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Abstract

The backward chordal Schramm-Loewner Evolution naturally defines a conformal weld-
ing homeomorphism of the real line. We show that this homeomorphism is invariant under
the automorphism z — —1/z, and conclude that the associated solution to the welding
problem (which is a natural renormalized limit of the finite time Loewner traces) is re-
versible. The proofs rely on an analysis of the action of analytic circle diffeomorphisms on
the space of hulls, and on the coupling techniques of the second author.
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1 Introduction

1.1 Introduction and results

The Schramm-Loewner Evolution SLE,;, first introduced in [I4], is a stochastic process of
random conformal maps that has received a lot of attention over the last decade. We refer
to the introductory text [6] for basic facts and definitions. In this paper we are largely
concerned with chordal SLE,, which can be viewed as a family of random curves « that join
0 and oo in the closure of the upper half plane H. A fundamental property of chordal SLE
is reversibility: The law of v is invariant under the automorphism z — —1/z of H, modulo
time parametrization. This has first been proved by the second author in [I8] for k < 4,
and recently by Miller and Sheffield for 4 < x < 8 in [9]. It is known to be false for x > 8
(I31,[19]).

In the early years of SLE, Oded Schramm, Wendelin Werner and the first author made
an attempt to prove reversibility along the following lines: The “backward” flow

e S
fi(2) = VKB

generates curves Or = f[0,T] whose law is that of the chordal SLE trace +[0,T] (up to
translation by /kBr) . When s < 4, these curves are simple, and each point of 3 (with the
exception of the endpoints) corresponds to two points on the real line under the conformal
map f;. The conformal welding homeomorphism ¢ of S is the auto-homeomorphism of
the interval f;. 1(5T) that interchanges these two points. In other words, it is the rule that
describes which points on the real line are to be identified (laminated) in order to form the
curve Br. It is known [13] that, for k < 4, the welding almost surely uniquely determines
the curve. The welding homeomorphism can be obtained by restricting the backward flow

O fi(2) = fo(z) =2, 0<t<T,



to the real line: Two points = # y on the real line are to be welded if and only if their
swallowing times coincide, ¢(z) = y if and only if 7, = 7,, see Section An idea to
prove reversibility was to prove the invariance of ¢ under x — —1/z, and to relate this to
reversibility of a suitable limit of the curves 8y. But the attempts to prove invariance of ¢
failed, and this program was never completed successfully.

In this paper, we use the coupling techniques of the second author, introduced in [I§]
for his proof of reversibility of (forward) SLE traces. We use it to prove the invariance of
the welding:

Theorem 1.1. Let k € (0,4], and ¢ be a backward chordal SLE,; welding. Let h(z) = —1/z.
Then h o ¢ o h has the same distribution as ¢.

As a consequence, in the range k € (0,4) where the SLE trace is conformally removable,
we obtain the reversibility of suitably normalized limits of the 87 (see Section |§|for details):

Theorem 1.2. Let x € (0,4), and B be a normalized global backward chordal SLE, trace.
Let h(z) = —1/z. Then h(B\ {0}) has the same distribution as 8\ {0} as random sets.

In the important paper [16], Sheffield obtains a representation of the SLE welding in
terms of a quantum gravity boundary length measure, and also relates it to a simple Jor-
dan arc, which differs from our 5 only through normalization. A similar random welding
homeomorphism is constructed in [2], where the main point is the very difficult existence
of a curve solving the welding problem. Our approach to the welding is different: In order
to prove Theorem in Section [2] we develop a framework to study the effect of analytic
perturbations of weldings on the corresponding hulls. We show in Section [ that a M&bius
image of a backward chordal SLE,; process is a backward radial SLE(x, —x —6) process, and
the welding is preserved under this conformal transformation. In Section [5| we apply the
coupling technique to show that backward radial SLE(k, —x — 6) started from an ordered
pair of points (a,b) commutes with backward radial SLE(x, —k — 6) started from (b, a), and
use this in Section [f] to prove Theorem [[.1

In a subsequent paper [23] of the second author, Theoremis used to study the ergodic
properties of a forward SLE, trace near the tip at a fixed capacity time.

1.2 Notation

Let C=CU{c},D={z€C:|z] <1},D* =C\D, T={z€eC:|z| =1}, and
H={ze€C:Imz > 0}. Let Iz(z) = Z and Ir(z) = 1/Z be the reflections about R and T,
respectively. Let e’ denote the map z + e?*. Let coto(z) = cot(z/2) and sing(z) = sin(z/2).
For a real interval J, let C'(J) denote the space of real valued continuous functions on J. An
increasing or decreasing function in this paper is assumed to be strictly monotonic. We use

Conf
B(t) to denote a standard real Brownian motion. By f: D 2" E we mean that f maps D
conformally onto E. By f, Luy fin U we mean that f,, converges to f uniformly on every

compact subset of U. We will frequently use the notation D, a8 D as in Definition
The outline of this paper is the following. In Section 2] we derive some fundamental
results in Complex Analysis, which are interesting on their own. In Section [3| we review the
properties of forward Loewner processes, and derive some properties of backward Loewner
processes. In Section [} we discuss how are backward Loewner processes transformed by
conformal maps. In Section [5] we present and prove certain commutation relations between
backward SLE(k; p) processes. In the last section, we prove the reversibility of backward



chordal SLE,; processes for k € (0,4] and propose questions in other cases. In the appendix,
we discuss some results on the topology of domains and hulls.

2 Extension of Conformal Maps

2.1 Interior hulls in C

An interior hull (in C) is a nonempty compact connected set K C C such that C\ K is

also connected. For every interior hull K in C, there are a unique r > 0 and a unique
~ Conf ~ —_

¢ : C\ K — C\ rD such that ¢x(c0) = 0o and ¢ (00) 1= lim, o0 2/ (2) = 1. We

call rad(K) := r the radius of K and cap(K) := In(r) the capacity of K. The radius is

0 iff K contains only one point. In general, we have rad(K) < diam(K) < 4rad(K). We

call K nondegenerate if it contains more than one point. For such K, there is a unique
~ Conf
vrg : C\ K — D* such that ¢k (c0) = 0o and ¢/ (c0) > 0. In fact, px = ¢x/rad(K).

Let Yx = ¢ for such K.

For any Jordan curve J in C, let D; denote the Jordan domain bounded by J, and let
Dy =T\ (DyUJ). Suppose f5 : D ' Dy and f; = ¢ : D* =5 D3. Then both f; and
[ extend continuously to a homeomorphism from T onto J. Let h = (f})"'o f;. Then h is
an orientation-preserving automorphism of T. We call such h a conformal welding. Not every
homeomorphism of T is a conformal welding, but it is well-known (and an easy consequence
of the uniformization theorem) that every analytic automorphism is a conformal welding,
and that the associated Jordan curve is analytic. See [8] for the quasiconformal theory of
conformal welding, and [3] for deep generalizations and further references.

Lemma 2.1. Let 8 be an analytic Jordan curve. Let Q) C C be a neighborhood of T. Suppose
W is a conformal map defined in Q, maps T onto T, and preserves the orientation of T.
Let O = U DgU %(Q ND*). Then there is a conformal map V defined in Q° such that

Conf
Proof. Fix a conformal map fg : D 5 Dg and let hg = ¢p; o fz be the associated
conformal welding homeomorphism. Define h = W o hg. Since 3 is analytic, h is analytic
Conf
and there is an analytic Jordan curve v and a conformal map f, : D — D, such that
h=nh,= PP © fy- Define V= f, o fﬁ’1 on Dg. Since § and v are analytic curves, V
extends conformally to a neighborhood of g with V() = +. On S, this extension (still
denoted V) satisfies V = (450 hy) o (hg'o w%) =¢p-oWo w%. Therefore V' extends

conformally to all of Q7 and satisfies the desired property. O

Theorem 2.2. Let H be a nondegenerate interior hull. Let Q2 C C be a neighborhood of T.
Suppose W is a conformal map defined in Q, maps T onto T, and preserves the orientation
of T. Let Q = HU Yy (QND*). Then there is a conformal map V defined in QF such

that V oty =y gy o W in QND*. If another conformal map 1% satisfies the properties of
V, then1~/:aV+bforsomea>0 and b € C.
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Figure 1: The situation of Theorem [2.2]and Lemma[2.1] Given H and W, V can be constructed
to be analytic in H. In Lemma [2.I] the boundary of H is assumed to be an analytic Jordan
curve, while in Theorem no regularity assumption is made.

Proof. First, define a sequence of analytic Jordan curves (3,) by
Bp=vn({er™:0<0<2m}), neN

Then 8, U Dg, — H in dy (see Appendix . From Lemma for each n € N, there is a
conformal map V,, defined in Q%" := 8, UDg, Utg, (2ND*) such that V,,0t5, = by, (5, oW
in Q N D*. Note that for any a, > 0 and b, € C, a,V,, + b, satisfies the same property as
V,,. Thus, we may assume that 0 € V,,(8,) C D and V,,(8,) NT # 0. Let v, = Vo(Bn),
n € N. Then each ~, is an interior hull contained in the interior hull D, and diam(vy,) > 1.
So rad(y,) > 1/4. From Corollary (7n) contains a subsequence which converges to
some interior hull K contained in D with radius at least 1/4. So K is nondegenerate. By
passing to a subsequence, we may assume that v, — K. From 8, — H and v, — K we get

bp, % g in QND* and ¢y, % g in W(QND*). Thus, ¢s, (QND*) 5 gy (QND*)

by Lemma
Since V;, 0 ¢hg, = b, o W in QN D*, we find that V,, = ¢, o Wo ;! in ¢z (2ND*).

Let V = thx o W o 5" in 5 (QND*). Then V, % V in ¢5(Q N D*). We may find
r > 1 such that for any s € (1,r], sT C QN D*. Then ¢y (rT) is a Jordan curve in
Y (Q N D*) surrounding H, and the Jordan domain bounded by g (rT) is contained in
O = HUyy(QND*). Since ¢y (rT) is a compact subset of 1 (Q2ND*), we have V,, — V/

Cara

uniformly on 1z (rT). It is easy to see that Q% =% Q| For n big enough, ¢ 5 (rT) together
with its interior is contained in %». From the maximum principle, V,, converges uniformly
in the interior of ¢y (rT) to a conformal map which extends V. We still use V' to denote



the extended conformal map. Then V is a conformal map defined in Q, and V,, Lus y
in Q. Letting n — oo in the equality V;, o ¢35, = 1, o W in Q N D*, we conclude that
Voyg =Yy oW in QN D*. So the existence part is proved.

If V=aV + b for some a > 0 and b € C, then w‘;(H) = a¥y(m) + b, which implies
Voyyg = w‘;(H) o W. Finally, suppose V satisfies the properties of V. Then V o V™! is a
conformal map in V(Q). Since V oy = Yy gy o W and Vo Yy = wf/(H) oW in QN D*,
we find that VoV~ = Y © ’(/}‘;(lH) in z/iV(H)(W(Q ND*)) = V(QAH) \V(H). ANote that
wf/(H)ow\;(lH) is a conformal map defined in C\V (H). Since V (Q)U(C\V(H)) = C, we may
define an analytic function h in C such that h = VoV~lin V(QH) and h = 1/1‘7(H) o w‘;(lH)
in C\ V(H). From the properties of Vi gy and Yy (g7, we have h(o~o) = oo and h/(c0) > 0.
Thus, h(z) = az + b for some a > 0 and b € C, which implies that V' = aV + b. O

Now we obtain a new proof of the following well-known result about conformal welding.

Corollary 2.3. Let W be conformal in a neighborhood of T, maps T onto T, and preserves
the orientation of T. If h is a conformal welding, then W o h and ho W are also conformal
weldings.

Proof. Apply Theorem to H = Dy, where J is the Jordan curve for the conformal
welding h. We find a conformal map V defined in Q7 = D, U f5(2 N D*) such that
Vo f; =4y oW in QND*. Let J' = V(J). Then J' is also a Jordan curve, V(H) = D,

Conf
and Yy gy = f.. Let fpr =V o f;. Then fy : D — D;. Thus,

Woh=Wo(f) ofs=vpmoVefs=(fi)"ofr

which implies that W o h is a conformal welding. As for h o W, note that (ho W)~ ! =
W~1oh~! and that h is a conformal welding if and only if A~ is a conformal welding. [J

2.2 Hulls in the upper half plane

Let H={z € C:Imz > 0}. A subset K of H is called an H-hull if it is bounded, relatively
closed in H, and H\ K is simply connected. For every H-hull K, there is are a unique ¢ > 0

Conf
and a unique g : H\ K 2% H such that gi(2) = z+ £+ O(Z%) as z — oo. The number ¢
is called the H-capacity of K, and is denoted by hcap(K). Let fx = gx'. The empty set is
an H-hull with heap(0) = 0 and gy = fp = idu.
Definition 2.4. Let K; and K5 be H-hulls.

1. If K1 C Ko, define Ko/K; = gk, (K2 \ K1). We call K5/K, a quotient hull of Ko,
and write Ko/ K7 < K.

2. The product Ky - Ko is defined to be K1 U fi, (K2).

The following facts are easy to check.
1. K3/K; and K; - K5 in the definition are also H-hulls.

2. For any two H-hulls Kl and Kg, K1 C Kl . K2 and K2 = (Kl . KQ)/Kl < K1 . KQ. If
K C Ky, then K - (KQ/Kl) = Ks.



3. The space of H-hulls with the product “.” is a semigroup with identity element (), and
“<” is a transitive relation of this space.

4. le'Kz = le o fK2 in Ha 9K, Ky = 9K, © 9K, in H\ (Kl : KQ)
5. hcap(K1 . KQ) = hC&p(Kl) + hcap(Kg). If K1 C Ky or Kq < KQ, then hcap(Kl) <
hcap(K>).
From fx,.x, = [k, © [k, in H we can conclude that fx, = fk,.k, © gk, in H\ Ks. So
fK, is an analytic extension of fx,.x, © gx,, which means that K is uniquely determined
by K7 - K3 and Ks. So the following definition makes sense.

Definition 2.5. Let K1 and K5 be H-hulls such that K1 < Ko. We use K5 : Ky to denote
the unique H-hull K C Ky such that K3/K = K;.

For an H-hull K, the base of K is the set Bx = K NR. Let the double of K be defined
by K = K U Ig(K) U Bk, where Ig(z) := z. Then gk extends to a conformal map (still
denoted by gg) in C \ K, which satisfies gi (00) = 00, g (00) =1, and gk o Ig = Ig o gk
Moreover, gx (@ \ I/(\') =C \ Sk for some compact Sk C R, which is called the support of
K. So fx extends to a conformal map from C \ Sk onto C \ K.

Lemma 2.6. fx can not be extended analytically beyond C \ Sk.

Proof. Suppose fx can be extended analytically near xy € R, then the image of fx contains
a neighborhood of fx(zg) € R. So fx(H) = H\ K contains a neighborhood of fx(zo) in
H. This then implies that fx(xo) € R\ Bg. Thus, there is yo € R\ Sk such that
fx (o) = fr(xo). Since fk is conformal in H, we must have zo = yo € R\ Sk. O

Lemma 2.7. If K1 = Ky/Ko < K, then Sk, C Sk,, fx, = fx, © fx, in C\ Sk,, and
9K, = 9K, © K, in C\ K.

Proof. Since Ko = K- Kl, we have fx, = fk, Ole in H, which 1mphes that gk, o fx, = fK,
in H. Since fx, maps C \ Sk, conformally onto C \ Ky C C \ Ko, and gk, is analytic in
C\ K, we see that 9K, © [k, is analytic in C\ Sk,. Since 9K, © fK, = K, in H, from
Lemma we have Sk, C Sk,, and gk, © fx, = [k, in C\ Sk,. Composing fr, to the
left of both sides, we get fx, = fx,© fx, in C \ Sk,. Taking inverse, we obtain the equality
for gk’s. O

Definition 2.8. S C C is called R-symmetric if Ix(S) = S. An R-symmetric map W is a
function defined in an R-symmetric domain 2, which commutes with Ig, and maps Q NH
into H.

