
Boundary Arm Exponents for SLE

Hao Wu and Dapeng Zhan

Abstract

We derive boundary arm exponents for SLE. Combining with the convergence of critical lattice models to SLE,
these exponents would give the alternating half-plane arm exponents for the corresponding lattice models.
Keywords: Schramm Loewner Evolution, boundary arm exponents.

1 Introduction

Schramm-Loewner evolution (SLE) was introduced by Oded Schramm [Sch00] as the candidates for the scaling
limits of interfaces in 2D critical lattice models. It is a one-parameter family of random fractal curves in simply
connected domains from one boundary point to another boundary point, which is indexed by a positive real κ .
Since its introduction, it has been proved to be the limits of several lattice models: SLE2 is the limit of Loop Erased
Random Walk and SLE8 is the limit of the Peano curve of Uniform Spanning Tree [LSW04], SLE3 is the limit of
the interface in critical Ising model and SLE16/3 is the limit of the interface in FK-Ising model [CDCH+14], SLE4
is the limit of the level line of discrete Gaussian Free Field [SS09] and SLE6 is the limit of the interface in critical
Percolation [Smi01].

In the study of lattice models, arm exponents play an important role. Take percolation for instance, Kesten
has shown that [Kes87] in order to understand the behavior of percolation near its critical point, it is sufficient to
study what happens at the critical point, and many results would follow from the existence and values of the arm
exponents. To be more precise, consider critical percolation with fixed mesh equal to 1, and for n ≥ 2, consider
the the event En(z,r,R) that there exist n disjoint crossings of the annulus Az(r,R) := {w ∈ C : r < |w− z| < R},
not all of the same color. People would like to understand the decaying of the probability of En(z,r,R) as R→ ∞.
It turns out that this probability decays like a power in R, and the exponent is called plane arm exponents. There
are another related quantities, called half-plane arm exponents. In this case, consider critical percolation in the
upper-half plane H, and for n≥ 1,x ∈R, define Hn(x,r,R) to be the event that there exist n disjoint crossings of the
semi-annulus A+

x (r,R) := {w ∈H : r < |w−x|< R}. After the identification between SLE6 and the limit of critical
percolation on triangular lattice [Smi01], one could derive these exponents via the corresponding arm exponents
for SLE6 [SW01]:

P [En(z,r,R)] = R−αn+o(1), P [Hn(x,r,R)] = R−α+
n +o(1), as R→ ∞,

where
αn := (n2−1)/12, α

+
n := n(n+1)/6.

In this paper, we derive boundary arm exponents for SLEκ . Combining with the identification between the
limit of critical lattice model and SLE curves, these exponents for SLE would imply the arm exponents for the
corresponding lattice models.

Fix κ > 4 and let η be an SLEκ in H from 0 to ∞. Suppose that y ≤ 0 < ε ≤ x and let T be the first time
that η swallows the point x which is almost surely finite when κ > 4. We first define the crossing event H2n−1
(resp. Ĥ2n) that η crosses between the ball B(x,ε) and the half-infinite line (−∞,y) at least 2n−1 times (resp. at
least 2n times) for n ≥ 1. To be precise with the definition, we need to introduce a sequence of stopping times.
Set τ0 = σ0 = 0. Let τ1 be the first time that η hits the ball B(x,ε) and let σ1 be the first time after τ1 that η hits
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(−∞,y). For n≥ 1, let τn be the first time after σn−1 that η hits the connected component of ∂B(x,ε)\η [0,σn−1]
containing x+ ε and let σn be the first time after τn that η hits (−∞,y). Define H2n−1(ε,x,y) to be the event that
{τn < T}. Define Ĥ2n(ε,x,y) to be the event that {σn < T}. In the definition of H2n−1(ε,x,y) and Ĥ2n(ε,x,y),
we are particular interested in the case when x is large. Roughly speaking, the event H2n−1(ε,x,y) means that η

makes at least (2n−1) crossings between B(x,ε) and (−∞,y). Imagine that η is the interface in the discrete model,
then H2n−1(ε,x,y) interprets the event that there are 2n− 1 arms going from B(x,ε) to far away place. The event
Ĥ2n(ε,x,y) means that η makes at least 2n crossings between B(x,ε) and (−∞,y). Imagine that η is the interface
in the discrete model, then Ĥ2n(ε,x,y) interprets the event that there are 2n arms going from B(x,ε) to far away
place. See Figure 1.1(a).

∞

x

η
0
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B(x, ε)
η(τ1) η(τ2)

η(σ1) η(σ2)

η(Tx)

x+ε

(a) This figure indicates Ĥ4. The stopping times
τ1 < σ1 < τ2 < σ2 < Tx are indicated in the figure.

∞

x

η
0

y

B(x, ε) η(τ1)
η(τ2)

η(σ1) η(σ2)

η(Tx)

x+ε

(b) This figure indicates H4. The stopping times
σ1 < τ1 < σ2 < τ2 < Tx are indicated in the figure.

Fig. 1.1: The explanation of the definition of the crossing events. The gray part is the ball B(x,ε).

Next, we define the crossing event H2n (resp. Ĥ2n+1) that η crosses between the half-infinite line (−∞,y) and
the ball B(x,ε) at least 2n times (resp. at least 2n+1 times) for n≥ 0. Set τ0 = σ0 = 0. Let σ1 be the first time that
η hits (−∞,y) and τ1 be the first time after σ1 that η hits the connected component of ∂B(x,ε)\η [0,σ1] containing
x+ ε . For n ≥ 1, let σn be the first time after τn−1 that η hits (−∞,y) and τn be the first time after σn that η hits
the connected component of ∂B(x,ε)\η [0,σn] containing x+ ε . Define H2n(ε,x,y) to be the event that {τn < T}.
Define Ĥ2n+1(ε,x,y) to be the event that {σn+1 < T}. In the definition of H2n(ε,x,y) and Ĥ2n+1(ε,x,y). we are
interested in the case when x is of the same size as ε and y is large. Roughly speaking, the event H2n(ε,x,y) means
that η makes at least 2n crossings between (−∞,y) and B(x,ε). Imagine that η is the interface in the discrete
model, then H2n(ε,x,y) interprets the event that there are 2n arms going from B(x,ε) to far away place. The event
Ĥ2n+1(ε,x,y) means that η makes at least 2n+ 1 crossings between (−∞,y) and B(x,ε). Imagine that η is the
interface in the discrete model, then Ĥ2n+1(ε,x,y) interprets the event that there are 2n+1 arms going from B(x,ε)
to far away place. See Figure 1.1(b).

Note that in the definition of H2n−1 and Ĥ2n, we start from τ1 and

H2n−1(ε,x,y) = {τ1 < σ1 < τ2 < · · ·< τn < T}, Ĥ2n(ε,x,y) = {τ1 < σ1 < τ2 < · · ·< τn < σn < T}.

In the definition of H2n and Ĥ2n+1, we start from σ1 and

H2n(ε,x,y) = {σ1 < τ1 < σ2 < · · ·< τn < T}, Ĥ2n+1(ε,x,y) = {σ1 < τ1 < σ2 < · · ·< τn < σn+1 < T}.

The two sequences of stopping times are defined in different ways. Readers may wander why we do not define
the events using the same sequence of stopping times. We realize that the definition using the same sequence of
stopping times causes ambiguity. Therefore, we decide to define these events in the above way. The advantages of
the current definition will become clear in the proofs.
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We define the arm exponents as follows. Set α
+
0 = 0. For n≥ 1 and κ ∈ (0,8), define

α
+
2n−1 = n(4n+4−κ)/κ, α

+
2n = n(4n+8−κ)/κ. (1.1)

For n≥ 1 and κ ≥ 8, define

α
+
2n−1 = (n−1)(4n+κ−8)/κ, α

+
2n = n(4n+κ−8)/κ. (1.2)

Theorem 1.1. Fix κ > 4. The crossing events H2n−1(ε,x,y) and H2n(ε,x,y) are defined as above. Then, for any
y≤ 0 < ε ≤ x and n≥ 1, we have

P[H2n−1(ε,x,y)]�
(

x
x− y

)α
+
2n−2 (ε

x

)α
+
2n−1

, (1.3)

P[H2n(ε,x,y)]�
(

x
x− y

)α
+
2n (ε

x

)α
+
2n−1

, (1.4)

where the constants in � depend only on κ and n. In particular, fix some δ > 0, we have

P[H2n−1(ε,x,y)]� ε
α
+
2n−1 , provided δ ≤ x≤ 1/δ ,−1/δ ≤ y≤ 0,

P[H2n(ε,x,y)]� ε
α
+
2n , provided ε ≤ x≤ ε/δ ,−1/δ ≤ y≤−δ ,

where the constants in � depend only on κ,n and δ .

By a similar proof, we could obtain a similar result as Theorem 1.1 for SLEκ(ρ) curve in the case that x
coincides with the force point. The exponents and a complete proof can be found in [Wu16b, Section 3], where
the conditions are loosen such that the force point may not be equal to x. One may also study the arm exponents
for κ ∈ (0,4]. Whereas, when κ ≤ 4, the SLE curve does not touch the boundary, thus the above definition of
the crossing events is not proper for κ ≤ 4. In Section 4, we have Theorem 4.4 for the crossing events between a
small circle and a half-infinite strip, where the arm exponents are defined in the same way as in (1.1). The proof of
Theorem 4.4 also works for SLEκ(ρ) when x coincides with the force point.

Theorem 1.2. Fix κ ∈ (4,8). Set α̂
+
0 = 0. The crossing events Ĥ2n(ε,x,y) and Ĥ2n+1(ε,x,y) are defined as above.

For n≥ 1, define
α̂
+
2n−1 = n(4n+κ−8)/κ, α̂

+
2n = n(4n+κ−4)/κ. (1.5)

Then, for y≤ 0 < ε ≤ x and n≥ 1, we have

P
[
Ĥ2n−1(ε,x,y)

]
�
(

x
x− y

)α̂
+
2n−1 (ε

x

)α̂
+
2n−2

, (1.6)

P
[
Ĥ2n(ε,x,y)

]
�
(

x
x− y

)α̂
+
2n−1 (ε

x

)α̂
+
2n
, (1.7)

where the constants in � depend only on κ and n. In particular, fix some δ > 0, we have

P
[
Ĥ2n−1(ε,x,y)

]
� ε

α̂
+
2n−1 , provided ε ≤ x≤ ε/δ ,−1/δ ≤ y≤−δ ,

P
[
Ĥ2n(ε,x,y)

]
� ε

α̂
+
2n , provided δ ≤ x≤ 1/δ ,−1/δ ≤ y≤ 0,

where the constants in � depend only on κ,n and δ .
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It is worthwhile to spend some more words on the relation between α+
n and α̂+

n . In fact, we can also define the
crossing events Ĥn(ε,x,y) for κ ∈ [0,4] and κ ≥ 8. When κ ≤ 4, the SLE curve does not touch the boundary, thus
the exponent α̂+

n coincides with α
+
n−1. When κ ≥ 8, the SLE curve is space-filling, thus the exponent α̂+

n coincides
with α

+
n+1. Whereas, when κ ∈ (4,8), the exponent α̂+

n is distinct from α+
n in general. In terms of discrete model,

both α+
n and α̂+

n interpret the boundary n-arm exponents, but their boundary conditions are different.
It is explained in [SW01] that combining the following three facts would imply the arm exponents for the

discrete model: (1) Identification between SLEκ and the limit of the interface in critical lattice model; (2) The arm
exponents of SLEκ ; (3) Crossing probabilities enjoy (approximate) multiplicativity property. For critical Ising and
FK-Ising model on Z2 with Dobrushin boundary conditions, the convergence to SLE3 and SLE16/3 respectively is
derived in [CS12, CDCH+14], and the multiplicativity is derived in [CDCH13]. Therefore, we could derive the
arm exponents for these two models. See more details in [Wu16b, Wu16a]. Moreover, the formula of α

+
2n−1 in

(1.1) was predicted by KPZ in [Dup03, Equations (11.42), (11.44)].
Relation to previous results. The formula of α+

n and αn for κ = 6 was obtained in [LSW01, SW01]. The exponent
α
+
1 is related to the Hausdorff dimension of the intersection of SLEκ with the real line which is 1−α

+
1 when κ > 4.

