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Abstract

We prove that for a 2-SLEκ pair (η1, η2) in a simply connected domain D, whose bound-
ary is C1 near z0 ∈ ∂D, there is some α > 0 such that limr→0+ r

−αP[dist(z0, ηj) < r, j = 1, 2]
converges to a positive number, called the boundary two-curve Green’s function. The ex-
ponent α equals 2( 12

κ − 1) if z0 is not one of the endpoints of η1 and η2; and otherwise
equals 12

κ − 1. We also prove the existence of the boundary (one-curve) Green’s function
for a single-boundary-force-point SLEκ(ρ) curve, for κ and ρ in some range. In addition,
we find the convergence rate and the exact formula of the above Green’s functions up to
multiplicative constants. To derive these results, we construct a family of two-dimensional
diffusion processes, and use orthogonal polynomials to obtain their transition density.
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1 Introduction

1.1 Main results

This paper is the follow-up of the paper [22], in which we proved the existence of two-curve
Green’s function for 2-SLEκ at an interior point, and obtained the formula of the Green’s
function up to a multiplicative constant. In the present paper, we will prove the existence of
the two-curve Green’s function for 2-SLEκ at a boundary point, and also derive its formula. In
addition, we will derive boundary Green’s function for a chordal SLEκ(ρ) curve with a single
boundary force point, where κ and ρ satisfy some conditions.

A 2-SLEκ is a particular case of multiple SLEκ. It consists of two random curves in a simply
connected domain connecting two pairs of boundary points (more precisely, prime ends), which
satisfy the property that, when any one curve is given, the conditional law of the other curve
is that of a chordal SLEκ in a complement domain of the first curve.

The two-curve Green’s function of a 2-SLEκ is about the rescaled limit of the probability
that the two curves in the 2-SLEκ both approach a marked point in D. More specifically, it
was proved in [22] that, for any κ ∈ (0, 8), if (η1, η2) is a 2-SLEκ in D, and z0 ∈ D, then the
limit

G(z0) := lim
r→0+

r−αP[dist(ηj , z0) < r, j = 1, 2] (1.1)

converges to a positive number, where the exponent α equals α0 := (12−κ)(κ+4)
8κ . The limit G(z0)

is called the (interior) two-curve Green’s function for (η1, η2). The paper [22] also derived the
convergence rate and the exact formula of G(z0) up to an unknown constant.

In this paper we study the limit in the case that z0 ∈ ∂D, assuming that ∂D is C1 near z0,
for some suitable exponent α. Below is our first main theorem.

Theorem 1.1. Let κ ∈ (0, 8). Let (η1, η2) be a 2-SLEκ in a simply connected domain D. Let
z0 ∈ ∂D. Suppose ∂D is C1 near z0. We have the following results.
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(A) If z0 is not any endpoint of η1 or η2, then the limit in (1.1) exists and lies in (0,∞) for
α = α1 = α2 := 2(12

κ − 1).

(B) If z0 is one of the endpoints of η1 and η2, then the limit in (1.1) exists and lies in (0,∞)
for α = α3 := 12

κ − 1.

Moreover, in each case we may compute GD(z0) up to some constant C > 0 as follows. Let
Fκ,2 denote the hypergeometric function 2F1( 4

κ , 1 −
4
κ ; 8

κ , ·). Let f map D conformally onto H
such that f(z0) =∞. Let J denote the map z 7→ −1/z.

(A1) Suppose Case (A) happens and none of η1 and η2 separates z0 from the other curve. We
label the f -images of the four endpoints of η1 and η2 by v− < w− < w+ < v+. Then

GD(z0) = C1|(J ◦ f)′(z0)|α1G1(w; v),

where C1 > 0 is a constant depending only on κ, and

G1(w; v) :=
∏

σ∈{+,−}

(|wσ − vσ|
8
κ
−1|wσ − v−σ|

4
κ )Fκ,2

((w+ − w−)(v+ − v−)

(w+ − v−)(v+ − w−)

)−1
. (1.2)

(A2) Suppose Case (A) happens and one of η1 and η2 separates z0 from the other curve. We
label the f -images of the four endpoints of η1 and η2 by v− < w− < w+ < v+. Then

GD(z0) = C2|(J ◦ f)′(z0)|α2G2(w; v)

where C2 > 0 is a constant depending only on κ, and

G2(w; v) :=
∏

u∈{w,v}

|u+−u−|
8
κ
−1

∏
σ∈{+,−}

|wσ−v−σ|
4
κFκ,2

((v+ − w+)(w− − v−)

(w+ − v−)(v+ − w−)

)−1
. (1.3)

(B) Suppose Case (B) happens. We label the f -images of the other three endpoints of η1 and
η2 by w+, w−, v+, such that f−1(v+) and z0 are endpoints of the same curve, and w+, v+

lie on the same side of w−. Then

GD(z0) = C3|(J ◦ f)′(z0)|α3G3(w; v+),

where C3 > 0 is a constant depending only on κ, and

G3(w; v+) = |w+ − w−|
8
κ
−1|v+ − w−|

4
κFκ,2

(v+ − w+

v+ − w−

)−1
. (1.4)

Our second main theorem is about the boundary Green’s function of a chordal SLEκ(ρ)
curve with a single boundary force point.
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Theorem 1.2. Let κ ∈ (0, 4] and ρ > −2 or κ ∈ (4, 8) and ρ ≥ κ
2 − 2. Let w ∈ R and

v ∈ (R \ {w}) ∪ {w−, w+}. Let η be a chordal SLEκ(ρ) curve in H from w to ∞ with the force
point v. Let z0 ∈ R\{w} be such that z0 and v lie on the same side of w, and |z0−w| ≥ |v−w|.
Let α2 = ρ+2

κ (ρ− (κ2 − 4)), α3 = 2
κ(ρ− (κ2 − 4)), β2 = 2ρ+ 6 and β3 = ρ+ 6. Then

(i) There is a positive constant C depending only on κ and ρ such that, if z0 6= v, then

P[dist(η, z0) < r] = Crα2 |z0 − v|α3−α2 |z0 − w|−α3

(
1 +O

( r

|z0 − v|

) β2
β2+2

)
, r → 0+.

(ii) There is a positive constant C depending only on κ and ρ such that, if z0 = v, then

P[dist(η, z0) < r] = Crα3 |z0 − w|−α3

(
1 +O

( r

|z0 − w|

) β3
β3+2

)
, r → 0+.

For both (i) and (ii), the implicit constants depend only on κ, ρ. Moreover, if κ ∈ (0, 4] and
ρ ∈ (−2, κ2 − 2), then (i) holds with a different constant C > 0 if η is replaced by η ∩ R; if
κ ∈ (0, 4] and ρ ∈ (−2, κ2 − 2), or κ ∈ (4, 8) and ρ ≥ κ

2 − 2, then (ii) holds with a different
constant C > 0 if η is replaced by η ∩ R.

The existence of boundary Green’s function for chordal SLEκ (without force points) was
proved in [4]. It was proved in [13, Theorem 1.8] that for κ > 0 and ρ1, ρ2 ∈ R such that
ρ1 > −2 and ρ1 + ρ2 >

κ
2 − 4, if η is an SLEκ(ρ1, ρ2) curve in H from 0 to ∞ with force points

(0+, 1), then P[dist(η, 1) < r] = rα+o(1) as r → 0, where α = 1
κ(ρ1 + 2)(ρ1 + ρ2 + 4− κ

2 ). Note
that if ρ1 = 0, then α = α3(κ, ρ2); and if ρ2 = 0, then α = α2(κ, ρ1). This means that Theorem
1.2 improves the estimate of Theorem 1.8 of [13] in some cases.

1.2 Strategy

For the proofs of the main theorems, we use the ideas introduced in [22]. By conformal invariance
of 2-SLEκ, we may assume that D = H := {z ∈ C : Im z > 0}, and z0 = ∞. It suffices to
consider the limit limL→∞ L

αP[ηj ∩ {|z| > L} 6= ∅]. In Case (A) of Theorem 1.1, we label the
four endpoints of η1 and η2 by v+ > w+ > w− > v−. There are two possible link patterns:
(w+ ↔ v+;w− ↔ v−) and (w+ ↔ w−; v+ ↔ v−), which respectively correspond to Case (A1)
and Case (A2) of Theorem 1.1.

For the first link pattern, we label the two curves by η+ and η−. By translation and dilation,
we may assume that v+ = 1 and v− = −1. Then we introduce a new point v0 = 0, and make
an assumption that 0 ∈ (w−, w+). We then grow η+ and η− simultaneously from w+ and w−
towards v+ and v−, respectively, up to the time that either curve reaches its target, or separates
v+ or v− from ∞. The speeds of η+ and η− are controlled by two factors: (F1) for any t in the
lifespan [0, T u), the harmonic measure of the arc between v+ and v− in the unbounded connected
component of H\(η+([0, t])∪η−([0, t])), denoted by Ht, viewed from∞, increases exponentially
with factor 2. More specifically, if gt maps Ht conformally onto H, and satisfies gt(z)/z → 1 as
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z →∞, then V+(t)− V−(t) = e2t(v+− v−), where V±(t) := gt(v±). (F2) the harmonic measure
of η+([0, t]) ∪ [v0, v+] in Ht viewed from ∞ agrees with that of η−([0, t]) ∪ [v−, v0]. We will see
that there is a unique V0(t) ∈ (V−(t), V+(t)) such that the continuous extension of g−1

t on H
maps [V−(t), V0(t)] into [v−, v0]∪η−([0, t]), and maps [V0(t), V+(t)] into [v0, v+]∪η+([0, t]). The
second condition means that V+(t)−V0(t) = V0(t)−V−(t). In the case that η+([0, t])∪η−([0, t])
does not separate v0 from ∞, V0(t) is simply gt(v0). We will also deal with the complicated
case that η+([0, t]) ∪ η−([0, t]) does the separation, which may happen if κ ∈ (4, 8).

At the time T u, one of the two curves, say η+, separates v+ or v− from∞. In the former case
the rest of η+ grows in a bounded connected component of H \ η+([0, T u)); in the latter case,
the whole η− is disconnected from ∞ by η+([0, T u)). So we may focus on the parts of η+ and
η− before T u. Using Koebe’s 1/4 theorem (applied to gt at∞) and Beurling’s estimate (applied
to a planar Brownian motion started near ∞), we find that for 0 ≤ t < T u, the diameter of
both η+([0, t]) and η−([0, t]) are comparable to e2t. Thus, there are constants a2 > a1 ∈ R such
that for any L > |v+ − v−|,

{T u > log(L)/2 + a2} ⊂ {ησ ∩ {|z| > L} 6= ∅, σ ∈ {+,−}} ⊂ {T u > log(L)/2 + a1}. (1.5)

We may obtain a two-dimensional diffusion process R(t) = (R+(t), R−(t)) ∈ [0, 1]2, 0 ≤ t <
T u, such that for every t ∈ [0, T u), Rσ(t) = Wσ(t)−V0(t)

Vσ(t)−V0(t) , σ ∈ {+,−}, where Wσ(t) = gt(ησ(t)) ∈
[V0(t), Vσ(t)]. Note that wσ = σRσ(0), σ ∈ {+,−}. We will derive the transition density
and quasi-invariant density of (R) using the knowledge of 2-SLEκ partition function and the
technique of orthogonal polynomials. The quasi-invariant density p̃R of (R) is a positive function
on (0, 1)2, whose integral against the two-dimensional Lebesgue measure is 1, and if R starts at
a random point in (0, 1)2, whose law has the density p̃R against the Lebesgue measure, then (R)
is a quasi-stationary process with decay rate α1 in the sense that, for any deterministic time
t > 0, P[T u > t] = e−2α1t, and the law of R(t) conditional on {T u > t} agrees with that of R(0).
From (1.5) we know that, if (η+, η−) has the random link pattern (r+ ↔ 1;−r− ↔ −1) such that
(r+, r−) ∈ (0, 1)2 follows the law with the density p̃R, then P[ησ ∩ {|z| > L} 6= ∅, σ ∈ {+,−}] is
comparable to L−α1 . We will then combine this estimate with the technique introduced in [6]
to prove the convergence of limL→∞ L

α1P[ησ ∩ {|z| > L} 6= ∅, σ ∈ {+,−}].
After proving the existence of the Green’s function for the above random link pattern, we

may then use an estimate on the convergence of the transition density of (R) to its quasi-
invariant density to prove the existence of the Green’s function in the case that the link pattern
is (r+ ↔ 1;−r− ↔ −1), where (r+, r−) is a deterministic point in (0, 1)2. By translation and
dilation, we then have the existence of Green’s function in the case that (v++v−)/2 ∈ (w−, w+).
Finally, we will remove this assumption, and work out the general case.

The above approach, especially the transition density of (R), also gives us the exact formula
of the Green’s function up to an unknown multiplicative constant, as well as the rate of the
convergence of the rescaled probability to the Green’s function. See Theorem 6.2.

For the link pattern (w+ ↔ w−; v+ ↔ v−), we label the curves by ηw and ηv. We observe that
ηv disconnects ηw from ∞. Thus, for L > max{|v+|, |v−|}, ηw intersects {|z| > L} implies that
ηv does the intersection as well. Then the two-curve Green’s function reduces to a single-curve
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Green’s function. We will use a similar approach as before. We still first assume that v+ = 1,
v− = −1, and 0 ∈ (w−, w+), and let v0 = 0. This time, we grow η+ and η− simultaneously
along the same curve ηw such that ησ runs from wσ towards w−σ, σ ∈ {+,−}. The growth is
stopped if η+ and η− together exhaust the range of ηw, or any of them disconnects its target
from ∞. Moreover, the speeds of the curves are controlled by two factors (F1) and (F2) as in
the previous case.

We then observe that for big L, ηw intersects {|z| > L} if and only if η+ and η− both intersect
{|z| > L}. So we may study η+ and η− instead of ηw and ηv. The rest of the argument is
similar to that in the previous case, except that the transition density and invariant density of
the process (R) will be different. We will obtain the exact formula of the Green’s function up
to a constant as well as the rate of convergence. See Corollary 6.5.

In Case (B), we may assume that v+ = 1 and w+ + w− = 0. Let v0 = 0 and v− = −1. We
label the curves by ηw and ηv, and grow η+ and η− simultaneously along the same curve ηw
as in Case (A2). The rest of the proof follows the same approach in the previous cases except
that the transition density and invariant density of (R) will be different, and the exponent will
be α3 instead of α1. We will obtain the exact formula of the Green’s function up to a constant
as well as the rate of convergence. See Corollary 6.7.

Recall that in Cases (A2) and (B), we are dealing with a single-curve Green’s function
about ηw. It is known that ηw is an hSLEκ (cf. [20, Proposition 6.10]) from w− to w+ with
force points at v− and v+ (Case (A2)) or ∞ and v+ (Case (B)). The hSLEκ is a special case of
the intermediate SLEκ(ρ), abbreviated now as iSLEκ(ρ), in the case that ρ = 2. The iSLEκ(ρ)
process was introduced in [25] for κ ∈ (0, 4) and ρ ≥ κ

2 − 2 to prove the reversibility of a
chordal SLEκ(ρ) curve with a single degenerate boundary force point. The name of intermediate
SLEκ(ρ) comes form the fact that, for a chordal SLEκ(ρ) curve in H from 0 to∞ with the force
point at 0+, if one conditions on a part of the forward oriented curve up to a forward stopping
time and also on a part of the backward oriented curve up to a backward stopping time, then
the middle part of the curve has the law of an intermediate SLEκ(ρ) curve. The definition of
iSLEκ(ρ) in [25] easily extends to all κ ∈ (0, 8) and ρ > max{−2, κ2 − 4}.