Remarks.
1. For any H-hull K, gx and fx are R-symmetric conformal maps.
2. Let W be an R-symmetric conformal map defined in €. If an H-hull K satisfies KcQ
and oo ¢ W(K), then W (K) is also an H-hull and W(K) = W (K).

Definition 2.9. Let Q be an R-symmetric domain and K be an H-hull. IfIA( C Q, we write
Qg or (V) g for Sk Ugr(Q\ K), and call it the collapse of Q via K. If Sk C Q, we write
QF or (X)) for KU fr(Q\ Sk), and call it the lift of Q via K.



Remarks.

1. In the definition, Qk is an R-symmetric domain containing Sk ; 0K is an R-symmetric
domain containing K.

2. ()% = Q and (QF) g = Q if the lefthand sides are well defined.

3. Ok, .1, = (UK, )k, and QFE2 = (QK2)K1 if either sides are well defined.

Definition 2.10. Let W be an R-symmetric conformal map with domain Q. Let K be
an H-hull such that K C Q and oo ¢ W(K). We write W or (W)k for the conformal
extension of gy (xy o W o fx to Qk, and call it the collapse of W via K.

Remarks.

Conf
1. Since gw(x)y o Wo fx : Qx \ Sk — W(Q) \ Sw(k), the existence of Wy follows

from the Schwarz reflection principle. Wy is an R-symmetric conformal map, and
Wk (Sk) = Swxk)-

2. The gk and fk defined at the beginning of this section should not be understood as
the collapse of ¢ and f via K.

3. Wk, .k, = (Wk, )k, if either side is well defined.
4. Viyky o Wi = (V o W)k if either side is well defined. In particular, (W‘l)W(K) =
(Wi)™!

Let B}, and S} be the convex hulls of Bx and Sk, respectively. Let K*= KU By
Then gx : C\ K* R \ Si. If K # (), then S} is a bounded closed interval, K* is a
nondegenerate interior hull, and ¢z, = fr o9s: . If Sf C €2, then OF = K*U fx(Q\ Sk).
The lemma below is a part of Lemma 5.3 in [17], where S}, was denoted by [ck, dk].
Lemma 2.11. If K; C K3, then S}, C Sk, .

Theorem 2.12. Let W be an R-symmetric conformal map with domain Q. Let K be an
H-hull such that Sk C Q and co € W(Sk). Then there is a unique R-symmetric conformal
map V defined in QX such that Vi = W.

Proof. We first consider the existence. If K = (), since fy = id and Q®* = Q, V = W
is what we need. Now suppose K # () and S} C Q. Note that S} is a bounded closed
interval, and so is W (S5 ). Let Qp = 1/@;1 (Q\ S}). Define a conformal map Wr in Qr by
Wr =¥/ (g,y © W os;.. Then Wr(2) = T as Q¢ > z — T. Thus, Wr extends conformally

across T, maps T onto T, and preserves the orientation of T. Apply Theorem 22 to Wy
and K*. We find a conformal map V defined in

K*Utp.(Qr) = K* U fg(Q\ Sg) = QF

such that IA/oz/JK* = wV(K )oWT in Qp. Let V = IRoIA/oIR Then I~/(IA(*) = IROXA/(IA(*) So
Ve = IgoY5 ., 0lr. Since Igx commutes with 17, and Wy, we see that V also satisfies
V(K*) V(K ) R

the properties of V. So V—aV+bfor some a > 0 and b € C. Thus, IRoVoIR _aV+b
Considering the values of V on QK n R, we find that a = 1 and Reb = 0. Note that V-1t
satisfies the property of V, and commutes with Iz. By replacing V with V — 7, we rnay
assume that V is an R-symmetric conformal map.



Sk

Figure 2: The situation of Theorem [2.12] Given K and W, there is a unique V, also denoted
W which is analytic across K and its reflection Ig(K), see Definition [2.13|

Since Vo . = tp gy © Wr in Or, from $z. = fic 0 sy, Yp(zey = foq) © sy,
and the definitions of Wt and Qr, we have

Vo fic = fo) 0 ¥s; o, © Vs ©W (2.1)

on Q\ S%. Let h = 1/)5‘*7(}0 o 1/1;[,1(5;(). Since S‘i/(K) and W(S5) are both bounded closed

intervals, we have h(z) = az+b for some a > 0 and b € R. Let V = h~*o V. Then V is also

an R-symmetric conformal map defined on Q¥ and fvy = h~1o ff/(K) o h. From li

we have R
fV(K)oW:hflof‘A/(K)ohoW:hfloVofK =Vo fk.

This finishes the existence part in the case that K # () and S C Q.

Now we still assume that K # () but do not assume that S} C Q. Let Qo = Q and
Wo = W. We will construct H-hulls K, ..., K,, and R-symmetric domains €24, ..., €, such
that K, - Kpp—1--- K1 = K, Q; = Qj(_jl, and S}}j C Q1,1 < j < n. When they are
constructed, using the above result, we can obtain R-symmetric conformal maps W; defined
on ;, 1 < j < n,such that (W;)k, = W;_1, 1 <j <n. Let V. =W,. Then V is defined
in Q, = QK =K and Vik = (W,)k,...c, = Wo = W. So V is what we need.

It remains to construct K; and Q; with the desired properties. Since 2 NR is a disjoint
union of open intervals, and Sk is a compact subset of Q2 N R, we may find finitely many
components of Q@ NR which cover Si. There exist mutually disjoint R-symmetric Jordan
curves Ji, ..., J, in £ such that their interiors D, ,..., D are mutually disjoint and con-
tained in Q, and Sk C Uy, Dy, Then JF := fx(J;), 1 < j < n are R-symmetric Jordan
curves, which together with their interiors are mutually disjoint, and KcC Ur—1 Dy gy~ Let
H; = KQUZ:j DJ]K, 1 < j <n. Then each H; is an H-hull, and K = Hy D Hy D --- D H,,.
Let K; =H;/Hj11,1<j<n-1,and K, = H,. Then we have K,, - -- K1 = H; = K.



Construct €, 1 < j < n, such that Q; = Q]Kjl, 1 <j<n. Then

ijl _ (QO)KJ-,I...KI _ (QKnMKl)Kanj — (QK)H

VR

1<j<n.
It suffices to show that Sy C €;_;. We have

Kj=H;j/Hjt1 = gn, (Hj \ Hjp1) = gr,, (KO D).

Thus, K; C DgHjH(JjK), which implies that Sk, C DgHj(JjK). Since RN DgHj(JjK) is an
interval, we have S}}j C Dy, (jxy- Since D x C QK and JjK has positive distance from
J J J
Hj, we have D, (;xy C (QK)HJ. = ;_1. So K; and Q; satisfy the properties we need.
J J b
This finishes the proof of the existence part.

Now we prove the uniqueness. Suppose V' is another R-symmetric conformal map defined
on Q¥ such that Vx = W. Then

QV(K)OVZWOQKZQV/(K)OV

on Q\ K. Thus, VoV~! = fv () © 9v (i) on V(Q\ K) =V(Q)\ V(K). We know that
VoV ~1is a conformal map defined on V(Q), while Iy (k) ©9V (K) is a conformal map defined
on C\V(K)=C\V(K). Since V() and C\ V(K) cover C, we may define an analytic
function h on C such that h =V o V=" on V(Q) and h = fi 4 © gv (k) on C\ V(K). From
the propertiei of f\?(K) and gy (), we see that h(z) —z — 0 as z — oo. So h = id, which
implies that V' = V. So the uniqueness is proved. O
Definition 2.13. We use WX to denote the unique V in Theorem and call it the lift
of W via K. Let W* be the map defined by W*(K) = WX (K).
Remarks.

1. (WK)K =W and (WK)K =W.

2. The range of WK is WK (QF) = (W (Q))WV (5.

3. WKz = (Wha)Ka yWEE) o WK = (V o W)X, and (WH)~1 = (W—1)WU),

4

. The domain (resp. range) of W* is the set of H-hulls whose supports are contained in
the domain (resp. range) of W; and Sy« (xy = W (Sk).

5. VFoW* = (VoW)* (W=t = (W)~

Lemma 2.14. Suppose K; < Ka, Sk, lies in the domain of an R-symmetric conformal
map W, and oo € W(Sk,). Then W*(K;) < W*(K>), and

WH(Ky) : W*(K,) = WE2 (K, : Ky). (2.2)

Proof. From Lemma Sk, C Sk,- So WK1 and WXz exist. Let Ko = Ky : K| C Ko.
Then W2 (Ko) C WQ(KQ) and

W2 (Ky) /W2 (Ko) = gy 50y © W2 (K2 \ Ko)
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= gwia(xy) © W2 0 fic (Ko /Ko) = (W?) e, (K2 /Ko)
= (WHEo R i (Ky) = WHRY(K).
Thus, W5 (K,) < WK (K,) and W52 (K) : WK (K) = W2 (Ky). O

H, H,

g, / gm \ .
K, 2

QK]\ 9K /

Figure 3: The pair (Hy, Hy) uniquely determines the pair (K7, K2), and vice versa, see Theorem
2.16l and Definition [2.15] .

Definition 2.15. Let P* denote the set of pair of H-hulls (Hy, Hy) such that HinH,=0.
Let P, denote the set of pair of H-hulls (K1, K3) such that Sk, NSk, = 0. Define g, on P* by
9«(H1, Ha) = (91, (H1), 95, (H2)). Define f* on P. by f*(K1, K2) = (ff, (K1), fi, (K2)).

Remarks.

1. g, is well defined on P* because for j = 1,2, 1?3,]- is contained in the domain of g :
C\ [A(j. The value of g, is a pair of H-hulls.

2. f* is well defined on P. because for j = 1,2, Sk,_; is contained in the domain of fx;:
C \ Sk,. The value of f* is a pair of H-hulls.

Theorem 2.16. g, and f* are bijections between P* and P, and are inverse of each other.
Moreover, if (Hy, Ho) = f*(K1, K2), then

(Z) Hl'KQZHQ'KleluHQ;
(1) [k.(Sk,) = Su, and [k, (Sk,) = Sh,;
(m) SHlqu ZSKIUSKZ.

Proof. Let (Hy,Hy) € P* and (K1, K») = g.(Hy, Hy). Then (C\ Hy)g, = C\ Ky, Sp, C
~ o~ ~ ~ -~  ~ Conf ~
C\ K, and (C\ Sy, )k, = C\gk,(SH,). Since gy, : C\H; — C\Sp, and gy, (Hs) = Ko,
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~ ~ Conf ~ . .
we get (gm, ), : C\ K1 — C\ gk, (Sn,). From the normalization of gp,,gm,, 9k, at oo,

we conclude that
(gH1)H2 = 0JK;, gK2(SH1) = SKI‘ (23)

From Sy, C C\ K and gk, (Sg,) = Sk,, we see that Sk, N Sk, = 0, i.e., (K1, K3) € P,.
Since fm, = g;{}, fr, = g;(i, and gy, (H2) = K, from we get (fu, )k, = fK,, which
implies that (fx,)*? = fu,. Thus, f; (K2) = fu,(K>) = Hs. Similarly, f (K1) = H;.
ThllS, f*(Kl,KQ) = (H17H2). So f* O gx = id'p*.

Let (K1, K2) € P. and Hy = fj (K1). Then Sg, = fk,(Sk,) is disjoint from K. Thus,

we may define another H-hull Hy := fp, (K2). Then H, c C\ H;. So (Hq, H2) € P*. We

have (C\Sx, )X = C\ fx, (Sx,) and (C\K,)™ = C\ Hs. Since fx, : C\Sk, = C\K> and

-~ Conf ~ ~
(fr,)* (K1) = Hi, we see that (fx,)** : C\ fk,(Sk,) — C\ Ha. From the normalization
of fx,, fu,, [k, at 0o, we conclude that

(sz)Kl :fH27 fK1(SK2):SH2' (24)

Since Hy = ff, (K1), we get fx, = gu, © fu, © fx, on (([A:\SKQ) \ Sk, , which implies that
fr, o fi, = fu, o fi, on C\ (Sk, U Sk, ). So

Hy Ky =H, - Ky=H U fy,(K;) = H U H,. (2.5)

Thus, K1 = gHg(Hl) and K2 = ng(HQ), i.e., (Kl,KQ) = g*(Hl,Hg). This shows that
the range of g, is P., which combining with f* o g, = idp- shows that f* = (g.)~! and
g« = (f*)il'

In the previous paragraph, since (K1, K3) = g«(Hy, Ha), f*(K1, K3) = (Hy, Ha). Thus,

(i) follows from (2.5)); the second parts of (ii) follow from (2.4), and the first part follows

~ ~  ~ _ Conf
from symmetry. Finally, since gx, © g, = g1,.k, = 9H,UH,, from gg, : C\ (H1 U Ha) 2

~ ~ ~ =~ . Conf ~
C\ (Su, UK3), gk, : C\ (Sg, UK3) — C\ (9k,(SH,) U Sk,), and , we get (iii). O

Definition 2.17. For (K, Ks) € P., we define the quotient union of K1 and Ko to be
Kl vV KQ = H1 U HQ, where (H17H2) = f*(Kl,KQ).

Remark. From Theorem [2.16] K, Ky < K1V K5 and Sk,vk, = Sk, U Sk,.

The space of H-hulls has a natural metric dy described in Appendix [C} Let Hg denote
the set of H-hulls whose supports are contained in S. From Lemma if F'is compact,

(Hp,dy) is compact, and H,, — H in ‘Hp implies that fg, Lu, fuin C\ F.
Theorem 2.18. (i) Let F C R be compact. Let W be an R-symmetric conformal map
whose domain contains F'. Then W* : Hr — Hy (r) is continuous.

(ii) Let E and F be two nonempty compact subsets of R with ENF = (. Then f* and
(K1, K2) = K1V Ky are continuous on Hg X Hp.

Proof. (i). First, W* is well defined on H, and the range of W* is Hyy (). Suppose (H,,)
is a sequence in Hr and H, — Hg € Hp. To prove the continuity of W*, we need to
show that W*(H,) — W*(Hy). Suppose this is not true. Since Hyy(p) is compact, by
passing to a subsequence, we may assume that W*(H,) — Ko # W*(Hp). For each ny,
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WHn, = fwem,,)°oWeogn, on fu, 2\ F). We have g, Ly gr, in fr,(Q\ F) and
Fuve iy 255 ey in W)\ W(F). Thus, WHn 255 fi oW o gy, = V in fr, (@ ).
The domain of WHn is Qe = H,, U fa,, (2\ S, ), which converges to Q0 = Hy U

fr,(Q\ Sw,) D fr, (Q\ F). It is clear that Qo \ fz (Q\ F) is compact. Since WHnx Iy
in fg,(Q\ F), from the maximum principle, W#»» converges locally uniformly in Q0. We
still let V denote the limit function. Since H,, — Hy and W (H,, ) — Ky, we have
V(Ho) = Ko. Since fx, o Wogy, =V in fg,(Q\ F), we see that fy(g,)oWogny, =V in
fr,(Q\ Sp,). Thus, V = WHo, So Ky = WHo(Hy) = W*(Hy). This is the contradiction
we need.

(ii). To show f* is continuous, it suffices to show that, if (K}, K}') is a sequence in
H g x Hp which converges to (K, KY) € Hg x HF, then it has a subsequence (K%"’“), 2(7”“))
such that f*(K{"™) K{™)) 5 (K9 K9). Let (HJ',H}) = f*(K7,K2), n € N. From
Theorem m (iii), Sgrumy = Skp USkpy C EUF. From Lemma (H7 U HY) has
a convergent subsequence with limit in Hpyp. From Lemma Sup C S}}qu; C A,
where A is the convex hull of EUF. From Lemma[C.2] (H{') has a convergent subsequence.
For the same reason, (HY) also has a convergent subsequence. By passing to subsequences,
we may assume that Hj* U Hy — M° € Hgyp and H}' — HJ, j =1,2.