This dimension was obtained in [AS08]. The most important ingredients in proving Theorem 1.1 is the Laplace
transform of the derivatives of the conformal map in SLE evolution, which was obtained in [Law14].
Acknowledgment. The authors acknowledge Hugo Duminil-Copin, Christophe Garban, Gregory Lawler, Stanislav
Smirnov, Vincent Tassion, Brent Werness, and David Wilson for helpful discussions. Hao Wu’s work is supported
by the NCCR/SwissMAP, the ERC AG COMPASP, the Swiss NSF. Dapeng Zhan’s work is partially supported by
NSF DMS-1056840.

2 Preliminaries

Notations. We denote by f . g if f/g is bounded from above by universal finite constants, by f & g if f/g is
bounded from below by universal positive constants, and by f � g if f . g and f & g.
For z ∈ C,y ∈ R,r > 0.

B(z,r) = {w ∈ C : |w− z|< r}, U= B(0,1);

For two subsets A,B⊂ C,
dist(A,B) = inf{|x− y| : x ∈ A,y ∈ B}.

Let Ω be an open set and let V1,V2 be two sets such that V1∩Ω 6= /0 and V2∩Ω 6= /0. We denote the extremal distance
between V1 and V2 in Ω by dΩ(V1,V2), see [Ahl10, Section 4] for the definition.

2.1 H-hull and Loewner chain
We call a compact subset K of H an H-hull if H\K is simple connected. Riemann’s Mapping Theorem asserts that
there exists a unique conformal map gK from H\K onto H such that

lim
|z|→∞

|gK(z)− z|= 0.

We call such gK the conformal map from H\K onto H normalized at ∞. The limit hcap(K) := lim|z|→∞ z(gK(z)−z)
exists and is called the half-plane capacity of K.

Lemma 2.1. Fix x > 0 and ε > 0. Let K be an H-hull and let gK be the conformal map from H \K onto H
normalized at ∞. Assume that

x > max(K∩R).
Denote by γ the connected component of H∩ (∂B(x,ε)\K) whose closure contains x+ε . Then gK(γ) is contained
in the ball with center gK(x+ ε) and radius 3(gK(x+3ε)−gK(x+ ε)). Hence gK(γ) is also contained in the ball
with center gK(x+3ε) and radius 8εg′K(x+3ε).
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Proof. Define r∗ = sup{|z−gK(x+ ε)| : z ∈ gK(γ)}. It is sufficient to show

r∗ ≤ 3(gK(x+3ε)−gK(x+ ε)). (2.1)

We will prove (2.1) by estimates on the extremal distance:

dH(gK(γ), [gK(x+3ε),∞)).

By the conformal invariance and the comparison principle [Ahl10, Section 4.3], we can obtain the following lower
bound.

dH(gK(γ), [gK(x+3ε),∞)) = dH\K(γ, [x+3ε,∞))

≥ dH\B(x,ε)(B(x,ε), [x+3ε,∞))

= dH\U(U, [3,∞)) = dH([−1,0], [1/3,∞)).

On the other hand, we will give an upper bound. Recall a fact for extremal distance: for x< y and r > 0, the extremal
distance in H between [y,∞) and a connected set S ⊂H with x ∈ S ⊂ B(x,r) is maximized when S = [x− r,x], see
[Ahl06, Chapter I-E, Chapter III-A]. Since gK(γ) is connected and gK(x+ ε) ∈ R∩ gK(γ), by the above fact, we
have the following upper bound.

dH(gK(γ), [gK(x+3ε),∞))≤ dH([gK(x+ ε)− r∗,gK(x+ ε)], [gK(x+3ε),∞))

= dH ([−r∗,0], [gK(x+3ε)−gK(x+ ε),∞)) .

Combining the lower bound with the upper bound, we have

dH([−1,0], [1/3,∞))≤ dH ([−r∗,0], [gK(x+3ε)−gK(x+ ε),∞)) .

This implies (2.1) and completes the proof.

Lemma 2.2. Fix z ∈ H and ε > 0. Let K be an H-hull and let gK be the conformal map from H \K onto H
normalized at ∞. Assume that

dist(K,z)≥ 16ε.

Then gK(B(z,ε)) is contained in the ball with center gK(z) and radius 4ε|g′K(z)|.

Proof. By Koebe 1/4 theorem, we know that

dist(gK(K),gK(z))≥ d := 4ε|g′K(z)|.

Let h = g−1
K restricted to B(gK(z),d). Applying Koebe 1/4 theorem to h, we know that

dist(z,∂h(B(gK(z),d)))≥ d|h′(gK(z))|/4 = ε.

Therefore h(B(gK(z),d)) contains the ball B(z,ε), and this implies that B(gK(z),d) contains the ball gK(B(z,ε)) as
desired.

Loewner chain is a collection of H-hulls (Kt , t ≥ 0) associated with the family of conformal maps (gt , t ≥ 0)
obtained by solving the Loewner equation: for each z ∈H,

∂tgt(z) =
2

gt(z)−Wt
, g0(z) = z, (2.2)

where (Wt , t ≥ 0) is a one-dimensional continuous function which we call the driving function. Let Tz be the
swallowing time of z defined as sup{t ≥ 0 : mins∈[0,t] |gs(z)−Ws| > 0}. Let Kt := {z ∈H : Tz ≤ t}. Then gt is the
unique conformal map from Ht :=H\Kt onto H normalized at ∞.
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Here we spend some words about the evolution of a point y ∈ R under gt . We assume y≤ 0, the case of y≥ 0
can be analyzed similarly. There are two possibilities: if y is not swallowed by Kt , then we define Yt = gt(y); if y
is swallowed by Kt , then we define Yt to the be image of the leftmost of point of Kt ∩R under gt . The process Yt is
decreasing in t, and it is uniquely characterized by the following equation:

Yt = y+
∫ t

0

2ds
Ys−Ws

, Yt ≤Wt , ∀t ≥ 0.

In this paper, we may write gt(y) for the process Yt . Consider two points x≥ 0≥ y in R. By the above fact, we have

gt(x) = x+
∫ t

0

2ds
gs(x)−Ws

, gt(y) = y+
∫ t

0

2ds
gs(y)−Ws

, gt(y)≤Wt ≤ gt(x).

Therefore, the quantity gt(x)−gt(y) is increasing in t. We will use this fact in the paper without reference.

2.2 SLE processes
An SLEκ is the random Loewner chain (Kt , t ≥ 0) driven by Wt =

√
κBt where (Bt , t ≥ 0) is a standard one-

dimensional Brownian motion. In [RS05], the authors prove that (Kt , t ≥ 0) is almost surely generated by a con-
tinuous transient curve, i.e. there almost surely exists a continuous curve η such that for each t ≥ 0, Ht is the
unbounded connected component of H\η [0, t] and that limt→∞ |η(t)|= ∞.

We can define an SLEκ(ρ
L;ρR) process with two force points (xL;xR) where xL ≤ 0 ≤ xR. It is the Loewner

chain driven by Wt which is the solution to the following systems of SDEs:

dWt =
√

κdBt +
ρLdt

Wt −V L
t
+

ρRdt
Wt −V R

t
, W0 = 0;

dV L
t =

2dt
V L

t −Wt
, V L

0 = xL; dV R
t =

2dt
V R

t −Wt
, V R

0 = xR.

The solution exists up to the first time that W hits V L or V R. When ρL > −2 and ρR > −2, the solution
exists for all times t ≥ 0, and the corresponding Loewner chain is almost surely generated by a continuous curve
which is almost surely transient ([MS12, Section 2]). There are two special values of ρ: κ/2− 2 and κ/2− 4.
When ρR ≥ κ/2−2, then the curve will never hits [xR,∞). When ρR ≤ κ/2−4, then the curve will almost surely
accumulates at xR at finite time. See [Dub09, Lemma 15].

From Girsanov Theorem, it follows that the law of an SLEκ(ρ
L;ρR) process can be constructed by reweighting

the law of an ordinary SLEκ .

Lemma 2.3. Suppose xL < 0 < xR, define

Mt =g′t(x
L)ρL(ρL+4−κ)/(4κ)(Wt −gt(xL))ρL/κ ×g′t(x

R)ρR(ρR+4−κ)/(4κ)(gt(xR)−Wt)
ρR/κ

× (gt(xR)−gt(xL))ρLρR/(2κ).

Then M is a local martingale for SLEκ and the law of SLEκ weighted by M (up to the first time that W hits one of
the force points) is equal to the law of SLEκ(ρ

L;ρR) with force points (xL;xR).

Proof. [SW05, Theorem 6].

Lemma 2.4. Fix κ > 0 and ν ≤ κ/2− 4. Suppose y ≤ 0 < x. Let η be an SLEκ(ν) in H from 0 to ∞ with force
point x. Since ν ≤ κ/2−4, the curve η accumulates at the point x at almost surely finite time which is denoted by
T . Then we have, for λ ≤ 0,

E
[
(gT (x)−gT (y))

λ
]
� (x− y)λ ,

where the constants in � depend only κ,ν and λ .



2 Preliminaries 7

Proof. Since the quantity gt(x)−gt(y) is increasing in t, we have gT (x)−gT (y)≥ (x− y). This implies the upper
bound. We only need to show the lower bound. To this end, we will compare η with SLEκ(ν) with force point
x−y and show that the law of (gT (x)−gT (y))/(x−y) is stochastically dominated by a random variable whose law
depends only κ,ν . By the scaling invariance of SLEκ(ν), we may assume x− y = 1.

Let η̃ be an SLEκ(ν) with force point 1, and define W̃ , g̃t , T̃ accordingly. Define Ṽt to be the image of the
leftmost point of η̃ [0, t]∩R under g̃t . Set

J̃t =
W̃t −Ṽt

g̃t(1)−Ṽt
.

Define the stopping time τ = inf{t : J̃t =−y}. Note that J̃0 = 0, J̃T̃ = 1 and J̃ is continuous, we have that 0≤ τ ≤ T̃ .
Given η̃ [0,τ], the process (η̃(t + τ),0≤ t ≤ T̃ − τ), under the map

f (z) =
g̃τ(z)−W̃τ

g̃τ(1)−Ṽτ

,

has the same law as (η(t),0≤ t ≤ T ) after a linear time-change. Therefore, given η̃ [0,τ], we have

g̃T̃ (1)−ṼT̃

g̃τ(1)−Ṽτ

d
= gT (x)−gT (y).