The argument in the proof of Cases (A2) and (B) of Theorem 1.1 can be used to prove a
more general result. Let κ ∈ (0, 4] and ρ > −2 or κ ∈ (4, 8) and ρ ≥ κ

2 − 2. For those κ and ρ,
we know that iSLEκ(ρ) satisfies reversibility. If ηw is an iSLEκ(ρ) curve in H from w− to w+

with force points v− and v+, then the boundary Green’s function for ηw at ∞ exists with the
exponent being the α2 in Theorem 1.2. See Theorem 6.4. The Green’s function also exists if
v− is replaced by ∞, and the exponent is replaced by the α3 in Theorem 1.2. See Theorem 6.6.
The iSLEκ(ρ) curve reduces to a chordal SLEκ(ρ) curve if we let v+ → w+

+, and the Green’s
functions still exist in the limit cases. Theorem 1.2 then follows from these results via a Möbius
automorphism of H that maps w+ to ∞.

1.3 Outline

Below is the outline of the paper. In Section 2, we recall definitions, notations, and some basic
results that will be needed in this paper. In Section 3 we develop a framework on a commuting
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pair of deterministic chordal Loewner curves, which do not cross but may intersect each other.
The work extends the disjoint ensemble of Loewner curves that appeared in [27, 26]. At the end
of the section, we describe a way to grow the two curves simultaneously with certain properties.
In Section 4, we use the results from the previous section to study a pair of multi-force-point
SLEκ(ρ) curves, which commute with each other in the sense of [2]. We obtain a two-dimensional
diffusion process R(t) = (R+(t), R−(t)), 0 ≤ t < ∞, for the simultaneous growth of the two
curves, and derive its transition density using orthogonal two-variable polynomials. In Section
5, we study three types of commuting pair of iSLEκ(ρ) curves, which correspond to the three
cases in Theorem 1.1. We prove that each of them is locally absolutely continuous w.r.t. a
commuting pair of SLEκ(ρ) curves for certain force values, and also find the Radon-Nikodym
derivative at different times. For each commuting pair of iSLEκ(ρ) curves, we obtain a two-
dimensional diffusion process R(t) = (R+(t), R−(t)) with random finite lifetime. Then we use
the transition density of the (R) for the commuting SLEκ(ρ) curves to derive the transition
density of the (R) for the commuting iSLEκ(ρ) curves. In addition, we find its quasi-invariant
density and decay rate. In the last section we prove some important theorems, and finally prove
Theorems 1.1 and 1.2.

Acknowledgments

The author thanks Xin Sun for suggesting the problem on the (interior and boundary) two-curve
Green’s function for 2-SLE.

2 Preliminary

We first fix some notation. Let H = {z ∈ C : Im z > 0}. For z0 ∈ C and S ⊂ C, let
radz0(S) = sup{|z − z0| : z ∈ S ∪ {z0}}. If a function f is absolutely continuous on I, and
f ′ = g a.e. on I, then we write f ′

ae
= g on I. This means that f(x2) − f(x1) =

∫ x2
x1
g(x)dx for

any x1 < x2 ∈ I. Here g may not be defined on a subset of I with Lebesgue measure zero. We
will also use “

ae
=” for PDE or SDE in some similar sense.

2.1 H-hulls and chordal Loewner equation

A relatively closed subset K of H is called an H-hull if K is bounded and H \ K is a simply
connected domain. If S is a bounded subset of H such that S ∪R is connected and closed, then
the unbounded connected component of H\S is a simply connected domain, whose complement
in H is an H-hull. We call it the H-hull generated by S, and denote it by Hull(S).

For an H-hull K, there is a unique conformal map gK from H\K onto H such that gK(z) =
z + c

z + O(1/z2) as z →∞ for some c ≥ 0. The constant c, denoted by hcap(K), is called the
H-capacity of K, which is zero iff K = ∅. If ∂(H \K) is locally connected, then g−1

K extends
continuously from H to H, which is denoted by fK .
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If K1 ⊂ K2 are two H-hulls, then we define K2/K1 = gK1(K2 \K1), which is also an H-hull,
and we have gK2 = gK2/K1

◦ gK1 and hcap(K2/K1) = hcap(K2)−hcap(K1). From hcap ≥ 0 we
see that hcap(K1),hcap(K2/K1) ≤ hcap(K2) if K1 ⊂ K2. If K1 ⊂ K2 ⊂ K3 are H-hulls, then
K2/K1 ⊂ K3/K1 and

(K3/K1)/(K2/K1) = K3/K2. (2.1)

Let K be a non-empty H-hull. Let Kdoub = K ∪ {z : z ∈ K}, where K is the closure of
K, and z is the complex conjugate of z. By Schwarz reflection principle, there is a compact
set SK ⊂ R such that gK extends to a conformal map from C \ Kdoub onto C \ SK . Let
aK = min(K ∩ R), bK = max(K ∩ R), cK = minSK , dK = maxSK . Then the extended gK
maps C \ (Kdoub ∪ [aK , bK ]) conformally onto C \ [cK , dK ]. Since gK(z) = z + o(1) as z →∞,
by Koebe’s 1/4 theorem, diam(K) = diam(Kdoub ∪ [aK , bK ]) � dK − cK .

Example. Let x0 ∈ R, r > 0. Then H := {z ∈ H : |z − x0| ≤ r} is an H-hull with

gH(z) = z + r2

z−x0 , hcap(H) = r2, aH = x0 − r, bH = x0 + r, Hdoub = {z ∈ C : |z − x0| ≤ r},
cH = x0 − 2r, dH = x0 + 2r.

The next proposition combines Lemmas 5.2 and 5.3 of [28].

Proposition 2.1. If L ⊂ K are two non-empty H-hulls, then [aK , bK ] ⊂ [cK , dK ], [cL, dL] ⊂
[cK , dK ], and [cK/L, dK/L] ⊂ [cK , dK ].

Proposition 2.2. For any x ∈ R \ Kdoub, 0 < g′K(x) ≤ 1. Moreover, g′K is decreasing on
(−∞, aK) and increasing on (bK ,∞).

Proof. By [17, Lemma C.1], there is a measure µK supported on SK with |µK | = hcap(K) such
that g−1

K (z)− z =
∫
SK

−1
z−ydµK(y) for any x ∈ R \ SK . Differentiating this formula and letting

z = x ∈ R \ SK , we get (g−1
K )′(x) = 1 +

∫
SK

1
(x−y)2

dµK(y) ≥ 1. So 0 < g′K ≤ 1 on R \Kdoub.

Further differentiating the integral formula w.r.t. x, we find that (g−1
K )′′(x) =

∫
SK

−2
(x−y)3

dµK(y)

is positive on (−∞, cK) and negative on (dK ,∞), which means that (g−1
K )′ is increasing on

(−∞, cK) and decreasing on (dK ,∞). Since gK maps (−∞, aK) and (bK ,∞) onto (−∞, cK)
and (dK ,∞), respectively, we get the monotonicity of g′K .

Proposition 2.3. If K is an H-hull with radx0(K) ≤ r for some x0 ∈ R, then hcap(K) ≤ r2,
radx0(SK) ≤ 2r, and |gK(z)− z| ≤ 3r for any z ∈ C \Kdoub.

Proof. We have K ⊂ H := {z ∈ H : |z − x0| ≤ r}. So hcap(K) ≤ hcap(H) = r2. From
Proposition 2.1, SK ⊂ [cK , dK ] ⊂ [cH , dH ] = [x0 − 2r, x0 + 2r]. So radx0(SK) ≤ 2r. Since
gK(z) − z is analytic on C \ Kdoub and tends to 0 as z → ∞, by the maximum modulus
principle,

sup
z∈C\Kdoub

|gK(z)− z| ≤ lim sup
C\Kdoub3z→Kdoub

|gK(z)− z| ≤ r + 2r = 3r,

where the second inequality holds because z → Kdoub implies that gK(z)→ SK .
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Proposition 2.4. For two nonempty H-hulls K1 ⊂ K2 such that K2/K1 ∩ [cK1 , dK1 ] 6= ∅, we
have |cK1 − cK2 |, |dK1 − dK2 | ≤ 4 diam(K2/K1).

Proof. It suffices to estimate |cK1 − cK2 |. Let ∆K = K2/K1. Let c′1 = limx↑aK2
gK1(x). Since

gK1 maps H \ K2 onto H \ ∆K, we have c′1 = min{cK1 , a∆K}. Since ∆K ∩ [cK1 , dK1 ] 6= ∅,
c′1 ≥ c1 − diam(∆K). Thus, by Proposition 2.3,

cK2 = lim
x↑aK2

g∆K ◦ gK1(x) = lim
y↑c′1

g∆K(y) ≥ c′1 − 3 diam(∆K) ≥ cK1 − 4 diam(∆K).

By Proposition 2.1, cK2 ≤ cK1 . So we get |cK1 − cK2 | ≤ 4 diam(∆K).

The following proposition follows immediately from Proposition 3.42 of [5].

Proposition 2.5. Suppose K0,K1,K2 are H-hulls such that K0 ⊂ K1 ∩K2. Then

hcap(K1) + hcap(K2) ≥ hcap(Hull(K1 ∪K2)) + hcap(K0).

Let ŵ ∈ C([0, T ),R) for some T ∈ (0,∞]. The chordal Loewner equation driven by ŵ is

∂tgt(z) =
2

gt(z)− ŵ(t)
, 0 ≤ t < T ; g0(z) = z.

For every z ∈ C, let τz be the first time that the solution g·(z) blows up; if such time does not
exist, then set τz = ∞. For t ∈ [0, T ), let Kt = {z ∈ H : τz ≤ t}. It turns out that each Kt

is an H-hull with hcap(Kt) = 2t, Kdoub
t = {z ∈ C : τz ≤ t}, which is connected, and each gt

agrees with gKt . We call gt and Kt the chordal Loewner maps and hulls, respectively, driven
by ŵ. We will write hcap2(K) for hcap(K)/2. So hcap2(Kt) = t for all t.

If for every t ∈ [0, T ), fKt is well defined, and η(t) := fKt(ŵ(t)), 0 ≤ t < T , is continuous
in t, then we say that η is the chordal Loewner curve driven by ŵ. Such η may not exist in
general. When it exists, we have η(0) = ŵ(0) ∈ R, and Kt = Hull(η([0, t])) for all t, and we say
that Kt, 0 ≤ t < T , are generated by η.

Let u be a continuous and strictly increasing function on [0, T ). Let v be the inverse of
u−u(0). Suppose that gut and Ku

t , 0 ≤ t < T , satisfy that guv(t) and Ku
v(t), 0 ≤ t < u(T )−u(0),

are chordal Loewner maps and hulls, respectively, driven by ŵ ◦ v. Then we say that gut and
Ku
t , 0 ≤ t < T , are chordal Loewner maps and hulls, respectively, driven by ŵ with speed

du, and call (Ku
v(t)) the normalization of (Ku

t ). If (Ku
t ) are generated by a curve ηu, i.e.,

Ku
t = Hull(ηu([0, t])) for all t, then ηu is called a chordal Loewner curve driven by ŵ with speed

du, and ηu ◦ v is called the normalization of ηu. If u is absolutely continuous with u′
ae
= q, then

we also say that the speed is q. In this case, the chordal Loewner maps satisfy the differential
equation ∂tg

u
t (z)

ae
= 2q(t)

gut −ŵ(t) . We omit the speed when it is constant 1.

The following proposition is straightforward.
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Proposition 2.6. Suppose Kt, 0 ≤ t < T , are chordal Loewner hulls driven by ŵ(t), 0 ≤ t < T ,
with speed du. Then for any t0 ∈ [0, T ), Kt0+t/Kt0, 0 ≤ t < T − t0, are chordal Loewner hulls
driven by ŵ(t0 + t), 0 ≤ t < T − t0, with speed du(t0 + t). One immediate consequence is that,
for any t1 < t2 ∈ [0, T ), Kt2/Kt1 is connected.

The following proposition is a slight variation of Lemma 4.13 of [5].

Proposition 2.7. Suppose Kt, 0 ≤ t < T , are chordal Loewner hulls driven by ŵ(t), 0 ≤ t < T ,
with speed du. Then for any 0 ≤ t < T ,

radŵ(0)(Kt) ≤ 4 max{
√
u(t)− u(0), radŵ(0)(ŵ([0, t]))}.

The following proposition is a slight variation of Theorem 2.6 of [7].

Proposition 2.8. The H-hulls Kt, 0 ≤ t < T , are chordal Loewner hulls with some speed if
and only if for any fixed a ∈ [0, T ), limδ↓0 sup0≤t≤a diam(Kt+δ/Kt) = 0. Moreover, the driving

function ŵ satisfies that {ŵ(t)} =
⋂
δ>0Kt+δ/Kt, 0 ≤ t < T ; and the speed is du, where we

may take u(t) = hcap2(Kt), 0 ≤ t < T .

Proposition 2.9. Suppose Kt, 0 ≤ t < T , are chordal Loewner hulls driven by ŵ with some
speed. Then for any t0 ∈ (0, T ), cKt0 ≤ ŵ(t) ≤ dKt0 for all t ∈ [0, t0].

Proof. Let t0 ∈ (0, T ). If 0 ≤ t < t0, by Propositions 2.1 and 2.8, ŵ(t) ∈ [aKt0/Kt , bKt0/Kt ] ⊂
[cKt0/Kt , dKt0/Kt ] ⊂ [cKt0 , dKt0 ]. By the continuity of ŵ, we also have ŵ(t0) ∈ [cKt0 , dKt0 ].

The following proposition combines [11, Lemma 2.5] and [10, Lemma 3.3].

Proposition 2.10. Suppose ŵ ∈ C([0, T ),R) generates a chordal Loewner curve η and chordal
Loewner hulls Kt, 0 ≤ t < T . Then the set of times {t ∈ [0, T ) : η(t) ∈ R} has Lebesgue
measure zero. Moreover, if the Lebesgue measure of η([0, T )) ∩ R is zero, then the functions
c(t) and d(t) defined by c(t) := cKt and d(t) := dKt, 0 < t < T , and c(0) = d(0) := ŵ(0)
are absolutely continuous with c′(t)

ae
= 2

c(t)−ŵ(t) and d′(t)
ae
= 2

d(t)−ŵ(t) , and are decreasing and

increasing, respectively. Moreover, c(t) and d(t) are continuously differentiable at the set of
times t such that η(t) 6∈ R, and in that case “

ae
=” can be replaced by “=”.

Definition 2.11. (i) Modified real line: For w ∈ R, we define Rw = (R \ {w}) ∪ {w−, w+},
which has a total order endowed from R and the relation x < w− < w+ < y for any
x, y ∈ R such that x < w and y > w. It has a topology such that (−∞, w) ∪ {w−} and
{w+} ∪ (w,∞) are two connected components, and the natural projection πw : Rw → R
with πw(w±) = w and πw(x) = x for x ∈ R \ {w} induces homeomorphisms between the
two components and (−∞, w] and [w,∞), respectively.
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(ii) Modified Loewner map: Let K be an H-hull and w ∈ R. Let awK = min{w, aK}, bwK =
max{w, bK}, cwK = limx↑awK gK(x), and dwK = limx↓bwK gK(x). They are all equal to w if
K = ∅. Define gwK on Rw ∪ {+∞,−∞} such that gwK(±∞) = ±∞, gwK(x) = gK(x) if
x ∈ R \ [awK , b

w
K ]; gwK(x) = cwK if x = w− or x ∈ [awK , b

w
K ] ∪ (−∞, w); and gwK(x) = dwK if

x = w+ or x ∈ [awK , b
w
K ] ∩ (w,∞). Note that gwK is continuous and increasing.

Proposition 2.12. Let K1 ⊂ K2 be two H-hulls. Let w ∈ R and w̃ ∈ [cwK1
, dwK1

]. Then

gw̃K2/K1
◦ gwK1

(x) = gwK2
(x), ∀x ∈ Rw ∪ {+∞,−∞}. (2.2)

Here if w̃ = gwK1
(x), then we understand gw̃K2/K1

◦ gwK1
(x) as gw̃K2/K1

(w̃+) = dw̃K2/K1
if x > w,

and as gw̃K2/K1
(w̃−) = cw̃K2/K1

if x < w.