From Theorem [2.16] (i) and the continuity of the dot product, we get HY - K = HY -
K} = M". This implies that M° = HY U fyo(K3). The measures (ump) (see Appendix
converges to pipo weakly. Each ppyp is supported by Spp. From Theorem (ii),

up = fry(Skyp) C fxp(E). Since E is a compact subset of C\ F, we have fry — fxo
uniformly on E. Thus, frp(E) — ng(E) in the Hausdorff metric. So ppo is supported
by fxg(E), which implies that Sgo C fro(£). Hence fro (KY) is another H-hull, which is
bounded away from HY. From K} — K we have H \ K} Carg H\ KS. From we get
frp = fap in C\ Sy Thus, H\ frp (K5) =% H\ fup(K9). Since Hf = fp (K3),
we have H\ Hp ““% H\ fo(K9). On the other hand, H\ Hy “% H\ HY. Since H\ HY
and H\ fo (K9) both contain a neighborhood of oo in H, they must be the same domain.
Thus, HY = ng(KS) is bounded away from HY, ie., (H',HY) € P*. For the same
reason, HY = ng(K?). Thus, (H}, HY) — (HY, HY) = f*(KY, K9). This shows that f*
is continuous. Finally, since K; V Ko = H; - Ko if (Hq, Ho) = f*(K7,K>s), we see that
(K1, Ks) — K; V K, is also continuous. O

Corollary 2.19. (i) Let W be an R-symmetric conformal map with domain Q. Then
W* is measurable on Honr.

(ii) f* and (K1, K2) — K; V Ky are measurable on Pi.

Proof. (i) We may find an increasing sequence of compact subsets (F},) of Q N R such that
Horr = U,—; Hr,. From Theorem m (i), W* is continuous on each Hp, . Thus, W* is
measurable on Hong.-

(if) We may find a sequence of pairs of disjoint bounded closed intervals of R: (E,, F,),
n € N, such that P, = (U, Hg, X Hp,. From Theorem (ii), f* and (K, K2) —
K, V K, are continuous on each Hg, X Hr,, and so they are measurable on P,. O
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2.3 Hulls in the unit disc

A subset K of D = {|z| < 1} is called a D-hull if D\ K is a simply connected domain

containing 0. For every D-hull K, there is a unique gk : D\ K oyt D such that gx(0) =0
and ¢4 (0) > 0. Then In g% (0) > 0 is called the D-capacity of K, and is denoted by dcap(K).
Let fx = gf(l.

We may deﬁne KKy, Ko/K; (when K C Ks), and K7 < K> on the space of D-hulls as
in Definition [2.4] Then the remarks after Definition [2.4] still hold if H is replaced by I and
hcap is replaced by dcap. Then we may define K5 : K1 (when K7 < K3) asin Deﬁnltlon
For a D-hull K, the base Bx of K is K NT, and the double of K is K=K UIt(K)U BK,
where It(z) := 1/Z. Then gk extends to a conformal map (still denoted by gx) on C\ K,
which commutes with Iy. Moreover, gx (C\ K) = C\ Sk for some compact Sx C T, which
is called the support of K. So fx extends to a conformal map from C \ Sk onto C \ I?,
which commutes with Ir. Then Lemma 2.6 and Lemma [2.7] still hold here.

We may define T-symmetric sets and T—symmetrlc conformal maps using Definition
with R and H replaced by T and D, respectively. For a T-symmetric domain © and a
D-hull K, we may define domains Qf (when K C Q) and Q¥ (when Sx C Q) using
Definition 2.9} If W is a T-symmetric conformal map with domain €, and if Qg is defined,
we may then define W using Deﬁnition 2.10] Which is a T-symmetric conformal map on
Qx. The remarks after Definition [2 Deﬁnltlon and Definition [2:10] hold here with
minor modifications. We claim that Theorem 213l holds here with modifications. We need
several lemmas.

The lemma below relates the H-hulls with D-hulls. To dlstlngmsh the two set of symbols,
we use fi, i, BX SR and K for H-hulls, and f%, ¢%, B, S}, and KT for D-hulls.

Theorem 2.20. (i) Let W be a Mdébius transformation that maps D onto H, and K be
a D-hull such that W—1(c0) € ST.. Then there is a unique Mébius transformation
WX that maps D onto H such that WX (K) is an H-hull, QH‘;I%/K(K) oWH o f2 =W in
C\ S%, and S%%,K(K) = W(S%).
(1) Let W be a Mébius transformation that maps H onto D, and K be an H-hull. Then
there is a unique Mébius transformation W that maps H onto D such that W (K)
is a D-hull, gWK(K) oWHEo fE =W in (C\S s and STWK(K = W(S%).

Proof. (i) Let z0 = W~1(00) € T\ S%. Then wy := f2(20) € T\ B is well defined. Let
Wit (2) = i 3022, Then Wt is a Mobius transformation that maps D onto H and takes wo

to oo. Let Ly = VV0 (K). Since wy is bounded away from K, we see that Ly is an H-hull.

We have W : C\Kcﬁgf(C\Lo Define G = g} o W o fR oW1 on C\ W(SEL). Then

G:C\ W(S%) e \ S}, fixes 0o, and maps H onto H. So G(z) = az + b for some

a>0andbec R Let WK = G‘ o W&. Then WE is also a Mébius transformation that
maps D onto H, and W (K) is also an H-hull with Sy « ) = G~'(Sf,) = W(Sk) and

Q%K(K) =G lo gELHO o G. Thus,
Q%K(K)OWKOf}I?OW%l :Gflog%OOGonloW({(of%owfl

=G logp oW ofgoW =G oG = i\ w(sy) -

14



This implies that ¢ o WX o f2 = W in C\ Sk. So we proved the existence. On the
other hand, if WX satisfies the desired property, then from WX = fHo W o g2 we get
WE (wg) = 00. So WE = G o W, where Go(2) = az + b for some a > 0 and b € R. The
above argument shows that Gy = G~1. So we get the uniqueness.

(ii) We may use the proof of (i) with slight modifications: replace oo by 0, swap H and
D, swap R and T, and define W¢*(z) = Z=2. O

We also use W*(K) to denote the hull WX (K) in the above lemma. The following
lemma is similar to Lemma 2141

Lemma 2.21. Let Ky and Ko be two H-(resp. D-)hulls such that K1 < Ks. Let W be a
Mébius transformation that maps H onto D (resp. maps D onto H) such that co ¢ W (Sk,).
Then W*(K1) < W*(K3) and still holds.

The following lemma is used to treat the case Sk = T in Theorem [2.23

Lemma 2.22. Let W be a T-symmetric conformal map with domain Q D T. Let (K,) be a
sequence of D-hulls which converges to K. Suppose that for each n, there is a T-symmetric
conformal map V™ defined on Q¥» such that VI<(Z> = W. Then there is a T-symmetric
conformal map V defined on Q¥ such that Vix = W. Moreover, V(K) is a subsequential
limit of (V™ (K,)).

Proof. Since K, — K, QF» a2 K. Since V™ maps Q57 N D into D, the family
(V| qxnp) is uniformly bounded. Thus, (V™) contains a subsequence, which conver-
gence locally uniformly in Q% N'D. To save the symbols, we assume that (V) itself
converges locally uniformly in Q% N'D. Since each V{" is T-symmetric, the sequence also
converges locally uniformly in Q% N D*. From the maximum principle, (V (™) converges
locally uniformly in Q%. Let V be the limit function. Since each V(" maps T onto T,
and V(™ — V uniformly on T, V can not be constant. From Lemma V' is a confor-
mal map. It is T-symmetric because each V(" is T-symetric. Since K, — K, we have
V) (K,) = V(K). From V" = W we have gy () © V™ o fx, = W in @\ T. Letting
n — oo we get gy(xyo Vo fx =W in Q\ T. By continuation, this equality also holds on
Q\SK Thus, VK:W O

Theorem 2.23. Let W be a T-symmetric conformal map with domain Q. Let K be a D-hull
such that S C Q. Then there is a unique T-symmetric conformal map V defined on QF
such that Vi = W.

Proof. We first consider the existence. Case 1. S& # T. We will apply Theorems and
for this case. Pick zg € T\ S% and let h(z) = zjg—irz From Theorem (i), there

z

is a Mobius transformation A% that maps D onto H such that L := h(K) is an H-hull,
and g5 o h o f2 = hin C\ S%. Since W is a homeomorphism on Sk, W(Sk) # T. So

there is 2y € T\ W(Sk). Let hy(z) = zw - ZZ Then Ay is a Mobius transformation

that maps H onto D and takes co to zy. Let W = h‘}} oW oh~!. Then W is an R-
symmetric conformal map with domain h(Q), and W (S¥) = hy! o W(SE) # oo. From

Theorem [2.12} there is an R-symmetric conformal map V with domain LR U IR(R(2) \ ST)
such that L* := V(L) is an H-hull, and V = fE. o W o g in C\ LF. From Theorem
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(ii), there is a Mbius transformation hf, that maps H onto I such that K* := h; (L*) is
a D-hull, and g% o hﬁ; o fll. = hy in C\ S¥.. Finally, let V = hﬁ; oV oh®. Then

V(K) = hl o V(L) = b, (L*) = K*,

and _
gi+ oV o fi =g+ o hiy oV oh™ o fi

:gK*oh‘%;of%{*oWogﬂgthofK
=hyoWoh=W

in C\ K. This finishes the existence part for Case 1.

Case 2. Sx = T. First, we may approximate K using D-hulls bounded by T and a
Jordan curve in D. For example, let J,, = fx({|z| =1—1/(2n)}), and let K,, =D\ D, .
Then each K, is a D-hull, and K, — K. Second, if K’ has the form of D\ D, for some
Jordan curve J, then we may define a curve 8, which starts from 3(0) = zo € T, then follows
a simple curve in D N D% to a point on J, and then follows J in the clockwise direction,
and ends when it finishes one round. Suppose the domain of § is [0,1]. Then S is simple
on [0,1 —¢] for any € > 0. Let K,, = 8((0,1 —1/n]), n € N. Then each K, is a D-hull with
Sk, # T, and K,, = K'. Thus, K can be approximated by a sequence of D-hulls (K,,) such
that Sk, # T for each K,,. Then the existence of V follows from Case 1 and Lemma [2.22

Now we prove the uniqueness. Suppose V is another T-symmetric conformal map defined
on QX such that Vx = W. We may use the argument in the proof of Theorem m to
construct an analytic function h on C such that h = VoV~ on V() and h = f\7(K) 09V (K)

on C\ V(IA() Then h is T-symmetric. From the properties of f\7(K) and gy k), we see that
h(0) = 0 and h'(0) > 0. So h = id, which implies that V = V. O

We may then define WX and W* using Definition with Theorem in place of
Theorem 2.12] and D in place of H. The remarks after Definition 2.13] hold here with minor
modifications, and so does Lemma [2.14 Then we define P*, Py, g, and f* using Definition
with H replaced by D. Then Theorem still holds here, and we may define the
quotient union K; V Ks for (K1, Ks) € P..

The space of D-hulls has a natural metric dy described in Appendix [D] Let Hg denote
the set of D-hulls whose supports are contained in S. We claim that Theorem [2.18]still holds
here if every R is replaced by T. For part (i), if F' # T, then the proof of Theoremm (1) still
goes through with Lemma [D.2]in place of Lemma [C.2} if F' = T, then the continuity of W*
follows from Lemma, For part (ii), the proof of Theorem still goes through with
some modifications. The relatively compactuness of (H,UJ,) follows from Lemmainstead
of Lemma because Sg, s, C EUF S T. To show the relatively compactness of (H,,)
and (J,), instead of applying Lemma [2.11} we now apply Lemma and use the relatively
compactness of (H, U J,) and the inequalities dcap(H,,),dcap(J,) < dcap(Hy, U J,). In
addition, (D.2) will be used in place of (C.I). This finishes the proof of Theorem in
the radial case. Then Corollary in the radial case immediately follows.

The proof of Theorem (i) may also be used to show that the map K — W (K)
in Theorem m (i) (resp. (ii)) is continuous if restricted to H2 (resp. HE), where F is a
compact subset of T\ W ~1(c0) (resp. R). We then can conclude that the maps K — W (K)
in Theorem [2.20] (i) and (ii) are both measurable.
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3 Loewner Equations and Loewner Chains

3.1 Forward Loewner equations

We review the definitions and basic facts about (forward) Loewner equations. The reader
is referred to [6] for details. Let A € C([0,T)), where T' € (0,00]. The chordal Loewner

equation driven by A is
2

9:(2) = A()’
We assume that g;(00) = oo for 0 < t < co. For z € C, suppose that the maximal interval
for t — g4(2) is [0,7,). Let Ky = {z € H: 7, < t}, i.e., the set of z € H such that g;(z) is
not defined. Then ¢g; and K;, 0 < t < T, are called the chordal Loewner maps and hulls
driven by A. It is known that each K} is an H-hull with hecap(K;) = 2¢, and for 0 <t < T,
9+ = gk, with exactly the same domain: C \ K, Att=0, Ko=0and go = idz\ (r0)}-

We say that A generates a chordal trace 3 if

Orge(z) = go(2) = 2.

- ; —1
B(t) == Halgr&(t) g9, (2) e H
exists for 0 < ¢ < T, and f is a continuous curve. We call such § the chordal trace driven
by A. If the chordal trace § exists, then for each ¢, H \ K; is the unbounded component of
H\ 8((0,t]), and f; extends continuously from H to HUR. The trace S is called simple if
it is a simple curve and 4(t) € H for 0 < ¢t < T, in which case K; = 8((0,t]) for 0 <t < T.
The radial Loewner equation driven by A is

ei)\(t) + g (Z)

O — g,(2) 0<t<T; go(z) =72

Oege(2) = ge(2)

We assume that g,(c0) = oo for 0 < ¢ < oo. For each ¢ € [0,T), let K, be the set of

z € D := {|z| < 1} at which g; is not defined. Then g; and K;, 0 < t < T, are called

the radial Loewner maps and hulls driven by A. It is known that, each K; is a D-hull with

dcap(K;) =t, and for 0 < t < T, g: = gk, with exactly the same domain: (C\Kt At t =0,
KO - (Z) and do = 1d@\{ez>\(o)}

We say that A\ generates a radial trace 3 if
B(t):= lim g7 (z)eD

D3z—eir(t)

exists for 0 <t < T, and (8 is a continuous curve. We call such g the radial trace driven by
A. If the radial trace 8 exists, then for each ¢, D\ K; is the component of D\ 3((0,¢]) that
contains 0. The trace § is called simple if it is a simple curve and S(t) e D for 0 <t < T,
in which case K; = 5((0,t]) for 0 <t < T.

Let cota(z) = cot(z/2). The covering radial Loewner equation driven by A is

0gi(z) = cota(ge(z) — A1), 0<t<T, go(z) ==z

For each ¢t € [0,T), let INQ be the set of all z € H at which g; is not defined. Then g; and

Kt, 0 <t < T, are called the covering radial Loewner maps and hulls driven by A. We have

~ Conf
H\ Ky —» H. If g; and Ky, O <t < T, are the radlal Loewner maps and hulls driven

by A, then K, = (¢/)}(K,) and ¢’ 0§, = g, o ¢', where ¢ denotes the map z — €%,
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For x > 0, chordal (resp. radial) SLE, is defined by solving the chordal (resp. radial)
Loewner equation with A(¢t) = \/kB(t). Such driving function a.s. generates a chordal (resp.
radial) trace, which is simple if & € (0, 4].

3.2 Backward Loewner equations
Let A € C(]0,T)). The backward chordal Loewner equation driven by A is

2
fe(2) = A1)

We assume that fi(co) = oo for 0 < ¢t < T. Let Ly = H\ fi(H). We call f; and Ly,
0 <t < T, the backward chordal Loewner maps and hulls driven by .

Define a family of maps fi,,, t1,t2 € [0,T), such that, for any fixed ¢; € [0,7T) and
zeC \ {A(t1)}, the function t3 — fi, 1, (2) is the maximal solution of the ODE

O fi(z) = fo(z) = z. (3.1)

-2

B ft2,t1 (Z) - )‘(tQ)’
Note that f, o = f; and f;; = id@\{/\(t)}, 0<t<T.Ift; € (0,T), then t5 could be bigger

or smaller than ¢;. Some simple observations give the following lemma.

