C0q. Form conformal
invariance and comparison principle of extremal distance, we have that for any d > 0,
there is h(d) > 0 such that for any p > 0, if for j = 1, 2, Aj is a union of connected
subsets of Ap, each of which touches both Cp and C0, and the extremal distance between
A1 and A2 in Ap is greater than h(d), then da(A1, A2) > dp.

Theorem 3.1 limt→p β(t) = e−p+im almost surely.

Proof. From Lemma 3.3, the distance from e−p+im to Kt tends to 0 as t→ p a.s.. Since
Kt is the hull generated by β((0, t]), so the distance from e−p+im to β((0, t]) tends to 0 as
t→ p a.s.. Suppose the theorem does not hold. Then there is a, δ > 0 such that the event
that lim supt→p |e−p+im − β(t)| > a has probability greater than δ. Let E1 denote this
event. Let ε = δ/4. Let C0 depending on ε be as in Lemma 3.4. Let R = min{a, e−p} and
r = min{1− e−p, R exp(−2πh(2C0 +1))}, where h is the function in the argument before
this theorem. Since Kt is generated by β((0, t]), and e−p+im ∈ Kp a.s., so the distance
between e−p+im and β((0, t]) tends to 0 a.s. as t→ p. So there is t0 ∈ (0, p) such that the
event that the distance between e−p+im and β((0, t0]) is less than r has probability greater
than 1 − ε. Let E2 denote this event. Let q0 = 2π2

ln(2)
, T = max{t0, p− q0,− ln(r + e−p)},

pT = p−T , and ξT (t) = ξ(T + t)− ξ(T ) for 0 ≤ t < pT . Let KT,t = ϕT (KT+t \KT )/eiξ(T )

and ϕT,t(z) = ϕT+t ◦ ϕ−1
T (exp(iξ(T ))z)/ exp(iξ(T )) for 0 ≤ t < pT . Then one may check

that KT,t and ϕT,t, 0 ≤ t < pT , are the annulus LE hulls and maps of modulus pT

driven by ξT . Since ξT (t) has the same law as
√
κB(t) and pT = p − T ≤ q0, so from

Lemma 3.4, the event that diama(∪0≤t<pT
KT,t) ≤ 2C0pT has probability greater than

1 − ε. Let E3 denote this event. Since P (Ec
1) + P (Ec

2) + P (Ec
3) < (1 − δ) + ε + ε < 1,
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so P (E1 ∩ E2 ∩ E3) > 0. This means that the events E1, E2 and E3 can happen at the
same time. We will prove that this is a contradiction. Then the theorem is proved.

Assume the event E1 ∩ E2 ∩ E3. Let Ar (AR, resp.) be the union of connected
components of {z ∈ C : |z − e−p+im| = r} ∩ (Ap \ KT ) ({z ∈ C : |z − e−p+im| =
R} ∩ (Ap \KT ), resp.) that touch Cp. From the properties of β in the event E1 and E2,
we see that Ar and AR both intersect Kp \KT . Since the distance between e−p+im and
KT is less than r, and r < R, so both Ar and AR are unions of two curves which touch
both Cp and C0 ∪KT . Let Br = e−iξ(T )ϕT (Ar) and BR = e−iξ(T )ϕT (AR). Then both Br

and BR are unions of two curves in ApT
that touch both CpT

and C0.
The extremal distance between Ar and AR in Ap \ KT is at least ln(R/r)/(2π) ≥

h(2C0 + 1). Thus the extremal distance between Br and BR in ApT
is at least h(2C0 +

1). So the angular distance between Br and BR is at least (2C0 + 1)pT . Since AR

and Ar both intersect Kp \ KT , so BR and Br both intersect ϕT (Kp \ KT )/eiξ(T ) =
∪0≤t<pT

KT,t, which implies that diama(∪0≤t<pT
KT,t) ≥ (2C0 + 1)pT . However, in the

event E3, diama(∪0≤t<pT
KT,t) ≤ 2C0pT . This contradiction finishes the proof. 2

Let’s see what can we say about the distribution of limt→p β(t). Let β̃(t) = ϕ̃−1
t (ξ(t)).

Then β̃ is a simple curve in Sp started from 0, and β(t) = ei(β̃(t)). From Theorem 3.1,

limt→p β̃(t) exists and lies on Rp. We call β̃ an annulus SLEκ trace in the covering space.
Let mp + ip denote the limit point, where mp is a real valued random variable.

Suppose the distribution of mp is absolutely continuous w.r.t. the Lebesgue measure,

and the density function λ̃(p, x) is C1,2 continuous. This hypothesis is very likely to be

true, but the proof is still missing now. We then have
∫

R
λ̃(p, x)dx = 1 for any p > 0.

Since the distribution of β̃ is symmetric w.r.t. the imaginary axis, so is the distribution
of limt→p β̃(t). Thus λ̃(p,−x) = λ̃(p, x). Moreover, we expect that when p → 0 the
distribution of (mp + ip) ∗ π

p
tends to the distribution of the limit point of a strip SLEκ

trace introduced in [18], whose density is cosh(x/2)−4/κ/C(κ) for some C(κ) > 0. If this
is true, then the distribution of mp tends to the point mass at 0 as p→ 0.

For 0 ≤ t < p, let Ft be the σ−algebra generated by ξ(s), 0 ≤ s ≤ t. Fix T ∈ [0, p).
Let pT = p − T . For 0 ≤ t < pT , let ξT (t) = ξ(T + t) − ξ(T ). Then ξT (t) has the same
distribution as

√
κB(t), and is independent of FT . For 0 ≤ t < T , let

ϕ̃T,t(z) = ϕ̃T+t ◦ ϕ̃−1
T (z + ξ(T )) − ξ(T ).

Then ∂tϕ̃T,t(z) = HpT−t(ϕ̃T,(z) − ξT (t)), and ϕ̃T,0(z) = z. Thus ϕ̃T,t(z), 0 ≤ t < pT , are
annulus LE maps of modulus pT in the covering space driven by ξT (t), 0 ≤ t < pT , and
so are independent of FT . Let

β̃T (t) = ϕ̃−1
T,t(ξT (t)) = ϕ̃T ◦ ϕ̃−1

T+t(ξ(Tt)) − ξ(T ) = ϕ̃T (β̃(T + t)) − ξ(T ), (6)
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for 0 ≤ t < pT . Then β̃T (t), 0 ≤ t < pT , is a standard annulus SLEκ trace of modulus
pT in the covering space, and is independent of FT . Thus limt→pT

βT (t) exists and lies
on RpT

a.s.. Let mpT
+ ipT denote the limit point. Then mpT

is independent of FT , and

the density of mpT
w.r.t. the Lebesgue measure is λ̃(pT , ·). From equation (6), we see

mpT
= ϕ̃T (mp + ip)− ipT − ξ(T ). For 0 ≤ t < p, let ψ̃t(z) = ϕ̃t(z+ ip)− i(p− t). Then ψ̃t

takes real values on R, and ∂tψ̃t(z) = Ĥp−t(ψ̃t(z) − ξ(t)), where Ĥr(z) = H(z + ir) + i.

Let Xt(z) = ψ̃t(z) − ξ(t) for 0 ≤ t < pT . So mpT
= XT (mp). From the differential

equation for ψ̃t, we get
dXt(x) = Ĥp−t(Xt(x))dt− dξ(t);

and
dX ′

t(x) = Ĥ
′

p−t(Xt(x))X
′
t(x)dt.