Since g̃τ(1)− Ṽτ ≥ 1, we may conclude that the quantity (gT (x)− gT (y)) is stochastically dominated from above
by (g̃T̃ (1)−ṼT̃ ). To complete the proof, it is sufficient to show

Ẽ
[(

g̃T̃ (1)−ṼT̃
)λ
]
& 1, (2.3)

where P̃ denotes the law of SLEκ(ν) with force point 1. Define the event

F̃ = {g̃T̃ (1)−ṼT̃ ≤ 4}.

It is clear that P̃[F̃ ] is strictly positive and depends only on κ and ν , thus

Ẽ
[(

g̃T̃ (1)−ṼT̃
)λ
]
≥ 4λ P̃[F̃ ].

This implies (2.3) and completes the proof.

Lemma 2.5. Fix κ > 4 and ν ≥ κ/2− 2. Suppose y < 0 < x, let η be an SLEκ(ν) with force point x. For c > 0
small, define

σ = inf{t : η(t) ∈ (−∞,y]}, F = {dist(η [0,σ ],x)≥ cx}.
Then there exists a constant c ∈ (0,1) depending only on κ and ν such that, for λ ≤ 0,

E
[
(gσ (x)−gσ (y))

λ 1F

]
� (x− y)λ ,

where the constants in � depend only on κ,ν and λ .

Proof. Since the quantity gt(x)−gt(y) is increasing in t, we have gσ (x)−gσ (y)≥ (x− y). This implies the upper
bound. We only need to show the lower bound. We may assume that x− y = 1. We first argue that

E
[
(gσ (x)−gσ (y))

λ
]
� (x− y)λ . (2.4)

The proof of (2.4) is similar to the proof of Lemma 2.4. Let η̃ be an SLEκ(ν) with force point 0+. Define W̃ , g̃
accordingly and let σ̃ be the first time that η̃ hits (−∞,−1). Let Ṽt be the evolution of the force point. Define

J̃t =
Ṽt −W̃t

Ṽt − g̃t(−1)
, τ := inf{t : J̃t = x}.
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Given η̃ [0,τ], the process (η̃(t + τ),0≤ t ≤ σ̃ − τ̃) under the map

f (z) =
g̃τ(z)−W̃τ

Ṽτ − g̃τ(−1)

has the same law as (η(t),0≤ t ≤ σ) after a linear time change. In particular,

Ṽσ̃ − g̃σ̃ (−1)
Ṽτ − g̃τ(−1)

d
= gσ (x)−gσ (y).

Since Ṽτ − g̃τ(−1) ≥ 1, we know that (gσ (x)−gσ (y)) is stochastically dominated from above by (Ṽσ̃ − g̃σ̃ (−1)),
thus

E
[
(gσ (x)−gσ (y))

λ
]
≥ Ẽ

[(
Ṽσ̃ − g̃σ̃ (−1)

)λ
]
� 1.

This implies (2.4). Next, we prove the conclusion. By the scaling invariance of SLEκ(ν) process we know that the
probability P[dist(η ,x)< cx] only depends on c. We denote this probability by p(c). Since ν ≥ κ/2−2, we know
that p(c)→ 0 as c→ 0. Therefore, by (2.4), we have

1� E
[
(gσ (x)−gσ (y))

λ
]
≤ E

[
(gσ (x)−gσ (y))

λ 1F

]
+ p(c).

This implies the conclusion.

3 Boundary Arm Exponents for κ > 4

3.1 Estimate on the derivative
Proposition 3.1. Fix κ > 0 and let η be an SLEκ in H from 0 to ∞. Let Ot be the image of the rightmost point of
Kt ∩R under gt . Set ϒt = (g1(1)−Ot)/g′t(1). For ε ∈ (0,1), define

τ̂ε = inf{t : ϒt = ε}, T0 = inf{t : η(t) ∈ [1,∞)}.

For λ ≥ 0, define

u1(λ ) =
1
κ
(4−κ/2)+

1
κ

√
4κλ +(4−κ/2)2.

For b ∈ R, assume that
κλ −κu1(λ )+8−2κ < κb≤ κλ +κu1(λ ). (3.1)

Then we have
E
[
(gτ̂ε

(1)−Wτ̂ε
)λ−bg′τ̂ε

(1)b1{τ̂ε<T0}
]
� ε

u1(λ )+λ−b, (3.2)

where the constants in � depend only on κ and λ ,b.

Attention that, in Proposition 3.1, we use the stopping time τ̂ε instead of τε which is defined to be the first time
that η hits B(1,ε). Due to Koebe 1/4 thoerem, these two times are very close:

τ4ε ≤ τ̂ε ≤ τε/4.

Due to technical reason, we only prove the conclusion in Proposition 3.1 for the time τ̂ε , but this is sufficient for
our purpose later in the paper.

Lemma 3.2. Fix κ > 0 and ν ≤ κ/2−4. Let η be an SLEκ(ν) in H from 0 to ∞ with force point 1. Denote by W the
driving function, V the evolution of the force point. Let Ot be the image of the rightmost point of Kt∩R under gt . Set
ϒt = (gt(1)−Ot)/g′t(1) and σ(s) = inf{t : ϒt = e−2s}. Set Jt = (Vt−Ot)/(Vt−Wt). Let T0 = inf{t : η(t) ∈ [1,∞)}.
We have, for β > 0,

E
[
J−β

σ(s)1{σ(s)<T0}
]
� 1, when 8+2ν +κβ < 2κ, (3.3)

where the constants in � depend only on κ,ν ,β .
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Proof. Since 0≤ Jt ≤ 1, we only need to show the upper bounds. Define Xt =Vt −Wt . We know that

dWt =
√

κdBt +
νdt

Wt −Vt
, dVt =

2dt
Vt −Wt

,

where B is a standard 1-dimensional Brownian motion. By Itô’s formula, we have that

dJt =
Jt

X2
t

(
κ−ν−2− 2

1− Jt

)
dt +

Jt

Xt

√
κdBt , dϒt = ϒt

−2Jtdt
X2

t (1− Jt)
.

Recall that σ(s) = inf{t : ϒt = e−2s}, and denote by X̂ , Ĵ, ϒ̂ the processes indexed by σ(s). Then we have that

dσ(s) = X̂2
s

1− Ĵs

Ĵs
ds, dĴs =

(
κ−ν−4− (κ−ν−2)Ĵs

)
ds+

√
κ Ĵs(1− Ĵs)dB̂s,

where B̂ is a standard 1-dimensional Brownian motion. By [Law14, Equations (56), (62)] and [Zha16, Appendix
B], we know that Ĵ has an invariant density on (0,1), which is proportional to y1−(8+2ν)/κ(1− y)4/κ−1. Moreover,
since Ĵ0 = 1, by a standard coupling argument, we may couple (Ĵs) with the stationary process (J̃s) that satisfies
the same equation as (Ĵs), such that Ĵs ≥ J̃s for all s ≥ 0. Then we get E[Ĵ−β

s ]≤ E[J̃−β
s ], which is a finite constant

if 8+2ν +κβ < 2κ . This gives the upper bound in (3.3) and completes the proof of (3.3).

Proof of Proposition 3.1. Let Ot be the image of the rightmost point of η [0, t]∩R under gt . Define

ϒt =
gt(1)−Ot

g′t(1)
, Jt =

gt(1)−Ot

gt(1)−Wt
.

Set
Mt = g′t(1)

ν(ν+4−κ)/(4κ)(gt(1)−Wt)
ν/κ , where ν =−κu1(λ ).

Then M is a local martingale for η , and from Lemma 2.3, the law of η weighted by M is the law of SLEκ(ν) with
force point 1. Set β = u1(λ )+λ −b. Then we have

Mt = (gt(1)−Wt)
λ−bg′t(1)

b
ϒ
−β

t Jβ

t .

At time t = τ̂ε < ∞, we have ϒt = ε , thus

E
[
(gτ̂ε

(1)−Wτ̂ε
)λ−bg′τ̂ε

(1)b1{τ̂ε<T0}
]
� ε

βE∗
[(

J∗τ̂∗ε

)−β

1{τ̂∗ε <T ∗0 }

]
� ε

β ,

where P∗ is the law of SLEκ(ν) with force point x and η∗,J∗, τ̂∗ε ,T
∗

0 are defined accordingly, and the last relation
is due to (3.3).

Remark 3.3. Fix κ > 0 and let η be an SLEκ . For x > ε > 0, let u1(λ ) and b be as in Proposition 3.1. By the
scaling invariance of SLE, we have

E
[
(gτ̂ε

(x)−Wτ̂ε
)λ−bg′τ̂ε

(x)b1{τ̂ε<T0}
]
� x−u1(λ )ε

u1(λ )+λ−b, (3.4)

where the constants in � depend only on κ , and λ ,b. Taking λ = b = 0, we have

P[τε < ∞]� P[τ̂ε < ∞]�
(

ε

x

)α
+
1
, where α

+
1 = u1(0) = 0∨ (8/κ−1).

This implies that (1.3) holds for n = 1.
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3.2 From 2n−1 to 2n
Lemma 3.4. Fix κ > 4 and let η be an SLEκ . For y < 0 < x, define

σ = inf{t : η(t) ∈ (−∞,y]}, T = inf{t : η(t) ∈ [x,∞)}, F = {dist(η [0,σ ],x)≥ cx},

where c is the constant decided in Lemma 2.5. For λ ≥ 0, define

u2(λ ) =
1
κ
(κ/2−2)+

1
κ

√
4κλ +(κ/2−2)2.

Then we have, for λ ≥ 0 and b≤ u2(λ ),

E
[
g′σ (x)

λ (gσ (x)−Wσ )
b1{σ<T}∩F

]
& xu2(λ )(x− y)b−u2(λ ),

E
[
g′σ (x)

λ (gσ (x)−Wσ )
b1{σ<T}

]
. xu2(λ )(x− y)b−u2(λ ),

where the constants in & and . depend only on κ and λ ,b.

Proof. Define
Mt = g′t(x)

ν(ν+4−κ)/(4κ)(gt(x)−Wt)
ν/κ , where ν = κu2(λ ).

Then M is a local martingale for η and the law of η weighted by M is the law of SLEκ(ν) with force point x. By
the definition of u2, we can also write

Mt = g′t(x)
λ (gt(x)−Wt)

u2(λ ).

Thus
E
[
g′σ (x)

λ (gσ (x)−Wσ )
b1{σ<T}

]
= M0E∗

[
(g∗σ∗(x)−g∗σ∗(y))

b−u2(λ ) 1{σ∗<T ∗}
]
,

where P∗ denotes the law of SLEκ(ν) with force point x and η∗,g∗,σ∗ and T ∗ are defined accordingly. Since
ν ≥ κ/2−2, the curve will never swallows x, thus T ∗=∞. Note that M0 = xu2(λ ). Therefore, proving the conclusion
boils down to showing

E∗
[
(g∗σ∗(x)−g∗σ∗(y))

b−u2(λ ) 1F∗
]
& (x− y)b−u2(λ ), where F∗ = {dist(η∗[0,σ∗],x)≥ cx}; (3.5)

E∗
[
(g∗σ∗(x)−g∗σ∗(y))

b−u2(λ )
]
. (x− y)b−u2(λ ). (3.6)

Equation (3.5) is true by Lemma 2.5. Since the quantity (g∗t (x)−g∗t (y)) is increasing in t, we have

(g∗σ∗(x)−g∗σ∗(y))≥ x− y.