Ot fta 01 (2) from (2) = 2.

Lemma 3.1. (i) For any ti,ta,t3 € [0,T), fis1, © fion, S a restriction of fi, . In
particular, this implies that fi, 1, = ft;ltl.

(it) For any fized to € [0,T), fro+t.ty, 0 <t < T —tg, are the backward chordal Loewner
maps driven by A(to +t), 0 <t <T — to.

(iii) For any fized to € [0,T), fio—t.to, 0 <t < to, are the (forward) chordal Loewner maps
driven by A(to —t), 0 < t <.

Let Ly, 4, = H\ fip0, () for 0 < t; < t3 < T. From (i), (iil), and the properties of
forward chordal Loewner maps, we see that, if 0 < t; < t3 < T, then Ly, s, is an H-hull
with heap(Li, ¢, ) = 2(t2 —t1), and fi, 1, = f1,,, . If t1 = t2, this is almost still true except

that fi, 1, = idg\ (y4,)y and fr,, ., = fo = idg. Since Lo = L, and A(t) € R does not lie

in the range of f;, which is C\ L, fort > 0, we get the following lemma.

Lemma 3.2, For 0 <t < T, L, is an H-hull with hcap(L;) = 2t. Ift € (0,T), then
fr = fr, with the same domain: C\ Si,, and A\(t) € By,.

If to > t1 > to, from fi, ¢, © fty.60 = ftoto We gt Lty tg = Lty 4y - Lty - From Lemmas
and we obtain the following lemma.

Lemma 3.3. For any 0 < t; < to < T, Ly, < Ly, and SLtl C SiLo(ts)- For any fived
to € [0,T), the family Ly, : Lyy—t = Ly 19—, 0 < t < tg, are the chordal Loewner hulls
driven by A(to — 1), 0 <t <.

Note that Sp, = Sy = 0, and its is easy to see that, for 0 < tq < T, SLtO istheset of z € R
such that the solution f;(z) to blows up before or at o, i.e., Sz, = {z € R: 7, <to}-
So every Sr,, 0 <t < T, is a real interval, and [y, Sz, = {A(0)}.

If for every to € [0,T), A(to —t), 0 <t < to, generates a (forward) chordal trace, which
we denote by By, (to —t), 0 < ¢ < to, then we say that A generates backward chordal traces

18



Bio, 0 < to < T. If this happens, then for any 0 < t; <ty <T,H\ Ly, 4, is the unbounded
component of H\ By, ([t1,t2)), and fi,, extends continuously from H to H such that

ftz,tl (A(tl)) = Bt2 (t1>7 0<t; <ty <T. (32)

Here we still use fi, ;, to denote the continuation if there is no confusion. For 0 <ty <t#; <
to < T, the equality fi, 1, = fto.t, © ft,.t, Still holds after continuation, which together with

(3.2) implies that
ftz,tl (Bh (t)) = Btz (t)a 0<t<t <t <T. (33)

Remark. One should keep in mind that each j; is a continuous function defined on [0, ¢],
B¢(0) is the tip of B¢, and B¢(¢) is the root of G;, which lies on R. The parametrization is
different from a forward chordal trace 3, of which 3(0) is the root.

The backward radial Loewner equations and the backward covering radial Loewner equa-
tion driven by A € C([0,T)) are the following two equations respectively:

ei/\(t) +ft(2)
61')\(25) _ ft(z),

Oufi(2) = = cota(fi(2) = A(®),  fol2) = .

We have fioel =eio f,. Let Ly =D\ f4(D). We call f; and Ly, 0 < ¢ < T, the backward
radial Loewner maps and hulls driven by A, and call ﬁ, 0 <t < T, the backward covering
radial Loewner maps driven by A.

By introducing f:, ;, in the radial setting, we find that Lemma holds if the word
“chordal” is replaced by “radial”. The following lemma is similar to Lemma [3.2

Lemma 3.4. For 0 <t <T, L; is a D-hull with dcap(L:) =t. Ift € (0,T), then fi = fr,
with the same domain: C\ Sy, and e ¢ By,.

We find that Lemma [3:3] holds here if the word “chordal” is replaced by ‘radial”. So we
may define backward radial traces By, 0 <t < T, in a similar manner.
The following lemma holds only in the radial case.

Lemma 3.5. If T'= oo, then T\ Uy ;00 SL

O fi(z) = —fi(2) fo(z) = z;

, contains at most one point.

Proof. Let Soo = Uycicoo SL,- From Koebe’s 1/4 theorem, as t — oo, dist(0,L;) — 0,

which implies that the harmonic measure of T\ By, in D\ L; seen from 0 tends to 0. Since

Conf
fi: D — D\ Ly, f:(0) =0, and f(T\ Sg,) = T\ Byg,, the above harmonic measure at

time ¢ equals to [T\ Sg,|/(27). Thus, |T \ Seo| = lim; 00 [T\ Sz,| = 0. O

For x > 0, the backward chordal (resp. radial) SLE, is defined by solving backward
chordal (resp. radial) Loewner equation with A\(¢) = \/kB(t), 0 < t < oco. Since for any
fixed tg > 0, (A(to —t) — A(t0),0 < ¢ < tp) has the distribution of (v/kB(t),0 < ¢ < to),
using the existence of forward chordal (resp. radial) SLE, traces, we conclude that A a.s.
generates a family of backward chordal (resp. radial) traces.
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3.3 Normalized global backward trace

First we consider a backward chordal Loewner process generated by A(¢), 0 < ¢ < T. Let
S;=51,,0<t<T,and St = Jy<;or S¢- Then (S;) is an increasing family, and St is an
interval. The following Lemma is similar in spirit to Proposition 5.1 in [16].

Lemma 3.6. There exists a family of conformal maps Fry, 0 <t < T, on H such that
Fra, = Fry, 0 fis, inH if0 <t <ty <T. Let D, = Fr (H), 0 < t < T, and
Dy = Uycqr Dy If (ﬁT,t) satisfies the same property as (Fr.), then there is a conformal
map hr defined on Dt such that ﬁT,t =hroFry, 0<t<T. If there is zy € H such that

. Im fi(z0)
e P (34

then we may construct (Fr ;) such that Dy = C, and we have Sy = R.

Proof. Fix zp € H. Let 2z = fi(z0) and w; = fl(20), 0 < t < T. For t € [0,T), let
Mi(z) = Z;tz* and F; = M, o f;. Then F;, maps zy to 0 and has derivative 1 at zy. For
0 <t; <ty <T, define th,tl = Mtz o ft27t1. Then th,h o fh,to = thﬂfo if tg <ty < to.
Setting to = 0 we get Fy, . o fiy, = F,. Thus, Fy, 4 is a conformal map on H with
Fiy4,(2t,) = 0 and F}, ;, (2t,) = 1/us,. By Koebe’s distortion theorem, for any ¢, € [0,T),
{Fi,t, : t2 € [t1,T)} is uniformly bounded on each compact subset of H. This implies that
every sequence in this family contains a subsequence which converges locally uniformly, and
the limit function is also conformal on H, maps z:, to 0, and has derivative 1/us, at z,.

From a diagonal argument, we can find a sequence (t,) in [0,T) such that ¢, — T and
for any ¢ € QN [0,T), (F,,q) converges locally uniformly on H. Let Fr g, ¢ € QN [0,T),
denote the limit functions, which are conformal on H. Since Fy 4, © f4,,q1 = Fi,..q for
each n, we have Fr g, o fo, 0 = Frg,. For t € [0,T), choose ¢ € QN [¢,T) and define
the conformal map Fr;, = Frgyo fooon Ho If g3 < go € QN [¢,T), then Frg, o fy,0 =
Frg © feo.qn © fut = Frgp © fgoe- Thus, the definition of Fr; does not depend on the
choice of ¢q. If 0 < t; < ty < T, by choosing ¢ € QN [0,T) with ¢ > ¢1 V ta, we get
FT,tQ o ft2,t1 = FT,q ° qutz o ft2,t1 = FT#] ° qutl = Fthl'

If holds, then we start the construction of (Fr;) with such zo. Since Fr; :

Conf
(H;z;) — (D;0) and Fp,(z) = 1/u, Koebe’s 1/4 theorem implies that dist(0,0D;)

1Im 2y /uy| = 1M ezo) - hich tends to oo as t — T. So D7 has to be C.

Y

4 [f{(z0)] >

Suppose Fr, 0 <t < T, satisfies the same property as Fr;, 0 <t < T. Let hy =
ﬁT,t o F;%, 0 <t < T. Then each h; is a conformal map defined on D;. If 0 < t; <ty < T,
then R R

hi, o Frs, = Fry,(2) = Fri, © fi, 0, = hiy 0 Frigy 0 foy0, = by 0 Py,

in H, which implies that h, = hy,|p, . So we may define a conformal map hr on Dr such
that hy = hp|p, for 0 <t < T. Such hr is what we need.

Suppose that holds but S # R. Since St is an interval, Sp # R. Choose
Zo € R\ ST, and start the construction with Zy in place of 2z at the beginning of this proof.
Let ﬁT’t, 0 <t < T, denote the family of maps constructed in this way. Then each ﬁT,t is
an R-symmetric conformal map, which implies that lA)T C H. However, now Dy = C and

Conf ~
hr : Dr — Dy, which is impossible. Thus, St = R when ib holds. O
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Let (Fr.), D;, and Dz be as in Lemma Let Fr = Fro. Suppose \ generates
backward chordal traces (:,, 0 < tg < T', which satisfy

Vitg € [O,T), dt; € (tQ,T), ﬂtl([o,to]) C H. (35)

We may define 3(t), 0 <t < T, as follows. For every t € [0,T), pick tg € (¢t,7) such that
Bt,(t) € H, which is possible by (3.5), and define

ﬁ(t) = FT,toﬁto (t) € Dto C Dr. (36)

Since Fr+, = Fry, 0 fi,+, in H, from we see that the definition of § does not depend
on the choice of to. Let to € [0,T). From (B.5), there is t; > to such that B, ([0,]) € H.
Since B(t) = Frr,(Bi, (1)), 0 < t < ty, we see that § is continuous on [0,%]. Thus, 5(t),
0<t<T,is acontinuous curve in Dyp.

Fix any « € Sp. Then x € Sy, for some ¢y € (0,T). So fi,(x) lies on the outer boundary
of Ly,, which implies that fy, () € By, (t) for some ¢ € [0,to]. From (3.5), there is t; € (to,T)
such that 8y, ([0,t0]) € H. Then fi, (z) = fi,.10(Bi (t)) = Bi, (t) € H. From the continuity
of f;; on HUR, there is a neighborhood U of z in HUR such that f;, (U) C H. This shows
that UNR C Sy, C Sp. Since Fr = Fry, o f, in H, we find that Fr has continuation on U.
Since x € St is arbitrary, we conclude that St is an open interval, and Fr has continuation
to HU St.

Now we assume that A\ generates backward chordal traces, and both and hold.
Then Dr = C, St =R, a continuous curve 3(t), 0 < ¢t < T, is well defined, and Fr extends
continuously to H U R. Moreover, Fr is unique up to a Mobius transformation that fixes
oo. With some suitable normalization condition, the family Fr; and the curve 8 will be
determined by A. We will use the following normalization:

Fr(M0)) = A(0),  Er(A(0) +1) = A(0) + 4. (3.7)

If (3.7) holds, we call 8 the normalized global backward chordal trace generated by A. From
e see that 5(0) = A(0), and 8 does not pass through A(0) + s.

For the radial case, Lemma still holds with H replaced by D, and replaced
by T = oco. For the construction, we choose zg = 0 and let Fy, 4, (2) = e2fi, 4, (2). If A
generates backward radial traces 5;, 0 <t < T, which satisfy

Vit € [O,T), dts € (tl,T>7 /Btz (tl) e D, (38)

then we may define a continuous curve §(t), 0 < ¢ < T, in Dy using . If T = oo, then
D7 = C, and such § is determined by A up to a Mdbius transformation that fixes co, which
means that we may define a normalized global backward radial trace once a normalization
condition is fixed.

3.4 Forward and backward Loewner chains

In this section, we review a condition on a family of hulls that corresponds to continu-
ously driven (forward) Loewner hulls, and discuss the corresponding condition for backward
Loewner chains. R

Let D C C be a simply connected domain such that C\ D contains more than one
point. A relatively closed subset H of D is called a (boundary) hull in D if D\ H is simply
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connected. For example, a hull in H is an H-hull iff it is bounded; a hull in D is a D-hull iff
it does not contain 0. Let T' € (0,00]. A family of hulls in D: K¢, 0 <t < T, is called a
Loewner chain in D if
1. Ko =0and Ky, & Ky, whenever 0 <t; <ty <Tj;
2. for any fixed a € [0,T) and a compact set F C D\ K,, the conjugate extremal distance
(cf. [1]) between K.\ K; and F in D\ K; tends to 0 as e — 0, uniformly in ¢ € [0, a.

If Ky, 0 <t<T,isaLoewner chain in D, and a € [0,T), then we also call the restriction
K;, 0 <t <a,aLoewner chain in D.

There are two important properties for Loewner chains. If K;, 0 <t < T, is a Loewner
chain in D, and w is a continuous increasing function defined on [0, 7)) with «(0) = 0, then
K1y, 0 <t <u(T), is also a Loewner chain in D, which is called a time-change of (/)
via u. If W maps D conformally onto E, then W(K,;), 0 <t < T, is a Loewner chain in E.

An H-(resp. D-)Loewner chain is a Loewner chain in H (resp. D) such that each hull
is an H-(resp. D-)hull. An H-(resp. D-)Loewner chain (K;) is said to be normalized if
heap(K;) = 2t (resp. deap(Ky) = t) for each ¢.

The conditions for the conformal invariance property of H-(resp. D-)Loewner chains can
be slightly weakened as below.

Proposition 3.7. If K;, 0 <t < T, is an H-(resp. D-)Loewner chain, and W is an R-(resp.
T-)symmetric conformal map, whose domain contains K; for each t and whose image does
not contain oo (resp. 0), then W(Ky), 0 <t < T, is also an H-(resp. D-)Loewner chain.

The following proposition combines some results in [7] and [10].

Proposition 3.8. Let T € (0,00]. The following are equivalent.
(i) K¢, 0 <t <T, are chordal (resp. radial) Loewner hulls driven by some X € C([0,T)).
(1) K, 0 <t <T, is a normalized H-(resp. D-)Loewner chain.

If either of the above holds, with \(t) = A(t) (resp. A(t) = ¢*®) in the radial case) we have

A} = (Kie/Ke, 0<t<T.
e>0

In addition, if K;, 0 <t < T, is any H-(resp. D-)Loewner chain, then the function u(t) :=
heap(Ky)/2 (resp. u(t) := decap(K;)), 0 < t < T, is continuous increasing with u(0) = 0,
which implies that K1), 0 <t <u(T), is a normalized H-(resp. D-)Loewner chain.
Definition 3.9. A family of H-(resp. D-)hulls: Ly, 0 <t < T, is called a backward H-(resp.
D-)Loewner chain if they satisfy

1. Ly =0 anstl -<Lt2 sz <ty <ty <T,'

2. Ly Lyy—t, 0 <t <tg, is an H-(resp. D-)Loewner chain for any ty € (0,T).

If u is a continuous increasing function defined on [0,7") with w(0) = 0, then L, -1,
0 <t < u(T),is also a backward H-(resp. D-)Loewner chain, and is called a time-change
of (L) via u. A backward H-(resp. D-)Loewner chain (L;) is said to be normalized if
heap(Lt) = 2t (resp. dcap(L;) = t) for any t € [0, 7).

Using Lemma [3.3] and Proposition [3.8] we obtain the following.

Proposition 3.10. Let T € (0,00]. The following are equivalent.
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(i) Ly, 0 < t < T, are backward chordal (resp. radial) Loewner hulls driven by some
A e C(o,T7)).
(i) Ly, 0 <t < T, is a normalized backward H-(resp. D-)Loewner chain.