Let a < b ∈ R. Then {mp ∈ [a, b]} = {mpT
∈ [XT (a), XT (b)]}. Since mpT

has density

λ̃(pT , ·) and is independent of FT , and XT is FT measurable, so

E [1{mp∈[a,b]}|FT ] =

∫ XT (b)

XT (a)

λ̃(p− T, x)dx =

∫ b

a

λ̃(p− T,XT (x))X ′
T (x)dx.

Thus (
∫ b

a
λ̃(p − t, Xt(x))X

′
t(x)dx, 0 ≤ t < p) is a martingale w.r.t. {Ft}p

t=0. Fix x ∈ R.

Choose a < x < b and let a, b→ x. Then (λ̃(p−t, Xt(x))X
′
t(x), 0 ≤ t < p) is a martingale

w.r.t. {Ft}p
t=0. From Ito’s formula, we have

−∂1λ̃(r, x) + Ĥ
′

r(x)λ̃(r, x) + Ĥr(x)∂2λ̃(r, x) +
κ

2
∂2

2 λ̃(r, x) = 0, (7)

where ∂1 and ∂2 are partial derivatives w.r.t. the first and second variable, respectively.
Let Λ̃(p, x) =

∫ x

0
λ̃(p, s)ds for p > 0 and x ∈ R. Then for any p > 0, Λ̃(p, ·) is an odd

and increasing function, limx→±∞ Λ̃(p, x) = ±1
2
, and λ̃(p, x) = ∂2Λ̃(p, x). Thus for any

r > 0 and x ∈ R,

∂2(−∂1Λ̃(r, x) + Ĥr(x)∂2Λ̃(r, x) +
κ

2
∂2

2Λ̃(r, x)) = 0.

Since Λ̃(r, ·) is an odd function and Ĥr(0) = 0, so

−∂1Λ̃(r, 0) + Ĥr(0)∂2Λ̃(r, 0) +
κ

2
∂2

2Λ̃(r, 0) = 0.

Thus for any r > 0 and x ∈ R, we have

−∂1Λ̃(r, x) + Ĥr(x)∂2Λ̃(r, x) +
κ

2
∂2

2Λ̃(r, x) = 0. (8)
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And we expect that for any x ∈ R \ {0}, limr→0 Λ̃(r, x) → sign 1
2
. On the other hand, if

Λ̃(r, x) satisfies (8), then λ̃(r, x) := ∂2Λ̃(r, x) satisfies (7).

Let λ(r, x) =
∑

k∈Z
λ̃(r, x + 2kπ). Then λ(r, ·) has a period 2π, and is the density

function of the distribution of the argument of limt→r β(t), where β is a standard annulus
SLEκ trace of modulus r. So it satisfies

∫ π

−π
λ(r, x)dx = 1. And λ(r, ·) is an even

function for any r > 0. Since Ĥr has a period 2π, so λ(r, x) also satisfies equation
(7). Let Λ(r, x) =

∫ x

0
λ(r, s)ds. Then Λ(r, x) satisfies (8). But Λ(r, x) does not satisfies

limx→±∞ Λ(r, x) = ±1. Instead, we have Λ(r, x + 2π) = Λ(r, x) + 1. In the case that
κ = 2, we have some nontrivial solutions to (8). From Lemma 3.1 in [17], we see

−∂rHr +HrH
′
r +H′′

r = 0, where the function S̃r in [17] is the function Hr here. From the

definition of Ĥr, we may compute that −∂rĤr + ĤrĤ
′

r + Ĥ
′′

r = 0. Thus Λ1(r, x) = Ĥr(x)

and Λ2(r, x) = rHr(x) + x satisfy equation (8). So λ1(r, x) = Ĥ
′

r(x) and λ2(r, x) =
rH′

r(x) + 1 are solutions to (7). In fact, λ2(r, x)/(2π) is the distribution of the argument
of the end point of a Brownian Excursion in Ar started from 1 conditioned to hit Cr.
From Corollary 3.1 in [17], this is also the distribution of the argument of the limit point
of a standard annulus SLE2 trace of modulus r. So we justified equation (7) in the case
κ = 2.

We may change variables in the following way. For −∞ < s < 0, let P̃(s, y) =

Λ̃(−π2

s
,−π

s
y) and P(s, y) = Λ(−π2

s
,−π

s
y). Then for any s < 0, limy→±∞ P̃(s, y) = ±1

2
and

P(s, y+2s) = P(s, y)−1. And we expect that lims→−∞ P̃(s, y) =
∫ y

0
cosh( s

2
)−4/κds/C(κ).

Let Gs(y) = iH−s(iy− π) for s < 0 and y ∈ R. From formula (3), we may compute that

Λ̃(r, x) (Λ(r, x), resp.) satisfies equation (8) iff P̃(s, y) (P(s, y), resp.) satisfies

−∂1P̃(s, y) + Gs(y)∂2P̃(s, y) +
κ

2
∂2

2P̃(s, y) = 0. (9)

From the equation for Hr and the definition of Gs, we have −∂sGs + GsG
′
s + G′′

s = 0.
Thus P1(s, y) = Gs(y) and P2(s, y) = sGs(y) + y are solutions to (9). In fact, P1(s, y)
corresponds to −Λ2(r, x)/π, and P2(s, y) corresponds to −πΛ1(r, x).

4 Local Martingales for Annulus SLE4 and SLE8

4.1 Annulus SLE4

Fix κ = 4. Let Kt and ϕt, 0 ≤ t < p, be the annulus LE hulls and maps of modulus p,
respectively, driven by ξ(t) =

√
κB(t). Let β(t), 0 ≤ t < p, be the trace. For r > 0, let

T(2)
r (z) = 1

2
Sr(z

2) and T̃
(2)

r (z) = 1
i
T(2)

r (eiz). Solve the differential equations:

∂tψt(z) = ψt(z)T
(2)
p−t(ψt(z)/e

iξ(t)/2), ψ0(z) = z;
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∂tψ̃t(z) = T̃
(2)

p−t(ψ̃t(z) − ξ(t)/2), ψ̃0(z) = z.

Let P2 be the square map: z 7→ z2. Then we have P2◦ψt = ϕt◦P2 and ei◦ψ̃t = ψt◦ei. Let
Lt := P−1

2 (Kt) and L̃t = (ei)−1(Lt). Then ψt maps Ap/2 \ Lt conformally onto A(p−t)/2,

and ψ̃t maps Sp/2 \ L̃t conformally onto S(p−t)/2. Since Kt = β(0, t], and β is a simple
curve in Ap with β(0) = 1, so Lt is the union of two disjoint simple curves opposite to
each other, started from 1 and −1, respectively. Let α±(t) denote the curve started from
±1. Then ψt(α±(t)) = ei(±ξ(t)/2).

For each r > 0, suppose Jr is the conformal map from Ar/2 onto {z ∈ C : |Im z| <
1} \ [−ar, ar] for some ar > 0 such that ±1 is mapped to ±∞. This Jr is symmetric
w.r.t. both x-axis and y-axis, i.e., Jr(z) = Jr(z), and Jr(−z) = −Jr(z). And Im Jr is the
unique bounded harmonic function in Ar/2 that satisfies (i) Im Jr ≡ ±1 on the open arc

of C0 from ±1 to ∓1 in the ccw direction; and (ii) Im Jr ≡ 0 on Cr/2. Let J̃r = Jr ◦ ei.

Lemma 4.1 −∂rJ̃r + J̃ ′
rT̃

(2)

r + 1
2
J̃ ′′

r ≡ 0 in Ãr/2.