Proof. By symmetry, we may assume that x > w. Note that both sides of (2.2) are continuous
on {w+} ∪ (w,∞]. If x > bwK2

, then x > max{bwK1
, bK2}, which implies that gwK1

(x) = gK1(x) >

max{dwK1
, bK2/K1

} ≥ bw̃K2/K1
. Thus, gw̃K2/K1

◦ gwK1
(x) = gK2/K1

◦ gK1(x) = gK2(x) = gwK2
(x) on

(bwK2
,∞). We know that gwK2

is constant on {w+} ∪ (w, bwK2
]. To prove that (2.2) holds for all

x > w, by continuity, it suffices to show that the LHS of (2.2) is constant on {w+} ∪ (w, bwK2
].

Since gwK1
is constant on {w+} ∪ (w, bwK1

], if bwK1
= bwK2

, then the proof is done. Suppose
bwK1

< bwK2
. In this case, we have bK1 , w < bwK2

= bK2 . So gwK1
maps {w+} ∪ (w, bwK2

] onto

[dwK1
, bK2/K1

], which is in turn mapped by gw̃K2/K1
to a constant because w̃ ≤ dwK1

.

Proposition 2.13. Let Kt and η(t), 0 ≤ t < T , be chordal Loewner hulls and curve driven
by ŵ with speed q. Suppose the Lebesgue measure of η([0, T )) ∩ R is 0. Let w = ŵ(0), and
x ∈ Rw. Define X(t) = gwKt(x), 0 ≤ t < T . Then X is absolutely continuous and satisfies the

differential equation X ′(t)
ae
= 2q(t)

X(t)−ŵ(t) on [0, T ); if x > w (resp. x < w), then X(t) ≥ ŵ(t)

(resp. X(t) ≤ ŵ(t)) on [0, T ), and so is increasing (resp. decreasing) on [0, T ). Moreover, for
any 0 ≤ t1 < t2 < T , |X(t1)−X(t2)| ≤ 4 diam(Kt2/Kt1).

Proof. We may assume that the speed q is constant 1. By symmetry, we may assume that
x ∈ (−∞, w−]. If x = w−, then X(t) = cKt for t > 0 and X(0) = ŵ(0). Then the conclusion
follows from Propositions 2.4 and 2.10. Now suppose x ∈ (−∞, w).

Fix 0 ≤ t1 < t2 < T . We first prove the upper bound for |X(t1) − X(t2)|. There are
three cases. Case 1. x 6∈ Ktj , j = 1, 2. In this case, X(t2) = gKt2/Kt1 (X(t1)), and the upper

bound for |X(t1) −X(t2)| follows from Proposition 2.3. Case 2. x ∈ Kt1 ⊂ Kt2 . In this case
X(tj) = cKtj , j = 1, 2, and the conclusion follows from Proposition 2.4. Case 3. x 6∈ Kt1 and

x ∈ Kt2 . Then X(t1) = gKt1 (x0) < cKt1 and X(t2) = cKt2 . Moreover, we have τx ∈ (t1, t2],

limt↑τx X(t) = ŵ(τx), and X(t) satisfies the differential equation X ′(t) = 2
X(t)−ŵ(t) < 0 on

[t1, τx). From Propositions 2.9 and 2.1 we know that X(t1) ≥ ŵ(τx) ≥ cKτx ≥ cKt2 = X(t2).
Since cKt1 > X(t1) ≥ X(t2) = cKt2 , we have |X(t1)−X(t2)| ≤ |cKt1 − cKt2 | ≤ 4 diam(Kt2/Kt1)
by Propositions 2.4. So X is continuous on [0, T ).
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Since X(t) = gKt(x) satisfies the chordal Loewner equation driven by ŵ up to τx, we know
that X ′(t) = 2

X(t)−ŵ(t) on [0, τx). From Proposition 2.10 we know that X ′(t)
ae
= 2

X(t)−ŵ(t)

on (τx, T ).The differential equation on [0, T ) then follows from the continuity of X. Since
X(t) ≤ cK(t) ≤ ŵ(t) by Proposition 2.9, it is decreasing on [0, T ).

2.2 Chordal SLEκ and 2-SLEκ

If ŵ(t) =
√
κB(t), 0 ≤ t < ∞, where κ > 0 and B(t) is a standard Brownian motion, then

the chordal Loewner curve η driven by ŵ is known to exist (cf. [16]), and is called a chordal
SLEκ curve in H from 0 to ∞. In fact, we have η(0) = 0 and limt→∞ η(t) =∞. The behavior
of η depends on κ: if κ ∈ (0, 4], η is simple and intersects R at 0; if κ ≥ 8, η is space-filling,
i.e., H = η(R+); if κ ∈ (4, 8), η is neither simple nor space-filling. If D is a simply connected
domain with two distinct marked boundary points (or more precisely, prime ends) a and b, the
chordal SLEκ curve in D from a to b is defined to be the conformal image of a chordal SLEκ
curve in H from 0 to ∞ under a conformal map from (H; 0,∞) onto (D; a, b).

For any κ > 0, chordal SLEκ satisfies conformal invariance and Domain Markov Property
(DMP). The DMP means that if η is a chordal SLEκ curve in D from a to b, and T is a stopping
time, then conditionally on the part of η before T and the event that η does not reach b at
the time T , the part of η after T is a chordal SLEκ curve from η(T ) to b in the connected
component of D \ η([0, T ]) that has b on its boundary.

We will focus on the range κ ∈ (0, 8) so that SLEκ is non-space-filling. One remarkable
property of these chordal SLEκ is its reversibility: the time-reversal of a chordal SLEκ curve in
D from a to b is a chordal SLEκ curve in D from b to a, up to a time-change ([27, 9]). Another
fact that is important to us is the existence of 2-SLEκ. Let D be a simply connected domain
with distinct boundary points a1, b1, a2, b2 such that a1 and b1 together do not separate a2 from
b2 on ∂D (and vice versa). A 2-SLEκ in D with link pattern (a1 ↔ b1; a2 ↔ b2) is a pair of
random curves (η1, η2) in D such that for j = 1, 2, ηj connects aj with bj , and conditionally
on η3−j , ηj is a chordal SLEκ curve in the connected component of D \ η3−j whose boundary
contains aj and bj . Because of reversibility, we do not need to specify the orientation of η1 and
η2. If we want to emphasize the orientation, then we use an arrow like a1 → b1 in the link
pattern. The existence of 2-SLEκ was proved in [3] for κ ∈ (0, 4] using Brownian loop measure
and in [11, 9] for κ ∈ (4, 8) using flow line theory. The uniqueness of 2-SLEκ (for a fixed domain
and link pattern) was proved in [10] (for κ ∈ (0, 4]) and [12] (for κ ∈ (4, 8)) using an ergodicity
argument.

2.3 SLEκ(ρ) processes

First introduced in [8], SLEκ(ρ) processes are natural variations of SLEκ, where one keeps track
of additional marked points, often called force points, which may lie on the boundary or interior.
For the generality needed here, all force points will lie on the boundary. In this subsection, we
review the definition and properties of SLEκ(ρ) developed in [11].

Let n ∈ N, κ > 0, ρ = (ρ1, . . . , ρn) ∈ Rn. Let w ∈ R and v = (v1, . . . , vn) ∈ Rnw. The chordal
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SLEκ(ρ) process in H started from w with force points v is the chordal Loewner process driven
by the function ŵ(t), which drives chordal Loewner maps gt and hulls Kt, and solves the SDE

dŵ(t)
ae
=
√
κdB(t) +

n∑
j=1

ρj
ŵ(t)− v̂j(t)

dt, ŵ(0) = w,

where B(t) is a standard Brownian motion, and for each j, v̂j(t) = gwKt(vj), 0 ≤ t < T . Here we
use Definition 2.11. In order for the existence of the solution, we require that for σ ∈ {+,−},∑

j:vj=wσ
ρj > −2. If this holds, then the solution exists uniquely up to the first time (called

a continuation threshold) that
∑

j:v̂j(t)=cKt
ρj ≤ −2 or

∑
j:v̂j(t)=dKt

ρj ≤ −2, whichever comes

first. If a continuation threshold does not exist, then the lifetime is ∞. Each v̂j(t) is called

the force point function started from vj . It satisfies the differential equation v̂j
ae
= 2

v̂j−ŵ , and is

monotonically increasing or decreasing depending on whether vj > w or vj < w.
Using Proposition 2.13 we easily get the following proposition.

Proposition 2.14. The chordal Loewner process driven by ŵ, 0 ≤ t < T , with hulls Kt, is
a chordal SLEκ(ρ1, . . . , ρn) process with force points (v1, . . . , vn) if and only if u(t) := ŵ(t) +∑n

j=1
ρj
2 g

ŵ(0)
Kt

(vj) is a local martingale with 〈u〉t = κt up to T .

A chordal SLEκ(ρ) process generates a chordal Loewner curve η in H started from w up
to the continuation threshold. If no force point is swallowed by the process at any time, this
fact follows from the existence of chordal SLEκ curve and Girsanov Theorem. The existence
of the curve in the general case was proved in [11]. From Proposition 2.12 we know that
the chordal SLEκ(ρ) curve η satisfies the following DMP. If τ is a stopping time for η, then
conditionally on the process before τ and the event that τ is less than the lifetime T , ŵ(τ + t)
and v̂j(τ + t), 1 ≤ j ≤ n, 0 ≤ t < T − τ , are the driving function and force point functions
for a chordal SLEκ(ρ) curve ητ started from ŵ(τ) with force points at v̂1(τ), . . . , v̂n(τ), and
η(τ + ·) = fK(τ)(η

τ ), where K(τ) := Hull(η([0, τ ])). Here if v̂j(τ) = ŵ(τ), then v̂j(τ) as a force
point is treated as ŵ(τ)+ if vj ≥ w+, or ŵ(τ)− if vj ≤ w−.

We now relabel the force points v1, . . . , vn by v−n− ≤ · · · ≤ v
−
1 < w < v+

1 ≤ · · · ≤ v+
n+

, where

n− + n+ = n (n− or n+ could be 0). Then for any t in the life period, v̂−n−(t) ≤ · · · ≤ v̂−1 (t) ≤
ŵ(t) ≤ v̂+

1 (t) ≤ · · · ≤ v̂+
n+

(t). If for any σ ∈ {−,+} and 1 ≤ k ≤ nσ,
∑k

j=1 ρ
σ
j > −2, then

the process will never reach a continuation threshold, and so its lifetime is ∞, in which case
limt→∞ η(t) = ∞. If for some σ ∈ {+,−} and 1 ≤ k ≤ nσ,

∑k
j=1 ρ

σ
j ≥ κ

2 − 2, then η does not
hit vσk and the open interval between vσk and vσk+1 (vσnσ+1 := σ · ∞). If κ ∈ (0, 8) and for any

σ ∈ {+,−} and 1 ≤ k ≤ nσ,
∑k

j=1 ρ
σ
j >

κ
2 − 4, then for every x ∈ R \ {w}, a.s. η does not visit

x, which implies by Fubini Theorem that a.s. η ∩ R has Lebesgue measure zero.
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2.4 Intermediate SLEκ(ρ) processes

For a, b, c ∈ C such that c 6∈ {0,−1,−2, · · · }, the hypergeometric function 2F1(a, b; c; z) (cf.
[14]) is defined by the Gauss series

2F1(a, b; c; z) =

∞∑
n=0

(a)n(b)n
(c)nn!

zn,

on the disc {|z| < 1}, where (a)n is rising factorial: (a)0 = 1 and (a)n = a(a+ 1) · · · (a+ n− 1)
if n ≥ 1. We will use the following properties in this paper.

(F1) If Re(c− a− b) > 0, then limx↑1 2F1(a, b; c;x) = Γ(c−a−b)Γ(c)
Γ(c−a)Γ(c−b) .

(F2) Euler transform: 2F1(a, b; c; z) = (1− z)c−a−b 2F1(c− a, c− b; c; z).

(F3) Derivative: d
dz 2F1(a, b; c; z) = ab

c 2F1(a+ 1, b+ 1; c+ 1; z).

(F4) F := 2F1(a, b; c; ·) satisfies the hypergeometric differential equation:

z(1− z)F ′′(z)− [(a+ b+ 1)z − c]F ′(z)− abF (z) = 0. (2.3)

Let κ ∈ (0, 8) and ρ > max{−2, κ2 − 4}. Let a = 2ρ
κ , b = 1− 4

κ , c = 2ρ+4
κ . Define

Fκ,ρ(x) = 2F1(a, b; c;x) = 2F1

(2ρ

κ
, 1− 4

κ
;
2ρ+ 4

κ
;x
)
.

Proposition 2.15. For κ ∈ (0, 8) and ρ > max{−2, κ2 − 4}, Fκ,ρ extends continuously to [0, 1]
such that Fκ,ρ is positive on [0, 1].

Proof. The assumptions on κ and ρ imply that c, c− a, c− b, c− a− b > 0. By Euler transform
and the Gauss series for 2F1(c− a, c− b; c;x), Fκ,ρ(x) = (1− x)c−a−b 2F1(c− a, c− b; c;x) > 0
on [0, 1). By (F1), Fκ,ρ is continuous and positive on [0, 1].

Let G̃κ,ρ(x) = κx
F ′κ,ρ(x)

Fκ,ρ(x) + ρ, which is well defined on [0, 1).

Definition 2.16. Let κ ∈ (0, 8) and ρ > max{−2, κ2 − 4}. Let w ∈ R, and v1 ≤ v2 ∈
{w+}∪ (w,∞)∪{+∞} or v1 ≥ v2 ∈ {w−}∪ (−∞, w)∪{−∞}. Suppose ŵ(t), 0 ≤ t <∞, solves
the following SDE with initial value ŵ(0) = w:

dŵ(t)
ae
=
√
κdB(t) +

( 1

ŵ(t)− v̂1(t)
− 1

ŵ(t)− v̂2(t)

)
G̃κ,ρ

( ŵ(t)− v̂1(t)

ŵ(t)− v̂2(t)

)
dt,

where B(t) is a standard Brownian motion, v̂j(t) = gwKt(vj), j = 1, 2, and Kt are chordal
Loewner hulls driven by ŵ. Here we use the symbols in Definition 2.11. The chordal Loewner
curve driven by ŵ is called an intermediate SLEκ(ρ), or simply iSLEκ(ρ), curve in H from w to
∞ with force points v1, v2. We call vj(t) the force point function started from vj , j = 1, 2. A
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force point v1 or v2 taking value w± or ±∞ is called a degenerate force point. Via a conformal
map, one can define an iSLEκ(ρ) curve in a simply connected domain D from one prime end
w1 to another prime end w2 with two force points v1 and v2 such that w1, v1, v2, w2 are oriented
counterclockwise or clockwise, and vj may be immediately next to wj , j = 1, 2.

Remark 2.17. There are some degenerate cases. If v1 = v2, then the iSLEκ(ρ) reduces to
a chordal SLEκ with no force points. If v2 = ±∞, then the iSLEκ(ρ) reduces to the chordal
SLEκ(ρ) with the force point at v1. By (2.2) an iSLEκ(ρ) process also satisfies DMP as a chordal
SLEκ(ρ) process does. If τ is a finite stopping time for an iSLEκ(ρ) curve η in H with driving
function ŵ and force point functions v̂1 and v̂2, then conditionally on the part of η before τ ,
there is an iSLEκ(ρ) curve ητ in H from ŵ(τ) to ∞ with force points v̂1(τ), v̂2(τ) such that
η(τ + ·) = fK(τ)(η

τ ), where K(τ) = Hull(η([0, τ ])). Here if v̂j(τ) = ŵ(τ), then v̂j(τ) as a force
point is treated as ŵ(τ)+ if vj ≥ w+, or ŵ(τ)− if vj ≤ w−. In the case κ > 4, η swallows v2 at
some finite time τ , at which v̂2(τ) = v̂1(τ), so the DMP tells us that the remaining part of η is
a chordal SLEκ curve in the remaining domain.

Using the standard argument in [19], we obtain the following proposition describing an
iSLEκ(ρ) curve in H in the chordal coordinate in the case that the target is not ∞.