Combining with the fact that b−u2(λ )≤ 0, we obtain (3.6).

Remark 3.5. Taking λ = b = 0 in Lemma 3.4, we have

P[σ < T ]� xu2(0).

This implies that (1.6) holds for n = 1 with

α̂
+
1 = u2(0) = 1−4/κ.

Lemma 3.6. Assume the same notations as in Theorem 1.1. Suppose that (1.3) holds for 2n− 1, then (1.4) holds
for 2n.
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Proof of Lemma 3.6, Upper Bound. Let η be an SLEκ and define

σ = inf{t : η(t) ∈ (−∞,y]}, T = inf{t : η(t) ∈ [x,∞)}.

We stop the curve at time σ . Let η̃ be the image of η [σ ,∞) under the centered comformal map f := gσ −Wσ .
Then η̃ is an SLEκ . Define H̃2n−1 for η̃ .

Given η [0,σ ] with σ < T , consider the event H2n(ε,x,y). Denote by γ the connected component of B(x,ε) \
η [0,σ ] whose boundary contains x+ ε . We wish to control the image of (−∞,y] and the image of γ under f . We
have the following observations.

• At time σ , we have Wσ = gσ (y), thus f (y) = 0.

• By Lemma 2.1, we know that f (γ) is contained in the ball with center f (x+3ε) and radius 8ε f ′(x+3ε).

Combining these two facts, we know that, given η [0,σ ] with σ < T , the event H2n(ε,x,y) implies the event
H̃2n−1(8ε f ′(x+3ε), f (x+3ε),0). If f (x+3ε)≥ 8ε f ′(x+3ε), by the assumption hypothesis, we have

P[H2n(ε,x,y) |η [0,σ ],σ < T ].
(

εg′σ (x+3ε)

gσ (x+3ε)−Wσ

)α
+
2n−1

.

If f (x+ 3ε) ≤ 8ε f ′(x+ 3ε), the above upper bound is trivially true. Therefore, the above upper bound always
holds. Then

P[H2n(ε,x,y)]. ε
α
+
2n−1E

[
g′σ (x+3ε)α

+
2n−1(gσ (x+3ε)−Wσ )

−α
+
2n−11{σ<T}

]
.

To apply Lemma 3.4, we only need to note that T is the first time that η swallows x which happens before the first
time that η swallows x+3ε . Note further that

u2(α
+
2n−1) = α

+
2n−α

+
2n−1. (3.7)

Thus, by Lemma 3.4, we have

P[H2n(ε,x,y)]. ε
α
+
2n−1xα

+
2n−α

+
2n−1(x− y)−α

+
2n =

(
x

x− y

)α
+
2n (ε

x

)α
+
2n−1

.

This completes the proof of the upper bound.

Proof of Lemma 3.6, Lower Bound. Let η be an SLEκ and assume the same notations as in the proof of the upper
bound. Define F = {dist(η [0,σ ],x) ≥ cε}, where c is the constant decided in Lemma 2.5. We stop the curve at
time σ . Let η̃ be the image of η [σ ,∞) under the centered comformal map f := gσ −Wσ . Then η̃ is an SLEκ .
Define H̃2n−1 for η̃ .

Given η [0,σ ] with {σ < T}∩F , consider the event H2n(ε,x,y). We wish to control the image of (−∞,y] and
the image of ∂B(x,ε) under f . We have the following observations.

• At time σ , we have Wσ = gσ (y), thus f (y) = 0.

• On the event F , by Koebe 1/4 Theorem, we know that f (B(x,ε)) contains the ball with center f (x) and
radius c f ′(x)ε/4.

Combining these two facts, we know that, given η [0,σ ] with {σ < T}∩F , the event H2n(ε,x,y) contains the event
H̃2n−1( f ′(x)cε/4, f (x),0). By the assumption hypothesis, we have

P[H2n(ε,x,y) |η [0,σ ],{σ < T}∩F ]&

(
εg′σ (x)

gσ (x)−Wσ

)α
+
2n−1

.

Therefore,
P[H2n(ε,x,y)]& ε

α
+
2n−1E

[
g′σ (x)

α
+
2n−1(gσ (x)−Wσ )

−α
+
2n−11{σ<T}∩F

]
.
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To apply Lemma 3.4, we only need to note that x ≥ ε and the event F contains the event {dist(η [0,σ ],x) ≥ cx}.
By (3.7) and Lemma 3.4, we have

P[H2n(ε,x,y)]& ε
α
+
2n−1xα

+
2n−α

+
2n−1(x− y)−α

+
2n =

(
x

x− y

)α
+
2n (ε

x

)α
+
2n−1

.

This completes the proof of the lower bound.

3.3 From 2n to 2n+1
Lemma 3.7. Assume the same notations as in Theorem 1.1. Suppose that (1.4) holds for 2n with n≥ 1, then (1.3)
holds for 2n+1.

Proof of Lemma 3.7, Upper Bound. If ε ≤ x≤ 64ε , by the assumption hypothesis we have

P[H2n+1(ε,x,y)]≤ P[H2n(ε,x,y)].
(

x
x− y

)α
+
2n

,

which gives the upper bound in (1.3) for 2n+1.
In the following, we assume that x > 64ε . Let η be an SLEκ . Define T to be the first time that η swallows x.

For ε > 0, let τε be the first time that η hits B(x,ε). Define Ot to be the image of the rightmost point of η [0, t]∩R
under gt . Define

τ̂ε = inf{t :
gt(x)−Ot

g′t(x)
= ε}.

We stop the curve at time τ̂64ε . Let η̃ be the image of η [τ̂64ε ,∞) under the centered conformal map f := gτ̂64ε
−Wτ̂64ε

.
Then η̃ is an SLEκ . Define the event H̃2n for η̃ .

Given η [0, τ̂64ε ], consider the event H2n+1(ε,x,y). We wish to control the image of the ball B(x,ε) and the
image of the half-infinite line (−∞,y) under f . We have the following observations.

• By Koebe 1/4 theorem, we know that τ̂64ε ≤ τ16ε . Combining with Lemma 2.2, we know that f (B(x,ε)) is
contained in the ball B( f (x),4 f ′(x)ε).

• At time τ̂64ε , there are two possibilities for the image of y under f : if y is not swallowed by η [0, τ̂64ε ], then
f (y) = gτ̂64ε

(y)−Wτ̂64ε
is the image of y under f ; if y is swallowed by η [0, τ̂64ε ], then the image of y under f

is the image of leftmost point of η [0, τ̂64ε ]∩R under f , in this case, we still write f (y) = gτ̂64ε
(y)−Wτ̂64ε

as
explained in Section 2.

Combining these two facts, we know that, given η [0, τ̂64ε ], H2n+1(ε,x,y) implies H̃2n(4 f ′(x)ε, f (x), f (y)). By
the assumption hypothesis, we have

P [H2n+1(ε,x,y) |η [0, τ̂64ε ], τ̂64ε < T ].
(

gτ̂64ε
(x)−Wτ̂64ε

gτ̂64ε
(x)−gτ̂64ε

(y)

)α
+
2n
(

g′
τ̂64ε

(x)ε

gτ̂64ε
(x)−Wτ̂64ε

)α
+
2n−1

.

For fixed x and y, the quantity gt(x)− gt(y) is increasing in t, thus gt(x)− gt(y) ≥ x− y. Plugging in the above
inequality, we have

P [H2n+1(ε,x,y)]. (x− y)−α
+
2nε

α
+
2n−1E

[
(gτ̂64ε

(x)−Wτ̂64ε
)α

+
2n−α

+
2n−1g′τ̂64ε

(x)α
+
2n−11{τ̂64ε<T}

]
.

By Proposition 3.1 and (3.4), we have

P [H2n+1(ε,x,y)]. (x− y)−α
+
2nε

α
+
2n−1x−u1(α

+
2n)ε

u1(α
+
2n)+α

+
2n−α

+
2n−1 .
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Note that
α
+
2n+1 = u1(α

+
2n)+α

+
2n. (3.8)

Therefore

P [H2n+1(ε,x,y)].
(

x
x− y

)α
+
2n (ε

x

)α
+
2n+1

which completes the proof.

Proof of Lemma 3.7, Lower Bound. Let η be an SLEκ . Define T to be the first time that η swallows x. For ε > 0,
let τε be the first time that η hits B(x,ε). We stop the curve at time τε . Let η̃ be the image of η [τε ,∞) under the
centered conformal map f := gτε

−Wτε
. Then η̃ is an SLEκ . Define the event H̃2n for η̃ .

Given η [0,τε ], consider the event H2n+1(ε,x,y). We wish to control the image of the ball B(x,ε) and the image
of the half-infinite line (−∞,y) under f . We have the following observations.

• Applying Koebe 1/4 Theorem to f , we know that f (B(x,ε)) contains the ball B( f (x), f ′(x)ε/4).

• At time τε , we have f (y) = gτε
(y)−Wτε

. Recall that if y is swallowed by η [0,τε ], then f (y) should be
understood as the image of the leftmost point of η [0,τε ]∩R under f .

Combining these two facts, we know that, given η [0,τε ], the event H2n+1(ε,x,y) contains H̃2n( f ′(x)ε/4, f (x), f (y)).
By the assumption hypothesis, we have

P [H2n+1(ε,x,y) |η [0,τε ],τε < T ]&
(

gτε
(x)−Wτε

gτε
(x)−gτε

(y)

)α
+
2n
(

g′τε
(x)ε

gτε
(x)−Wτε

)α
+
2n−1

. (3.9)

For t ≥ 0, let Ot the image of the rightmost point of η [0, t]∩R under gt . Set

ϒt =
gt(x)−Ot

g′t(x)
, Jt =

gt(x)−Ot

gt(x)−Wt
.

Define
Mt = g′t(x)

ν(ν+4−κ)/(4κ)(gt(x)−Wt)
ν/κ , where ν = κ(α+

2n−α
+
2n+1)≤ κ/2−4.

Then M is a local martinagle and the law of η weighted by M becomes the law of SLEκ(ν) with force point x. By
(3.8), we have

ν(ν +4−κ)/(4κ) = α
+
2n+1.

The local martingale M can be written as

Mt = g′t(x)
α
+
2n+1(gt(x)−Wt)

α
+
2n−α

+
2n+1 = g′t(x)

α
+
2n−1(gt(x)−Wt)

α
+
2n−α

+
2n−1ϒ

α
+
2n−1−α

+
2n+1

t J
α
+
2n+1−α

+
2n−1

t .

At time t = τε < T , by Koebe 1/4 Theorem, we have ϒt � ε . Since Jt ≤ 1, we have

Mτε
ε

α
+
2n+1−α

+
2n−1 . g′τε

(x)α
+
2n−1(gτε

(x)−Wτε
)α

+
2n−α

+
2n−1 .