Proof. Since Im J̃r ≡ 0 on Rr/2, by reflection principle, J̃r can be extended analytically

across Rr/2. And we have Im J̃ ′
r = ∂xIm J̃r ≡ 0 and Im J̃ ′′

r = ∂2
xIm J̃r ≡ 0 on Rr/2. From

the equality Im J̃r(x + ir/2) = 0, we have ∂rIm J̃r + ∂yIm J̃r/2 ≡ 0 on Rr/2. On Rr/2,

note that Im T̃
(2)

r ≡ −1/2, so

Im (J̃ ′
rT̃

(2)

r ) = Re J̃ ′
rIm T̃

(2)

r + Im J̃ ′
rRe T̃

(2)

r

= −1/2Re J̃ ′
r = −1/2∂yIm J̃r = ∂rIm J̃r.

Let Fr := −∂rJ̃r + J̃ ′
rT̃

(2)

r + 1
2
J̃ ′′

r . Then ImFr ≡ 0 on Rr/2.

For any k ∈ Z, we see that J̃r(z) is equal to (−1)k+1 2
π

ln(z − kπ) plus some analytic

function for z ∈ Ãr/2 near kπ. So we may extend Re J̃r(z) harmonically across R \ {kπ :

k ∈ Z}. Since Im J̃r takes constant value (−1)k on each interval (kπ, (k + 1)π), k ∈ Z,

we have Re J̃r(z) = Re J̃r(z). Moreover, the following properties hold: ∂rJ̃r is analytic in

a neighborhood of R, J̃ ′
r and J̃ ′′

r are analytic in a neighborhood of R \ {kπ : k ∈ Z}.
The fact that Im J̃r takes constant value (−1)k on each (kπ, (k+ 1)π), k ∈ Z, implies

that Im ∂rJ̃r, Im J̃ ′
r and Im J̃ ′′

r vanishes on R \ {kπ : k ∈ Z}. Since Im T̃
(2)

r also vanishes
on R \ {kπ : k ∈ Z}, so we compute ImFr ≡ 0 on R \ {kπ : k ∈ Z}.

From Jr(z) = Jr(z), we find that J̃r(−z) = J̃r(z). So Re J̃r(z) = Re J̃r(−z) =

Re J̃r(−z). This means that Re J̃r is an even function, so is ∂rJ̃r and J̃ ′′
r . And J̃ ′

r is an

odd function. Note that T̃
(2)

r is an odd function, so Fr is an even function. Since T̃
(2)

r (z)
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is equal to 1/(2z) plus some analytic function for z near 0, so the pole of Fr at 0 has
order at most 2. However, the coefficient of 1/z2 is equal to 2/π ∗ 1/2 − 1/2 ∗ 2/π = 0.
And 0 is not a simple pole of Fr because Fr is even. So 0 is a removable pole of Fr.
Similarly, π is also a removable pole of Fr. Since Fr has period 2π, so every kπ, k ∈ Z,
is a removable pole of Fr. So Fr can be extended analytically across R, and ImFr ≡ 0
on R. Thus ImFr ≡ 0 in Sr/2, which implies that Fr ≡ C for some constant C ∈ R.

Finally, Jr(−z) = −Jr(z) implies that J̃r(z + π) = −J̃r(z). Since π is a period of

T̃
(2)

r , we compute Fr(z + π) = −Fr(z). So C has to be 0. 2

Proposition 4.1 For any z ∈ Ap/2, Jp−t(ψt(z)/e
iξ(t)/2) is a local martingale, from which

follows that Im Jp−t(ψt(z)/e
iξ(t)/2) is a bounded martingale.

Proof. Fix z0 ∈ Sp/2, let Zt := ψ̃t(z0) − ξ(t)/2, then

dZt = T̃
(2)

p−t(Zt)dt− dξ(t)/2.

Note that ξ(t)/2 = B(t). From Ito’s formula and the last lemma, we have

dJ̃p−t(Zt) = −∂rJ̃p−t(Zt)dt+ J̃ ′
p−t(Zt)dZt +

1

2
J̃ ′′

p−t(Zt)dt

= (−∂rJ̃p−t(Zt)+ J̃p−t(Zt)T̃
(2)

p−t(Zt)+
1

2
J̃ ′′

p−t(Zt))dt− J̃ ′
p−t(Zt)dξ(t)/2 = −J̃ ′

p−t(Zt)dξ(t)/2.

Thus J̃p−t(Zt), 0 ≤ t < p, is a local martingale. For any z ∈ Ap/2, there is z0 ∈ Sp/2 such
that z = ei(z0). Then

Jp−t(ψt(z)/e
iξ(t)/2) = Jp−t(ψt(e

i(z0))/e
iξ(t)/2)

= Jp−t(e
i(ψ̃t(z0) − ξ(t)/2)) = J̃p−t(ψ̃t(z0) − ξ(t)/2.

So Jp−t(ψt(z)/e
iξ(t)/2), 0 ≤ t < p, is a local martingale. Since |Im Jr(z)| ≤ 1 for any r > 0

and z ∈ Ar/2, so Im Jp−t(ψt(z)/e
iξ(t)/2), 0 ≤ t < p, is a bounded martingale. 2

Let ht(z) = Jp−t(ψt(z)/e
iξ(t)/2). Then ht maps A(p−t)/2 \ Lt conformally onto {z ∈

C : |Im z| < 1} \ [−ap−t, ap−t] so that α±(t) is mapped to ±∞. So Imht is the unique
bounded harmonic function in Ap/2 \ Lt that vanishes on Cp/2, equals to 1 on the arc of
C0 from 1 to −1 in the ccw direction and the north side of α+(0, t) and α−(0, t), and
equals to −1 on the arc of C0 from −1 to 1 in the ccw direction and the south side of
α+(0, t) and α−(0, t).

We have another choice of Jr. Let Jr be the conformal map of Ar/2 onto the strip
{z ∈ C : |Im z| < 1} \ [−ibr, ibr] for some br > 0 so that ±1 is mapped to ±∞. Then
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Im Jr is the bounded harmonic function in Ar/2 determined by the following properties:
(i) Im Jr ≡ ±1 on the open arc of C0 from ±1 to ∓1 in the ccw direction; and (ii)

the normal derivative of Im Jr vanishes on Cr/2. Let J̃r = Jr ◦ ei. The proposition and

lemma in this subsection still hold for Jr and J̃r defined here. The proofs are almost the
same. The only difference is at the step when we prove ImFr ≡ 0 on Rr/2. Here we have

Re J̃ ′
r = ∂yIm J̃r vanishes on Rr/2. Use an argument similar to the proof of the lemma, we

can show that ReF ′
r vanishes on Rr/2. So ∂yImFr vanishes on Rr/2. Since ImFr vanishes

on R, ImFr has to vanish in Sr/2. Use Jr(−z) = −Jr(z), we then conclude that Fr ≡ 0.
If we let ht(z) = Jp−t(ψt(z)/e

iξ(t)/2), then Imht is the unique bounded harmonic function
in Ap/2 \Lt that satisfies the following properties: equals to 1 on the arc of C0 from 1 to
−1 in the ccw direction, and the north side of α+(0, t) and α−(0, t), equals to −1 on the
arc of C0 from −1 to 1 in the ccw direction, and the south side of α+(0, t) and α−(0, t),
and the normal derivatives vanish on Cp/2.