Proposition 2.18. Let w0 6= w∞ ∈ R. Let v1 ∈ Rw0 ∪{∞}\{w∞} and v2 ∈ Rw∞ ∪{∞}\{w0}
be such that the cross ratio R := (w0−v1)(w∞−v2)

(w0−v2)(w∞−v1) ∈ {0
+} ∪ (0, 1). Let κ ∈ (0, 8) and ρ >

max{−2, κ2 − 4}. Let η̂ be an iSLEκ(ρ) curve in H from w0 to w∞ with force points at v1, v2.
Stop η̂ at the first time that it separates w∞ from ∞, and parametrize the stopped curve by
H-capacity. Then the new curve, denoted by η, is the chordal Loewner curve driven by some
function ŵ0, which satisfies the following SDE with initial value ŵ0(0) = w0:

dŵ0(t)
ae
=
√
κdB(t) +

κ− 6

ŵ0(t)− ŵ∞(t)
dt

+
( 1

ŵ(t)− v̂1(t)
− 1

ŵ(t)− v̂2(t)

)
· G̃κ,ρ

((ŵ0(t)− v̂1(t))(v̂2(t)− ŵ∞(t))

(ŵ0(t)− v̂2(t))(v̂1(t)− ŵ∞(t))

)
dt,

where B(t) is a standard Brownian motion, ŵ∞(t) = gKt(w∞) and v̂j(t) = gw0
Kt

(vj), j = 1, 2,
and Kt are the chordal Loewner hulls driven by ŵ0.

Definition 2.19. We call the η in Proposition 2.18 an iSLEκ(ρ) curve in H from w0 to w∞
with force points at v1, v2, in the chordal coordinate; call ŵ0 the driving function; and call ŵ∞,
v̂1 and v̂2 the force point functions started from w∞, v1 and v2, respectively.

Proposition 2.20. We adopt the notation in the last proposition. Let T be the first time that
w∞ or v2 is swallowed by the hulls. Note that |ŵ0− ŵ∞|, |v̂1− v̂2|, ŵ0− v̂2|, and |ŵ∞− v̂1| are
all positive on [0, T ). We define M on [0, T ) by

M = |ŵ0 − ŵ∞|
8
κ
−1|v̂1 − v̂2|

ρ(2ρ+4−κ)
2κ |ŵ0 − v̂2|

2ρ
κ |ŵ∞ − v̂1|

2ρ
κ Fκ,ρ

((ŵ0 − v̂1)(ŵ∞ − v̂2)

(ŵ0 − v̂2)(ŵ∞ − v̂1)

)−1
.
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Then (M(t)) is a positive local martingale, and if we tilt the law of η by M , then we get the
law of a chordal SLEκ(2, ρ, ρ) curve in H started from w0 with force points w∞, v1 and v2,
respectively. More precisely, if τ < T is a stopping time such that M is uniformly bounded
on [0, τ ], then E[M(τ)/M(0)] = 1, and if we weight the underlying probability measure by the
weight M(τ)/M(0), then the law of η stopped at the time τ under the new measure is that of a
chordal SLEκ(2, ρ, ρ) curve in H started from w0 with force points w∞, v1 and v2, respectively,
stopped at the time τ .

Proof. This follows from some straightforward applications of Itô’s formula and Girsanov The-
orem, where we use (2.3), Propositions 2.13 and 2.18. Actually, the calculation will be simpler
if we tilt the law of a chordal SLEκ(2, ρ, ρ) curve by M−1 to get an iSLEκ(ρ) curve.

An iSLEκ(2) process was called a hypergeometric SLEκ, abbreviated as hSLEκ, in [20]. It is
important because of its connection with 2-SLEκ: if (η1, η2) is a 2-SLEκ in D with link pattern
(a1 → b1; a2 → b2), then for j = 1, 2, the marginal law of ηj is that of an hSLEκ curve in D from
aj to bj with force points b3−j and a3−j (cf. [20, Proposition 6.10]). For other ρ, an iSLEκ(ρ)
process was called hSLEκ(ν) in [20], where ν = ρ− 2.

It was proved in [25] that iSLEκ(ρ) satisfies reversibility for κ ∈ (0, 4) and ρ ≥ κ
2 − 2,

i.e., the time-reversal of an iSLEκ(ρ) curve in D from w1 to w2 with force points v1 and v2

is an iSLEκ(ρ) curve in D from w2 to w1 with force points v2 and v1. If both v1 and v2 are
degenerate, we get the reversibility of a chordal SLEκ(ρ) curve with one degenerate force point.
If v1 is non-degenerate and v2 is degenerate, then we find that the time-reversal of a chordal
SLEκ(ρ) curve with one non-degenerate force point, is an iSLEκ(ρ) curve with one degenerate
force point and one non-degenerate force point. If κ = 4, since F4,ρ ≡ 1, an iSLE4(ρ) is just
a chordal SLE4(ρ,−ρ), whose reversibility was proved earlier in [26] for ρ ≥ 4

2 − 2 = 0. Miller
and Sheffield proved ([10, 9]) that chordal SLEκ(ρ) with one or two degenerate force point(s)
satisfies reversibility for κ ∈ (0, 4) and ρ > −2, or κ ∈ (4, 8) and ρ ≥ κ

2 − 4. But they did not
give a description of the time-reversal of a chordal SLEκ(ρ) with one or two non-degenerate
force points. Wu recently proved ([20]) that for κ ∈ (4, 8) and ρ ≥ κ

2 − 2, a non-degenerate
iSLEκ(ρ) curve also satisfies reversibility. She derived this result by showing that the law of
such iSLEκ(ρ) can be obtained by weighting a chordal SLEκ by some power of the boundary
excursion kernel at the two force points in one complement domain of the whole chordal SLEκ
curve, and using the reversibility of chordal SLEκ derived in [9] for κ ∈ (4, 8). By letting the
force points tend to the endpoints, one can easily obtain the reversibility of iSLEκ(ρ) with one
or two degenerate force points. Wu conjectured that the reversibility of iSLEκ(ρ) also holds for
κ ∈ (0, 8) and ρ ∈ (max{−2, κ2 − 4}, κ2 − 2). As said before, this was proved for κ ∈ (0, 4] and
ρ ≥ κ

2−2. In fact, the proofs in [25] and [26] also works in the case κ ∈ (0, 4] and ρ ∈ (−2, κ2−2)
without any modification. The proposition below combines these known results.

Proposition 2.21. Let κ ∈ (0, 4] and ρ > −2 or κ ∈ (4, 8) and ρ ≥ κ
2 − 2. Let η be an

iSLEκ(ρ) curve in a simply connected domain D from w0 to w∞ with force points v1 and v2.
Then after a time change, the time-reversal of η becomes an iSLEκ(ρ) curve in D from w∞ to
w0 with force point v2 and v1. Here if both force points are degenerate, the statement becomes
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the reversibility of a degenerate chordal SLEκ(ρ); when only one force point is degenerate, the
statement is about the time-reversal of a non-degenerate chordal SLEκ(ρ).

2.5 Two-parameter stochastic processes

In this subsection we briefly recall the framework used in [22, Section 2.3]. We assign a partial
order ≤ to R2

+ = [0,∞)2 such that t = (t+, t−) ≤ (s+, s−) = s iff t+ ≤ s+ and t− ≤ s−.
It has a minimal element 0 = (0, 0). We write t < s if t+ < s+ and t− < s−. We define
t∧ s = (t1 ∧ s1, t2 ∧ s2). Given t, s ∈ R2

+, we define [t, s] = {r ∈ R2
+ : t ≤ r ≤ s}. Let e+ = (1, 0)

and e− = (0, 1). So (t+, t−) = t+e+ + t−e−. We introduce an extra element ∞ = (∞,∞) and
understand that ∞ > t for any t ∈ R2

+.

Definition 2.22. Let Ft, t ∈ R2
+, be a family of σ-algebras on a measurable space Ω such

that Ft ⊂ Fs whenever t ≤ s. Then we call (Ft)t∈R2
+

an R2
+-indexed filtration on Ω. Let

F (+)
t =

⋂
s>tFs, t ∈ R2

+. Then we call (F (+)
t )t∈R2

+
the right-continuous augmentation of

(Ft)t∈R2
+

. We say that (Ft) is right-continuous if F (+)
t = Ft for all t ∈ R2

+. A family of random

variables (X(t))t∈R2
+

defined on Ω is called an (Ft)-adapted process if for any t ∈ R2
+, X(t) is

Ft-measurable. It is called continuous if t 7→ X(t) is sample-wise continuous.

Definition 2.23. A random map T : Ω→ R2
+ ∪ {∞} is called an extended (Ft)t∈R2

+
-stopping

time if for any deterministic t ∈ R2
+, {T ≤ t} ∈ Ft. If T does not take value∞, then we remove

the term “extended”. For an extended (Ft)-stopping time T , we define a new σ-algebra FT by
FT = {A ∈ F : A ∩ {T ≤ t} ∈ Ft,∀t ∈ R2

+}. The stopping time T is called bounded if there is
a deterministic t ∈ R2

+ such that T ≤ t.

Proposition 2.24. Let (Ft)t∈R2
+

be an R2
+-indexed filtration with the right-continuous augmen-

tation (F (+)
t ). Then the right-continuous augmentation of (F (+)

t ) is itself. Thus, (F (+)
t ) is right-

continuous. A random map T is an extended (F (+)
t )-stopping time if and only if {T < t} ∈ Ft

for any t ∈ R2
+; and for such T , A ∈ F (+)

T if and only if A ∩ {T < t} ∈ Ft for any t ∈ R2
+. If

(Tn)n∈N is a decreasing sequence of extended (F (+)
t )-stopping times, then T := infn T

n is also

an extended (F (+)
t )-stopping time, and F (+)

T =
⋂
nF

(+)
Tn .

Proof. This follows from the same arguments that were used to prove similar statements about
the right-continuous R+-indexed filtrations.

Definition 2.25. A relatively open subsetR of R2
+ is called a history complete region, or simply

an HC region, if for any t ∈ R, we have [0, t] ⊂ R. Given an HC region R, for σ ∈ {+,−},
define TRσ : R+ → R+ ∪ {∞} by TRσ (t) = sup{s ≥ 0 : seσ + te−σ ∈ R}, where we set sup ∅ = 0.

A map D from Ω into the space of HC regions is called an (Ft)t∈R2
+

-stopping region if for

any t ∈ R2
+, {ω ∈ Ω : t ∈ D(ω)} ∈ Ft. A random function X(t) with a random domain D

is called an (Ft)t∈R2
+

-adapted HC process if D is an (Ft)t∈R2
+

-stopping region, and for every

t ∈ R2
+, Xt restricted to {t ∈ D} is Ft-measurable.
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The following propositions are simple extensions of Lemmas 2.7 and 2.9 of [22].

Proposition 2.26. Let T and S be two extended (Ft)t∈R2
+

-stopping times. Then (i) {T ≤ S} ∈
FS; (ii) if S is a constant s ∈ R2

+ or ∞, then {T ≤ S} ∈ FT ; and (iii) if f is an FT -measurable
function, then 1{T≤S}f is FS-measurable. In particular, if T ≤ S, then FT ⊂ FS.

Proposition 2.27. Let (Xt)t∈R2
+

be a continuous (Ft)t∈R2
+

-adapted process. Let T be an ex-

tended (Ft)t∈R2
+

-stopping time. Then XT is FT -measurable on {T ∈ R2
+}.

We will need the following proposition to do localization. The reader should note that for
an (Ft)t∈R2

+
-stopping time T and a deterministic time t ∈ R2

+, T ∧ t may not be an (Ft)t∈R2
+

-

stopping time. This is the reason why we introduce a more complicated stopping time.

Proposition 2.28. Let T be an extended (Ft)t∈R2
+

-stopping time. Fix a deterministic time

t ∈ R2
+. Define T t such that if T ≤ t, then T t = T ; and if T 6≤ t, then T t = t. Then T t

is an (Ft)t∈R2
+

-stopping time bounded above by t, and FT t agrees with FT on {T ≤ t}, i.e.,

{T ≤ t} ∈ FT t ∩ FT , and for any A ⊂ {T ≤ t}, A ∈ FT t if and only if A ∈ FT .

Proof. Clearly T t ≤ t. Let s ∈ R2
+. If t ≤ s, then {T t ≤ s} is the whole space. If t 6≤ s, then

{T t ≤ s} = {T ≤ t} ∩ {T ≤ s} = {T ≤ t∧ s} ∈ Ft∧s ⊂ Fs. So T t is an (Ft)t∈R2
+

-stopping time.

By Proposition 2.26, {T ≤ t} ∈ FT . Suppose A ⊂ {T ≤ t} and A ∈ FT . Let s ∈ R2
+. If

t ≤ s, then A∩{T t ≤ s} = A = A∩{T ≤ t} ∈ Ft ⊂ Fs. If t 6≤ s, then A∩{T t ≤ s} = A∩{T ≤
t ∧ s} ∈ Ft∧s ⊂ Fs. So A ∈ FT t . In particular, {T ≤ t} ∈ FT t . On the other hand, suppose

A ⊂ {T ≤ t} and A ∈ FT t . Let s ∈ R2
+. If t ≤ s, then A∩ {T ≤ s} = A = A∩ {T t ≤ t} ∈ Ft ⊂

Fs. If t 6≤ s, then A ∩ {T ≤ s} = A ∩ {T ≤ t} ∩ {T ≤ s} = A ∩ {T t ≤ s} ∈ Fs. Thus, A ∈ FT .
So for A ⊂ {T ≤ t}, A ∈ FT t if and only if A ∈ FT .

From now on, we fix a probability measure P on (Ω,F := ∨t∈R2
+
Ft), and let E denote the

corresponding expectation.

Definition 2.29. An (Ft)t∈R2
+

-adapted process (Xt) is called an (Ft)t∈R2
+

-martingale (w.r.t. P)

if for any s ≤ t ∈ R2
+, a.s. E[Xt|Fs] = Xs. If there is X ∈ L1(Ω,F ,P) such that Xt = E[X|Ft],

t ∈ R2
+, then we call (Xt) an X-Doob martingale w.r.t. (Ft).

Proposition 2.30. Let (Ft)t∈R2
+

be an R2
+-indexed filtration, and (F (+)

t ) be its right-continuous

augmentation. Then a continuous (Ft)-martingale is also an (F (+)
t )-martingale.

Proof. Let X be a continuous (Ft)-martingale. Let s ≤ t ∈ R2
+, and A ∈ F (+)

s . Fix ε ∈ R2
+ with

ε > 0. Then A ∈ Fs+ε. From E[X(t+ε)|Fs+ε] = X(s+ε) we get E[1AX(t+ε)] = E[1AX(s+ε)].
By letting ε ↓ 0 and using uniform integrability, we get E[1AX(t)] = E[1AX(s)]. So we get

E[X(t)|F (+)
s ] = X(s), as desired.

The following proposition is Lemma 2.11 of [22].
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Proposition 2.31 (Optional Stopping Theorem). Suppose (Xt)t∈R2
+

is a continuous (Ft)t∈R2
+

-

martingale. Then the following are true. (i) If (Xt) is an X-Doob martingale for some X ∈ L1,
then for any (Ft)t∈R2

+
-stopping time T , XT = E[X|FT ]. (ii) If T ≤ S are two bounded (Ft)t∈R2

+
-

stopping times, then E[XS |FT ] = XT .

The following proposition about the DMP of 2-SLE is Lemma 6.1 of [22].

Proposition 2.32. Let (η+, η−) be a 2-SLEκ in a simply connected domain D with link pattern
(a+ → b+; a− → b−). Suppose, for σ ∈ {+,−}, ησ is parametrized by the H-capacity viewed
from bj (determined by a conformal map from D onto H that takes bj to ∞), and let (Fσt )t≥0 be
the filtration generated by ησ. Note that the lifetime of ησ is ∞ for σ ∈ {+,−}. Let F(t+,t−) =

F+
t+ ∨ F

−
t−, (t+, t−) ∈ R2

+. Let τ = (τ+, τ−) be an (Ft)t∈R2
+

-stopping time. Let Dσ
τ denote the

connected component of D \ (η+([0, τ+])∪ η−([0, τ−])) whose boundary contains bσ, σ ∈ {+,−}.
Then conditionally on Fτ and the event that D+

τ = D−τ =: Dτ and that η+(τ+) 6= η−(τ−),
η+|[τ+,∞] and η−|[τ−,∞] form a 2-SLEκ in DT with link pattern (η+(τ+)→ b+; η−(τ−)→ b−).