Combining with (3.9) and M0 = xα
+
2n−α

+
2n+1 , we have

P[H2n+1(ε,x,y)]& ε
α
+
2n+1xα

+
2n−α

+
2n+1E∗

[
(g∗τ∗ε (x)−g∗τ∗ε (y))

−α
+
2n1{τ∗<T ∗}

]
,

where P∗ denotes the law of SLEκ(ν) with force point x and g∗,τ∗ε ,T
∗ are defined for η∗ whose law is P∗ accord-

ingly. Since ν ≤ κ/2− 4, the curve accumulates at the point x at almost surely finite time T ∗, thus {τ∗ε < T ∗}
always holds. To complete the proof, it is sufficient to show

E∗
[(

g∗τ∗ε (x)−g∗τ∗ε (y)
)−α

+
2n
]
& (x− y)−α

+
2n . (3.10)

Since the quantity g∗t (x)−g∗t (y) is increasing t, we know that

x− y≤ g∗τ∗ε (x)−g∗τ∗ε (y)≤ g∗T ∗(x)−g∗T ∗(y).

Combining with Lemma 2.4, we obtain (3.10) and complete the proof.
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3.4 Proof of Theorems 1.1 and 1.2
Proof of Theorem 1.1. Combining Remark 3.3 and Lemmas 3.7 and 3.6 implies the conclusion.

Proof of Theorem 1.2. We have the following observations.

• By Remark 3.5, we know that (1.6) holds for n = 1.

• By the same arguments in Section 3.3, we could prove that, assume (1.6) holds for 2n−1 with n ≥ 1, then
(1.7) holds for 2n where (3.8) should be replaced by

α̂
+
2n = u1(α̂

+
2n−1)+ α̂

+
2n−1.

• By the same arguments in Section 3.2, we could prove that, assume (1.7) holds for 2n with n≥ 1, then (1.6)
holds for 2n+1 where (3.7) should be replaced by

α̂
+
2n+1 = u2(α̂

+
2n)+ α̂

+
2n.

Combining these three facts, we obtain the conclusion.

4 Boundary Arm Exponents for κ ≤ 4

4.1 Definitions and Statements
In this section, we assume κ ∈ (0,4], let η be a chordal SLEκ curve, and let gt be the corresponding Loewner maps.
Since η does not hit the boundary other than its end points, Hn and Ĥn defined in Section 1 are empty sets. So we
need to modify their definitions.

For y ∈ R and r > 0, we define half strips:

L−y;r = {z ∈H : ℑz≤ r;ℜz≤ y}, L+
y;r = {z ∈H : ℑz≤ r;ℜz≥ y};

and write L±y = L±y;π .
A crosscut in a domain D is an open simple curve in D, whose end points approach boundary points of D.

Suppose S is a relatively closed subset of H such that ∂S∩H is a crosscut of H. Then we use ∂
+
H S (resp. ∂

−
H S) to

denote the curve ∂S∩H oriented so that S lies to the left (resp. right) of the curve. For example, ∂
−
H L−y;r is from y

to ∞; and for x ∈ R, ∂
+
H B(x,r) is from x− r to x+ r.

Let ξ j : [0,Tj]→C, j =−1,1, and η : [0,T )→C be three continuous curves. For j =−1,1, define increasing
functions R j(t) = max({0}∪{s ∈ [0,Tj] : ξ j(s) ∈ η([0, t])}) for t ∈ [0,T ). Let τ0 = 0. After τn is defined for some
n≥ 0, we define τn+1 = inf{t ≥ τn : η(t)∈ ξ(−1)n+1((R(−1)n+1(τn),T(−1)n+1))}, where we set inf /0=∞ by convention,
and if any τn0 = ∞, then τn = ∞ for all n≥ n0.

Definition 4.1. If τn0 < ∞ for some n0 ∈N, then we say that η makes (at least) n0 well-oriented (ξ−1,ξ1)-crossings.

Remark 4.2. The above name comes from the fact that the orientation-preserving reparametrizations of ξ1,ξ−1,η
do not affect the event.

Definition 4.3. Let x > y, x > 0, and ε > 0. Let η be an SLEκ in H from 0 to ∞. Define Hπ
2n−1(ε,x,y) to be the

event that η makes at least (2n−1) well-oriented (∂+
H B(x,ε),∂−H L−y )-crossings. Define Hπ

2n(ε,x,y) to be the event
that η makes at least 2n well-oriented (∂−H L−y ,∂

+
H B(x,ε))-crossings. Note that in either event, the last visit that

counts is at the half circle ∂
+
H B(x,ε).

The theorem below is our main theorem for κ ≤ 4. The function φ will be defined later in (4.7), and φ (k) is the
k times iteration of φ . The following estimate is useful to have a sense of φ (k):

φ
(k)(x)≥ x

2
, if x≥ 6k+3. (4.1)



4 Boundary Arm Exponents for κ ≤ 4 15

Theorem 4.4. Let α
+
2n and α

+
2n−1 be defined by (1.1). We have the following facts.

(i) If (ε,x,y) satisfy 25n−4ε < φ (2n−2)(x− y), then

P
[
Hπ

2n−1(ε,x,y)
]
.

xα
+
2n−2−α

+
2n−1ε

α
+
2n−1

∏
n−1
j=1 φ (2n−2 j−1)(x− y)α

+
2 j−α

+
2 j−2

. (4.2)

If (ε,x,y) satisfy 25n−1ε < φ (2n−1)(x− y), and ε ≤ x, then

P [Hπ
2n(ε,x,y)].

xα
+
2n−α

+
2n−1ε

α
+
2n−1

∏
n
j=1 φ (2n−2 j)(x− y)α

+
2 j−α

+
2 j−2

. (4.3)

Here the implicit constants depend only on κ,n.
(ii) For any R > 0 and n ∈ N, there is a constant Cn,R depending only on κ,n,R such that

P
[
Hπ

2n−1(ε,x,y)
]
≥C2n−1,Rxα

+
2n−2−α

+
2n−1ε

α
+
2n−1 , provided ε < x,and ε < x− y≤ R, (4.4)

P [Hπ
2n(ε,x,y)]≥C2n,Rxα

+
2n−α

+
2n−1ε

α
+
2n−1 , provided ε < x≤ x− y≤ R. (4.5)

Remark 4.5. Using (4.1), we see that, if x− y≥ 12n and 25nε < x− y, then

P
[
Hπ

2n−1(ε,x,y)
]
.

(
x

x− y

)α
+
2n−2 (ε

x

)α
+
2n−1

and

P[Hπ
2n(ε,x,y)].

(
x

x− y

)α
+
2n (ε

x

)α
+
2n−1

.

So we get the same upper bound as in the case κ > 4.

4.2 Comparison principle for well-oriented crossings
Let D be a simply connected domain. We say that η : [0,T )→ D is a non-self-crossing curve in D if η(0) ∈ ∂D,
and for any t0 ≥ 0, there is a unique connected component Dt0 of D \η [0, t0] such that η(t0 + ·) is the image of a
continuous curve in U under a continuous map from U onto Dt0 , which is an extension of a conformal map from U
onto Dt0 . For example, an SLE curve is almost surely a non-self-crossing curve.

Lemma 4.6 (Comparison Principle). Let D be a simply connected domain, and η be a non-self-crossing curve in
D. Let ξ j, ξ̂ j : (0,1)→ D, j = −1,1, be crosscuts of D. Let (τn) and R j(t), j = −1,1 be as in the definition of
oriented crossings for η and (ξ−1,ξ1). Let (τ̂n) and R̂ j(t), j = −1,1, be the corresponding quantities for η and
(ξ̂−1, ξ̂1). Assume the following. See Figure 4.1.

(i) For j = −1,1, ξ̂ j disconnects ξ j from both ξ− j and ξ̂− j in D; the distance between ξ̂−1 and ξ̂1 is positive;
and ξ̂−1 disconnects ξ−1 from η(0) in D. Here we allow the possibility that ξ̂ j touches ξ j, or η(0) ∈ ξ̂−1.

(ii) If ηt0 = ξ̂(−1)n+1(R̂(−1)n+1(τn)) or ξ̂(−1)n+1(1) for some t0 ≥ τn, then for any ε > 0, there is t1 ∈ [t0, t0+ε) such
that η(t1) ∈ ξ̂(−1)n+1((R̂(−1)n+1(τn),1)).

(iii) There is a closed boundary (prime end) arc I of D with end points ξ1(1) and ξ−1(1) such that ξ̂ j(1) ∈ I,
j =−1,1, and η ∩ I = /0.

If η makes n0 well-oriented (ξ−1,ξ1)-crossings, then it also makes n0 well-oriented (ξ̂−1, ξ̂1)-crossings.



4 Boundary Arm Exponents for κ ≤ 4 16

η

η(τ2)

ξ1 ξ̂1 ξ−1ξ̂−1

η(τ̂1)

η(τ1)
η(τ̂2)

η(τ̂3)
η(τ̂4)

η(τ̂5)

I

Fig. 4.1: The figure illustrates the definition of well-oriented crossings as well as the conditions of
Lemma 4.6. The curve η totally makes 2 well-oriented (ξ−1,ξ1)-crossings and 5 well-oriented
(ξ̂−1, ξ̂1)-crossings. The times τ j, 1≤ j ≤ 2, and τ̂ j, 1≤ j ≤ 5, are indicated in the figure.

Remark 4.7. The assumption that η is non-self-crossing forces η(τn + ·) to stay in the closure of the remain-
ing domain Dτn . We need assumption (iii) to prevent η(τn + ·) to sneak into the region bounded by the crosscut
ξ̂(−1)n+1((R̂(−1)n+1(τn),1)) of Dτn through one of its endpoints without hitting the crosscut. This assumption is
certainly satisfied if η is an SLE curve.

Proof. Suppose η makes n0 well-oriented (ξ−1,ξ1)-crossings. Then τn0 < ∞. We will show that τ̂n ≤ τn for
0≤ n≤ n0. Especially, the inequality τ̂n0 < ∞ is what we need.

First, we have τ0 = τ̂0 = R̂−1(0) = 0. From assumptions (i) and (ii), we have

τ̂1 = inf{t ≥ 0 : η(t) ∈ ξ̂−1((0,1))} ≤ inf{t ≥ 0 : η(t) ∈ ξ−1((0,1))}= τ1.

Suppose we have proved that τ̂n ≤ τn for some n ∈ {1, . . . ,n0−1}. Then η(τn) ∈ ξ(−1)n , and for every ε > 0,
there is t ∈ [τn+1,τn+1 + ε) such that η(t) ∈ ξ(−1)n+1((R(−1)n+1(τn),1)). Let Dτn be the connected component of
D \η([0,τn]) such that η [τn,∞) ⊂ Dτn . Then ξ(−1)n+1((R(−1)n+1(τn),1)) is a crosscut of Dτn since it belongs to
D \η([0,τn]) and is visited by η after τn. From assumption (iii) we know that ξ̂(−1)n+1((R̂(−1)n+1(τn),1)) is also
a crosscut of Dτn . Since Dτn is simply connected, this crosscut disconnects ξ(−1)n+1((R(−1)n+1(τn),1)) from ητn in
Dτ̂n . From assumption (ii), we have

inf{t ≥ τn : η(t) ∈ ξ̂(−1)n+1((R̂(−1)n+1(τn),1))} ≤ inf{t ≥ τn : η(t) ∈ ξ(−1)n+1((R̂(−1)n+1(τn),1))}= τn+1.