Suppose E is a doubly connected domain such that 0 lies in the bounded component
of C \ E. Fix v ∈ ∂oE, the outside boundary component of E. Let β(t), 0 ≤ t < p,
be an SLE4(E; v → ∂iE) trace, where ∂iE is the inside boundary component of E. So
β(t) is the image of a standard annulus SLE4 trace of modulus p under the conformal
map from (Ap, 1) onto (E, v), where p is the modulus of E. Let D = P−1

2 (E) and
{v+, v−} = P−1

2 (v). P−1
2 ({β(t) : 0 ≤ t < p}) is the union of two disjoint simple curve

started from v+ and v−, respectively. Let α± denote the curve started from v±. Then D
is a symmetric (−D = D) doubly connected domain, and α−(t) = −α+(t) for 0 ≤ t < p.
Let Dt = D \α−([0, t])\α+([0, t]). Let γ±t denote the boundary arc of ∂oDt from α±(t) to
α∓(t) in the ccw direction. Then γ±t contains a boundary arc of ∂oD, one side of α+([0, t])
and one side of α−([0, t]). Let Ht be the bounded harmonic function in Dt which has
continuations at ∂iD and γ±t such that Ht ≡ 0 on ∂iD and Ht ≡ ±1 on γ±t . By the
definition of SLE4(E; v → ∂iE) and conformal invariance of harmonic functions, for any
fixed z0 ∈ D, Ht(z0), 0 ≤ t < p, is a bounded martingale. This Ht corresponds to Imht

defined right after Proposition 4.1. We may replace the condition Ht ≡ 0 on ∂iD by
∂
n
Ht ≡ 0 on ∂iD. Then this Ht corresponds to the Im ht defined in the last paragraph.

So for any fixed z0 ∈ D, it is still true that Ht(z0), 0 ≤ t < p, is a bounded martingale.

4.2 Harmonic Explorers for Annulus SLE4

Let D be a symmetric (−D = D) doubly connected subset of hexagonal faces in the
planar honeycomb lattice. Two faces of D are considered adjacent if they share an edge.
Let ∂oD and ∂iD denote the outside and inside component of ∂D, respectively. Suppose
v+ and v− are vertices that lie on ∂oD, and are opposite to each other, i.e., v− = −v+.
Suppose Re v+ > 0. Then v+ and v− partition the boundary faces of D near ∂oD into
an ”upper” boundary component, colored black, and a ”lower” boundary component,
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colored white. All other hexagons in D are uncolored.
Now we construct two curves α+ and α− as follows. Let α±(0) = v±. Let α±(1)

be a neighbor vertex of α±(0) such that [α±(0), α±(1)] is shared by a white hexagon
and a black hexagon. At time n ∈ N, if α±(n) 6∈ ∂iD, then α±(n) is a vertex shared
by a black hexagon, a white hexagon, and an uncolored hexagon, denoted by fn

±. Let
Hn be the function defined on faces, which takes value 1 on the black faces, −1 on the
white faces, 0 on faces that touch ∂iD, and is discrete harmonic at other faces of D. Then
Hn(fn

−) = −Hn(fn
+). We then color f± black with probability equal to (1+Hn(fn

±))/2 and
white with probability equal to (1−Hn(fn

±))/2 such that fn
+ and fn

− are colored differently.
Let α±(n + 1) be the unique neighbor vertex of α±(n) such that [α±(n), α±(n + 1)] is
shared by a white hexagon and a black hexagon. Increase n by 1, and iterate the above
process until α+ and α− hit ∂iD at the same time. We always have α−(n) = −α+(n),
fn
− = −fn

+, and Hn(−g) = −Hn(g).
From the construction, conditioned on α±(k), k = 0, 1, . . . , n, the expected value of

Hn+1(f
n
±) is equal to (1+Hn(fn

±))/2−(1−Hn(fn
±))/2 = Hn(f

n
±). And if a face f is colored

before time n, then its color will not be changed after time n, so Hn+1(f) = Hn(f). Since
Hn+1 and Hn both vanish on the faces near ∂iD, and are discrete harmonic at all other
uncolored faces at time n+ 1 and n, resp., so for any face f of D, the conditional value
of Hn+1(f) w.r.t. α±(k), k = 0, 1, . . . , n is equal to Hn(f). Thus for any fixed face f0 of
D, Hn(f0) is a martingale.

If n−1 < t < n, and α±(n−1) and α±(n) are defined, let α±(t) = (n− t)α±(n−1)+
(t− (n− 1))α±(n). Then α± becomes a curve in D. Let Dt = D \ α+([0, t]) \ α−([0, t]).
Note that if the side length of the hexagons is very small compared with the size of
D, then for any face f of D, Hn(f) is close to the value of H̃n at the center of f ,

where H̃n is the bounded harmonic function defined on Dn, which has a continuation to
∂D \ {v+, v−} and the two sides of α±([0, t)) such that H̃n ≡ 0 on ∂iD, and H̃n ≡ ±1
on the curve on ∂oDn from α±(n) to α∓(n) in the ccw direction. From the last section,
we may guess that the distribution of α± tends to that of the square root of an annulus
SLE4(P2(D);P2(v±) → ∂iP2(D)) trace when the mesh tends to 0. If at each step of the
construction of α±, we let Hn be the function which is is equal to 1 on the black faces,
−1 on the white faces, and is discrete harmonic at all other faces of D including the
faces that touch ∂iD, then we get a different pair of curves α±. If the mesh is very small
compared with the size of D, then for any face f of D, Hn(f) is close to the value of H̃n

at the center of f , where H̃n is the bounded harmonic function defined on Dn, which has
a continuation to ∂D \ {v+, v−} and the two sides of α±([0, t)) such that ∂

n
H̃n ≡ 0 on

∂iD, and H̃n ≡ ±1 on the curve on ∂oDn from α±(n) to α∓(n) in the ccw direction. So
we also expect the law of α± constructed in this way tends to that of the square root of
an annulus SLE4(P2(D);P2(v±) → ∂iP2(D)) trace when the mesh tends to 0.
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4.3 Annulus SLE8

Fix κ = 8. Let Kt and ϕt, 0 ≤ t < p, be the annulus LE hulls and maps, respectively,

of modulus p, driven by ξ(t) =
√
κB(t). For r > 0, let T(4)

r (z) = 1
4
Sr(z

4) and T̃
(4)

r (z) =
1
i
T(4)

r (eiz). Solve the differential equations:

∂tψt(z) = ψt(z)T
(4)
p−t(ψt(z)/e

iξ(t)/4), ψ0(z) = z;

∂tψ̃t(z) = T̃
(4)

p−t(ψ̃t(z) − ξ(t)/4), ψ̃0(z) = z.

Let P4 be the map: z 7→ z4. Then we have P4 ◦ ψt = ϕt ◦ P4 and ei ◦ ψ̃t = ψt ◦ ei. Let
Lt := P−1

4 (Kt) and L̃t = (ei)−1(Lt). Then ψt maps Ap/4 \ Lt conformally onto A(p−t)/4,

and ψ̃t maps Sp/4 \ L̃t conformally onto S(p−t)/4. Let Gr map Ar/4 conformally onto
{z ∈ C : |Re z| + |Im z| < 1} \ [−ar, ar] for some ar > 0 such that ±1 and ±i are fixed.

Proposition 4.2 For any z ∈ Ar/4, Gp−t(ψt(z)/e
iξt/4) is a bounded martingale.

Proof. Let G̃r := Gr ◦ ei. For any z ∈ Ap/4, there is w ∈ Sp/4 such that z = ei(w). Then

Gp−t(ψt(z)/e
iξ(t)/4) = Gp−t(ψt(e

iw)/eiξ(t)/4) = G̃p−t(ψ̃t(w) − ξ(t)/4).

To prove this proposition, it suffices to show that for any w ∈ Sp/4, G̃p−t(ψ̃t(w)− ξ(t)/4)

is a local martingale. Let Zt = ψ̃t(w) − ξ(t)/4, then

dZt = T̃
(4)

p−t(Zt)dt− dB(t)/
√

2.