If either of the above holds, with \(t) = A(t) (resp. A(t) = ¢*®) in the radial case) we have

Ay=(Li: Liee, 0<t<T, (3.9)
e>0

In addition, if Ly, 0 < t < T, is any backward H-(resp. D-)Loewner chain, then the function
u(t) := hcap(K;)/2 (resp. u(t) := dcap(Ky)), 0 < t < T, is continuous increasing with
u(0) = 0, which implies that L,-1(y), 0 < t < u(T), is a normalized backward H-(resp.
D-)Loewner chain.

We say that f; and L;, 0 < ¢t < T, are backward chordal (resp. radial) Loewner maps
and hulls, via a time-change u, driven by A, if u is a continuous increasing function defined
on [0,T) with u(0) = 0, such that f,-1(;) and L,-1¢), 0 <t < u(T), are backward chordal
(resp. radial) Loewner maps and hulls driven by A o u~!. From the above proposition, if
(L) is any H-(resp. D-)Loewner chain, then L;, 0 < ¢ < T, are backward chordal (resp.
radial) Loewner hulls, via a time-change u(¢) := hecap(L;)/2 (resp. dcap(L¢)), driven by A,

which satisfies (3.9)).

3.5 Simple curves and weldings

An H-simple (resp. D-simple) curve is a half-open simple curve in H (resp. D\ {0}), whose
open side approaches a single point on R (resp. T). Every H(resp. D)-simple curve § is
an H(resp. D)-hull, whose base Bg is a single point, and whose support Sg is an R(resp.
T-)interval. Here an T-interval is an arc on T. The function fz extends continuously from
H (resp. D) to H (resp. D), which maps Sz onto 3, sends the two ends of Sz to Bs, and
sends a unique point, say zz € Sg to the tip of 5. The point zg divides Sg into two R(resp.
T-)intervals such that the restriction of fg to either interval is a homeomorphism onto B.
Thus, there is a unique involution (an auto homeomorphism whose inverse is itself) ¢ of S3,
which fixes only one point: zg, swaps the two end points of Sg, and satisfies that y = ¢g(z)
implies that fg(x) = fs(y). We call ¢ the welding induced by £.

Suppose K is an H- or D-simple curve. Let W be as in Theorems [2.12] 2.20] or [2.23]
Then W*(K) is also an H- or D-simple curve. The equality W& o fx = Jw+(x) o W holds
after continuous extension from H or D to its closure. So the weldings induced by K and
W*(K) satisfy ¢w+xy =W o ¢x o w-L,

Suppose the hulls (L;) generated by a backward chordal (resp. radial) Loewner process
driven by A are all H(resp. D)-simple curves. Then the process generates backward chordal
(resp. radial) traces (8;) such that every 5; is a simple curve, and L; = £,([0,¢)), 0 <t < T.
Let ¢: be the welding induced by L., which is an involution of S; := Sr,. Recall that
(S;) is an increasing family because L;, < L, for t1 < ta. If 0 < ¢; < to < T, then
from fi, 1, © fi, = fi, we see that ¢4,|s, = ¢,. Thus, there is a unique involution ¢ of
St =, St such that ¢|s, = ¢; for each t € [0,T). In other words, y = ¢(x) implies that
fi(x) = fi(y) for some ¢t > 0, where f; is the continuous extension of the Loewner map at
time ¢ from H(resp. D) to H (resp. D). We say that ¢ is the welding induced by this process.
In the case that Sp = R (resp. T\ {20} for some zy € T), we will extend ¢ to an involution

of R := RU {00} (resp. T) such that oo (resp. zo) is the other fixed point of ¢.
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Here is another way to view the welding ¢. For every ¢ € (0,T), ¢ swaps the two end
points of S;. Let A(0) = A(0) (resp. ). Since fi(A(0)) = B;(0) is the tip of L, for each
t, we see that )\(0) is the only fixed point of ¢. On the other hand, it is easy to see that,
x and y are end points of S; if and only if 7, = 7, = ¢, 0 < ¢t < T'; and every point on
S\ {A(0)} is an end point of some S;, 0 < ¢ < T. Thus, for z # y € Sz \ {\0)}, y = ¢(x)
if and only if 7, = 7, i.e.,  and y are swallowed at the same time.

Let k € (0,4]. Since the backward chordal (resp. radial) SLE, traces are H(resp. D-
)simple curves, so the process induces a random welding, which we call a backward chordal
(resp. radial) SLE, welding. In the chordal case, For any x € R\ {\(0)} = R\ {0}, the
process X{ := A(t) — fy() is a rescaled Bessel process of dimension 1 —2 < 1, which implies
that a.s. X — 0 at some finite time. Thus, S, = R. which implies that a chordal SLE,
welding is an involution of R with two fixed points: A(0) = 0 and oco. In the radial case,
since T = oo, Lemma says that Soo = T or T \ {20} for some zy € T. The first case
can not happen since ¢ has only one fixed point on S.,. Thus, a radial SLE, welding is an
involution of T with two fixed points, one of which is e*(® = 1.

Suppose a backward chordal (resp. radial) Loewner process generates H(resp. D)-simple
backward traces B¢, 0 < ¢t < T. Then (resp. (3.8)) is satisfied because B, (t1) lies
in H (resp. D) if to > t;. It is clear that the curve 8 defined by is simple, and
Dy = Dr \ B([t,T)) for 0 < t < T. Let ¢ be the welding induced by the process. If
y = ¢(x), there is t € [0,T) such that y,z € S; and fi(y) = fi(x). From Fr, o f, = Fr, we
get Fr(y) = Fr(z). This means that ¢ can be realized by the conformal map Fr.

If a backward chordal (resp. radial) Loewner chain (L) is composed of H(resp. D)-simple
curves, then (L;) induces a welding ¢, which is an involution of | J Sy,, and agrees with ¢,
on S, for each ¢t. To see this, one may first normalized the backward Loewner chain so
that it is generated by a backward Loewner process.

4 Conformal Transformations

Proposition 4.1. Suppose L;, 0 < t < T, is a backward H-(resp. D-)Loewner chain,
W is an R-(resp. T-)symmetric conformal map whose domain contains every Sp,, and
oo & W(Sg,) for 0 <t < T. Then W*(L), 0 < t < T, is also a backward H-(resp.
D-)Loewner chain.

Proof. From Theorem Wkt and W*(L;) are well defined. Since Lo = 0, W*(Lo) = 0.
Let 0 < t; <ty < T. Since L;, < L,, from Lemma W*(Ly,) < W*(Ly,). Fix
to € (0,T). Since Ly, : Lyy—¢, 0 < t < g, is an H-(resp. D-)Loewner chain, from Lemma
and Proposition [3.7 we see that

W*(Lyy) : W*(Lyg—t) = W50 (Lyy : Liy—s), 0 <t <o,
is also an H-(resp. D-)Loewner chain. This finishes the proof. O

Using Lemma [2.21] instead of Lemma[2.14] we can show that a similar proposition holds.

Proposition 4.2. Suppose Ly, 0 <t < T, is a backward H-(resp. D-)Loewner chain, W is
a Mobius transform that maps H onto D (resp. maps D onto H) such that co ¢ W(Sg,) for
0<t<T. Then W*(L), 0 <t < T, is a backward D-(resp. H-)Loewner chain.
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Suppose (L) is composed of H- or D-simple curves. Then (W*(L;)) is also composed of

H or D-simple curves. Let ¢ and ¢y be the weldings induced by these two chains, which

are involutions of | J Sz, and |J Sw~(r,), respectively. Since for each t € (0,7'), ¢|s,, = ¢1,,

W sy, = Pwr(L,)s Swe(r,) = W(SL,), and ¢w=(,) = Wodr, o W1, we see that
USw-z,y =W(USL,) and

(bW:quSoW_l. (4.1)

This means that the conformal transformation preserves the welding.
The following proposition is essentially Lemma 2.8 in [7].

Proposition 4.3. Let W be an R-symmetric conformal map, whose domain contains zy €
R, such that W(zg) # oo. Then

o heap(V(D)

_ W/ 2
H>z, hcap(H) W (z0)I",

where H — zo means that diam(H U {zp}) — 0 with H being a nonempty H-hull.

Using the integral formulas for capacities of H-hulls and D-hulls, it is not hard to derive
the following similar proposition.

Proposition 4.4. (i) Let W be a conformal map on a T-symmetric domain ), which
satisfies IxoW = Wolr and W(QXND) C H. Let zo € QNT be such that W (zg) # oo.
Then L W(H

L heap(W (H)

-9 / 2
H—z dcap(H) W (z0)I%,

where H — zg means that diam(H U {zp}) — 0 with H being a nonempty D-hull.

(ii) Proposition holds with R replaced by T, hcap replaced by dcap, and H — zg
understood as in (i).

4.1 Transformations between backward H-Loewner chains

Suppose L; and f;, 0 <t < T, are backward chordal Loewner hulls and maps driven by
A € C([0,T)). From Proposition (L) is a backward H-Loewner chain. Let W be
an R-symmetric conformal map, whose domain €2 contains the support of every L;. Write
W; for WL, The domain of W; is Q¢ which contains L;. If t > 0, A(t) € Ls, so A(t)
is contained in the domain of W;. This is also true for ¢ = 0 because Wy = W and
{A(O)} =5 CS5 = SLt C Q for any t € (O,T) Let LI = W*(Lt) = Wt(Lt), 0<t<T.
From Proposition (L) is a backward H-Loewner chain, and

Wy(Ly:Li_)=L:Li ., 0<t—e<t<T. (4.2)

From Proposition[3.10] Ly, 0 <t < T, are backward chordal Loewner hulls via a time-change
u(t) := heap(L})/2, driven by some A*, which satisfies

NOy=ILi-Li. 0<t<T.

e>0
From (3.9), , and continuity, we find that
A () =Wi(At), 0<t<T. (4.3)
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Since (L) and (L}, ,)) are normalized, we know that hcap(Ly : Li—c) = 2¢ and heap(L; :
Ly ) =2u(t) — 2u(t — ¢). From (4.2) and Proposition we find that

u'(t) =W/ (A#)? 0<t<T. (4.4)
Let f = fr;. From the definition of W; = Wkt we have the equality
Wiofi=ffoW, (4.5)
which holds in Q\ Sp,. Differentiating (4.5) w.r.t. ¢, and using (4.3) and (4.4), we get
-2 B —2u’(t)
fi(z) =A@)  fr(W(2)) = A*(t)
—2W;(A(t))?
Wi(fi(2)) = Wi(A(#))
Thus, for any w = f,(2) € fi(Q\ S1,) = QL \ Ly,

Wi (fel(2)) + Wi (fe(2))

—2W{(A(1))? / —2

0w = s —wom) e

(4.6)

By analytic extension, the above equality holds for any w € QL \ {\(#)}. Letting w — A(t),
we find that
WL (A\(t)) = 3W/'(\(), 0<t<T. (4.7)

Differentiating (4.6) w.r.t. w and letting w — A(t), we get

Wi(A®)) _}(Wt”(/\(t))>2+éW”’(>\(t))
Wt(/\(t)) -2\ () 3 Wi(A®))

(4.8)

4.2 Transformations involving backward D-Loewner chains

Now suppose L;, 0 <t < T, are backward radial Loewner hulls driven by A. Let f; and ft
be the corresponding radial Loewner maps and covering maps. Suppose W is a T-symmetric
conformal map, whose domain €2 contains the support of every L;. Let W; = Wke L =
Wi(Ly) = W*(L¢), and u(t) = decap(L}), 0 <t < T. Then L}, 0 <t < T, are backward
radial Loewner hulls via a time-change u(t) := dcap(L}), driven by some \*, which satisfies

{0y = (L7 L., 0<t<T.
e>0

Let f; (resp. ft*), 0 <t < T, denote the backward radial (resp. covering radial) Loewner
hulls via the time-change u driven by A*. The argument in the last subsection still works
with Proposition in place of Proposition We can conclude that e lies in the
domain of W; for 0 < t < T; Wy (e®) = MO /() = |[W/(eMD)[2; and (4.5) still
holds. Suppose W is an R- symmetric conformal map defined on Q= (el)* (Q), which
satisfies ' o W = W o ¢i. Define Wt to be the analytic extension of ft oW o ft L to
Q; == (e')"1(QEt). Then we get

Wio fy = fi o W; (4.9)
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Comparing this with 1} we find e* o Wt = W;oe'. So A(t) lies in the domain of Wt, and
W' () = W), 0<t<T. (4.10)

Since W;(eM®)) = ¢*" () from the continuity, there is n € N such that W,(A(£)) = A*(¢) +
2nm for 0 < ¢ < T. Since A* and A\* 4 2n7 generate the same backward radial Loewner
objects via the time-change u, by replacing \* with A\* + 2nm, we may assume that

W,(A(1) =N (), 0<t<T. (4.11)
Differentiating w.r.t. t and letting w = ﬁ(z), we get
QWi (w) = =W/ (A(1))? cota(Wi(w) — Wi (A1) + W/ (w) cota(w — A(t),  (4.12)
which holds for w € (&) =1 (Q% \ {e*®}). Letting w — A(t), we get
OWLA(®)) = 3W/ (A1), 0<t<T. (4.13)
Differentiating w.r.t. w and letting w — \(t), we get

AW/A®) _ 1WA | AW O®) sy e L
Fom ~ 2w 3w e el -g @1
The number ¢ comes from the Laurent series of cota(2): 2 — £ + O(z%).

Let (Lt), (ft), and (f;) be as above. Now suppose W is a Mobius transformation that
maps D onto H such that W~1(c0) € Sy, for every t. Let WXt be as in Theorem Let
Wy = Wkt and L} = Wy(L) = W*(Ly), 0 <t < T. Then L}, 0 < t < T, are backward
chordal Loewner hulls via a time-change u(t) := hcap(L})/2, driven by some A*. Let
f{ = fr;- Then stlll holds, and we have u ( ) uAG t))|2 and Wy (eA®)) = A" (1),
Let W = Woe' and Wt Wyoet. We get - , and WtOft I oW. Differentiating
this equality w.r.t. ¢ and letting w = f;(z) tend to )\( ) we find that @ still holds.

4.3 Conformal invariance of backward SLE(k;p) processes

We now define backward chordal and radial SLE(k; g) processes, where p'= (p1,...,pn) €
R™. Let xo,q1,---,¢n € R such that g # ¢ for all k. Let A(¢), 0 <t < T, be the maximal
solution of the equation

IO = VRB) + 3 3 s _p’“ dt;  M0) = . (4.15)

Here f, 0 <t < T, are the backward chordal Loewner maps driven by A. Then we call the
backward chordal Loewner process driven by A the chordal SLE(k; p) process started from
xo with force points (q1,...,q,), or simply started from (xo;q1,...,q,). We allow some g
to be co. In that case, f(qx) is always oo, and the term ij{;(m vanishes.

Let 20,q¢1,...,q, € R be such that g, & xo + 27Z for all k. Let A\(¢), 0 <t < T, be the
maximal solution of the equation

dA(t) = VrdB(t) + Z —cotg — M) dt; A0) = ao. (4.16)
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Here fﬁ, 0 <t < T, are the covering backward radial Loewner maps driven by A. Then the
backward radial Loewner process driven by A is called the radial SLE(k; p) process started
from e with marked points (e, ..., e%"), or simply started from (e?*0;e, ... eln).
The existence of backward chordal (resp. radial) SLE,; traces and Girsanov’s Theorem
imply the existence of a backward chordal (resp. radial) SLE(k; p) traces. The traces are
H(resp. D)-simple curves if x € (0,4].
The following lemma is easy to check.