Since τ̂n ≤ τn and R̂(−1)n+1(t) is increasing, we get R̂(−1)n+1(τ̂n)≤ R̂(−1)n+1(τn), and so

τ̂n+1 = inf{t ≥ τn : η(t) ∈ ξ̂(−1)n+1((R̂(−1)n+1(τ̂n),1))} ≤ inf{t ≥ τn : η(t) ∈ ξ̂(−1)n+1((R̂(−1)n+1(τn),1))} ≤ τn+1.

By induction, we conclude that τ̂n ≤ τn for all 0≤ n≤ n0, as desired.

Remark 4.8. The lemma also holds if we do not assume that ξ−1 and ξ̂−1 are crosscuts of D, but assume that they
are the same curve in D.

4.3 Estimates on half strips
Given a nonempty H-hull K, Let aK =min(K∩R) and bK =max(K∩R). Let Kdoub =K∪ [aK ,bK ]∪{z : z∈K}. By
Schwarz reflection principle, gK extends to a conformal map from C\Kdoub onto C\ [cK ,dK ] for some cK < dK ∈R,
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and satisfies gK(z) = gK(z). From [Zha08, (5.1)] we know that there is a positive measure µK supported by [cK ,dK ]
with total mass |µK |= hcap(K) such that,

fK(z)− z =
∫ −1

z− x
dµK(x), z ∈ C\ [cK ,dK ]. (4.6)

For x0 ∈ R and r > 0, let B+
(x0,r) denote the special H-hull B(x0,r) ∩H. If an H-hull K is contained

in B+
(x0,r), then hcap(K) ≤ hcap(B+

(x0,r)) = r2 by the monotonicity of half-plane capacity, and [cK ,dK ] ⊂
[cB+

(x0,r)
,dB+

(x0,r)
] = [x0−2r,x0 +2r] by [Zha08, Lemma 5.3].

Lemma 4.9. Let x0,y ∈ R and R,r > 0. Suppose K is an H-hull and K ⊂ B+
x0,R. Then the unbounded connected

component of gK(L−y;r \K) contains L−y′;r′ for y′ = min{x0−2R− 2R2

r ,y− r
2} and r′ = r/2.

Proof. Let z ∈ L−y′;r′ . Since ℜz ≤ x0− 2R− 2R2

r and [cK ,dK ] ⊂ [x0− 2R,x0 + 2R], we have |z− x| ≥ 2R2

r for any
x∈ [cK ,dK ]. From (4.6) and |µK |= hcap(K)≤R2, we get | fK(z)−z| ≤ r

2 . Since ℜz≤ y′≤ y− r
2 , we get ℜ fK(z)≤ y.

Since 0 < ℑz ≤ r′ = r/2, we get 0 < ℑ fK(z) ≤ r ( fK maps H into H). Thus, we conclude that fK(L−y′;r′) ⊂ L−y;r.
Since fK(L−y′;r′) is an unbounded domain contained in H\K, and gK = f−1

K , we get the conclusion.

Now L−y;r is not an H-hull since it is not bounded. But we will still find a conformal map from H onto H\L−y;r.
By scaling and translation, it suffices to consider L−0 = L−0;π . We will use the map f(0,i](z) =

√
z2−1 for the half

open line segment (0, i], and the map fB+
(0,1) for the unit semi-disc. Recall that f−1

B+
(0,1)

(z) = gB+
(0,1)(z) = z+ 1

z .

Lemma 4.10. Let fL−0
(z) = f(0,i](z)+ log( fB+

(0,1)(2z)), where the branch of log is chosen so that it maps H onto
{0 < ℑz < π}. Then fL−0

maps H conformally onto H\L−0 , and satisfies fL−0
(z) = z+ log(2z)+O(1/z) as z→ ∞,

and fL−0
(1) = 0, fL−0

(−1) = πi.

Proof. We observe that z 7→ log( fB+
(0,1)(2z)) is a conformal map from H onto L+

0 , which takes 1 and−1 to 0 and πi
respectively; and f(0,i] is a conformal map from H onto H\(0, i], which takes both 1 and−1 to 0. So the fL−0

defined
by the lemma satisfies fL−0

(1) = 0, fL−0
(−1) = πi. As z→ ∞, f(0,i](z) = z+O(1/z) and fB+

(0,1)(2z) = 2z+O(1/z).

So log( fB+
(0,1)(2z)) = log(2z)+O(1/z2) as z→ ∞. Thus, fL−0

(z) = z+ log(2z)+O(1/z) as z→ ∞.
It remains to show that fL−0

maps H conformally onto H\L−0 . It is easy to see that fL−0
maps (1,∞) into (0,∞).

By Schwarz-Christoffel transformation, it suffices to show that f ′L−0
(z) =

√
z+1
z−1 . Let g(z) = gB+

(0,1)(z)/2 = z
2 +

1
2z

and f = g−1. Then log( fB+
(0,1)(2z)) = log( f (z)). We find that

√
g(z)2−1 = z

2 − 1
2z and g′(z) = 1

2 − 1
2z2 . So√

g(z)2−1 = zg′(z) = f (g(z))
f ′(g(z)) , which implies that f ′(w)

f (w) =
√

1
w2−1 . From this we get d

dz log( fB+
(0,1)(2z)) = f ′(z)

f (z) =

1√
z2−1

. Since f ′(0,i](z) =
z√

z2−1
, we have f ′L−0

(z) = z√
z2−1

+ 1√
z2−1

=
√

z+1
z−1 , as desired.

Define fL−y (z) = fL−0
(z− y) + y, which maps H conformally onto H \ L−y , and let gL−y = f−1

L−y
. We will use

hm(z,D;V ) to denote the harmonic measure of V in a domain D seen from z, i.e., the probability that a planar
Brownian motion started from z ∈ D hits V before ∂D\V .

Lemma 4.11. For any y,m ∈ R, and any boundary arc I ⊂ ∂ (H\L−y ), we have limh→∞ h ·hm(m+ ih,H\L−y ; I) =
|gL−y (I)|/π , where | · | is the Lebesgue measure on R.

Proof. From conformal invariance of the harmonic measure, we have

hm(m+ ih,H\L−y ; I) = hm(gL−y (m+ ih),H;gL−y (I).

Since | fL−y (z)− z|/|z| → 0 as |z| → ∞, we get |gL−y (z)− z|/|z| → 0 as |z| → ∞. From this we get

lim
h→∞

hm(gL−y (m+ ih),H;gL−y (I))/hm(m+ ih,H;gL−y (I)) = 1.

Since limh→∞ h ·hm(m+ ih,H;gL−y (I)) = |gL−y (I)|/π , the proof is now finished.
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We will use hm(∞,H\L−y ; I) to denote limh→∞ π ·h ·hm(m+ ih,H\L−y ; I), which equals |gL−y (I)| by the above
lemma. For example, we have hm(∞,H\L−y ; [y,y+ iπ]) = 2, and

hm(∞,H\L−y ; [y,y′]) = gL−y (y
′)−gL−y (y) = gL−0

(y′− y)−1, y′ ≥ y.

Note that x 7→ fL−0
(gL−0

(x)−2) is a homeomorphism from [ fL−0
(3),∞) onto [0,∞). Now we define

φ(x) =

{
fL−0

(gL−0
(x)−2), if x≥ fL−0

(3);
0, if x≤ fL−0

(3).
(4.7)

Lemma 4.12. Let x0,y0 ∈ R. Let K be an H-hull such that x0 > bK = max(K ∩R). Let γ denote the unbounded
component of ∂L−y0

\ (R∪K). If x0− y0 > fL−0
(3), then there is y1 ∈ R such that gK(γ) ⊂ L−y1

and gK(x0)− y1 ≥
φ(x0− y0).

Proof. Let L be the unbounded component of L−y0
\K. Let y1 = supℜ(gK(γ)). From (4.6) we see that gK = f−1

K
decreases the imaginary part of points in H. So we have gK(γ)⊂ L−y1

.
Let x1 = gK(x0). First, we prove that x1 > y1. Choose z1 ∈ gK(γ) such that y1 = ℜz1. Suppose x1 ≤ y1. Then

z1 6∈ R for otherwise z1 is the image of γ ∩ ∂K under gK , which must lie to the left of the image of x0. Let γv

denote the vertical open line segment (y1,z1). It disconnects x1 from ∞ in H\gK(L). Thus, fK(γv) is a crosscut in
H\ (K ∪L), which connects fK(z1) ∈ γ with fK(y1) ≥ x0, and separates x0 = fK(x1) from ∞ in H\ (K ∪L). Then
for big h > 0,

hm(ih,H\ (K∪L); fK(γv)) = hm(ih,H\L; fK(γv))≥ hm(ih,H\L−y0
; fK(γv))≥ hm(ih,H\L−y0

; [y0,x0]). (4.8)

Here the equality holds because fK(γv) disconnects K from ∞ in H\L (here we use the fact that L is the unbounded
component of L−y0

\K); the first inequality holds because H\L−y0
⊂H\L; and the second inequality holds because

fK(γv) disconnects [y0,x0] from ∞ in H\L−y0
.

From conformal invariance of harmonic measure, H\gK(L)⊃H\L−y1
, and γv ⊂ [y1,y1 + iπ], we have

hm(ih,H\ (K∪L); fK(γv)) = hm(gK(ih),H\gK(L);γv)≤ hm(gK(ih),H\L−y1
; [y1,y1 + iπ]).

Thus,
hm(ih,H\L−y0

; [y0,x0])≤ hm(gK(ih),H\L−y1
; [y1,y1 + iπ]).

Combining the above inequalities with (4.8) and letting h→ ∞, we get

hm(∞,H\L−y0
; [y0,x0])≤ hm(∞,H\L−y1

; [y1,y1 + iπ]).

Then we get gL−0
(x0− y0)−1≤ 2, which contradicts that x0− y0 > fL−0

(3). Thus, gK(x0) = x1 > y1.
Finally, since fK([y1,z1]∪ [y1,x1]) disconnects K from ∞ in H \L, and disconnects [y0,x0] from ∞ in H \L−y0

,
we get

hm(∞,H\L−y0
; [y0,x0])≤ hm(∞,H\L−y1

; [y1,y1 + iπ]∪ [y1,x1]),

which implies that gL−0
(x0− y0)−1≤ 2+gL−0

(x1− y1)−1. So the proof is finished.

Let Kt , 0 ≤ t ≤ t0, be chordal Loewner hulls driven by Wt , 0 ≤ t ≤ t0. Recall that every Kt is an H-hull with
hcap(Kt) = 2t. From (2.2) it is easy to see that

sup{ℜz : z ∈ Kt0} ≤max{Wt : 0≤ t ≤ t0}, sup{ℑz : z ∈ Kt0} ≤
√

4t0. (4.9)

From [LSW01, Theorem 2.6] and [Zha08, Lemma 5.3], we know that

Wt ∈ [cKt0
,dKt0

], 0≤ t ≤ t0. (4.10)
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Lemma 4.13. Let R = L−y ∩L+
x for some x < y ∈ R. Then cR ≥ x−2.

Proof. Let m = (x+y)/2. Then R is symmetric w.r.t. {ℜz = m}. So gR(m+ iπ) = m. By conformal invariance and
comparison principle of harmonic measures, for any h > π , we get

h ·hm(gR(m+ ih),H; [gR(x+ iπ),m]) = h ·hm(m+ ih,H\R; [x+ iπ,m+ iπ])

≤h ·hm(m+ ih,{ℑz > π}; [x+ iπ,m+ iπ]) = h ·hm(m+ i(h−π),H; [x,m]).