Thus by Ito’s formula,

dG̃p−t(ψt(w) − ξ(t)/4) = −∂rG̃p−t(Zt)dt+ G̃′
p−t(Zt)dZt +

1

2
G̃′′

p−t(Zt)
dt

2

= (−∂rG̃p−t(Zt) + G̃′
p−t(Zt)T̃

(4)

p−t(Zt) +
1

4
G̃′′

p−t(Zt))dt− G̃′
p−t(Zt)dB(t)/

√
2.

So it suffices to prove the following lemma.

Lemma 4.2 −∂rG̃r + G̃′
rT̃

(4)

r + 1
4
G̃′′

r ≡ 0 in Sr/4.

Proof. Let Fr be the left-hand side. Let Qr(z) := i(G̃r(z) − 1)2. Note that G̃r maps
[0, π/2] and [−π/2, 0] onto the line segments [1, i] and [−i, 1], respectively. Thus Qr(z) →
R as z ∈ Sr/4 and z → (−π/2, π/2). By reflection principle, Qr can be extended to an
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analytic function in a neighborhood of (−π/2, π/2), and Qr(z) = Qr(z). Since Gr(z) =

Gr(z), so G̃r(−z) = G̃r(z). It follows that Qr(−z) = −Qr(z). So we have Qr(−z) =

−Qr(z), and the Taylor expansion of Qr at 0 is
∑∞

n=0 an,rz
2n+1. Thus G̃r(z) = 1 +∑∞

n=0 cn,rz
2n+1/2 for z near 0. So ∂rG̃r(z) = O(z1/2) for z near 0, G̃′

r(z) = 1/2c1,rz
−1/2 +

O(z3/2), and G̃′′
r(z) = −1/4c1,rz

−3/2 + O(z1/2). Since T̃
(4)

r (z) = 1/(8z) + O(z) near 0,

so G̃′
r(z)T̃

(4)

r (z) = 1/16c1,rz
−3/2 + O(z1/2). Then we compute Fr(z) = O(z1/2) near 0.

Similarly, Fr(z) = O((z − kπ/2)1/2) for z near kπ/2, k ∈ Z.

For z ∈ (kπ, (k + 1/2)π), k ∈ Z, G̃r(z) ∈ (−1)k + (1 − i)R. So Fr(z) ∈ (1 − i)R for
z ∈ (kπ, (k + 1/2)π), k ∈ Z. Similarly, Fr(z) ∈ (1 + i)R for z ∈ ((k − 1/2)π, kπ), k ∈ Z.

Since G̃r takes real values on Rr/4, so Fr also takes real values on Rr/4. Let Vr = ImFr,
then Vr ≡ 0 on Rr/4, and for k ∈ Z, ∂xV +∂yV ≡ 0 on (kπ, (k+1/2)π) and ∂xV −∂yV ≡ 0
on ((k − 1/2)π, kπ), k ∈ Z. And Vr(z) → 0 as z ∈ Sr/4 and z → kπ/2, k ∈ Z. Since

G̃r and T̃
(4)

r have period 2π, so does Fr. Thus |Vr| attains its maximum in Sr/4 at some
z0 ∈ R ∪ Rr/4. If z0 ∈ Rr/4 or z0 = kπ/2 for some k ∈ Z, then Vr(z0) = 0, and so Vr

vanishes in Sr/4. Otherwise, either z0 ∈ (kπ, (k+1/2)π) or z0 ∈ ((k−1/2)π, kπ) for some
k ∈ Z. In either cases, we have ∂xVr(z0) = 0, so ∂yVr(z0) = 0 too. Thus F ′

r(z0) = 0. If
Fr is not constant in Sr/4, then Fr(z0) = 1 + am(z − z0)

m +O((z − z0)
m+1 for z near z0.

Then it is impossible that ImFr(z0) ≥ ImFr(z) for all z ∈ {|z− z0| < ε, Im z ≥ Im z0} or
ImFr(z0) ≤ ImFr(z) for all z ∈ {|z − z0| < ε, Im z ≥ Im z0}. This contradiction shows
that Fr has to be constant in Sr/4. Since Fr(z) → 0 as z → 0, so this constant is 0. We
again conclude that Vr has to vanish in Sr/4. 2

5 Annulus SLE8/3 and the Restriction Property

In this section, we fix κ = 8/3 and α = 5/8. Let ϕt and Kt, 0 ≤ t < p, be the annulus

LE maps and hulls of modulus p, driven by ξ(t) =
√
κB(t), 0 ≤ t < p. Let ϕ̃t and K̃t,

0 ≤ t < p, be the corresponding annulus LE maps and hulls in the covering space. Let
A 6= ∅ be a hull in Ap w.r.t. Cp (i.e., Ap \ A is a doubly connected domain whose one
boundary component is Cp) such that 1 6∈ A. So there is t > 0 such that Kt∩A = ∅. Let
TA be the biggest T ∈ (0, p] such that for t ∈ [0, T ), Kt∩A = ∅. Let ϕA be the conformal
map from Ap \ A onto Ap0

such that ϕA(1) = 1, where p0 is equal to the modulus of
Ap \A. Let K ′

t = ϕA(Kt), 0 ≤ t < TA. Let h(t) equal p0 minus the modulus of Ap0
\K ′

t.
Then h is a continuous increasing function with h(0) = 0. So h maps [0, TA) onto [0, SA)
for some SA ∈ (0, p0]. From Proposition 2.1 in [17], Ls = Kh−1(s), 0 ≤ s < SA, are the
annulus LE hulls of modulus p0, driven by some real continuous function, say η(s). Let

ψs, 0 ≤ s < SA, be the corresponding annulus LE maps. Let ψ̃s and L̃s, 0 ≤ s < SA, be
the annulus LE maps and hulls, respectively, in the covering space.
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Let ft = ψh(t) ◦ ϕA ◦ ϕ−1
t and At = ϕt(A). Then for 0 ≤ t < TA, ei(ξ(t)) 6∈ At, and ft

maps (Ap−t \ At,Cp−t) conformally onto (Ap0−h(t),Cp0−h(t)). And for any z0 ∈ C0 \ At,
if z ∈ Ap−t \ At and z → z0, then f(z) → C0. Thus ft can be extended analytically
across C0 near ei(ξ(t)). A proof similar to those of Lemma 2.1 and 2.2 in [17] shows that
ft(e

i(ξ(t))) = ei(η(h(t))), and h′(t) = |f ′
t(e

i(ξ(t)))|2.
Let ϕ̃A be such that ei ◦ ϕ̃A = ϕA ◦ ei and ϕ̃A(0) = 0. Let f̃t = ψ̃h(t) ◦ ϕ̃A ◦ ϕ̃−1

t .

Then ei ◦ f̃t = ft ◦ ei, and so ei ◦ f̃t(ξ(t)) = ei(η(h(t))). Thus f̃t(ξ(t)) = η(h(t)) + 2kπ
for some k ∈ Z. Now we replace η(s) by η(s) + 2kπ. Then η(s), 0 ≤ s < SA, is still a

driving function of Ls, 0 ≤ s < SA. And we have f̃t(ξ(t)) = η(h(t)). Moreover, we have

h′(t) = f̃ ′
t(ξ(t))

2.

Let Ã = (ei)−1(A) and Ãt = (ei)−1(At). For any t ∈ [0, TA), and z ∈ Sp \ Ã \ K̃t, we

have f̃t ◦ ϕ̃t(z) = ψ̃h(t) ◦ ϕ̃A(z). Taking the derivative w.r.t. t, we compute

∂tf̃t(ϕ̃t(z)) + f̃ ′
t(ϕ̃t(z))Hp−t(ϕ̃t(z) − ξ(t)) = f̃ ′

t(ξ(t))
2Hp0−h(t)(f̃t(ϕt(z)) − f̃t(ξ(t))).