Lemma 4.5. Let W be a Mébius transformation. Then the following hold.
(i) For any z € CNW~Y(C) and w € C,

2W'(z) 2 W'(z)

W(z)—Ww) z—w W/(z2)

(ii) Let W =W oe'. For any z€ CNW~Y(C) and w € C,

2W'(2) W"(2)
—_ — COtQ(Z — U)) = =
W(z) = W(w) W'(z)
(iii) Suppose an analytic function W:Q—-C satisfies €' o W =Woe inQ. Then for any
z,w € €, -
) ot (o) T W (2)
W'(2) cota(W(2) — W(w)) — cota(z — w) = ———.
(2) cota(W(z) — W(w)) 2 ) o)

Theorem 4.6. Let L;, 0 < t < T, be the backward chordal SLE(k;p) hulls started from
(0;q1, .-+, qn). Suppose > pr. = —k — 6. Let W be a Mibius transformation from H onto
H such that {oo, W~=(0)} C {q1,...,qn}. Then, after a time-change, W*(L;), 0 <t < T,
are the backward chordal SLE(k; p) hulls started from (W (xo); W (q1),-.., W(gn))-

Proof. Since W~1(00) is a force point, it is not contained in the support of any L;. So
oo & W(SL,), 0 <t <T. Let A be the driving function, and f; = f, 0 < ¢t < T, be the
corresponding maps. We may and now adopt the notation in Section Let (F:) be the
complete filtration generated by B(t) in (4.15). Then (\¢) and (L) are (F;)-adapted. From
Corollary- (W*(Ly)) is also (F;)-adapted. Since Wy = Wkt = fweyoWo th on
Qb \Lt, (W) is (]—"t) adapted. So we may apply It6’s formula (c.f. [12]). From and
, we get

dN* () = W] (A(£))dA(t) + (g + 3) W/A#)dt, 0<t<T.

Applying (4 and Lemma (i), and using the condition that > pr = —k — 6, we find
that

AN (1) = W) RdB(t +ZWt <’§§Wt$t(o)}t o) ™

I —pW{(A\(t))*
= W] (\(t))vV/rdB(t) + kZ:l 0 7 o W) dt, 0<t<T.
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From we get A\*(0) = Wo(\(0)) = W(xg). Since L} = W*(L;) and f; are backward
chordal Loewner hulls and maps via the time-change u driven by \*, from and the
above equation, we conclude that, after a time-change, W*(L;), 0 <t < T, are the backward
chordal SLE(k; p) hulls started from (W (zo); W(q1), ..., W(gn)) and stopped at some time.

It remains to show that the above process is completed. If not, the process can be
extended without swallowing the force points W(q1), ..., W(gy,). From the condition, W (o)
is among these force points. So (W~1)* is well defined at the hulls of the extended process.
From Propositions[.T]and [3.10} this implies that the backward chordal Loewner hulls L;, 0 <
t < T, can be extended without swallowing any of ¢y, ..., ¢,, which is a contradiction. [J

The following theorem can be proved using the above proof with minor modifications:
we now use the argument in Section instead of that in Section apply Lemma (i)
and (iii) instead of (i), and use Proposition in addition to Proposition

Theorem 4.7. Suppose > pr. = —k — 6. Let (L) be the backward radial SLE(k; p) hulls
started from (e'*0;e’r ... e'"). Let W map D conformally onto H (resp. D) such that
{W=(00)} N'T C {e'n,... e"}. Then, after a time-change, (W*(L;)) are the backward
chordal (resp. radial) SLE(k; p) hulls started from (W (e'®0); W ('), ..., W (e%n)).

Corollary 4.8. Let (L;) be the backward radial SLE(r; —k—6) hulls started from (e®; ).
Let W map D conformally onto H such that W (e'*°) = 0 and W (e') = co. Then, after a
time-change, (W*(L;)) are the backward chordal SLE, hulls started from 0.

Remarks.

1. The above theorems resemble the work in [15] for forward SLE(k;p) processes. The
condition in their paper is > pr, = £—6. This is one reason why we may view backward
SLE, as SLE_.

2. The definition of backward SLE(k; p) process differ from Sheffield’s definition in [16] by
a minus sign in (4.15)) and (4.16) before the py’s. If Sheffield’s definition were used, the
condition for conformal invariance would be > px. = x + 6 instead of Y pp = —k — 6.

3. We may allow interior force points as in [I5]. For the chordal (resp. radial) SLE(k; /)
process, if g, € H (resp. e!% € D) is a force point, we use Re f*(qx) (resp. Re ft)‘(qk))
instead of f}(qx) (resp. f(qr)) in (resp. ) In the radial case, adding 0
to be a force point or change the force for 0 does not affect the process. Theorems
and Theorem [£.7] still hold if some or all force points lie inside H or D. For the proofs,
we apply Lemma [£.5] with real parts taken on the displayed formulas. One particular
example is the following corollary.

Corollary 4.9. Let Ly, 0 < t < o0, be a backward radial SLE,, process. Let W be
a Mdébius transformation that maps D onto H such that W (1) # oo. Let T be the
mazimum number such that W~'(c0) € Sr,, 0 <t < T. Then, after a time-change,
W*(L¢), 0 < ¢t < T, are the backward chordal SLE(k;—x — 6) hulls started from
(W (1) W (0)).

4. Using the properties of Bessel process and applying Girsanov’s theorem, one may
define backward chordal or radial SLE(k;p) processes with exactly one degenerate
force point, if the corresponding force p; satisfies p;1 < —2 (which corresponds to a
Bessel or Bessel-like process of dimension d =1 — % > 1). Theorems and
still hold when a degenerate force point exists. Unlike forward SLE(k; p) process, it is
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impossible to define a backward SLE(k; p) process with two different degenerate force
points.

5. Consider the radial case with one force point. Suppose the force p; < —5 — 2. Let
X, = A(t)— f(q1). Then X, is a Bessel-like process with dimension d = 1— % > 2,
which implies that X; never hits 27Z. So T = oo and e’ ¢ S, for any t. From Lemma
Soo = T\ {e!}. If, in addition, x € (0,4], then a backward radial SLE(x; p1)
process induces a random welding ¢, which is a involution of T with exactly two fixed
point, ¢*(9) and e which are the initial point and the force point of the process.

5 Commutation Relations

Definition 5.1. Let k1,k2 > 0, n € N, and p1,p2 € R™. Let z1,29,w, 2 < k < n, be
distinct points on R (resp. T). We say that a backward chordal (resp. radial) SLE(k1; p1)
started from (21; z2, wa, . . . ,wy) commutes with a backward chordal (resp. radial) SLE(k2; p2)
started from (za; 21, wa, . . ., wy,) if there exists a coupling of two processes (L1(t);0 <t < Ty)
and (La(t);0 <t < Ts) such that
(i) For j = 1,2, (L;(t),0 < t < Tj) is a complete backward chordal (resp. radial)
SLE(k;; pj) process started from (zj; z3—j,wa, ..., Wy).
(i) For j # k € {1,2}, if t < Ty is a stopping time w.r.t. the complete filtration (FF)
generated by (Li(t)), then conditioned on ‘in’ after a time-change, fi(ty,)*(L;(t;)),
0 < t; < Tj(tx), has the distribution of a partial backward chordal (resp. radial)
SLE(k;; pj) process started from

(i (res (25)): Mo () Fro (s w2),s - s fio(Ery wi),

where fk(fk,) = ka(gk), Tj(fk) = suﬁp{tj < T] : SL]‘(t]‘) n SLk(fk-) = (Z)}, S\k(gk) =
M\e(fx) in the chordal case (resp. e<%) in the radial case), and )\, is the driving
function for (Li(t)).

Here a partial backward SLE(k; p;) process is a complete SLE(k; p;) process stopped at a
positive stopping time. If the commutation holds for any distinct points z1,zo,wy, 2 <
kE<n onR (resp. T), then we simply say that backward chordal (resp. radial) SLE(k1;p})
commutes with backward chordal (resp. radial) SLE(ks; ps).

Theorem 5.2. For any x > 0, backward chordal (resp. radial) SLE(k; —k — 6) commutes
with backward chordal (resp. radial) SLE(k; —k — 6).

We will prove this theorem in the next two subsections.

5.1 Ensemble

We first consider the radial case. Fix x > 0 and z; # 20 € T. Write z; = ¢, j = 1,2.
For j = 1,2, let L;(t), 0 <t < T}, be a backward radial SLE(x; —x — 6) process started
from (z;;23—;); let A; be the driving function, and let f;(¢,-) and E(t,~), 0<t<Ty, be
the corresponding maps and covering maps. At first, we suppose that the two processes are
independent. Then for j = 1,2, \; satisfies \;(0) = Z; and the SDE:

Ay (1) = VAdB; (1) — —E 78 cota(0(8) = Fy(t Ty )dt, 0<t<T;, (5.1
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where By (t) and Bs(t) are independent standard Brownian motions. For j = 1,2, let (F7)
denote the complete filtration generated by B;(t).

Define D = {(t1,t2) € [0,T1) x [0,T2) : S, (t,) N Sro(ts) = 0} Then for (t1,t2) € D, we
have (L1 (t1), L2(t2)) € P.. So we may define

(L1,t,(t1), Lo, (t2)) = f*(L1(t1), La(t2)).

Let fi,6,(t1,-) = fro,,t) and far, (f2,) = fL,,, (t,)- From aradial version of Theorem
we see that

Jrea(t1,-) o falte, ') = fr,ti)via(ts) = for. (t2,7) 0 fi(ts,-). (5.2)
Fix j # k € {1,2}. From a radial version of Corollary [2.19 - ii), the random map fite (5,

)
is ]-'j x Ff -measurable. Let ujq, (t;) = dcap(Ljq, (t;)). From Propositions [3.10[ and 4
for any fixed ty € [0,T%), fjt,.(t;,-) are backward radial Loewner maps via the t1me change

Uj .. Let f],tk( j»+) be the corresponding covering maps. So elo fj (i) = [ (ts, ) o€l
From continuity, we see that fj,tk( -) is also .7-'J X fk -measurable, and from () we have

fl,tz (tla ) © .]?2(752’ ) = f&h (t27 ) © fl(th ) (5'3)
Define m on D by m(t1,t2) = dcap(Li(t1) V La(t2)). From (5.2) we get
m(tl, tQ) = ulh (tl) —+ t2 = u2,t1 (t2) —+ tl. (54)

Apply the argument in the first paragraph of Section 4.2 with A\ = \;, L, = Lj(t;),
W = fi(tg,-), and W = fr(tx,-), where ty € [0, T}) is fixed. Then we have correspondence:
Li = Lj4,.(t;), u = ujy,, and ft f] ¢, (tj,-). Since Wt is an analytic extension of
f;* ovaof;*1 from 1.} we find that Wtj = fk’tj (tk,-). Thus, e (vesp. \;(t;)) lies in
the domain of fy ¢, (tx, - ) (resp. fk,tj (tx,-)) as long as (t1,t2) € D.

Write Fk’tk( Jy) = fk t;(tr,-). We will use 9; to denote the partial derivative w.r.t. the
first variable inside the parentheses, and use ' and the superscript (h) to denote the partial
derivatives w.r.t. the second variable inside the parentheses. For h = 0,1,2,3, define A;
on D by

h
Ajnltite) = i) (e () = B (15,0 (8). (5.5)
Use the superscript (S) to denote the (partial) Schwarzian derivative. Define A; ¢ on D by
s ~(S
Ajs(ti,ta) = J?zzti (b A (1)) = B (85, M5(t5)) (5.6)

From Section we know that L;,, (¢;) are backward radial Loewner hulls via the time-
change wu;,, drlven by Aj ., which can be chosen such that

Ajt (t5) = Ajo(t, t2). (5.7)

Moreover, from (4.10)), (4.13), and (4.14), we have

u’] tk( ) A2

7,1

O Fip, (£, Ai(t5)) = A2, (5.9)
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FY, (i, M) 2

OF),, (b, N(t) 1 /A;j0\2 4A;5 1 1
=507 T AT - 2 1
(Aj,l) 33, TN T (5.10)

where all A, are valued at (1, t2).
From now on, we fix an (FF)-stopping time t; with ¢, < Ty. Then the process of
conformal maps (Fk,tk( is0)) is (.7:] x Ff )i, >0-adapted. Let T} (tx) be the maximal number

such that for any ¢; < Tj(tx), we have (t1,t2) € D. Then T)(t;) is an (}'tjj X FE )¢, >0-stopping
time. Recall that (\;(¢)) is an (]-"J )-adapted local martingale with (\;); = xt. From now

on, we will apply It6’s formula repeatedly. All SDEs below are (]-'t]j X ft’i)tjzo—adapted,
and ¢; runs in the interval [0, T} (x)).

From (5.7), (5.5), and (5.9), we get
dNj, (L) = AjadA;(t;) + (g + S)Aj;zdt, 0<t<Tj(t). (5.11)
From and we get

oA A 4
Zj,;’h - Aj-jd)‘j +[- ;(Ajjf

K 4 Aj3 1 9 1
AT e [ AT SR 12
+(2+3)Aj71 T gl (5.12)

Let
6-(=r) _ (8=3(=K))(=r—6)
2(=r) 2(—r) '
Note that if —« is replaced by x, then ¢ becomes the central charge for forward SLE,. So
we view the c here the central charge for backward SLE,;, which runs in the interval [25, c0).

: _ Ajs 3422
Since A; 5 = 32 — 5(5%)7, from 1' we get

o=

at-A 1 A]'Q C o
12 = ZdN; ——A; —A2, — —|dt;. 5.13
Afy aAj,l J+{ 6 s T g 6} J (5.13)

Now we study 8t Ay p and 8t Aj,s. From we have Ak,h(tl,tg) = ﬁj(ftl]),(tk, )\k(tk))-

Recall that F]t (te,) = fie(ts,-), and fi4 (¢ ],~) are backward covering radial Loewner
maps via the time-change u;, driven by \;,. From and (5.8)), we get

O fiun(ts z) = A2, Cotz(fj,tk (tj,2z) — Ajo)- (5.14)
Differentiate the above formula w.r.t. z, we get
at j tr (tj’ Z)
],tk (tja Z)

Differentiating the above formula w.r.t. z, we get

= = A3y coth(fu (5 2) = Ajo)- (5.15)

Oy ])tkE ; _A2 1 COtQ (f] tk (tja Z) - AJ}O)fJ,}tk (tj’ Z)

Since f(%) = (’}—) - %(’%)2, from the above formula, we get
Oufyal(ty,2) = =A% ot (Finn(t5,2) = As0) Fa, (13, 2)* (5.16)
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Letting z = A (t) in (5.14), (5.15), and (5.16), we get

8tjAk,0 = _A?,l COtQ(Aki) — Ajp)dtj; (517)

Oy, Ag,

ZT;l = _A?,l COt/Q(Ak’O — Aj@)dtj; (518)
8tjAk,S = —A?71Ai71 COth(Ak70 — Ajp)dtj. (519)

Define X; on D such that X; = A0 — Arp. Then X; + X5 = 0. Since e (i) Jies
in the domain of f ¢, (tx,-), etdio = frot, (tg,e()) lies in the range of frt; (te,-), ie.,
C \ Ly, (tx). On the other hand, since via a time-change, Ly s, (fx) are backward radial
Loewner hulls driven by A ¢, (tx) = A0, from Lemma we have e?4k0 ¢ Ly, (tx) when
ty > 0. Thus, e*i0 #£ e*ro if ¢ > 0. Switching j and k, the inequality also holds if ¢; > 0.
If t; =t = 0, then €0 = %% # % = ¢'4ro. Thus, X;, Xy & 27Z. So we may define

Y = |sin2(X1)\72a = ‘SiHQ(X2)|72a.
From (5.7)), (5.11)), and (5.17)), we get
atj Xj = Aj,ld)\j + (g + 3) Aj,gdt — A?,l COtQ(Xj)dt.