2.6 Jacobi polynomials

For α, β > −1, Jacobi polynomials ([14, Chapter 18]) P
(α,β)
n (x), n = 0, 1, 2, 3, . . . , are a class of

classical orthogonal polynomials with respect to the weight Ψ(α,β)(x) := 1(−1,1)(1−x)α(1+x)β.

This means that each P
(α,β)
n (x) is a polynomial of degree n, and for the inner product defined

by 〈f, g〉Ψ(α,β) :=
∫ 1
−1 f(x)g(x)Ψ(α,β)(x)dx, we have 〈P (α,β)

n , P
(α,β)
m 〉Ψ(α,β) = 0 when n 6= m. The

normalization is that P
(α,β)
n (1) = Γ(α+n+1)

n!Γ(α+1) , P
(α,β)
n (−1) = (−1)n Γ(β+n+1)

n!Γ(β+1) , and

‖P (α,β)
n ‖2

Ψ(α,β) =
2α+β+1

2n+ α+ β + 1
· Γ(n+ α+ 1)Γ(n+ β + 1)

n!Γ(n+ α+ β + 1)
. (2.4)

For each n ≥ 0, P
(α,β)
n (x) is a solution of the second order differential equation:

(1− x2)y′′ − [(α+ β + 2)x+ (α− β)]y′ + n(n+ α+ β + 1)y = 0. (2.5)

When max{α, β} > −1
2 , we have an exact value of the supernorm of P

(α,β)
n over [−1, 1]:

‖P (α,β)
n ‖∞ = max{|P (α,β)

n (1)|, |P (α,β)
n (−1)|} =

Γ(max{α, β}+ n+ 1)

n!Γ(max{α, β}+ 1)
. (2.6)

For general α, β > −1, we get an upper bound of ‖P (α,β)
n ‖∞ using (2.6), the exact value of

P
(α,β)
n (1), and the derivative formula d

dxP
(α,β)
n (x) = α+β+n+1

2 P
(α+1,β+1)
n−1 (x) for n ≥ 1:

‖P (α,β)
n ‖∞ ≤

Γ(α+ n+ 1)

n!Γ(α+ 1)
+ (α+ β + n+ 1) · Γ(max{α, β}+ n+ 1)

Γ(n)Γ(max{α, β}+ 2)
. (2.7)
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3 Deterministic Ensemble of Two Chordal Loewner Curves

In this section, we develop a framework about commuting pairs of deterministic chordal Loewner
curves, which will be needed to study the commuting pairs of random chordal Loewner curves
in the next two sections. The major length of this section is caused by the fact that we allow
that the two Loewner curves have intersections. The ensemble without intersections appeared
earlier in [27, 26]. For completeness, we also include a subsection about disjoint ensembles,
where some similar calculation first appeared in [8]. In the last subsection, we describe a way
to grow two curves simultaneously, which is important for the Green’s functions.

3.1 Ensemble with possible intersections

Let w− < w+ ∈ R. Suppose for σ ∈ {+,−}, ησ(t), 0 ≤ t < Tσ, is a chordal Loewner curve (with
speed 1) driven by ŵσ started from wσ, such that η+ does not hit (−∞, w−], and η− does not
hit [w+,∞). Let Kσ(tσ) = Hull(η([0, tσ]), 0 ≤ tσ < Tσ, σ ∈ {+,−}. Then Kσ(·) are chordal
Loewner hulls driven by ŵσ, hcap2(Kσ(tσ)) = tσ, and by Proposition 2.8,

{ŵσ(tσ)} =
⋂
δ>0

Kσ(tσ + δ)/Kσ(tσ), 0 ≤ tσ < Tσ. (3.1)

The corresponding chordal Loewner maps are gKσ(t), 0 ≤ t < Tσ, σ ∈ {+,−}. From the
assumption on η+ and η− we get

aK−(t−) ≤ w− < aK+(t+), bK−(t−) < w+ ≤ bK+(t+), for t+, t− > 0. (3.2)

Since each Kσ(t) is generated by a curve, fKσ(t) is well defined. Let Iσ = [0, Tσ), σ ∈ {+,−},
and for (t+, t−) ∈ I+ × I−, define

K(t+, t−) = Hull(η+([0, t+]) ∪ η−([0, t−])), m(t+, t−) = hcap2(K(t+, t−)). (3.3)

It is obvious that K(·, ·) and m(·, ·) are increasing (may not strictly) in both variables. Let
H(t+, t−) = H \ K(t+, t−). For σ ∈ {+,−}, t−σ ∈ I−σ and tσ ∈ Iσ, define Kσ,t−σ(tσ) =
K(t+, t−)/K−σ(t−σ). Then we have

gK(t+,t−) = gK+,t− (t+) ◦ gK−(t−) = gK−,t+ (t−) ◦ gK+(t+). (3.4)

From (3.2) we get aK(t+,t−) = aK−(t−) if t− > 0, and bK(t+,t−) = bK+(t+) if t+ > 0. Since each
K(t+, t−) is generated by two compact curves, fK(t+,t−) is well defined.

Lemma 3.1. For any t+ ≤ t′+ ∈ I+ and t− ≤ t′− ∈ I−, we have

m(t′+, t
′
−)−m(t′+, t−)−m(t+, t

′
−) + m(t+, t−) ≤ 0. (3.5)

Especially, m is Lipschitz continuous with constant 1 in any variable, and so is continuous on
I+ × I−.
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Proof. Let t+ ≤ t′+ ∈ I+ and t− ≤ t′− ∈ I−. Since K(t′+, t−) and K(t+, t
′
−) together generate

the H-hull K(t′+, t
′
−), and they both contain K(t+, t−), we obtain (3.5) from Proposition 2.5.

The rest statements follow easily from (3.5), the monotonicity of m, and that m(t+, 0) = t+
and m(0, t−) = t− for any t± ∈ I±.

Definition 3.2. Let η±, I±, K±(·), K(·, ·), m(·, ·) be as above. Let D ⊂ I+ × I− be an HC
region as in Definition 2.25. Suppose that there are dense subsets I∗+ and I∗− of I+ and I−,
respectively, such that for any σ ∈ {+,−} and t−σ ∈ I∗−σ, the following two conditions hold:

(I) K(t+, t−)/K−σ(t−σ), 0 ≤ tσ < TDσ (t−σ), are chordal Loewner hulls generated by a chordal
Loewner curve, denoted by ησ,t−σ , with some speed.

(II) ησ,t−σ([0, TDσ (t−σ))) ∩ R has Lebesgue measure zero.

Then we call (η+, η−;D) a commuting pair of chordal Loewner curves, and call K(·, ·) and
m(·, ·) the hull function and the capacity function, respectively, for this pair.

Remark 3.3. Later in Lemma 3.10 we will show that Conditions (I) and (II) hold for all
t−σ ∈ I−σ, σ ∈ {+,−}.

From now on, let (η+, η−;D) be a commuting pair of chordal Loewner curves, and let I∗+
and I∗− be as in Definition 3.2.

Lemma 3.4. K(·, ·) and m(·, ·) restricted to D are strictly increasing in both variables.

Proof. By Condition (I), for any σ ∈ {+,−} and t−σ ∈ I∗−σ, t 7→ K(t−σe−σ + teσ) and
t 7→ m(t−σe−σ + teσ) are strictly increasing on [0, TDσ (t−σ)). By (3.5) and the denseness of
I∗−σ in I−σ, this property extends to any t−σ ∈ I−σ.

In the rest of the section, when we talk aboutK(t+, t−), m(t+, t−), K+,t−(t+) andK−,t+(t−),
it is always implicitly assumed that (t+, t−) ∈ D. So we may now say that K(·, ·) and m(·, ·)
are strictly increasing in both variables.

Lemma 3.5. (i) For (a+, a−) ∈ D and σ ∈ {+,−},

lim
δ↓0

sup
0≤t+≤a+

sup
0≤t−≤a−

diam(Kσ,t−σ(tσ + δ)/Kσ,t−σ(tσ)) = 0.

(ii) For any (a+, a−) ∈ D and σ ∈ {+,−},

lim
δ↓0

sup
0≤tσ≤aσ

sup
t′σ∈(tσ ,tσ+δ)

sup
0≤t−σ≤a−σ

sup
z∈C\Kσ,t−σ (t′σ)doub

|gKσ,t−σ (t′σ)(z)− gKσ,t−σ (tσ)(z)| = 0.

(iii) The map (t+, t−, z) 7→ gK(t+,t−)(z) is continuous on

{(t+, t−, z) : (t+, t−) ∈ D, z ∈ C \K(t+, t−)doub}.
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Proof. (i) By symmetry, it suffices to work on the case σ = +. We may assume that a+ ∈ I∗+
and a− ∈ I∗−. Let r > 0. Since η+ is continuous, there is δ > 0 such that (a+ + δ, a−) ∈ D,
and if t+ ∈ [0, a+], then diam(η+([t+, t+ + δ])) < r. Fix t+ ∈ [0, a+] and t− ∈ [0, a−]. Let
S = {|z − η+(t+)| = r} and ∆η+ = η+([t+, t+ + δ]). Then ∆η+ ⊂ {|z − η+(t+)| < r}. By
Lemma 3.4, there is z∗ ∈ ∆η+ ∩ H(t+, a−) ⊂ H(t+, t−). Since z∗ ∈ {|z − η+(t+)| < r}, the
set S ∩ H(t+, t−) has a connected component, denoted by J , which separates z∗ from ∞ in
H(t+, t−). Such J is a crosscut of H(t+, t−), which divides H(t+, t−) into two domains, where
the bounded domain, denoted by DJ , contains z∗.

Now ∆η+ ∩H(t+, a−) ⊂ H(t+, a−) \ J . We claim that there is one connected component
of H(t+, a−) \ J , denoted by N , such that ∆η+ ∩ H(t+, a−) ⊂ N . Note that J ∩ H(t+, a−)
is a disjoint union of crosscuts, each of which divides H(t+, a−) into two domains. To prove
the claim, it suffices to show that, for each connected component J0 of J ∩H(t+, a−), ∆η+ ∩
H(t+, a−) is contained in exactly one connected component of H(t+, a−) \ J0. Suppose that
this is not true for some J0. Let J ′0 = gK(t+,a−)(J0). Then J ′0 is a crosscut of H, which divides
H into two domains, both of which intersect ∆η̂+ := gK(t+,a−)(∆η+ ∩H(t+, a−)). Since ∆η+

has positive distance from S ⊃ J , and g−1
K(t+,a−)|H extends continuously to H, ∆η̂+ has positive

distance from J ′0. Thus, there is another crosscut J ′′0 of H, which is disjoint from and surrounded
by J ′0, such that the subdomain of H bounded by J ′′0 and J ′0 is disjoint from ∆η̂+. Let the three
connected components of H \ (J ′0 ∪ J ′′0 ) be denoted by D′, A,D′′, respectively, from outside to
inside. Then ∆η̂+ intersects both D′ and D′′, but is disjoint from A.

Let ∆ηs+ = η+([t+, t+ + s]) and ∆η̂s+ = gK(t+,a−)(∆η
s
+ ∩ H(t+, a−)), 0 ≤ s ≤ δ. For

each s ∈ [0, δ], K(t+ + s, a−) is the H-hull generated by K(t+, a−) and ∆ηs+. So K ′+(s) :=
K+,a−(t+ + s)/K+,a−(t+) = K(t+ + s, a−)/K(t+, a−) (by (2.1)) is the H-hull generated by
∆η̂s+. Since A is disjoint from ∆η̂s+, it is either contained in or is disjoint from K ′+(s). Since
a− ∈ I∗−, by Condition (I) and Proposition 2.6, K ′+(s), 0 ≤ s ≤ δ, are chordal Loewner hulls
with some speed, and so the closure of each K ′+(s) is connected. By choosing s small enough,
we can make the diameter of K ′+(s) less than the diameter of A. Then A is not contained in
K ′+(s), and so must be disjoint from K ′+(s). By the connectedness of its closure, K ′+(s) is then
contained in either D′ or D′′. On the other hand, since η̂δ+ intersects both D′ and D′′, K ′+(δ)
does the same thing. Thus, there is s0 ∈ (0, δ) such that for all s ∈ (s0, δ], K

′
+(s) intersects

both D′ and D′′, and for s ∈ [0, s0), K ′+(s) is contained in either D′ or D′′. For s > s0,

because K ′+(s) is connected, K ′+(s) intersects A, and so must contain A. Since H \ K ′+(s) is
connected and unbounded, we get A∪D′′ ⊂ K ′+(s) for s > s0. The hulls K ′+(s), s ∈ [0, s0), are
either all contained in D′′ or all contained in D′. In the former case, hcap(K ′+(s)) ≤ hcap(D′′)
for s < s0, and hcap(K ′+(s)) ≥ hcap(D′′ ∪A) for s > s0, which contradicts the continuity
of s 7→ hcap(K ′+(s)). Suppose the latter case happens. Since ∆η̂δ+ intersects both D′ and
D′′, there is s∗ ∈ (s0, δ] such that η+(t+ + s∗) ∈ H(t+, a−), and gK(t+,a−)(η+(t+ + s1)) ∈ D′′.
By Lemma 3.4, there is a sequence sn ↓ s∗ such that η+(t+ + sn) ∈ H(t+ + s∗, a−). Then
H \ K ′+(s∗) 3 gK(t+,a−)(η+(t+ + sn)) → gK(t+,a−)(η+(t+ + s∗)) ∈ D′′ ∩ K ′+(s∗). But this is
impossible since H \K ′+(s∗) ⊂ D′ and dist(D′, D′′) > 0. The claim is now proved.

Since N ⊂ H(t+, a−) \ J ⊂ H(t+, t−) \ J and N is connected, we know that N is contained
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in one connected component of H(t+, t−) \ J . Since N ⊃ ∆η+ ∩ H(t+, a−) 3 z∗ and z∗ lies
in the connected component DJ of H(t+, t−) \ J , we get ∆η+ ∩ H(t+, a−) ⊂ N ⊂ DJ . Since
∆η+∩H(t+, a−) is dense in ∆η+∩H(t+, t−) (Lemma 3.4), and ∆η+ has positive distance from
J , we get ∆η+ ∩H(t+, t−) ⊂ DJ . Since K(t+ + δ, t−) is the H-hull generated by K(t+, t−) and
∆η+ ∩H(t+, t−), we get K(t+ + δ, t−) \K(t+, t−) ⊂ DJ .

We now write g for gK(t+,t−). From the last paragraph we know that K ′+(δ) is contained
in the subdomain of H bounded by the crosscut g(J). Thus, diam(K ′+(δ)) ≤ diam(g(J)).

Let L = max{|z| : z ∈ K(a+, a−)} < ∞ and R = 2L. From η+(t+) ∈ K(a+, a−), we get
|η+(t+)| ≤ L. Suppose r < L. Then the arc J and the circle {|z − η+(t+)| = R} are separated
by the annulus centered at η+(t+) with inner radius r and outer radius R − L = L. Let
J ′ = {|z − η+(t+)| = R} ∩H and DJ ′ = (H ∩ {|z − η+(t+)| < R}) \K(t+, t−). By comparison
principle ([1]), the extremal length of the curves in DJ ′ that separate J from J ′ is bounded above
by 2π/ log(L/r). By conformal invariance, the extremal length of the curves in the subdomain
of H bounded by the crosscut g(J ′), denoted by Dg(J ′), that separate g(J) from g(J ′) is also
bounded above by 2π/ log(L/r). By Proposition 2.3, g(J ′) ⊂ {|z| ≤ R + 3L = 5L}. So the
Euclidean area of Dg(J ′) is bounded above by 25πL2/2. By the definition of extremal length,
there exists a curve in Ω with Euclidean length less than

2[(2π/ log(L/r)) ∗ (25πL2/2)]1/2 = 10πL ∗ (log(L/r))−1/2,

which separates g(J) from g(J ′}). This implies that the diam(g(J)) is bounded above by
10πL ∗ (log(L/r))−1/2, and so is that of K ′+(δ) = K+,t−(t+ + δ)/K+,t−(t+). For every ε > 0,
there exists r ∈ (0, L) such that 10πL ∗ (log(L/r))−1/2 < ε. Choose δ > 0 for such r. Then we
have diam(K+,t−(t+ + δ)/K+,t−(t+)) < ε. This finishes the proof of (i).