Since Ãt = ϕ̃t(A) for 0 ≤ t < TA, so for any t ∈ [0, TA), and w ∈ Sp−t \ Ãt, we have

ϕ̃−1
t (w) ∈ Sp \ Ã \ K̃t. Thus

∂tf̃t(w) = f̃ ′
t(ξ(t))

2Hp0−h(t)(f̃t(w) − f̃t(ξ(t))) − f̃ ′
t(w)Hp−t(w − ξ(t)). (10)

Recall that

Hr(z) = −i lim
M→∞

M∑

k=−M

e2kr + eiz

e2kr − eiz
= cot(z/2) +

∞∑

k=1

−i(e
2kr + eiz

e2kr − eiz
+
e−2kr + eiz

e−2kr − eiz
)

= cot(z/2) +

∞∑

k=1

2 sin(z)

cosh(2kr) − cos(z)
.

Let

Sr =

∞∑

k=1

2

cosh(2kr) − 1
=

∞∑

k=1

1

cosh2(kr)
.

Then the Laurent sires expansion of Hr at 0 is Hr(z) = 2/z + (Sr − 1/6)z +O(z2).
Apply the following power series expansions:

Hr(z) = 2/z +O(z);

f̃ ′
t(w) = f̃ ′

t(ξ(t)) + f̃ ′′
t (ξ(t))(w − ξ(t)) +O((w − ξ(t))2);

f̃t(w) − f̃t(ξ(t)) = f̃ ′
t(ξ(t))(w − ξ(t)) +

f̃ ′′
t (ξ(t))

2
(w − ξ(t))2 +O((w − ξ(t))3).

After some straightforward computation and letting w → ξ(t), we get
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Lemma 5.1 ∂tf̃t(ξ(t)) = −3f̃ ′′
t (ξ(t)).

Now differentiate equation (10) with respect to w. We get

∂tf̃
′
t(w) = f̃ ′

t(ξ(t))
2f̃ ′

t(w)H′
p0−h(t)(f̃t(w) − f̃t(ξ(t)))

−f̃ ′′
t (w)Hp−t(w − ξ(t)) − f̃ ′

t(w)H′
p−t(w − ξ(t)).

Apply the previous power series expansions and the following expansions:

Hr(z) = 2/z + (Sr − 1/6)z +O(z2);

H′
r(z) = −2/z2 + (Sr − 1/6) +O(z);

f̃ ′′
t (w) = f̃ ′′

t (ξ(t)) + f̃ ′′′
t (ξ(t))(w − ξ(t)) +O((w − ξ(t))2);

f̃ ′
t(w) = f̃ ′

t(ξ(t)) + f̃ ′′
t (ξ(t))(w − ξ(t)) +

f̃ ′′′
t (ξ(t))

2
(w − ξ(t))2 +O((w − ξ(t))3);

f̃t(w) − f̃t(ξ(t)) = f̃ ′
t(ξ(t))(w − ξ(t)) +

f̃ ′′
t (ξ(t))

2
(w − ξ(t))2

+
f̃ ′′′

t (ξ(t))

6
(w − ξ(t))3 +O((w − ξ(t))4).

After some long but straightforward computation and letting w → ξ(t), we get

Lemma 5.2

∂tf̃
′
t(ξ(t))

f̃ ′
t(ξ(t))

=
1

2

(
f̃ ′′

t (ξ(t))

f̃ ′
t(ξ(t))

)2

− 4

3

f̃ ′′′
t (ξ(t))

f̃ ′
t(ξ(t))

+f̃ ′
t(ξ(t))

2(Sp0−h(t) − 1/6) − (Sp−t − 1/6).

From Ito’s formula and the above lemma, we have

df̃ ′
t(ξ(t)) = ∂tf̃

′
t(ξ(t))dt+ f̃ ′′

t (ξ(t))dξ(t) +
κ

2
f̃ ′′′

t (ξ(t))dt

= f̃ ′′
t (ξ(t))dξ(t) + f̃ ′

t(ξ(t))


1

2

(
f̃ ′′

t (ξ(t))

f̃ ′
t(ξ(t))

)2

+

(
κ

2
− 4

3

)
f̃ ′′′

t (ξ(t))

f̃ ′
t(ξ(t))

+ f̃ ′
t(ξ(t))

2(Sp0−h(t) − 1/6) − (Sp−t − 1/6)
)
dt.
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Thus

df̃ ′
t(ξ(t))

α = αf̃ ′
t(ξ(t))

α−1df̃ ′
t(ξ(t)) + α(α− 1)f̃ ′

t(ξ(t))
α−2κ

2
f̃ ′′

t (ξ(t))2dt

= αf̃ ′
t(ξ(t))

α



df̃
′
t(ξ(t))

f̃ ′
t(ξ(t))

+ (α− 1)
κ

2

(
f̃ ′′

t (ξ(t))

f̃ ′
t(ξ(t))

)2

dt





= αf̃ ′
t(ξ(t))

α


 f̃

′′
t (ξ(t))

f̃ ′
t(ξ(t))

dξ(t) +



(

1

2
+ (α− 1)

κ

2

)(
f̃ ′′

t (ξ(t))

f̃ ′
t(ξ(t))

)2

+

(
κ

2
− 4

3

)
f̃ ′′′

t (ξ(t))

f̃ ′
t(ξ(t))

+ f̃ ′
t(ξ(t))

2

(
Sp0−h(t) −

1

6

)
−
(
Sp−t −

1

6

))
dt

)

= αf̃ ′
t(ξ(t))

α

(
f̃ ′′

t (ξ(t))

f̃ ′
t(ξ(t))

dξ(t) +

(
h′(t)

(
Sp0−h(t) −

1

6

)
−
(
Sp−t −

1

6

))
dt

)
.

The last equality uses κ = 8/3, α = 5/8, and h′(t) = f̃ ′
t(ξ(t))

2.
Now we have the following theorem.

Theorem 5.1

Mt = f̃ ′
t(ξ(t))

5/8 exp

(
−5

8

∫ p−t

p0−h(t)

(
Sr −

1

6

)
dr

)
,

0 ≤ t < TA, is a bounded martingale.

Proof. From the above computation and Ito’s formula, we see tht Mt, 0 ≤ t < TA, is a
local martingale.

Since ft maps Ap−t \ At conformally onto Ap0−h(t), so by the comparison principle of
extremal length, the modulus of Ap0−h(t) is not bigger than that of Ap−t. Thus p0−h(t) ≤
p− t. Since Sr > 0 for any r > 0, so

exp

(
−5

8

∫ p−t

p0−h(t)

(
Sr −

1

6

)
dr

)
≤ exp

(
5

48
((p− t) − (p0 − h(t))

)
≤ exp

(
5p

48

)
. (11)

Let gt = f−1
t , g̃t = f̃−1

t . Then gt ◦ ei = ei ◦ g̃t. And gt maps Ap0−h(t) conformally
onto Ap−t \ At. Now − ln(gt(z)/z) is a bounded analytic function defined in Ap0−h(t),
Re (− ln(gt(z)/z)) → (p − t) − (p0 − h(t)) as z → Cp0−h(t), and any subsequential limit
of Re (− ln(gt(z)/z)) as z → C0 is nonnegative. Thus there are some C ∈ R and a
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positive measure µt supported by C0 of total mass (p− t)− (p0 −h(t)) such that for any
z ∈ Ap0−h(t),

− ln(gt(z)/z) =

∫

C0

Sp0−h(t)(z/θ)dµt(θ) + iC. (12)

For any w ∈ Sp0−h(t), we have ei(w) ∈ Ap0−h(t), ln(gt(e
i(w))) = ig̃t(w), and ln(z) = iw, so

−i(g̃t(w) − w) =

∫

C0

Sp0−h(t)(e
i(w)/θ)dµt(θ) + iC.