From Ito’s formula, we get

Y
;/ = -« COtQ(Xj)Ade)\j - Oé(g + 3)Aj72 COtQ(Xj)dtj

- %Ail cot2(X;)dt; + %Aildtj. (5.20)

Define Q and F on D such that @ = coty’(X7) = cot}’(X3) and
ta t1
F(tl, tg) = exp (/ / Al,l(sl, 82)214271(51, SQ)QQ(S]_7 82)d81d82). (5.21)
o Jo

Since ﬁésti (0,-) =id, from 1} we have A; g = 0 when ¢; = 0. From ij we get
oy, F

= —A;j gdt;. (5.22)
Define a positive function Mon D by
M = A | AS YF Setam, (5.23)
From (5.4), (5.8), (5.13), (5.18), (5.20), and (5.22)), we have
61‘,-]/\4\ A 2 (0%
]J/\j = OéAj)ld/\j — OtCOtQ(Xj)Aj,ldAj — gdt] (524)

When t = 0, we have Aj,l = 1, Aj72 = 0, m = tj, and Xj = )\j(tj) — f’;(tj,zk), so the RHS
of (5.24) becomes

%(g + 3) COtg()\j(tj) - E(tﬁ Zk))d)\] — %dtj. (5.25)
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Define another positive function M on D by

_ M (t1,2)M(0,0)
Mty ts) = 60700 (5.26)

Then M (-,0) = M(0,-) = 1. From (5.1)), (5.24)), and (5.25)), we have

Oy, M k\Aj2 —Kk—6
S Ta e 5)@ — g o)

2

cota (N (t5) = Fi(ts. 5))] dB\jFSj). (5.27)

_|_

So when t;, € [0,p) is a fixed (FF)-stopping time, M as a function in ¢; is an (.7-"51 X FE ), >0-
local martingale.

5.2 Coupling measures

Let JP denote the set of disjoint pairs of closed arcs (Ji,J2) on T such that z; = € is
contained in the interior of J;, j = 1,2. Let T;(J;) denote the first time that S, (t) intersects
T\ Jj. Then for every (Ji,J2) € JP, if t; < T;(J;), then S,y C Jj, which implies that
Lj(tj) S /HJ],. So [0,T1(J1)] X [O,TQ(JQ)] c D.

Proposition 5.3. (Boundedness) For any (J1, J2) € JP, |In(M)| is uniformly bounded on
[0,T1(J1)] x [0,T2(J2)] by a constant depending only on J, and Js.

Proof. Fix (J1,J2) € JP. In this proof, all constants depend only on (Ji,J3), and we
say a function is uniformly bounded if its values on [0,7%(J1)] x [0,T%(J2)] are bounded
in absolute value by a constant. From and , it suffices to show that In(A4; 1),
In(Az1), In(Y), In(F'), and m are all uniformly bounded.
Note that if t; < T;(J;), then L;(t;) € H,y,. From a radial version of Theorem (iii),
we have
{L1(t1) V La(t2) : t5 € 0,T5(J;)], 5 = 1,2} C Hiyuo,- (5.28)

Since J1 U Jo g T, from Lemma the righthand side is a compact set. So the lefthand
side is relatively compact. Since H — dcap(H) is continuous, and m(ty,t2) = decap(L1(t1)V
Ly(t2)), we see that m is uniformly bounded. For j = 1,2, since T};(J;) < m, T};(J;) is also
uniformly bounded.

Let S; and S be the two components of T \ (J; U Jz). For s = 1,2, let E5; C S be a

compact arc. From Lemma L, — L in Hy,j, implies that fr, Lu, frin C\ (J1UJ3),

which then implies that f7 Lu, fi in C\ (J1 U J2). From ﬁb, the compactness of
H 01, and that Ey U Ey are compact subsets of C \ (J; U Jz), we conclude that there
is a constant ¢ > 0 such that |f7 . ,7,0,)(2)] 2 ¢ for any ¢; < Tj;(J;), j = 1,2, and
z € E1 U Es. Thus, for t; € [O,Tj(Jj)], j =1,2, the length of le(tl)vLQ(tQ)(ES)7 s=1,2,1is
bounded below by a constant ¢, > 0. Suppose t; € (0,T;(¢;)], 7 = 1,2. From Lemma
ethio ¢ Bp,., ;s J=1,2. Note that JLi(t1)VLa(t) (F1 U E3) disconnects Br, ,,(t;) from

J
Br, ., (tz) on T. Thus, there is a constant c3 > 0 such that [e*41.0(t1:f2) —gid2.0(t12)| > ¢q for

t; € (0,T;(t;)], 5 = 1,2. From continuity, this still holds if ¢; € [0,T;(J;)], j = 1,2. Thus,
In(Y) = —2aln|sing(X;)|, | coth(X;)|, and | coty’(X;)|, j = 1,2, are all uniformly bounded.
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We may find a Jordan curve o, which is disjoint from J; U J3, such that its inte-
rior contains J; and its exterior contains J;. From compactness, sup,c, In|[f](t;, z)| and
SUp,c, In |f]’;1(t1)vL2(t2)(z)| are both uniformly bounded. From (5.2) we see that the value
SUDwye f, (t;,0) [ f5— 1, (tk, w)] is also uniformly bounded. Note that the interior of f;(t;,0)
contains @, which contains e?*i(ti) if t; > 0. From maximal principle, there is ¢; €
(0,00) such that Aj,l(thtg) = ‘féijvtj(t?)_j’ei)\j(tj))‘ S Cq if tj S (O,TJ(JJ)] and t3_j S
[0,T5_;(J3—;)]. From continuity, A; is uniformly bounded, j = 1,2. From and the
uniformly boundedness of | cot5(X;)| we see that In(A4; 1) is uniformly bounded, j = 1,2.
From and the uniformly boundedness of | coty’ (X ;)| we see that In(F’) is also uniformly
bounded, which completes the proof. O

Let 1; denote the distribution of (X;), j = 1,2. Let u = p11 X pt2. Then p is the joint distri-
bution of (A1) and (A2), since A\; and A2 are independent. Fix (Jq,J2) € JP. From the local
martingale property of M and Proposition[5.3} we have E ,[M (T3 (J1), T2(J2))] = M(0,0) =
1. Define Vi, Js by dl/‘]hJQ/d/,L = M(Tl(Jl),TQ(JQ)) Then Vi, Jy is a probablhty measure.
Let 11 and v» be the two marginal measures of vy, j,. Then dvy/dps = M(T1(J1),0) =1
and dvo/dps = M(0,T5(J2)) =1, so v; = pj, j = 1,2. Suppose temporarily that the joint
distribution of (A1) and (A2) is v, s, instead of . Then the distribution of each ();) is still
-

Fix an (F?)-stopping time ty < T5(J;). From , , and Girsanov theorem (c.f.
[12]), under the probability measure v, ,, there is an (F}, X F2 )¢, >o-Brownian motion

By ¢, (t1) such that Ai(t1), 0 < t; < T1(J1), satisfies the (F, x F7 )¢, >0-adapted SDE:

~ A
d/\l(tl) = \/EdBl,tz (tl) — (3 + g) ﬁdtl — COtQ(X1)A171dt1,

Aia
which together with (5.5)), (5.7)), (5.9)), and It6’s formula, implies that

dAi,(t) = 141,1\/Ed§1,t2 (t1) — _H2

cotog (Xl)Aildtl.

FI'OI’H :ind we ggt X1 = Al,l — A2,1 = )\17t2(t1)~— fl’t2(t1,>\2(t2)). Note that
M,(0) = foo(te,z1) = fa(te,z1). Since Lq4,(t1) and fi14,(t1,-) are backward radial
Loewner hulls and covering maps via the time-change u; ¢,, from and the above equa-
tion, we find that, under the measure v, j,, conditioned on F}, for any (F7)-stopping time
t2 S TQ(JQ), via the time—change U1 ty, L17t2 (tl) = fz(tg, ')*(Ll(tl)), 0 S tl S Tl(Jl), is a
partial backward radial SLE(k; =%=5) process started from e’ o falta, 1) = falts, z1) with
marked point e’ (A2(t2)). Similarly, the above statement holds true if the subscripts “1” and
“2” are exchanged.

The joint distribution v, 7, is a local coupling such that the desired properties in the
statement of Theorem holds true up to the stopping times T (J;) and T2(J2). Then we
can apply the maximum coupling technique developed in [I8] to construct a global coupling
using the local couplings within different pairs (Jy, J2). The reader is referred to Theorem
4.5 and Section 4.3 in [19] for the construction of a global coupling between two forward
SLE processes. For the coupling of backward SLE processes, the method is essentially the
same. A slight difference is that for the forward SLE processes, a pair of hulls were used to
control the growth of M(-,-), which stays uniformly bounded up to the time that the SLE
hulls grow out of the given hulls; while for the backward SLE processes, we here used a pair
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of arcs to control the growth of M (-,-). One fact that is worth mentioning is that here we
may choose a dense countable set JP* C JP such that, when Sp, ) N Sr,u,) = (0, there
exists (Ji, J2) € JP* with Sp ) C J;, j = 1,2, from which follows that

Ti(te) = sup{T5(J;) : (Ju, o) € JP* 1, < To(J)}, jAke{1,2).  (5.29)

This finishes the proof of Theorem [5.2] in the radial case.

Now we briefly describe the proof for the chordal case. The proof in this case is simpler
because there are no covering maps. Suppose the two backward chordal SLE(k; —k — 6)
processes start from (z;;2x), where 21 # 2o E R. Formula ) holds with all tildes
removed and the function coty replaced by z — 2 The domain D and the H-hulls Ly 4, (tl)
and Loy, (t2) are defined in the same way. Then still holds. From Corollary [2
(i), fi,4,(t1,-) and fou, (t2,-) are FL x fz—measurable Define m(t1,t2) = hcap(Ll(tl) \/
Ls(t2))/2. Then (5.4) holds with u;, tk( ;) :==hcap(L;4,(t;))/2.

Now we apply the argument in Sectlon 1| with W = fk(tk, ). Then Wt Jrt; (tey )
Let Fy, (t;,-) = fkt (tg, ), and deﬁne A h and Ajs usmg and w1th all t1ldes
removed. Using (4.3 , ., , and (4.8), we see that stlll holds here and
hold with all t1ldes removed; and l-) holds without the t1ldes and the terms —|— IA?,I -5
Then we get the SDEs m and (5.13) without the terms +%Ail — & Formulas ,
@), and @[) hold with coty replaced by z — % We still define X; = A;1 — Ag 1.
Then X; # 0in D. Define Y on D by Y = |X;|72% = |X3|72%. Then holds with
coty replaced by z + 2 and the term —l—““AQ 1d?f removed. Define F' using (5 with

Q= X4 = —<5. Then still holds. Deﬁne M using without the factor eiz ™,

Then ((5.24 holds w1th cot2 replaced by z — 2 and the term —&dt; removed. Deﬁne M
using ([5.26)). Then holds with all tildes removed and coty replaced by z — 2

We define JP to be the set of disjoint pairs of closed real intervals (Jy, Jo) such that Zj
is contained in the interior of J;. Then Proposition [53] holds with a similar proof, where
Lemma is applied here, and we can show that | X[ is uniformly bounded away from 0.
The argument on the local couplings hold with all tildes and e’ removed and cots replaced
by z — % Finally, we may apply the maximum coupling technique to construct a global
coupling with the desired properties. Formula still holds here and is used in the

construction. This finishes the proof in the chordal case.

5.3 Other results

Besides Theorem [5.2] one may also prove the following two theorems, which are similar to
the couplings for forward SLE that appear in [4] and [19].

Theorem 5.4. Let k1,Kk2 > 0 satisfy kike = 16, and ¢, ...,c, € R satisfy Ek 1Ck = %
Let pj = (%, c1(—rj —4),...,ca(—K; —4)), j =1,2. Then backward chordal (resp. radial)
SLE(m,pl) commutes with backward chordal (resp. radial) SLE(k2; pa).

Theorem 5.5. Let k > 0 and p' € R"™, whose first coordinate is 2. Then backward chordal
(resp. radial) SLE(k; p) commutes with backward chordal (resp. radial) SLE(k; p).
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6 Reversibility of Backward Chordal SLE

Theorem 6.1. Let k € (0,4] and z1 # 22 € T. Suppose a backward radial SLE(k; —k — 6)
process (L1 (t)) started from (21; 22) commutes with a backward radial SLE(k; —k—6) process
(Lo(t)) started from (za;21). Then a.s. they induce the same welding.

Proof. For j = 1,2, let Sg = Sp,(t) and ftj = fr,t)- Let Tj(:), j = 1,2, be as in Definition
Let ¢; be the welding induced by (L;(t)). Since —x — 6 < —k/2 — 2, from the last
remark in Section we see that, for j = 1,2, a.s. Tj = 00, SZ, = T\ {23_,}, and ¢; is an
involution of T with exactly two fixed points: z; and zs.

Fix ¢t > 0. Since (L1(t)) and (L2(t)) commute, the following is true. Conditioned on
(La(t))e<tss (f2)*(L1(t1)), 0 < t1 < Ti(tz), is a partial backward radial SLE(k; —x — 6)
process, after a time-change, started from (f2 (21); BL,(t,))- Here we use Bp,,) also to
iAa(

denote the unique point in the base of Ls(t2), which is equal to e t2) where \s is a

driving function for (La(t2)). We have

s= U Seyrwen=il U SL) =5 (6.1)

0<t1<T1(t2) 0<t1 <T1(t2)

Recall that f2 is a homeomorphism from T\ S7 onto T \ Bp,«,). From the definition
of Ti(t2), we see that Sy, ) intersects S7, # 0 at one or two end points of both arcs. If
they intersect at only one point, then S}, (ta)- 18 @ proper subset of T\ 57, and these two
arcs share an end point. From (6.1, this then implies that the arc S is a proper subset of
T\ Br,(t,), and By, ,) is an end point of S. Recall that, after a time-change, (fi)*(Ll(tl)),
0 <t; <Ti(t2), is a partial backward radial SLE(k; —x — 6) process. Since S # T\ Br,t,),
the process is not complete. Then we conclude that S is contained in a closed arc on T
that does not contain By, ;,) because the force point is not swallowed by the process at any
finite time, which contradicts that By, ,) is an end point of S. Thus, a.s. S%l(tz) and S7,

share two end points. Since ¢; swaps the two end points of any Sf, j =1,2, we see that a.s.
02 = ¢1 on GTSEQ. Let to > 0 vary in the set of rational numbers, we see that a.s. g2 = ¢
on UteQ>0 811~St22, which is a dense subset of T. The conclusion follows since ¢; and ¢ are
continuous. O

We now state the reversibility of backward chordal SLE, for x € (0,4] in terms of its
welding. Recall that a backward chordal SLE, welding is an involution of R with two fixed
points: 0 and oco.

Theorem 6.2. Let x € (0,4], and ¢ be a backward chordal SLE,; welding. Let h(z) = —1/z.
Then h o ¢ o h has the same distribution as ¢.

Proof. Let (L1(t)) and (L2(t)) be commuting backward radial SLE(x; —x — 6) procesees as
in Theorem which induce the weldings 1 and 15, respectively. The above theorem
implies that a.s. 1 = 9y. For j = 1,2, let W; be a Mobius transformation that maps
D onto H such that W;(z;) = 0 and W;(23_;) = oo, and Wy = h o Wi. From Corollary
K;(t) == W} (L;(t)), 0 <t < oo, is a backward chordal SLE,, after a time-change,
which then induces backward chordal SLE,; welding ¢;, j = 1,2. Then ¢; and ¢ have the
same law as ¢. From , we get ¢; = Wjo;0 ijl, 7 = 1,2, which implies that a.s.
¢2 = h o ¢y oh. The conclusion follows since ¢; and ¢5 has the same distribution as ¢. [
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Lemma 6.3. Let k > 0. Let f;, 0 <t < oo, be backward chordal SLE,, maps. Then for
every zop € H, a.s. holds.

Proof. Let Z; = fi(z0), Xt = Rez, and Y; = Im z;. Then

2X. 2Y,
dX, = —\/rdB(t) — ———dt, dY; = Wtw
t t

dt
X7 +Y?