(ii) This follows from (i), Proposition 2.3 and gK±,t∓ (t′±) = gK±,t∓ (t′±)/K±,t∓ (t±) ◦ gK±,t∓ (t±).

(iii) This follows from (ii), (3.4) and the fact that for each (t+, t−) ∈ D, gK(t+,t−) is a

conformal map defined on C \K(t+, t−)doub.

Remark 3.6. From the proof of Lemma 3.5 (i) we find that, for σ ∈ {+,−}, if sσ < tσ ∈ Iσ
and t−σ ∈ I−σ satisfy that (t+, t−) ∈ D, then

diam(Kσ,t−σ(tσ)/Kσ,t−σ(sσ)) ≤ 10πL ∗ log(L/r)−1/2, if r < L,

where L = max{|z| : z ∈ η+([0, t+]) ∪ η−([0, t−])} and r = diam(ησ([sσ, tσ])).

For a function X defined on a subset of I+×I−, σ ∈ {+,−} and tσ ∈ Iσ, we use X|σtσ(t) to
denote the function X(tσeσ + te−σ), which depends on only one variable; and use ∂+X (resp.
∂−X) to denote the partial derivative of X w.r.t. the first (resp. second) variable.

Lemma 3.7. There are two functions W+,W− ∈ C(D,R) such that for any σ ∈ {+,−} and
t−σ ∈ I−σ, Kσ,t−σ(tσ), 0 ≤ tσ < TDσ (t−σ), are chordal Loewner hulls driven by Wσ|−σt−σ with

speed dm |−σt−σ , and for any (t+, t−) ∈ D, ησ(tσ) = fK(t+,t−)(Wσ(t+, t−)).
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Proof. By symmetry, we only need to prove the case that σ = +. Since

hcap2(K+,t−(t+ + δ))− hcap2(K+,t−(t+)) = m(t+ + δ, t−)−m(t+, t−),

by Lemma 3.5 (i) and Proposition we know that, for every t− ∈ I−, K+,t−(t+), 0 ≤ t+ < TD+ (t−),
are chordal Loewner hulls with speed dm(·, t−), and the driving function, denoted by W+(·, t−),
satisfies that ⋂

δ>0

K+,t−(t+ + δ)/K+,t−(t+) = {W+(t+, t−)}, ∀(t+, t−) ∈ D. (3.6)

We now show that fK(t+,t−)(W+(t+, t−)) = η+(t+). Fix (t+, t−) ∈ D. From Lemma 3.4,
we may find a sequence tn+ ↓ t+ such that η+(tn+) ∈ K(tn+, t−) \ K(t+, t−) for all n. Then
we get gK(t+,t−)(η+(tn+)) ∈ K(tn+, t−)/K(t+, t−) = K+,t−(tn+)/K+,t−(t+). From (3.6) we get
gK(t+,t−)(η+(tn+))→W+(t+, t−). From the continuity of fK(t+,t−) and η+, we then get

η+(t+) = lim
n→∞

η+(tn+) = lim
n→∞

fK(t+,t−)(gK(t+,t−)(η+(tn+))) = fK(t+,t−)(W+(t+, t−)).

It remains to show that W+ is continuous on D. As a driving function, it is continuous in
t+. It now suffices to show that for any (a+, a−) ∈ D, the family of functions [0, a−] 3 t− 7→
W+(t+, ·), 0 ≤ t+ ≤ a+, are equicontinuous. Fix (a+, a−) ∈ D, t+ ∈ [0, a+] and t1− < t2− ∈
[0, a−]. By Lemma 3.4, there is a sequence δn ↓ 0 such that zn := η+(t+ + δn) ∈ H(t+, t

2
−).

Then g
K(t+,t

j
−)

(zn) ∈ K(t+ + δn, t
j
−)/K(t+, t

j
−) = K

+,tj−
(t+ + δn)/K

+,tj−
(t+), j = 1, 2. From

(3.6) we get

|W+(t+, t
j
−)− g

K(t+,t
j
−)

(zn)| ≤ diam(K
+,tj−

(t+ + δn)/K
+,tj−

(t+)), j = 1, 2.

Since gK(t+,t2−)(zn) = gK(t+,t2−)/K(t+,t1−) ◦ gK(t+,t1−)(zn), by Proposition 2.3 we get

|gK(t+,t2−)(zn)− gK(t+,t1−)(zn)| ≤ 3 diam(K(t+, t
2
−)/K(t+, t

1
−)) = 3 diam(K−,t+(t2−)/K−,t+(t1−)).

Combining the above displayed formulas and letting n→∞, we get

|W+(t+, t
2
−)−W+(t+, t

1
−)| ≤ 3 diam(K−,t+(t2−)/K−,t+(t1−)),

which together with Lemma 3.4 (i) implies the equicontinuity that we need.

Definition 3.8. We call W+ and W− the driving functions for the commuting pair (η+, η−;D).

Remark 3.9. By (3.6) and Propositions 2.6 and 2.9, for t1+ < t2+ ∈ I+ and t− ∈ I− such that
(t2+, t−) ∈ D,

|W+(t2+, t−)−W+(t1+, t−)| ≤ 4 diam(K+,t−(t2+)/K+,t−(t1+)).

This combined with the last displayed formula in the above proof and Remark 3.6 implies that,
if η+ extends continuously to [0, T+] and η− extends continuously to [0, T−], then W+ and W−
are uniformly continuous on D, and so extend continuously to D.
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Lemma 3.10. For any σ ∈ {+,−} and t−σ ∈ I−σ, the chordal Loewner hulls Kσ,t−σ(tσ) =
K(t+, t−)/K−σ(t−σ), 0 ≤ tσ < TDσ (t−σ), are generated by a chordal Loewner curve, denoted
by ησ,t−σ , which intersects R at a set with Lebesgue measure zero such that ησ|[0,TDσ (t−σ)) =
fK−σ(t−σ) ◦ ησ,t−σ . Moreover, for σ ∈ {+,−}, (t+, t−) 7→ ησ,t−σ(tσ) is continuous on D.

Proof. It suffices to work on the case that σ = +. First we show that there exists a continuous
function (t+, t−) 7→ η+,t−(t+) from D into H such that

η+(t+) = fK−(t−)(η+,t−(t+)), ∀(t+, t−) ∈ D. (3.7)

Let t− ∈ I∗− and (t+, t−) ∈ D. By Lemma 3.4, there is a sequence tn+ ↓ t+ such that for all n,
(tn+, t−) ∈ D and η+(tn+) ∈ H \K(t+, t−). Then we get gK−(t−)(η+(tn+)) ∈ gK−(t−)(K(tn+, t−) \
K(t+, t−)) = K+,t−(tn+)\K+,t−(t+). By Condition (I),

⋂
nK+,t−(tn+) \K+,t−(t+) = {η+,t−(t+)}.

Thus, gK−(t−)(η+(tn+))→ η+,t−(t+). From the continuity of fK−(t−) and η+, we find that (3.7)
holds if t− ∈ I∗−. Thus,

η+,t−(t+) = gK−(t−)(η+(t+)), if (t+, t−) ∈ D, t− ∈ I∗− and η+(t+) ∈ H \K−(t−). (3.8)

Fix a− ∈ I∗−. Let R = {t+ ∈ I+ : (t+, a−) ∈ D, η+(t+) ∈ H \K−(a−)}, which by Lemma 3.4 is
dense in [0, TD+ (a−)). By Propositions 2.3 and 2.8,

lim
δ→0+

sup
t−∈[0,a−]

sup
t′−∈[0,a−]∩(t−−δ,t−+δ)

sup
t+∈R

|gK−(t−)(η+(t+))− gK−(t′−)(η+(t+))| = 0. (3.9)

This combined with (3.8) implies that

lim
δ→0+

sup
t−∈[0,a−]∩I∗−

sup
t′−∈[0,a−]∩I∗−∩(t−−δ,t−+δ)

sup
t+∈R

|η+,t−(t+)− η+,t′−
(t+)| = 0. (3.10)

By the denseness of R in [0, TD+ (a−)) and the continuity of each η+,t− , t− ∈ I∗−, we know
that (3.10) still holds if supt+∈R is replaced by supt+∈[0,TD+ (a−)). Since I∗− is dense in I−, the

continuity of each η+,t− , t− ∈ I∗−, together with (3.10) implies that there exists a continuous
function [0, TD+ (a−))× [0, a−] 3 (t+, t−) 7→ η+,t−(t+) ∈ H, which extends those η+,t− |[0,TD+ (a−)),

t− ∈ I∗− ∩ [0, a−]. Running a− from 0 to T−, we get a continuous function D 3 (t+, t−) 7→
η+,t−(t+) ∈ H, which extends those η+,t− , t− ∈ I∗−. Since η+,t−(t+) = gK−(t−)(η+(t+)) for all
t+ ∈ R and t− ∈ [0, a−] ∩ I∗−, from (3.8,3.9) we know that it is also true for any t− ∈ [0, a−].
Thus, η+(t+) = fK−(t−)(η+,t−(t+)) for all t+ ∈ R and t− ∈ [0, a]. By the denseness of R in

[0, TD+ (a−)) and the continuity of η+, fK−(t−) and η+,t− , we get (3.7) for all t− ∈ [0, a−] and

t+ ∈ [0, TD+ (a−)). Running a− from 0 to T− we then get (3.7) for all (t+, t−) ∈ D.
For (t+, t−) ∈ D, since K(t+, t−) is the H-hull generated by K−(t−) and η+([0, t+]) ∩ (H \

K−(t−)), we see that K+,t−(t+) = gK−(t−)(K(t+, t−) \ K−(t−)) is the H-hull generated by
gK−(t−)(η+([0, t+]) ∩ (H \ K−(t−))) = η+,t−([0, t+]) ∩ H. So K+,t−(t+) = Hull(η+,t−([0, t+])).

By Lemma 3.7, for any t− ∈ [0, T−), η+,t−(t+), 0 ≤ t+ < TD+ (t−), is the chordal Loewner curve
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driven by W+(·, t−) with speed dm(·, t−). So we have η+,t−(t+) = fK+,t− (t+)(W+(t+, t−)),

which together with η+(t+) = fK(t+,t−)(W+(t+, t−)) implies that η+(t+) = fK−(t−)(η+,t−(t+)).
Finally, we show that η+,t− ∩R has Lebesgue measure zero for all t− ∈ I−. Fix t− ∈ I− and

t̂+ ∈ I+ such that (t̂+, t−) ∈ D. It suffices to show that η+,t−([0, t̂+]) ∩ R has Lebesgue
measure zero. There exists a sequence I∗− 3 tn− ↓ t− such that (t̂+, t

n
−) ∈ D for all n.

Let Kn = K−(tn−)/K−(t−), gn = gKn , and fn = g−1
n . Then fK−(t−) = fK−(tn−) ◦ gn on

H \ Kn, which together with fK−(t−)(η+,t−(t+)) = η+(t+) = fK−(tn−)(η+,tn−
(t+)) implies that

η+,tn−
(t+) = gn(η+,t−(t+)) if η+,t−(t+) ∈ H\Kn. By continuity we get η+,tn−

(t+) = gn(η+,t−(t+))

if η+,tn−
(t+) ∈ H \Kn, 0 ≤ t+ ≤ t̂+. Thus, η+,t−([0, t̂+]) ∩ (R \ [aKn , bKn ]) ⊂ fn(η+,tn−

([0, t̂+]) ∩
(R \ [cKn , dKn ])). By Condition (II), η+,tn−

([0, t̂+]) ∩ R has Lebesgue measure zero for all n.

From the analyticity of fn on R \ [cKn , dKn ] we know that η+,t−([0, t̂+]) ∩ (R \ [aKn , bKn ]) has
Lebesgue measure zero. Sending n → ∞ and using the fact that [aKn , bKn ] ↓ {ŵ−(t−)} (by
(3.1)), we see that η+,t−([0, t̂+]) ∩ R also has Lebesgue measure zero.

Lemma 3.11. For any σ ∈ {+,−} and (t+, t−) ∈ D, ŵσ(tσ) = fK−σ,tσ (t−σ)(Wσ(t+, t−)) ∈
∂(H \K−σ,tσ(t−σ)).

Proof. By symmetry, it suffices to work on the case σ = +. For any (t+, t−) ∈ D, by Lemma
3.4 there is a sequence tn+ ↓ t+ such that η+(tn+) lies in K(tn+, t−) \K(t+, t−) for all n. From
(3.1) and Lemma 3.7 we get gK+(t+)(η+(tn+)) → ŵ+(t+) and gK(t+,t−)(η+(tn+)) → W+(t+, t−).

From (3.4) we get gK+(t+) = fK−,t+ (t−) ◦ gK(t+,t−). From the continuity of fK−,t+ (t−) on H,

we then get ŵ+(t+) = fK−,t+ (t−)(W+(t+, t−)). Finally, ŵ+(t+) ∈ ∂(H \ K−,t+(t−)) because

W+(t+, t−) ∈ ∂H and fK−,t+ (t−) is conformal in H and continuous on H.

3.2 Force point functions

For σ ∈ {+,−}, define Cσ and Dσ on D such that if tσ > 0, Cσ(t+, t−) = cKσ,t−σ (tσ) and

Dσ(t+, t−) = dKσ,t−σ (tσ); and if tσ = 0, then Cσ = Dσ = Wσ at t−σe−σ. Since Kσ,t−σ(·) are

chordal Loewner hulls driven by Wσ|−σt−σ with some speed, by Proposition 2.9 we get

Cσ ≤Wσ ≤ Dσ, on D, σ ∈ {+,−}. (3.11)

Since Kσ,t−σ(tσ) is the H-hull generated by ησ,t−σ([0, tσ]), we get

fKσ,t−σ (tσ)([Cσ(t+, t−), Dσ(t+, t−)]) ⊂ ησ,t−σ([0, tσ]). (3.12)

Lemma 3.12. Let I0 = (w−, w+)∪ {w−, w+}, I+ = (w+,∞)∪ {w+}, I− = (−∞, w−)∪ {w−},
and Rw = I0∪I+∪I−. Assign the obvious order to Rw endowed from R; and assign the topology
to Rw such that I−, I0, I+ are three connected components of Rw, which are homeomorphic to

(−∞, w−], [w−, w+], [w+,∞), respectively. Then for any t = (t+, t−) ∈ D, g
W+(0,t−)
K+,t− (t+) ◦ g

w−
K−(t−)

and g
W−(t+,0)
K−,t+ (t−) ◦ g

w+

K+(t+) agree on Rw, and the common function, denoted by g
w
K(t), satisfies the

following properties.
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(i) g
w
K(t) is increasing and continuous on Rw, and agrees with gK(t) on Rw \K(t).

(iii) g
w
K(t) maps I+∩(K(t)∪{w+

+}) and I−∩(K(t)∪{w−−}) to {D+(t)} and {C−(t)}, respectively.

(iv) If K+(t+) ∩K−(t−) = ∅, gwK(t) maps I0 ∩ (K+(t+) ∪ {w−+} and I0 ∩ (K−(t−) ∪ {w+
−}) to

{C+(t)} and {D−(t)}, respectively.

(v) If K+(t+) ∩K−(t−) 6= ∅, gwK(t) maps I0 to {C+(t)} = {D−(t)}.