If µ̃t is a measure on R that satisfies µt = µ̃t ◦ (ei)−1, then for any w ∈ Sp0−h(t),

g̃t(w) − w =

∫

R

iSp0−h(t) ◦ ei(w − x)dµ̃t(x) − C =

∫

R

−Hp0−h(t)(w − x)dµ̃t(x) − C.

Taking derivative w.r.t. w, we have

g̃′t(w) − 1 =

∫

R

−H′
p0−h(t)(w − x)dµ̃t(x). (13)

From equation (3) and the definition of Hr, we have

Hr(z) = i
π

r
Hπ2/r(i

π

r
z) − z

r
=
π

r
lim

M→∞

M∑

k=−M

e2kπ2/r + e−πz/r

e2kπ2/r − e−πz/r
− z

r
.

Thus

H′
r(z) =

π2

r2

∞∑

k=−∞

−2eπz/re2kπ2/r

(eπz/r − e2kπ2/r)2
− 1

r
. (14)

So for z ∈ R, we have H′
r(z) < 0. Apply this to equation (13). We get g̃′t(η(h(t))) > 1.

Thus f̃ ′
t(ξ(t)) ∈ (0, 1). Then from equation (11), we have

0 ≤Mt ≤ exp

(
−5

8

∫ p−t

p0−h(t)

(
Sr −

1

6

)
dr

)
≤ exp

(
5p

48

)
.

Since Mt, 0 ≤ t < TA, is uniformly bounded, so it is a bounded martingale. 2

Now suppose that A is a smooth hull, i.e., there is a smooth simple closed curve
γ : [0, 1] → Ap ∪ C0 with γ((0, 1)) ⊂ Ap and γ(0) 6= γ(1) ∈ C0, and A is bounded by γ
and an arc on C0 between γ(0) and γ(1).

If TA < p, a proof similar to Lemma 6.3 in [8] shows that f̃ ′
t(ξ(t)) → 0 as t → TA.

Thus Mt → 0 as t → TA on the event that TA < p. From now on, we suppose TA = p.
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Then Kt approaches Cp as t → p and is uniformly bounded away from A. Then the
modulus of Ap \Kt \ A tends to 0 as t → p. Thus p0 − h(t) → 0 as t → p. So SA = p0.
Now At = ϕt(A) is bounded by γt = ϕt(γ) and an arc on C0 between γt(0) and γt(1).
So At is also a smooth hull. Thus ft and gt both extend continuously to the boundary
of the definition domain. And ft maps γt to an arc on C0. Let It denote this arc. Since
− ln(gt(z)/z) also extends continuously to C0, so the measure µt in equation (12) satisfies

dµt(z) = −Re ln(gt(z)/z)/(2π)dm(z) = − ln |gt(z)|/(2π)dm,

where m is the Lebesgue measure on C0 (of total mass 2π). Since ln |gt(z)| = 0 for
z ∈ C0 \It, so µt is supported by It. Let γ̃ be a continuous curve such that γ = ei ◦ γ̃. Let

γ̃t = ϕ̃t(γ̃) and Ĩt = f̃t(γt). Then ei(γ̃t) = γt, e
i(Ĩt) = It, and Ĩt is a real interval. Let µ̃t

be a measure supported by Ĩt that satisfies dµ̃t(z) = Im g̃t(z)/(2π)dmR for z ∈ Ĩt, where
mR is the Lebesgue measure on R. Since − ln |gt(e

i(z))| = Im g̃t(z), so µt = µ̃t ◦ (ei)−1.
Thus equation (13) holds for this µ̃t.

Now ϕ̃t maps Sp \ K̃t conformally onto Sp−t. Let Σt be the union of Sp \ K̃t, its

reflection w.r.t. R, and R\K̃t. By Schwarz reflection principle, ϕt extends analytically to
Σt, and maps Σt conformally into {z ∈ C : |Im z| < p− t}. For every z ∈ A, the distance
from z to the boundary of Σt is at least d0 = min{p, dist(A,Kp)} > 0, and the distance
from ϕt(z) to the boundary of {z ∈ C : |Im z| < p− t} equals to p− t. By Koebe’s 1/4
theorem, |ϕ′

t(z)| ≤ 4(p − t)/d0. Let H = max{Im γ̃(u) : u ∈ [0, 1]}. Since γ̃t = ϕ̃t ◦ γ̃,
so Ht := max{Im γ̃t(u) : u ∈ [0, 1]} ≤ 4(p− t)H/d0. A proof similar as above shows that

for any z ∈ Ĩ0, |ψ̃h(t)(z)| ≤ 4(p0 − h(t))/d1 for some d1 > 0. Since

Ĩt = f̃t(γ̃t) = ψ̃h(t) ◦ ϕ̃A(γ̃) = ψ̃h(t)(Ĩ0), (15)

so |Ĩt| ≤ 4(p− t)/d1|Ĩ0|. Thus |µt| = |µ̃t| ≤ Ht|It| ≤ 16(p− t)(p0−h(t))H|Ĩ0|/(d0d1). Let

C0 = 16H|Ĩ0|/(d0d1), then

(p− t) − (p0 − h(t)) = |µt| = |µ̃t| ≤ C0(p− t)(p0 − h(t)). (16)

Thus
(p0 − h(t))/(p− t) ≥ 1 − C0(p0 − h(t)). (17)

Since µ̃t is supported by Ĩt, so from equation (13) we have

g̃′t(η(h(t))) − 1 =

∫

Ĩt

−H′
p0−h(t)(η(h(t)) − x)dµ̃t(x).

Let α̃(t) = ϕ̃−1
t (ξ(t)). Then α̃(t) is a simple curve, and α(t) = ei(α̃(t)) = ϕ−1

t (ei(ξ(t))) is

an annulus SLE8/3 trace. SoKt = α((0, t]) for any t ≥ 0. Thus K̃t = ∪k∈Z(α̃((0, t])+2kπ).
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Let β̃(s) = ϕ̃A(α̃(h−1(s))) for 0 ≤ s < p0. Since L̃h(t) = ϕ̃A(Kt) and ϕ̃A(z + 2kπ) =

ϕ̃A(z) + 2kπ, so L̃h(t) = ∪k∈Z(β̃((0, h(t)]) + 2kπ). Now we compute

ψ̃h(t)(β̃(h(t))) = ψ̃h(t) ◦ ϕ̃A ◦ ϕ̃−1
t (ξ(t)) = f̃t(ξ(t)) = η(h(t)).

Thus ψ̃s maps the left and right side of β((0, h(t))) to intervals (b−(t), η(h(t))) and

(η(h(t)), b+(t)), respectively, for some b−(t) < η(h(t)) < b+(t). Therefore ψ̃h(t) maps

the L̃h(t) to ∪k∈Z(b−(t) + 2kπ, b+(t) + 2kπ). From equation (15), we have ∪k∈Z(l(t) +

2kπ, r(t) + 2kπ) ∩ Ĩt = ∅. So for any x ∈ Ĩt and k ∈ Z, |x − (η(s) + 2kπ)| ≥
min{η(h(t)) − b−(t), b+(t) − η(h(t))}.