2_ 2
Let Ry = |f{(z0)|. Then 4f: = %dt Let Ny = Y;/R, and A, = X,/Y;. Then

— = — dt.
Ny (X7 +Y2)? Y, XP+YP

dN, awEoo 4, - _YRB(@) 44,

Let u(t) = In(Y;). Then u/(t) = ﬁ Let T = supu([0,00)) and define N, = Ny-1(s)

and A\S = Ay-1(5) for 0 < s <T. Then

dN, 2 ~ ~ . _
—— = ds, dAs=—\/14 A2+/k/2dB(s) —2A.ds,

N, A2+41

where E(s) is another Brownian motion. We claim that T' = co. Suppose 7" < co. Then
lim; o Y (t) = e? € R. From the SDE for A, we see that a.s. lim,_,7 A, € R, which implies
that limy oo A; € R and lim, oo Xy € R as X; = Y;A;. Then we have a.s. §'(t) = ﬁ
tends to a finite positive number as ¢ — oo, which contradicts that 7" = sup{s(¢),0 <
t < o0} < 00. So the claim is proved. Using Itd’s formula, we see that A\S, 0 <5< oo,

is recurrent. Since (ln(]vs))’ = ﬁ, we see that a.s. Ny — oo as s = oco. So a.s.
N, = Imfi(zo) o a5t — 00, i.e., () holds. O
[£{(z0)]

If x € (0,4], then since the backward chordal traces are simple, (3.5) holds. From the
above lemma and Section we see that, for k € (0,4], the backward chordal SLE,; a.s.
generates a normalized global backward chordal trace 8, which we call a normalized global

backward chordal SLE, trace. Recall that (), 0 <t < oo, is simple with 8(0) = 0, and

Conf
i ¢ B; and there is F, : HH — C\ S, whose continuation maps R onto 8 such that |i

holds, and for any z € R, Fo(z) = Foo(¢(z)) € 8. Now we state the reversibility of the
backward chordal SLE,, for x € (0,4) in terms of 3.

Theorem 6.4. Let x € (0,4), and B be a normalized global backward chordal SLE, trace.
Let h(z) = —1/z. Then h(B\ {0}) has the same distribution as 8\ {0} as random sets.

Proof. For j = 1,2, let ¢; be a backward chordal SLE, welding and 3; be the corresponding

normalized global trace. Then f; is a simple curve with one end point 0, and there exists

Fy - H %' €\ B; such that Fj(i) = i, F;(0) = 0, and Fj(z) = Fj(¢;(z)) for « € R.

From Theorem we may assume that ¢» = h o ¢, o h~!. Now it suffices to show that
B(B2\ {0}) = 1 \ {0},

Define G = ho Fhoho Fl_l. Then G is a conformal map defined on C\ f;. It has
continuation to 41 \{0}. In fact, if z € C\B; and z — 2z € $;\{0}, then F; ' (2) — {x, ¢1 ()}
for some x € R\ {0}, which then implies that h o FJ*(z2) — {h(x),h o ¢1(x)}; since
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¢2 0 h = ho ¢y, we find that Fy o h o F; *(z) tends to some point on By \ {0}, so G(z)
tends to some point on h(fs2 \ {0}). It was proved in [13] that a forward SLE, trace is the
boundary of a Holder domain. Then the same is true for backward chordal SLE, traces
and the normalized global trace. From the results in [3], we see that 81 \ {0} is conformally
removable, which means that G extends to a conformal map from (C\81)U(81\{0}) = C\{0}
onto C\ {0}, and maps 31 \ {0} to h(B2 \ {0}). Since G(i) = i, either G = id or G = h.
Suppose G = h. Then Fy = Fy o h. Since F1(0) = F»(0) = 0, for j = 1,2, F; maps
a neighborhood of 0 in H onto a neighborhood of 0 in C without a simple curve. Since
Fy = F5 0 h, F; also maps a neighborhood of oo in H onto a neighborhood of 0 without
a simple curve, which contradicts the univalent property of Fy. Thus, G = id, and we get

h(B2\ {0}) = G(6:1 \ {0}) = B1 \ {0}, as desired. O

Now we propose a couple of questions. First, let’s consider backward chordal SLE, for
k > 4. Since the process does not generate simple backward chordal traces, the random
welding ¢ can not be defined. However, the lemma below and the discussion in Section
show that we can still define a global backward chordal SLE, trace.

Lemma 6.5. Let k € (0,00). Suppose B;, 0 <t < oo, are backward chordal traces driven

by \(t) = /&B(t). Then a.s. holds.

Proof. If k € (0,4], a.s. the traces are simple, so holds. Now suppose x > 4. Let f;
and L; be the corresponding maps and hulls. It suffices to show that, for any ty > 0, a.s.
there exists ¢; > ¢o such that Sy, ([0,]) C H.

Let g and Ky, 0 < t < oo, be the forward chordal Loewner maps and hulls driven by
VEB(t). From Theorem 6.1 in [20], for any deterministic time ¢; € (0, c0), the continuation
of gt_l1 a.s. maps the interior of Sk, into H. From Lemma and the property of Brownian
motion, we see that, for any t; € (0, 00), f, has the same distribution as A(t1)+gt_11 (-—A(t1)),
which implies that the continuation of f;, a.s. maps the interior of Sp, into H.

Since a.s. [Jr—; Sn = Se = R D A([0,0]), and (S;) is an increasing family of intervals,
we see that a.s. there is NV € N such that the interior of Sy contains A([0, to]). Let t; = N.
Then f;, maps A([0, to]) into H, which implies that 8, (t) = fi, (A(t)) € Hfor 0 <t <t¢y. O

Question 6.6. Do we have the reversibility of the global backward chordal SLE, trace for
Kk >47

Second, let’s consider backward radial SLE, processes. One can show that (3.8) a.s.
holds. Since T' = oo, we may define a global backward radial SLE,, trace.

Question 6.7. Does a global backward radial SLE, trace satisfy some reversibility property
of any kind?

Recall that the forward radial SLE, trace does not satisfy the reversibility property in
the usual sense. However, it’s proved in [22] that, for x € (0,4], the whole-plane SLE,, as
a close relative of radial SLE,;, satisfies reversibility.

Finally, it is worth mentioning the following simple fact. Recall that, if x € (0,4], a
backward radial SLE, welding is an involution of T with two fixed points, one of which is
1. The following theorem gives the distribution of the other fixed point ¢, and says that
a backward radial SLE, process conditioned on ¢ is a backward radial SLE(k; —4) process
with force point ¢. It is similar to Theorem 3.1 in [20], and we omit its proof.
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Theorem 6.8. Let x € (0,4]. Let u denote the distribution of a backward radial SLE,
process. For 0 € (0,27), let vy denote the distribution of a backward radial SLE(k; —4)
process started from (1; ). Let f(0) = C'sing(0)*/*, where C' > 0 is such that fo% f(0)do =
1. Then

27
= /0 o £(0)do.

Appendices

A Carathéodory Topology

Definition A.1. Let (D)5, and D be domains in C. We say that (D)) converges to D,

Cara

and write D,, = D, if for every z € D, dist(z,C\ D,,) — dist(z, C\ D). This is equivalent
to the following:

(i) every compact subset of D is contained in all but finitely many D,,’s;

(ii) for every point zy € 0D, there exists z, € OD,, for each n such that z, — zo.

Remark. A sequence of domains may converge to two different domains. For example, let
D, = C\ ((—o0o,n]). Then D, Carg H, and D, ¢ _H as well. But two different limit
domains of the same domain sequence must be disjoint from each other, because if they
have nonempty intersection, then one contains some boundary point of the other, which

implies a contradiction.

ar Conf .u. .
Lemma A.2. Suppose D, Carg D, f, : D, —» E,, neN, and f, Lu, f in D. Then

either f is constant on D, or f is a conformal map on D. In the latter case, let E = f(D).
Cara

Then E, = E and f;* Lu, f~tinE.

Remark. The above lemma resembles the Carathéodory kernel theorem (Theorem 1.8,
[1]), but the domains here don’t have to be simply connected. The main ingredients in the
proof are Rouché’s theorem and Koebe’s 1/4 theorem. The lemma also holds in the case
that D, and D are domains of any Riemann surface, if the metric in the underlying space is
used in place of the Euclidean metric for Definition and locally uniformly convergence.
In particular, if we use the spherical metric, then Lemma holds for domains of C.

B Topology on Interior Hulls

Let H denote the set of all interior hulls in C. Recall that for any H € H, quI_{l is defined on
{|2| > rad(H)}, and for a nondegenerate interior hull, ¢z (2) = ¢, (2) = ¢ (rad(H)z) is
defined on {|z| > 1}. It’s shown in Section 2.5 of [2I] that there is a metric dyy on H such
that for any H,, H € H, the followings are equivalent:

1. dy(H,, H) — 0
2. rad(H,) — rad(H) and ¢5;8 =% ¢3! in {|2] > rad(H)}.

3. C\ H, &% C\ H.
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In particular, we see that rad is a continuous function on (#H, d3). Thus, for nondegenerate
interior hulls, dy (Hy,, H) — 0 iff g, Lo, ¥ in {|z| > 1}. The following lemma is Lemma
2.2 in [21].

Lemma B.1. For any F € H, the set {H € H : H C F} is compact.

Corollary B.2. For any F € H and r > 0, the set {H € H : H C F,rad(H) > r} is
compact.

C Topology on H-hulls

From Section 5.2 in [I7], there is a metric dy on the space of H-hulls such that dy(H, —
Ho) iff fy, ™ fy_ in H. From LemmalA.2] this implies that B\ H, <3 H\ H... Bu
H\ H, Care 1 \ Hs does not imply dy(H, — Hs). A counterexample is H, = {z € H :
|z — 2n| < n} and Hy, = 0. Since Hy - Hy = H3 iff fg, o fu, = fu,, the dot product is
continuous.

Formula (5.1) in [I7] states that for any H-hull H, there is a positive measure upy
supported by S7;, the convex hull of Sy, such that for any z € C\ S},

-1

zZ—X

fu(z) =z +/ dpp (). (C.1)
In particular, if H is bounded by a crosscut, then uy is absolutely continuous w.r.t. the
Lebesgue measure, and dup /de = LIm fy(x), where the value of fy on S} is the contin-
uation of fy from H. If H is approximated by a sequence of H-hulls (H,,), then pg is the
weak limit of (pp, ). We may choose each H,, to be bounded by a crosscut, whose height is
not bigger than h+ 1/n, where h is the height of H. Then each py, has a density function,
whose L° norm is not bigger than (h 4+ 1/n)/7. Thus, py also has a density function,

whose L norm is not bigger than h/m. We use py to denote the density function of pp.
onf

Since fx : C\ S %' C\ A* and fl;(00) = 1, we see that rad(H*) = rad(S3) = |S5|/4.
Thus, diam(H*) < 4rad(H*) = |S%]. On the other hand, the diameter of H* is at least
twice the height of H. So ||px||c < %

By approximating any H-hull H using a sequence of H-hulls (H,,), each of which is the
union of finitely many mutually disjoint H-hulls bounded by crosscuts in H, we see that p g is
in fact supported by Sg. By continuation, (C.1)) holds for any z € C\ Sy. Furthermore, the
support of py is exactly Sy because from fr extends analytically to the complement
of the support of pp, while from Lemma [2.6]f5 can not be extended analytically beyond
C\ Sg. So we obtain the following lemma.

whose L™ norm is no more than 131! Moreover, 1)) holds for any z € C\ Sg.

Lemma C.1. For any H-hull H, pg has a density iunction pu, whose support is Sy, and
2

The following lemma extends Lemma 5.4 in [17], and we now give a proof.

Lemma C.2. For any compact F C R, Hp :={H : Sy C F} is compact, and H,, — H in
Hr implies that fm, Lu, fu in C\ F.
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Proof. Suppose (H,,) is a sequence in Hp. Let |F*| denote the length of the convex hull of
F. Then for each n, pg, is supported by Sg, C F, and the L*> norm of pg,, is no more than
% < “27—;‘ Thus, (pp,) contains a subsequence (pp,, ), which converges in the weak-x
topology to a function p supported by F. From we see that fp, —converges uniformly
on each compact subset of C\ F', and if f is the limit function, then f(z)—z = fF ;_lxp(:z:)dx,
z€ C\F. So f(2) —z — 0 as z — oo. This means that f can not be constant. From
Lemma[A.2] f is a conformal map on C\ F. Since f(z) — 2z — 0 as z — 00, oo is a simple
pole of f. Thus, f(C\ F) contains a neighborhood of co. Let G = C\ f(C\ F). Then
G is compact. Since every fu, is R-symmetric, sois f. Let H = G NH. Then f maps
H conformally onto H \ H. This implies that H is an H-hull and f = fy on H because

f(z) —z— 0 as z = co. Since f extends fg|m, from Lemma we see that Sy C F and
f=fninC\F. Since frr, +% f in H, we get H,, — H € Hp. This shows that Hp

is compact. The above argument also gives ank Lu, fgin C\ F. If H, — H, then any

subsequence (Hp, ) of (Hy,) contains a subsequence (H,, ) such that fu, LU 4y in C\F,
1

which implies that fg, — f in C\ F. O

D Topology on D-hulls

Define a metric dy on the space of D-hulls such that

oo

du(Hi Ho) =~ sup {|f, () — firs ()] (D.1)

= 2" jz<i-1/n

It is clear that dy(Hy,, H) — 0 iff fu, Lu, fmg in D. From Lemma this implies that
D\ H,, %% D\ H. On the other hand, from Lemma|D.1|below, one see that D\ H, <% D\
also implies that H, — H. Since fg,, Lu, fr in D implies that f3; (0) — f;(0), we see
that dcap is a continuous function. Moreover, the dot product is also continuous.

Lemma D.1. For any M < oo, {H : dcap(H) < M} is compact.

Proof. Suppose (H,,) is a sequence of D-hulls with dcap(H,) < M for each n. Then

fu,(0) = e~ deap(fn) > =M Gince (fy,) is uniformly bounded in D, it contains a

subsequence ( ank), which converges locally uniformly in D. Let f be the limit. Then

£/(0) = limg— o f}{nk (0) > e~M. Thus, f is not constant. From Lemma f is conformal

in D. Since f(0) = limy—o0 fr,, (0) and f'(0) > 0, we see that f = fy|p for some D-hull
>

H. Since f'(0) > e, deap(H) < M. From fr, ™ fy in D we get H,, — H. O

Remark. We may compactify the space of D-hulls by adding one element H., with the
associated function fy, = 0in D, and defining the metric dy in the extended space using

(D).

Lemma D.2. For any compact F G T, Hp :={H : Sy C F} is compact.

Proof. Let H € Hp. From conformal invariance, the harmonic measure of T \ HinD \ H
seen from 0 equals to the harmonic measure of T \ Sy in D seen from 0, which is bounded
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below by |T\ F|/|T| > 0. This implies that the distance between 0 and H is bounded below
by a positive constant r depending on F', which then implies that dcap(H) is bounded above
by —In(r) < co. From Lemma we see that Hp is relatively compact.

It remains to show that H is bounded. Let (H,,) be a sequence in H , which converges
to H. We need to show that H € Hp. Since H,, € Hp, each fg, is analytic in C \ F. We

have fir. =% fy in D. From T-symmetry, fr. % fy in D*. Let J = {|z| = 2} C D*.
Then fy, — fu uniformly on J. Sine fy, maps {|z| < 2} \ F' into the Jordan domain
bounded by fg, (J), we see that the family (fg, ) is uniformly bounded in {|z| < 2} \ F. So
it contains a subsequence (fy,, ), which converges locally uniformly in {[z < 2} \ F. The
limit function is analytic in {|z| < 2} \ F' and agrees with fr on D, which implies that fz
extends analytically across T\ F. So Sy C F, i.e., H € HF. O

There is an integral formula for D-hulls which is similar to (C.1). For any D-hull H,
there is a positive measure pg with support Sy such that

f(z)zz.exp(/qrf”“dm,(m)), 2€C\ Su, (D.2)

r—z

and H, — H iff pug, — pm weakly. Moreover, ppy is absolutely continuous w.r.t. the
Lebesgue measure on T, and the density function is bounded. From this integral formula,
it is easy to get the following lemma.

Lemma D.3. For any compact F C T, H, — H in Hr implies that fu, Lu, fu in C\ F.
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