(vi) The map (t, v) 7→ g
w
K(t)(v) from D × Rw to R is jointly continuous.

Here we are using Definition 2.11, and understand g
w−σ
K−σ(t−σ)(w

±
σ ) as gK−σ(t−σ)(wσ)±.

Proof. Fix t = (t+, t−) ∈ D. For σ ∈ {+,−}, we write K for K(t), Kσ for Kσ(tσ), K̃σ

for Kσ,t−σ(tσ), w̃σ for Wσ(t−σe−σ), Cσ for Cσ(t), and Dσ for Dσ(t). The equality now reads

g
w̃+

K̃+
◦ gw−K− = g

w̃−

K̃−
◦ gw+

K+
. We are going to show that both sides are well defined and satisfy (i-iv)

with a slight modification in (iv) (see below). First consider g
w̃−

K̃−
◦ gw+

K+
.

(i) From Lemma 3.7, w− = fK+(w̃−). Since η+ starts from w+, which is > w−, and does
not hit (−∞, w−], we have w− 6∈ K+. So w̃− = gK+(w−). Thus, g

w+

K+
maps I+ ∪ I0 and I−

respectively into {w̃+
−} ∪ (w̃−,∞) and (−∞, w̃−) ∪ {w̃−−}, which are all contained in Rw̃− . So

g
w̃−

K̃−
◦ gw+

K+
is well defined. The continuity and monotonicity of the composition follows from the

continuity and monotonicity of both g
w̃−

K̃−
and g

w+

K+
.

Let v ∈ Rw \ K. Then v 6∈ K+, and g
w+

K+
(v) = gK+(v). We claim that gK+(v) 6∈ K̃−. If

this is not true, there exists a sequence (zn) in K− such that zn → gK+(v), which implies that

fK+(zn) → v. Since K̃− = K/K+, fK+(zn) ∈ fK+(K/K+) = K \ K+, which implies that

v ∈ K, a contradiction. From the claim we get g
w̃−

K̃−
◦ gw+

K+
(v) = g

K̃−
◦ gK+(v) = gK(v).

We now write ησ for ησ([0, tσ]) and η̃σ for ησ,t−σ([0, tσ]). In the proof of (ii,iii) below, when

tσ = 0, i.e., Kσ = K̃σ = ∅, we understand aKσ = bKσ = cKσ = dKσ = wσ, and a
K̃σ

=
b
K̃σ

= c
K̃σ

= d
K̃σ

= w̃σ. Then it is always true that aKσ = min{ησ ∩ R}, bKσ = max{ησ ∩ R},
a
K̃σ

= min{η̃σ∩R}, bK̃σ = max{η̃σ∩R}, cK̃σ = Cσ, and d
K̃σ

= Dσ. Since η± = fK∓(η̃±), we get

b
K̃+

= gK−(bK+), a
K̃−

= gK+(aK−); and if K+ ∩K− = ∅, a
K̃+

= gK−(aK+), b
K̃−

= gK+(bK−).

(ii) Since I+ ∩ (K ∪ {w+
+}) = {w+

+} ∪ (w+, bK ] = {w+
+} ∪ (w+, bK+ ] is mapped by g

w+

K+
to a

single point, it is also mapped by g
w̃−

K̃−
◦ gw+

K+
to a single point, which by (i) is equal to

lim
x↓bK

gK(x) = lim
x↓bK+

g
K̃+
◦ gK−(x) = lim

y↓b
K̃+

g
K̃+

(y) = d
K̃+

= D+.

To show that I− ∩ K is mapped by g
w̃−

K̃−
◦ gw+

K+
to C−, by (i) it suffices to show that
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limx↑aK gK(x) = g
w̃−

K̃−
◦ gw+

K+
(w−−) = c

K̃−
. This holds because

g
w̃−

K̃−
◦ gw+

K+
(w−−) = g

w̃−

K̃−
(w̃−−) = c

K̃−
= lim

x↑a
K̃−

g
K̃−

(x) = lim
x↑aK−

g
K̃−
◦ gK+(x) = lim

x↑aK
gK(x).

(iii) Suppose K+ ∩K− = ∅. Then I0 ∩ (K+ ∪{w−+}) = [aK+ , w+)∪{w−+} is mapped by g
w+

K+

to a single point, so is also mapped by g
w̃−

K̃−
◦ gw+

K+
to a single point. By (i) the latter point is

lim
x↑aK+

gK(x) = lim
x↑aK+

g
K̃+
◦ gK−(x) = lim

y↑a
K̃+

g
K̃+

(y) = c
K̃+

= C+.

Since I0 ∩ (K− ∪ {w+
−}) = (w−, bK− ] ∪ {w+

−} is mapped by g
w+

K+
to {w̃+

−} ∪ (w̃−, bK̃− ], it is

mapped by g
w̃−

K̃−
◦ gw+

K+
to {d

K̃−
} = {D−}.

(iv) SupposeK+∩K− 6= ∅. For now, we only show that I0 is mapped to {D−}. Then t+, t− >

0, and [cK+ , dK+ ]∩ K̃− 6= ∅, which implies that cK+ ≤ bK̃− . Thus, g
w+

K+
(I0) ⊂ {w̃+

−}∪ (w̃−, bK̃− ],

from which follows that g
w̃−

K̃−
◦ gw+

K+
(I0) = {d

K̃−
} = {D−}.

Now g
w̃−

K̃−
◦ gw+

K+
satisfy (i-iv). By symmetry, this is also true for g

w̃+

K̃+
◦ gw−K− , where for (iv),

I0 is mapped to {C+}. It remains to show that the two functions agree on Rw. From (ii) we

know that g
w̃+

K̃+
◦ gw−K− and g

w̃−

K̃−
◦ gw+

K+
agree on Rw \ K. By (i,ii) the two functions also agree

on I+ ∩K and I− ∩K. Thus they agree on both I+ and I−. By (i,iii) they agree on I0 when
K+ ∩ K− = ∅. To prove that they agree on I0 when K+ ∩ K− 6= ∅, by (iv) we only need to
show that c

K̃+
= d

K̃−
in that case.

First, we show that d
K̃−
≤ c

K̃+
. Suppose d

K̃−
> c

K̃+
. Then J := (c

K̃+
, d
K̃−

) ⊂ [c
K̃−
, d
K̃−

]∩

[c
K̃+
, d
K̃+

]. So f
K̃+

(J) ⊂ ∂(H \ K̃+). If f
K̃+

(J) ⊂ R, then it is disjoint from K̃+. Since K̃+ is

generated by η̃+, which does not spend any nonempty interval of time on R, we see that f
K̃+

(J)

is disjoint from [a
K̃+
, b
K̃+

], which then implies that J is disjoint from [c
K̃+
, d
K̃+

], a contradiction.

So there is x0 ∈ J such that f
K̃+

(x0) ⊂ H. This then implies that fK(x0) = fK− ◦ fK̃+
(x0) ∈

H\K−. But on the other hand, since x0 ∈ [c
K̃−
, d
K̃−

], fK(x0) = fK+◦fK̃−(x0) ⊂ fK+(η̃−) = η−,

which contradicts that fK(x0) ∈ H \K−. So d
K̃−
≤ c

K̃+
.

Second, we show that d
K̃−
≥ c

K̃+
. Suppose d

K̃−
< c

K̃+
. Let J = (d

K̃−
, c
K̃+

). Then

f
K̃+

(J) = (f
K̃+

(d
K̃−

), a
K̃+

). From K+ ∩K− 6= ∅ we know a
K̃+
≤ dK− . From a

K̃−
= gK+(aK−)

and aK = aK− we get

d
K̃−
≥ c

K̃−
= lim

x↑a
K̃−

g
K̃−

(x) = lim
y↑aK−

g
K̃−
◦ gK+(y) = lim

y↑aK−
g
K̃+
◦ gK−(y).

Thus, f
K̃+

(d
K̃−

) ≥ limy↑aK− gK−(y) = cK− . So we get f
K̃+

(J) ⊂ [cK− , aK̃+
] ⊂ [cK− , dK− ],

which is mapped into η− by fK− . Thus, fK(J) ⊂ η−. Symmetrically, fK(J) ⊂ η+. Since

η− = fK+(η̃−) and fK(J) ⊂ ∂(H \K), for every x ∈ J , there is z− ∈ η̃− ∩ ∂(H \ K̃−) such that
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fK(x) = fK+(z−). Then there is y− ∈ [c
K̃−
, d
K̃−

] such that z− = f
K̃−

(y−). So fK(x) = fK(y−).

Similarly, for every x ∈ J , there is y+ ∈ [c
K̃−
, d
K̃−

] such that fK(x) = fK(y+). Here y+, y−

depend on x. Pick x1 < x2 ∈ J such that fK(x1) 6= fK(x2). This is possible because fK(J) has
positive harmonic measure in H\K. Then there exist y1

+ ∈ [c
K̃+
, d
K̃+

] and y2
− ∈ [c

K̃−
, d
K̃−

] such

that fK(x1) = fK(y+
1 ) and fK(x2) = fK(y2

−). This is impossible because y1
+ > x2 > x1 > y2

−.
So d

K̃−
≥ c

K̃+
. Combining the last two paragraphs, we get c

K̃+
= d

K̃−
, as desired.

(v) From (i) we know that g
w
K(t) is continuous on Rw for any t ∈ D. It suffices to show

that, for any (a+, a−) ∈ D, the family of maps [0, a+] 3 t+ 7→ g
w
K(t)(v), (t−, v) ∈ [0, a−] × Rw,

are equicontinuous, and the family of maps [0, a−] 3 t− 7→ g
w
K(t)(v), (t+, v) ∈ [0, a+] × Rw, are

equicontinuous. The first statement follows from the expression g
w
K(t) = g

W+(0,t−)
K+,t− (t+) ◦ g

w−
K−(t−),

Proposition 2.13 and Lemma 3.5 (i). The second is symmetric.

Lemma 3.13. For any (t+, t−) ∈ D and σ ∈ {+,−}, Wσ(t+, t−) = g
W−σ(tσeσ)

K−σ,tσ (t−σ)(ŵσ(tσ)).

Proof. Fix t = (t+, t−) ∈ D. By symmetry, we may assume that σ = +. If t− = 0, it is obvious
since W+(·, 0) = ŵ+ and K−,t+(0) = ∅. Suppose t− > 0. From (3.11) and Lemma 3.12 (iii,iv) we
know that W+(t) ≥ C+(t) ≥ D−(t) = dK−,t+ (t−). Since ŵ+(t+) = fK−,t+ (t−)(W+(t)) by Lemma

3.11, we find that either W+(t) = dK−,t+ (t−) and ŵ+(t+) = bK−,t+ (t−), or W+(t) > dK−,t+ (t−)

and W+(t) = gK−,t+ (t−)(ŵ+(t+)). In either case, we get the equality.

Definition 3.14. For v ∈ Rw, we call V (t) := g
w
K(t)(v), t ∈ D, the force point function (for the

commuting pair (η+, η−;D)) started from v, which is continuous by Lemma 3.12.

Remark 3.15. Suppose for σ ∈ {+,−}, ησ(t), 0 ≤ tσ < Tσ, is a chordal Loewner curve with
speed duσ, where uσ(0) = 0, and D ⊂ [0, T+) × [0, T−). Let u⊕(t+, t−) = (u+(t+), u−(t−)).
If (η+ ◦ u−1

+ , η− ◦ u−1
− ;u⊕(D)) is a commuting pair of chordal Loewner curves, then we call

(η+, η−;D) a commuting pair of chordal Loewner curves with speeds (du+, du−), and call (η+ ◦
u−1

+ , η− ◦ u−1
− ;u⊕(D)) its normalization. For such (η+, η−;D), most lemmas in this section still

hold (except that m may not be Lipschitz continuous), and we may still define the hull function
K(·, ·) and the capacity function m(·, ·) using (3.3), define the driving functions W+ and W−
using Lemma 3.7, and define the force point functions by V (t) = g

w
K(t)(v).

Definition 3.16. Let (η+, η−;D) and (η̃+, η̃−; D̃) be two commuting pairs of chordal Loewner
curves with some speeds. Let K(·, ·) be the hull function for (η+, η−;D). Let τ = (τ+, τ−) ∈ D.
We say that, up to a conformal map, (η̃+, η̃−; D̃) agrees with (η+, η−;D) after τ , if D̃ = {t− τ :
t ∈ D, t ≥ τ} and ησ(τσ + t) = fK(τ) ◦ η̃σ(t), 0 ≤ t < TDσ (τ−σ)− t, σ ∈ {+,−}.

Lemma 3.17. Let (η+, η−;D) be a commuting pair of chordal Loewner curves with some speeds.
Let K,m,W± be its hull function, capacity function, and driving functions, respectively. Let
τ ∈ D. Suppose for σ ∈ {+,−}, there is a dense subset Ĩ∗σ of Ĩσ := [0, Tσ − τσ), such
that Ĩ∗σ 3 0, and for every t−σ ∈ Ĩ∗−σ, the H-hulls K(τ + t−σe−σ + tσeσ)/K(τ + t−σe−σ),
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0 ≤ tσ < TDσ (τ−σ + t−σ)− τσ, are generated by a chordal Loewner curve with some speed, which
intersects R at a set of Lebesgue measure zero. For σ ∈ {+,−}, let η̃σ be the chordal Loewner
curve that generates K(τ + tσeσ)/K(τ), 0 ≤ tσ < TDσ (τ−σ)− τσ. Let D̃ = {t− τ : t ∈ D, t ≥ τ}.
Then (η̃+, η̃−; D̃) is a commuting pair of chordal Loewner curves with some speeds, which up to
a conformal map agrees with the part of (η+, η−;D) after τ .

Proof. Fix σ ∈ {+,−}. Since K(τ + teσ)/K(τ) is the H-hull generated by η̃σ([0, t]), K(τ + teσ)
is the H-hull generated by K(τ) and fK(τ) ◦ η̃σ([0, t]) for each 0 ≤ t < T̃σ := TD(τ−σ) − τσ.

Since K(τ + teσ) is the H-hull generated by K(τ) and ησ([τσ, τσ + t]) for all 0 ≤ t < T̃σ, we get
ησ(τσ + t) = fK(τ) ◦ η̃σ(t), 0 ≤ t < T̃σ.

It remains to show that (η̃+, η̃−; D̃) is a commuting pair of chordal Loewner curves. Note

that T D̃σ (t) = TDσ (τ−σ + t) − τσ, σ ∈ {+,−}. Define K̃ on D̃ using (3.3) with η̃± in place of
η±. For t = (t+, t−) ∈ D̃, since K̃(t) is the H-hull generated by η̃+([0, t+]) and η̃−([0, t−]),
K(τ) ∪ fK(τ)(K̃(t)) is the H-hull generated by K(τ) and fK(τ) ◦ η̃σ([0, tσ]) = ησ([τσ, τσ + tσ]),

σ ∈ {+,−}, which is K(τ + t). So for t ∈ D̃, K(τ + t)/K(τ) = K̃(t). By assumption, for
every σ ∈ {+,−} and t−σ ∈ Ĩ∗−σ, K̃σ,t−σ(tσ) := K̃(t)/K̃−σ(t−σ) = K(τ + t−σe−σ + tσeσ)/K(τ +

t−σe−σ), 0 ≤ tσ < T D̃σ (t−σ), are generated by a chordal Loewner curve with some speed.

Lemma 3.18. Suppose up to a conformal map, (η̃+, η̃−; D̃) agrees with the part of (η+, η−;D)
after τ . Then the following hold.

(i) Let K,m,W± and K̃, m̃, W̃± be the hull function, capacity function, and driving functions
for (η+, η−;D) and (η̃+, η̃−; D̃), respectively. Then for any t ∈ D̃, K̃(t) = K(τ + t)/K(τ),

m̃(t) = m(τ + t)−m(τ), and W̃σ(t) = Wσ(τ + t), σ ∈ {+,−}.