As t → p, β̃(h(t)) approaches to a point on Rp0
, so the extremal distance be-

tween the left side of β̃((0, h(t)) and Rp0
in Sp0

\ L̃h(t) tends to 0. Since ϕ̃t maps

(Sp0
\ L̃h(t),Rp0

) conformally onto (Sp0−h(t),Rp0−h(t)), and the left side of β̃((0, h(t)) is
mapped to (b−(t), η(h(t))), so the extremal distance between (b−(t), η(h(t))) and Rp0−h(t)

in Sp0−h(t) tends to 0 as t → p by the conformal invariance property of extremal length.
Thus (η(h(t)) − b−(t))/(p0 − h(t)) → +∞ as t → p. Similarly, (b+(t) − η(h(t)))/(p0 −
h(t)) → +∞ as t→ p.

Suppose R ≥ ln(2)/π. Then eπR ≥ 2, and so eπR − 1 ≥ eπR/2. Suppose r > 0 and
the distance from x ∈ R to {2kπ : k ∈ Z} is at least rR, then there is k0 ∈ Z such that
2(k0 + 1)π − rR ≥ x ≥ 2k0π + rR. Thus 2rR ≤ 2π, and so r ≤ π/R. From equation
(14), we have

−H′
r(x) =

π2

r2

k0∑

k=−∞

2eπ(x−2kπ)/r

(eπ(x−2kπ)/r − 1)2
+
π2

r2

+∞∑

k=k0+1

2eπ(2kπ−x)/r

(eπ(2kπ−x)/r − 1)2
+

1

r

≤ π2

r2

k0∑

k=−∞

2eπ(2k0π+rR−2kπ)/r

(eπ(2k0π+rR−2kπ)/r − 1)2
+
π2

r2

+∞∑

k=k0+1

2eπ(2kπ−(2(k0+1)π−rR))/r

(eπ(2kπ−(2(k0+1)π−rR))/r − 1)2
+

1

r

= 2
π2

r2

∞∑

m=0

2eπ(2mπ+rR)/r

(eπ(2mπ+rR)/r − 1)2
+

1

r
=
π2

r2

∞∑

m=0

4eπR+2mπ2/r

(eπR+2mπ2/r − 1)2
+

1

r

≤ π2

r2

∞∑

m=0

4eπR+2mπ2/r

(eπR+2mπ2/r/2)2
+

1

r
= 16

∞∑

m=0

e−πR−2mπ2/r +
1

r

=
π2

r2

16e−πR

1 − e−2π2/r
+

1

r
≤ π2

r2

16e−πR

1 − e−2π2/(π/R)
+

1

r
≤ 32

π2

r2
e−πR +

1

r
.

Let r(t) = p0 − h(t) and R(t) = min{η(h(t)) − b−(t), b+(t) − η(h(t))}/r(t). Then

r(t) → 0 and R(t) → +∞ uniformly in ω as t → p, and for any x ∈ Ĩt, the distance
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from η(h(t))− x and {2kπ : k ∈ Z} is at least r(t)R(t). There is t0 ∈ (0, p) such that for
t ∈ [t0, p), R(t) ≥ ln(2)/π and r(t) ≤ 1/(2C0), where C0 is as in equation (17). From the
above displayed formula, we have −H ′

r(t)(x) ≤ 32π2/r(t)2e−πR(t) + 1/r. When t ∈ [t0, p),

r(t)/(p−t) ≥ 1/2 by equation (17), and so from the estimation of −H′
r(t)(x) and equation

(16), we have

g̃′t(η(h(t))) − 1 ≤ |µ̃t|(32
π2

r(t)2
e−πR(t) +

1

r(t)
)

≤ C0(p− t)r(t)(32
π2

r(t)2
e−πR(t) +

1

r(t)
) ≤ 64C0π

2e−πR(t) + C0(p− t) → 0,

as t → p. Thus f̃ ′
t(ξ(t)) = 1/g̃′t(η(h(t))) → 1 as t → p. Recall that the above argument

is based on the assumption that TA = p.
Suppose ∫ p−t

p0−h(t)

Srdr → 0, as t→ p on the event that TA = p. (18)

Then Mt → 1 as t→ TA on the event that TA = p. From the Markov property, we have

ϕ̃′
A(0)5/8 exp

(
−5

8

∫ p

p0

(
Sr −

1

6

)
dr

)
= M0 = E [ lim

t→TA

Mt] = P ({TA = p}).

Recall that p0 is the modulus of Ap \ A. Let Kp = ∪0≤t<pKt. Then

P ({Kp ∩ A = ∅}) = ϕ̃′
A(0)5/8 exp

(
−5

8

∫ p

p0

(
Sr −

1

6

)
dr

)
. (19)

If A is not a smooth hull, we may find a sequence of smooth hulls An that approaches
A. Then ϕ̃′

An
(0) → ϕ̃′

A(0) and the modulus of Ap \ An tends to the modulus of Ap \ A,
so equation (19) still holds.

Now suppose B is a hull in Ap0
w.r.t. Cp0

. Let D = A ∪ ϕ−1
A (B). Then D is a hull

in Ap w.r.t. Cp. Let p1 be the modulus of Ap \D, which is also the modulus of Ap0
\B.

Then ϕD = ϕB ◦ ϕA, so ϕ̃D = ϕ̃B ◦ ϕ̃A and ϕ̃′
D(0) = ϕ̃′

B(ϕ̃A(0))ϕ̃′
A(0) = ϕ̃′

B(0)ϕ̃′
A(0).

From the last paragraph,

P (Kp ∩D = ∅}) = ϕ̃′
D(0)5/8 exp

(
−5

8

∫ p

p1

(
Sr −

1

6

)
dr

)
.

Thus

P ({Kp ∩D = ∅}|{Kp ∩A = ∅}) = ϕ̃′
B(0)5/8 exp

(
−5

8

∫ p0

p1

(
Sr −

1

6

)
dr

)
.
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If Ls, 0 ≤ s < p0, are standard annulus SLE8/3 hulls of modulus p0, and Lp0
= ∪0≤s<p0

Ls,
then

P ({Lp0
∩B = ∅}) = ϕ̃′

B(0)5/8 exp

(
−5

8

∫ p0

p1

(
Sr −

1

6

)
dr

)
.

= P ({Kp ∩D = ∅}|{Kp ∩ A = ∅}) = P ({ϕA(Kp) ∩ B = ∅}|{Kp ∩ A = ∅}).
Thus conditioned on the event that Kp ∩ A = ∅, ϕA(Kp) has the same distribution as
Lp0

. Then we proved the restriction property of annulus SLE8/3 under the assumption
(18).

Unfortunately, the assumption (18) is actually always false. From equation (3) one
may compute that Sr is of order Θ(1/r2) as r → 0. From (17), (p− t)− (p0 −h(t)) = |µt|
is of order O((p − t)2). In fact, one could prove that it is of order Θ((p − t)2). So∫ p−t

p0−h(t)
Srdr is uniformly bounded away from 0. Thus it does not tend to 0 as t → p.

Therefore we guess that annulus SLE8/3 does not satisfy the restriction property.

Recently, Robert O. Bauer studied in [2] a process defined in a doubly connected
domain obtained by conditioning a chordal SLE8/3 in a simply connected domain to
avoid an interior contractible compact subset. The process describes a random simple
curve connecting two prime ends of a doubly connected domain that lie on the same side,
so it is different from the process we study here. That process automatically satisfies
the restriction property from the restriction property of chordal SLE8/3. And it satisfies
conformal invariance because the set of boundary hulls generates the same σ-algebra as
the Hausdorff metric on the space of simple curves.

Acknowledgement: I would like to thank my PhD advisor Nikolai Makarov for his
instruction on this work.
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