Letting h→ ∞, we get m−gR(x+ iπ)≤ m− x, and so gR(x+ iπ)≥ x. Similarly,

h ·hm(gR(m+ ih),H; [gR(x),gR(x+ iπ)]) = h ·hm(m+ ih,H\R; [x,x+ iπ])≤ h ·hm(m+ ih,H\L+
x ; [x,x+ iπ]).

Letting h→ ∞, and using Lemma 4.11 (applied to right half strips) and (gR(m+ ih)− (m+ ih))/h→ 1 as h→ ∞,
we get gR(x+ iπ)−gR(x)≤ 2. Thus, cR = gR(x)≥ gR(x+ iπ)−2≥ x−2.

Lemma 4.14. Let t0 = π2/4. We have Kt0 ∩L−y 6= /0 if y > min{Wt : 0≤ t ≤ t0}+2.

Proof. Let l = min{Wt : 0 ≤ t ≤ t0} and r = max{Wt : 0 ≤ t ≤ t0}. From (4.9), we know that Kt0 ⊂ L−r . Suppose
Kt0 ∩L−y = /0 for some y > l+2. Then Kt0 ⊂ R := L+

y ∩L−r . From [Zha08, Lemma 5.3], we get [cKt0
,dKt0

]⊂ [cR,dR].
From the above lemma, we get cKt0

≥ cR ≥ y−2 > l, which contradicts (4.10). So the proof is finished.

The above lemma means that, if min{Wt : 0 ≤ t ≤ π2/4} < y− 2, and if (Wt) generates a chordal Loewner
curve η , then η visits L−y before π2

4 .

4.4 Estimate on the derivative
Proposition 4.15. Assume the same setup as that in Proposition 3.1 except that (3.1) is replaced by

4b≥ (λ −b)(κλ −κb+4−κ). (4.11)

Let τε be the first time that |η(t)−1| ≤ ε . Then we have

E
[
(gτε

(1)−Wτε
)λ−bg′τε

(1)b1{τε<T0}
]
� ε

u1(λ )+λ−b, (4.12)

where the constants in � depend only on κ,λ ,b.

Proof. Let Xt = (gt(1)−Wt)
λ−bg′t(1)

b1{t<T0} and β = u1(λ )+λ − b. First, (4.11) implies (3.1) and β ≥ 0. By
Proposition 3.1, we have

E
[
Xτ̂(ε)1{τ̂(ε)<T0}

]
� ε

β .

From (4.11), we straightforwardly check that Xt is a super martingale using Itô’s formula. In fact, if the equality in
(4.11) holds, then Xt agrees with the local martingale in Lemma 2.3 with ρL = 0, xR = 1, and ρR = κ(λ −b). Also
note that g′t(1) is decreasing. Thus, from τ̂ε ≤ τε , we get

E
[
Xτ(ε)1{τ(ε)<T0}

]
≤ E

[
Xτ̂(ε)1{τ̂(ε)<T0}

]
� ε

β .

To prove the reverse inequality, we follow the proof of Proposition 3.1 to get

E
[
Xτ(ε)1{τ̂(ε)<T0}

]
� ε

βE∗[J−β

τε
]≥ ε

β ,

using ϒτε
� ε , 0 < Jt ≤ 1 and β ≥ 0.
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4.5 Proof of Theorem 4.4
Proof of Theorem 4.4. From Remark 3.3, we have (4.2) and (4.4) for n = 1.
From 2n−1 to 2n: Suppose (4.2) and (4.4) hold. Let σ be the hitting time at L−y .
upper bound. If y≥ 0, then we use the estimate

P[Hπ
2n(ε,x,y)]≤ P[Hπ

2n−1(ε,x,y)].
xα

+
2n−2−α

+
2n−1ε

α
+
2n−1

∏
n−1
j=1 φ (2n−2 j−1)(x− y)α

+
2 j−α

+
2 j−2
≤ xα

+
2n−α

+
2n−1ε

α
+
2n−1

∏
n
j=1 φ (2n−2 j)(x− y)α

+
2 j−α

+
2 j−2

,

where the last inequality follows from φ (2n−2 j−1)(x−y)≥ φ (2n−2 j)(x−y), x≥ x−y = φ (0)(x−y), and α
+
2 j ≥α

+
2 j−2.

So we get (4.3).
If y < 0, then η(σ) ∈ ∂

−
H L−y , and the righthand side of η [0,σ ] disconnects the union of [ℜη(σ),0] and the

righthand side of the line segment [ℜη(σ),η(σ)] in H \ [ℜη(σ),η(σ)]. From the comparison principal and
conformal invariance of harmonic measure, we get

hm(∞,H\η [0,σ ];RHS of η [0,σ ])≥ hm(∞,H\ (η [0,σ ]∪ [ℜη(σ),η(σ)]);RHS of η [0,σ ])

≥hm(∞,H\ [ℜη(σ),η(σ)]; [ℜη(σ),0]∪ RHS of [ℜη(σ),η(σ)]).

Since ℜη(σ)≤ y, we get
gσ (x)−Wσ ≥ x− y. (4.13)

The following local martingale is similar to the one used in the proof of Lemma 3.4 (recall (3.7)):

Mt = |gt(x+3ε)−Wt |α
+
2n−α

+
2n−1g′t(x+3ε)α

+
2n−1 .

The law of η weighted by Mt/M0 is SLE(κ;ν) with force point at x+ 3ε , where ν = κ(α+
2n−α

+
2n−1). Let E∗

denote the expectation w.r.t. this SLE(κ;ν) process. Let ε1 = 4(gσ (x+ 3ε)− gσ (x+ ε)), x1 = gσ (x+ 3ε), and
y1 = sup{ℜgσ (z) : z ∈ ∂ σ

HL−y }, where we use ∂ σ

HL−y to denote the remaining part of ∂
−
H L−y at time σ in the positive

direction, i.e., the unbounded component of ∂
−
H L−y \η [0,σ ]. Then gσ (∂

σ

HL−y ) ⊂ L−y1
. From Lemma 2.1, the gσ -

image of the remaining part of ∂
+
H B(x,ε) at time σ in the positive direction (which touches x+ ε), denoted by

∂ σ

HB(x,ε) is enclosed by ∂
+
H B(x1,ε1). From (4.13), we get

ε1 ≤ 8ε ≤ 25n−1
ε ≤ φ

(2n−1)(x− y)≤ x− y≤ x1−Wσ .

This means that ∂
+
H B(x1,ε1) disconnects Wσ from gσ (∂

σ

HB(x,ε)). From Lemma 4.12, we have x1−y1 ≥ φ(x−y)≥
24ε > ε1. So we may apply Lemma 4.6 and use DMP of SLE to get

P[Hπ
2n(ε,x,y)|η [0,σ ]]≤ Hπ

2n−1(ε1,x1−Wσ ,y1−Wσ ).

We assumed that (ε,x,y) satisfy 25n−1ε < φ (2n−1)(x− y). Since g′σ ≤ 1 on R\Kσ , we have ε1 ≤ 8ε . So we get

25n−4
ε1 ≤ 25n−1

ε < φ
(2n−1)(x− y)≤ φ

(2n−2)(x1− y1).

This means that (ε1,x1−Wσ ,y1−Wσ ) satisfy the conditions for (4.2). From the induction hypothesis, we get

P[Hπ
2n−1(ε1,x1−Wσ ,y1−Wσ )]. fn(x1− y1)(x1−Wσ )

α
+
2n−2−α

+
2n−1ε

α
+
2n−1

1

≤ fn(x1− y1)(gσ (x+3ε)−Wσ )
α
+
2n−2−α

+
2n−1(g′σ (x+3ε)ε)α

+
2n−1 ,

where fn(x1− y1) is the factor coming from the denominator of (4.2), and the last inequality follows from 0 <
gσ (x+3ε)−gσ (x+ ε)≤ gσ (x+3ε)−Vσ ≤ 3g′σ (x+3ε)ε and α

+
2n−1,α

+
2n−1 ≥ 0. So we get

P[Hπ
2n(ε,x,y)] = E[P[Hπ

2n(ε,x,y)|η [0,σ ]]]≤ E[Hπ
2n−1(ε1,x1−Wσ ,y1−Wσ )]

. fn(x1− y1)ε
α
+
2n−1E[(gσ (x+3ε)−Wσ )

α
+
2n−2−α

+
2n−1 ·g′σ (x+3ε)α

+
2n−1 ]

≤ fn ◦φ(x− y)εα
+
2n−1M0E∗[(gσ (x+3ε)−Wσ )

α
+
2n−2−α

+
2n ]

≤ fn ◦φ(x− y)(x− y)α
+
2n−2−α

+
2n(x+3ε)α

+
2n−α

+
2n−1ε

α
+
2n−1 ,
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where in the second last inequality we used x1− y1 ≥ φ(x− y), and in the last inequality we used α
+
2n−2 ≤ α

+
2n−1

and (4.13). Since ε ≤ x, we get (4.3).
Lower bound. We use the local martingale (similar to the one above):

Mt = g′t(x)
α
+
2n−1 |gt(x)−Wt |α

+
2n−α

+
2n−1 .

The law of η weighted by Mt/M0 is SLE(κ;ν) with force point at x, where ν = κ(α+
2n−α

+
2n−1). Let E∗ and P∗

denote the expectation and probability w.r.t. this SLE(κ;ν) process.
Fix R > 1 > δ > 0 and suppose x− y ≤ R. In the proof below, we use C to denote a positive constant, which

depends only on κ,n,R,δ , and may change values between lines. Let F(δ ) denote the event that η [0,σ ]⊂ B(0, 1
δ
),

η does not swallows x at σ , and dist(η [0,σ ],x) ≥ δx. Suppose F(δ ) occurs. From Lemma 4.9, the image of the
unbounded connected component of L−y \η [0,σ ] under gσ contains L−y1; π

2
for y1 := min{y− π

2 ,− 2
δ
− 2

πδ 2 }. Assume

that ε ≤ δx
2 . From Koebe’s distortion theorem, the gσ -image of ∂

+
H B(x,ε) encloses ∂

+
H B(x1,ε1), where x1 = gσ (x)

and ε1 =
4
9 g′σ (x)ε . Let x2 = 2(x1−Wσ ), y2 = 2(y1−Wσ ), and ε2 = 2ε1. From DMP and scaling property of SLE

and Lemma 4.6, we get

P[Hπ
2n(ε,x,y)|η [0,σ ],F(δ )]≥ Hπ

2n−1(ε2,x2,y2), if ε ≤ δx/2.

From [Law05, (3.12)], we get |x1− x| ≤ 3
δ

. So we have

x1− y1 ≤max{x− y+
3
δ
+

π

2
,x+

2
δ
+

2
πδ 2 } ≤ R+

5
δ 2 . (4.14)

Let R2 = 2(R+ 5
δ 2 ). Then x2− y2 ≤ R2, and R2 depends only on R and δ . From the induction hypothesis, on the

event F(δ ), we have

P[Hπ
2n−1(ε2,x2,y2)]≥Cx

α
+
2n−2−α

+
2n−1

2 ε
α
+
2n−1

2 =Cg′σ (x)
α
+
2n−1(gσ (x)−Wσ )

α
+
2n−2−α

+
2n−1ε

α
+
2n−1 .

Thus, if ε ≤ δx/2, then

P[Hπ
2n(ε,x,y)]≥ E[P[Hπ

2n(ε,x,y)|η [0,σ ],F(δ )]]≥ E[1F(δ )H
π
2n−1(ε2,x2,y2)]

≥Cε
α
+
2n−1E[1F(δ )g

′
σ (x)

α
+
2n−1(gσ (x)−Wσ )

α
+
2n−2−α

+
2n−1 ]

=Cε
α
+
2n−1M0E∗[1F(δ )(gσ (x)−Wσ )

α
+
2n−2−α

+
2n ]≥Cxα

+
2n−α

+
2n−1ε

α
+
2n−1P∗[F(δ )],

where we used gσ (x)−Wσ ≤ x1− y1 ≤ R+ 5
δ 2 in the last inequality.

We now find some δ ,C ∈ (0,1) depending only on κ,n,R such that P∗[F(δ )] ≥C. After choosing that δ , the
constants C we had earlier also depend only on κ,n,R. Let η be a chordal SLE(κ,ν) curve started from 0 with force
point x, and let W be the driving function. Since ν ≥ (κ

2 −2)∨0 and x > 0, Wt is stochastically bounded above by√
κBt , η never swallows x, and dist(η [0,∞),x)> 0. Let EW denote the event that min{Wt : 0≤ t ≤ π2/4}<−R−2

and max{Wt : 0≤ t ≤ π2/4} ≤ R, and let EB denote a similar event with
√

κBt in place of Wt . Then the probability
of EW is bounded below by the probability of EB, which is bounded below by some C1 > 0 depending only on
κ,R. When EW occurs, from Lemmas 4.9 and 4.14, we get σ ≤ π2/4 and η [0,σ ] ⊂ [y,R]× [0,π] ⊂ B(0, 1

δ1
) for

δ1 =
1

R+π
. By the scaling property of SLE(κ,ν) curve, we see that dist(η [0,∞),x)/x is a positive random variable,

whose distribution depends only on κ,n (but not on x). So there is δ2 > 0 depending only on κ,n,R such that the
probability that dist(η [0,∞),x) ≤ δ2x is at most C1/2. Let δ = δ1 ∧ δ2 and C = C1/2. Then P∗[F(δ )] ≥ C. For
such δ , if ε ≤ δx/2, then P[Hπ

2n(ε,x,y)] ≥Cxα
+
2n−α

+
2n−1ε

α
+
2n−1 . Finally, if ε ≥ δx/2, then by comparison principle,

we have
P[Hπ

2n(ε,x,y)]≥ P[Hπ
2n(δx/2,x,y)]≥Cxα

+
2n ≥Cxα

+
2n−α

+
2n−1ε

α
+
2n−1 ,

where we used ε ≤ x and α
+
2n−1 ≥ 0 in the last inequality. So we get (4.5) as long as ε ≤ x.
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From 2n to 2n+1. Suppose (4.3) and (4.5) hold. We use the local martingale

Mt = g′t(x)
α
+
2n+1(gt(x)−Wt)

α
+
2n−α

+
2n+1 = g′t(x)

α
+
2n−1(gt(x)−Wt)

α
+
2n−α

+
2n−1ϒ

α
+
2n−1−α

+
2n+1

t J
α
+
2n+1−α

+
2n−1

t ,

which is similar to the one used in the proof of Proposition 3.1 (recall (3.8)). The law of η weighted by Mt/M0 is
SLE(κ;ν) with force point at x, where ν = κ(α+

2n−α
+
2n+1). Let E∗ and P∗ denote the expectation and probability

w.r.t. this SLE(κ;ν) process. Let τr be the hitting time at ∂
+
H B(x,r) for any r > 0. Recall that ϒτr � r.

Upper bound. First, suppose 6ε ≥ x. Then we use the estimate

P[Hπ
2n+1(ε,x,y)]≤ P[Hπ

2n(ε,x,y)].
xα

+
2n−α

+
2n−1ε

α
+
2n−1

∏
n
j=1 φ (2n−2 j)(x− y)α

+
2 j−α

+
2 j−2

.
xα

+
2n−α

+
2n+1ε

α
+
2n+1

∏
n
j=1 φ (2n−2 j−1)(x− y)α

+
2 j−α

+
2 j−2

,

where we used α
+
2 j ≥ α

+
2 j−2, φ (2n−2 j)(x− y)≤ φ (2n−2 j−1)(x− y), α

+
2n+1 ≥ α

+
2n−1, and ε & x. So we get (4.2).

Now suppose 6ε < x. Let σ = τ6ε . Then ησ ∈ ∂
+
H B(x,6ε). Let ε1 = g′σ (x)ε/(1− 1/6)2, x1 = gσ (x),

y1 = sup{ℜgσ (z) : z ∈ ∂ σ

HL−y }, where ∂ σ

HL−y is the unbounded connected component of ∂
−
H L−y \ η [0,σ ]. Then

gσ (∂
σ

HL−y )⊂L−y1
because gσ decreases the imaginary part. From Koebe’s distortion theorem, the image of ∂

+
H B(x,ε)

under gσ is enclosed by ∂
+
H B(x1,ε1).

Since the semicircle ∂
+
H B(x,6ε) disconnects the union of [0,x) and the righthand side of η [0,σ) from ∞ in

H\η [0,σ ], by the conformal invariance and comparison principle for harmonic measure, we have

hm(∞,H; [x−12ε,x+12ε]) = hm(∞,H,∂+
H B(x,6ε))≥ hm(∞,H\η [0,σ ];∂

+
H B(x,6ε))

≥hm(∞,H\η [0,σ ]; [0,x]∪ RHS of η [0,σ ]) = hm(∞,H; [Wσ ,x1]).

Thus, x1−Wσ ≤ 24ε . Since x1− y1 ≥ φ(x− y) ≥ φ (2n)(x− y) ≥ 25nε > 24ε , we get y1−Wσ < 0. This means
that ∂

−
H L−y1

disconnects Wσ from gσ (∂
σ

HL−y ). Besides, since g′σ (x) ∈ (0,1), we have x1− y1 > ε1. So we may apply
Lemma 4.6 and use DMP of SLE to get

P[Hπ
2n+1(ε,x,y)|η [0,σ ]]≤ Hπ

2n(ε1,x1−Wσ ,y1−Wσ ).

We assumed that (ε,x,y) satisfy 25nε < φ (2n)(x− y). Since g′σ ≤ 1 on R\Kσ , we have ε1 ≤ 4ε . Thus,

25n−2
ε1 ≤ 25n

ε < φ
(2n)(x− y)≤ φ

(2n−1)(x1− y1).

From Koebe’s 1/4 theorem, we get x1−Wσ ≥ 6g′σ (x)ε/4 ≥ g′σ (x)ε/(1− 1/6)2 = ε1. This means that (ε1,x1−
Wσ ,y1−Wσ ) satisfy the conditions for (4.3). From the induction hypothesis, we get

P[Hπ
2n(ε1,x1−Wσ ,y1−Wσ )]. fn(x1− y1)(x1−Wσ )

α
+
2n−α

+
2n−1ε

α
+
2n−1

1

� fn(x1− y1)ε
α
+
2n−1(gσ (x)−Wσ )

α
+
2n−α

+
2n−1g′σ (x)

α
+
2n−1 ,

where fn(x1− y1) is the factor coming from the denominator of (4.3). Thus,

P[Hπ
2n+1(ε,x,y)] = E[P[Hπ

2n+1(ε,x,y)|η [0,σ ]]]≤ E[Hπ
2n(ε1,x1−Wσ ,y1−Wσ )]

. fn(x1− y1)ε
α
+
2n−1E[(gσ (x)−Wσ )

α
+
2n−α

+
2n−1g′σ (x)

α
+
2n−1 ]

. fn ◦φ(x− y)εα
+
2n−1xα

+
2n−α

+
2n−1ε

u1(α
+
2n)+α

+
2n−α

+
2n−1 = fn ◦φ(x− y)xα

+
2n−α

+
2n−1ε

α
+
2n+1

where we used Proposition 4.15, the scaling invariance of SLE, and ((3.8)). Then we get (4.2) for 2n+1.
Lower bound. We fix R,δ > 0 and suppose x− y≤ R. In the proof below, we use C to denote a positive constant,
which depends only on κ,n,R,δ , and may change values between lines. Let σ = τε . From Koebe’s 1/4 theorem,
the gσ -image of ∂

+
H B(x,ε) encloses ∂

+
H B(x1,ε1), where x1 = gσ (x) and ε1 = g′σ (x)ε/4. Let F(δ ) denote the event

that σ < ∞, x is not swallowed at σ , and η [0,σ ]⊂ B(0, 1
δ
). Suppose F(δ ) occurs. From Lemma 4.9, the image of
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the unbounded connected component of L−y \η [0,σ ] under gσ contains L−y1; π

2
for y1 := min{y− π

2 ,− 2
δ
− 2

πδ 2 }. Let
x2 = 2(x1−Wσ ), y2 = 2(y1−Wσ ), and ε2 = 2ε1. From DMP and scaling property of SLE and Lemma 4.6, we get

P[Hπ
2n+1(ε,x,y)|η [0,σ ],F(δ )]≥ Hπ

2n(ε2,x2,y2).

Using the same argument as around (4.14), we get x2− y2 ≤ R2 := 2(R+ 5
δ 2 ). From the induction hypothesis, on

the event F(δ ), we have

P[Hπ
2n(ε2,x2,y2)]≥Cx

α
+
2n−α

+
2n−1

2 ε
α
+
2n−1

2 =Cg′σ (x)
α
+
2n−1(gσ (x)−Wσ )

α
+
2n−α

+
2n−1ε

α
+
2n−1 .

Thus,

P[Hπ
2n+1(ε,x,y)]≥ E[P[Hπ

2n+1(ε,x,y)|η [0,σ ],F(δ )]]≥ E[1F(δ )H
π
2n(ε2,x2,y2)]

≥Cε
α
+
2n−1E[1F(δ )g

′
σ (x)

α
+
2n−1(gσ (x)−Wσ )

α
+
2n−α

+
2n−1 ]

=Cε
α
+
2n−1M0E∗[1F(δ )J

α
+
2n−1−α

+
2n+1

σ ϒ
α
+
2n+1−α

+
2n−1

σ ]≥Cxα
+
2n−α

+
2n−1ε

α
+
2n−1P∗[F(δ )], (4.15)

where in the last inequality we used ϒσ � ε , Jσ ∈ (0,1], and α
+
2n−1−α

+
2n+1 ≤ 0.

We now find some δ ,C > 0 depending only on κ,n,R such that P∗[F(δ )] ≥ C. After choosing that δ , the
constants C we had earlier also depend only on κ,n,R. Let η be a chordal SLE(κ,ν) curve started from 0 with force
point x. Since ν ≤ κ/2−4, the curve η goes all the way to x in finite time, and so is bounded. Moreover, η does not
swallow x before it reaches x. By scaling property, diam(η)/x is a bounded random variable, whose distribution
depends only on κ,n. Thus, there are constants δ1,C > 0 depending only on κ,n, such that P∗[F(δ1/x)]≥C. Then
we let δ = δ1/R. Since x ≤ x− y ≤ R, we have F(δ1/x) ⊂ F(δ ). Using such δ and applying (4.15), we get (4.4)
for 2n+1.
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