(ii) Let wσ = Wσ(0) and w̃σ = W̃σ(0), σ ∈ {+,−}. Let v ∈ Rw and V (t) be the force point
function for (η+, η−;D) started from v. Define ṽ ∈ Rw̃ such that if V (τ) 6∈ {w̃+, w̃−},
then ṽ = V (τ); and if V (τ) = w̃σ and ν · (v − wσ) > 0, then ṽ = w̃νσ, σ, ν ∈ {+,−}. Let
Ṽ be the force point function for (η̃+, η̃−; D̃) started from ṽ. Then Ṽ = V (τ + ·) on D̃.

Proof. (i) The formula K̃(t) = K(τ + t)/K(τ) follows from the argument in the second para-
graph of the previous proof. It then implies that m̃(t) = m(τ + t) − m(τ). The formula

W̃σ(t) = Wσ(τ + t) then follows from (3.6), (2.1), and that K̃(t) = K(τ + t)/K(τ).
(ii) For t = (t+, t−) ∈ D̃, by (i), Proposition 2.12 and Lemma 3.12, if V (τ) 6∈ {w̃+, w̃−},

Ṽ (t) = g
W̃+(0,t−)

K̃(t)/K̃−(t−)
◦ gw̃−

K̃−(t−)
(ṽ) = g

W+(τ+,τ−+t−)
K(τ+t)/K(τ+,τ−+t−) ◦ g

W−(τ)
K(τ+,τ−+t−)/K(τ)(ṽ)

= g
W+(τ+,τ−+t−)
K(τ+t)/K(τ+,τ−+t−) ◦ g

W−(τ)
K(τ+,τ−+t−)/K(τ) ◦ g

W−(τ+,0)
K(τ)/K(τ+,0) ◦ g

w+

K(τ+,0)(v)

= g
W+(τ+,τ−+t−)
K(τ+t)/K(τ+,τ−+t−) ◦ g

W−(τ+,0)
K(τ+,τ−+t−)/K(τ+,0) ◦ g

w+

K(τ+,0)(v)

= g
W+(τ+,τ−+t−)
K(τ+t)/K(τ+,τ−+t−) ◦ g

W+(0,τ−+t−)
K(τ+,τ−+t−)/K(0,τ−+t−) ◦ g

w−
K(0,τ−+t−)(v)

30



= g
W+(0,τ−+t−)
K(τ+t) ◦ gw−K(0,τ−+t−)(v) = g

(w+,w−)
K(τ+t) (v) = V (τ + t).

Here we used Proposition 2.12 in the 3rd and the 5th lines and Lemma 3.12 in the 4th line.
We now consider the case that V (τ) ∈ {w̃+, w̃−}. By symmetry, we may assume that V (τ) =
w̃− = W−(τ). Suppose v > w−. In the second line of the displayed formula, we will en-

counter g
W−(τ)
K(τ+,τ−+t−)/K(τ)(W−(τ)), which is not defined. However, we now understand it as

g
W−(τ)
K(τ+,τ−+t−)/K(τ)(W−(τ)+), which is consistent with our definition of ṽ in this case. With this

understanding, the equality in the third line still holds by Proposition 2.12. In fact, we have

x := g
w+

K(τ+,0)(v) > g
w+

K(τ+,0)(w−) = W−(τ+, 0), and g
W−(τ+,0)
K(τ)/K(τ+,0)(x) = V (τ) = W−(τ), so by

Proposition 2.12, g
W−(τ)
K(τ+,τ−+t−)/K(τ)(W−(τ+, 0)+) = g

W−(τ+,0)
K(τ+,τ−+t−)/K(τ+,0)(x). So the displayed

formula holds with this explanation. The case that v < w− is similar.

From now on, we fix v0 ∈ (w−, w+)∪{w+
−, w

−
+}, v+ ∈ (w+,∞)∪{w+

+}, and v− ∈ (−∞, w−)∪
{w−−}, and let Vν(t), t ∈ D, be the force point function started from vν , ν ∈ {0,+,−}. By
Lemma 3.12, V− ≤ C− ≤ D− ≤ V0 ≤ C+ ≤ D+ ≤ V+, which combined with (3.11) implies

V− ≤ C− ≤W− ≤ D− ≤ V0 ≤ C+ ≤W+ ≤ D+ ≤ V+. (3.13)

The following Lemma describes some connections between V0, V+, V− and η+, η−.

Lemma 3.19. For any t = (t+, t−) ∈ D, we have

|V+(t)− V−(t)|/4 ≤ diam(K(t) ∪ [v−, v+]) ≤ |V+(t)− V−(t)|. (3.14)

fK(t)([V0(t), Vν(t)]) ⊂ ην([0, tν ]) ∪ [v0, vν ], ν ∈ {+,−} (3.15)

Here for x, y ∈ R, the [x, y] in (3.15) is the line segment connecting x with y, which is the same
as [y, x]; and if any vν , ν ∈ {0,+,−}, takes value w+

σ or w−σ for some σ ∈ {+,−}, then its
appearance in (3.14,3.15) is understood as wσ.

Proof. Fix t = (t+, t−) ∈ D. We write K for K(t), K± for K±(t±), K̃± for K±,t∓(t±), η± for
η±([0, t±]), η̃± for η±,t∓([0, t±]), and X for X(t), X ∈ {V0, V+, V−, C+, C−, D+, D−}.

Since gK maps C \ (Kdoub ∪ [v−, v+]) conformally onto C \ [V−, V+], fixes ∞, and has
derivative 1 at ∞, by Koebe’s 1/4 theorem, we get (3.14). For (3.15) by symmetry we only
need to prove the case ν = +. From (3.13) we have V0 ≤ C+ ≤ D+ ≤ V+. By (3.12) and Lemma
3.5 we get fK([C+, D+]) ⊂ fK−(η̃+) = η+. It remains to show that fK((D+, V+]) ⊂ [w0, v+]
and fK([V0, C+)) ⊂ [v0, w0]. If V+ = D+, then (D+, V+] = ∅, and fK((D+, V+]) ⊂ [w0, v+]
holds trivially. Suppose V+ > D+. By Lemma 3.12, D+ = limx↓max((K∩R)∪{w+}) gK(x), and

V+ = gK(v+). So fK maps (D+, V+] onto (max((K ∩ R) ∪ {w+}), v+] ⊂ [w+, v+]. If V0 =
C+, then [V0, C+) = ∅, so fK([V0, C+)) ⊂ [v0, w0] holds trivially. If V0 < C+, by Lemma
3.12 (iii,iv), K+ ∩ K− = ∅, v0 6= K+, and C+ = limx↑min((K+∩R)∪{w+}) gK(x). Now either

v0 6∈ K ∪ {w+
−} and V0 = gK(v0), or v0 ∈ K− ∪ {w+

−} and V0 = D−. In the first case, we
have fK([V0, C+)) ⊂ [v0,min((K+ ∩ R) ∪ {w+})) ⊂ [v0, w+]. In the second case, we have
fK([V0, C+)) = [max((K− ∩ R) ∪ {w−}),min((K+ ∩ R) ∪ {w+})) ⊂ [v0, w+].
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3.3 Ensemble without intersections

We say that the commuting pair (η+, η−;D) is disjoint, if η+([0, t+]) ∩ η−([0, t−]) = ∅ for any
(t+, t−) ∈ D. If ησ(t), 0 ≤ t < Tσ, σ ∈ {+,−}, are two chordal Loewner curves that intersect
R at a Lebesgue measure zero set, then we can obtain a disjoint commuting par (η+, η−;Ddisj)
by defining Ddisj = {(t+, t−) ∈ [0, T+)× [0, T−) : η+([0, t+]) ∩ η−([0, t−]) = ∅}.

In this subsection, we assume that (η+, η−;D) is disjoint. From Lemma 3.11 we know that
for any σ ∈ {+,−} and (t+, t−) ∈ D, dist(ŵσ(tσ),K−σ,tσ(tσ)) > 0. So gK−σ,tσ (t−σ) is analytic
at ŵσ(tσ) = Wσ(tσeσ). By Lemma 3.13, Wσ(t+, t−) = gK−σ,tσ (t−σ)(ŵσ(tσ)). We further define
Wσ,j , j = 1, 2, 3, and Wσ,S on D by

Wσ,j(t+, t−) = g
(j)
K−σ,tσ (t−σ)(ŵσ(tσ)), Wσ,S =

Wσ,3

Wσ,1
− 3

2

(Wσ,2

Wσ,1

)2
, σ ∈ {+,−}. (3.16)

They are all continuous on D because (t+, t−, z) 7→ g
(j)
K−σ,tσ (t−σ)(z) is continuous by Lemma 3.5.

Note that Wσ,S(t+, t−) is the Schwarzian derivative of gK−σ,tσ (t−σ) at ŵσ(tσ).

Lemma 3.20. m is continuously differentiable with ∂σ m = W 2
σ,1, σ ∈ {+,−}.

Proof. This follows from a standard argument, which first appeared in [7, Lemma 2.8]. The
statement for ensemble of chordal Loewner curves first appeared in [27, Formula (3.7)].

So for any σ ∈ {+,−} and t−σ ∈ I−σ, Kσ,t−σ(tσ), 0 ≤ tσ < TDσ (t−σ), are chordal Loewner
hulls driven byWσ|−σt−σ with speed (Wσ,1|−σt−σ)2, and we get the differential equation for gKσ,t−σ (tσ):

∂tσgKσ,t−σ (tσ)(z) =
2(Wσ,1(t+, t−)2

gKσ,t−σ (tσ)(z)−Wσ(t+, t−)
, (3.17)

which together with Lemmas 3.13 and 3.12 implies the differential equations for V0, V+, V−:

∂σVν
ae
=

2W 2
σ,1

Vν −Wσ
, ν ∈ {0,+,−}, (3.18)

and the differential equations for Wσ, Wσ,1 and Wσ,S :

∂−σWσ =
2W 2
−σ,1

Wσ −W−σ
,

∂−σWσ,1

Wσ,1
=

−2W 2
−σ,1

(W+ −W−)2
, ∂−σWσ,S = −

12W 2
+,1W

2
−,1

(W+ −W−)4
. (3.19)

Define F on D by

F (t+, t−) = exp
(∫ t+

0

∫ t−

0
−12W+,1(s+, s−)2W−,1(s+, s−)2

(W+(s+, s−)−W−(s+, s−))4
ds−ds+

)
. (3.20)

Then F is continuous and positive with F (t+, t−) = 1 when t+ · t− = 0. From (3.19) we get

∂σF

F
= Wσ,S , σ ∈ {+,−}. (3.21)
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By (3.13), V+ ≥ W+ ≥ C+ ≥ V0 ≥ D− ≥ W− ≥ V− on D. For disjoint commuting pair, we
further have C+ > D−. To see this, let t ∈ D. We may choose v1

0 < v2
0 ∈ (w−, w+) \K(t) and

let V j
0 be the force point function started from vj0, j = 1, 2. Then we have C+(t) ≥ V 2

0 (t) >
V 1

0 (t) ≥ D−(t) and V 2
0 (t+, t−) = gK(t+,t−)(v

2
0) > gK(t+,t−)(v

1
0) = V 1

0 (t+, t−), where the strict

inequality holds because V j
0 (t) = gK(t)(vj), j = 1, 2. By Lemma 3.12,

Vσ(t+, t−) = gK−σ,tσ (t−σ)(Vσ(tσeσ)); (3.22)

V0(t+, t−) = gK−σ,tσ (t−σ)(V0(tσeσ)), if v0 6∈ K−σ(t−σ). (3.23)

We emphasize that each “g functions” in the formulas is not a modified Loewner map, i.e., it
is analytic at the point at which it is evaluated on the RHS.

Let t = (t+, t−) ∈ D. For σ ∈ {+,−}, differentiating (3.4) w.r.t. tσ, letting ẑ = gKσ(tσ)(z),
and using Lemma 3.13 and (3.17,3.16) we get

∂tσgK−σ,tσ (t−σ)(ẑ) =
2g′K−σ,tσ (t−σ)(ŵσ(tσ))2

gK−σ,tσ (t−σ)(ẑ)− gK−σ,tσ (t−σ)(ŵσ(tσ))
−

2g′K−σ,tσ (t−σ)(ẑ)

ẑ − ŵσ(tσ)
. (3.24)

Letting H \K−σ,tσ(t−σ) 3 ẑ → ŵσ(tσ) and using the power series expansion of gK−σ,tσ (t−σ) at
ŵσ(tσ), we get

∂tσgK−σ,tσ (t−σ)(ẑ)|ẑ=ŵσ(tσ) = −3Wσ,2(t), σ ∈ {+,−}. (3.25)

Differentiating (3.24) w.r.t. ẑ and letting ẑ → ŵσ(tσ), we get

∂tσg
′
K−σ,tσ (t−σ)(ẑ)

g′K−σ,tσ (t−σ)(ẑ)

∣∣∣∣
ẑ=ŵσ(tσ)

=
1

2

(Wσ,2(t)

Wσ,1(t)

)2
− 4

3

Wσ,3(t)

Wσ,1(t)
, σ ∈ {+,−}. (3.26)

For σ ∈ {+,−}, define Wσ,N on D by Wσ,N =
Wσ,1

Wσ,1|σ0
. Since Wσ,1|−σ0 ≡ 1, we get

Wσ,N (t+, t−) = 1 when t+t− = 0. From (3.19) we get

∂σW−σ,N
W−σ,N

=
−2W 2

σ,1

(W−σ −Wσ)2
∂tσ −

−2W 2
σ,1

(W−σ −Wσ)2

∣∣∣∣−σ
0

∂tσ, σ ∈ {+,−}. (3.27)

We now define V0,N , V+,N , V−,N on D by

Vµ,N (t) = g′K−µ,tµ (t−µ)(Vµ(tµeµ))/g′K−µ(t−µ)(vµ), µ ∈ {+,−};

V0,N (t) = g′K−σ,tσ (t−σ)(V0(tσeσ))/g′K−σ(t−σ)(v0), if v0 6∈ K−σ(t−σ), σ ∈ {+,−}. (3.28)

By (3.22-3.23), the RHS of these two formulas are well defined. There is no contradiction in
(3.28) because when v0 6∈ K−(t−) and v0 6∈ K+(t+) both hold, for either σ = + or −, the RHS
of (3.28) equals g′K(t+,t−)(v0)/(g′K+(t+)(v0)g′K−(t−)(v0)) by (3.4).
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Note that Vν,N (t+, t−) = 1 if t+t− = 0 for ν ∈ {0,+,−}. From (3.22-3.23) and (3.4,3.17)
we find that these functions satisfy the following differential equations on D:

∂σVν,N
Vν,N

=
−2W 2

σ,1

(Vν −Wσ)2
∂tσ−

−2W 2
σ,1

(Vν −Wσ)2

∣∣∣∣−σ
0

∂tσ, σ ∈ {+,−}, ν ∈ {0,−σ}, if vν 6∈ Kσ(tσ).

(3.29)
We now define EX,Y on D for X 6= Y ∈ {W+,W−, V0, V+, V−} as follows. First, let

EX,Y (t+, t−) =
(X(t+, t−)− Y (t+, t−))(X(0, 0)− Y (0, 0))

(X(t+, 0)− Y (t+, 0))(X(0, t−)− Y (0, t−))
, (3.30)

if the denominator is not 0. If the denominator is 0, then since V+ ≥ W+ ≥ V0 ≥ W− ≥ V−
and W+ > W−, there are two cases. Case 1. {X,Y } ⊂ {W+, V+, V0}. Case 2. {X,Y } ⊂
{W−, V−, V0}. By symmetry, we will only describe the definition of EX,Y in Case 1. IfX(t+, 0) =
Y (t+, 0), by Lemmas 3.12 and 3.13, X(t+, ·) ≡ Y (t+, ·). If X(0, t−) = Y (0, t−), then we must
have X(0) = Y (0), and so X(0, ·) ≡ Y (0, ·). For the definition of EX,Y in Case 1, we modify

(3.30) by writing the RHS as X(t+,t−)−Y (t+,t−)
X(t+,0)−Y (t+,0) : X(0,t−)−Y (0,t−)

X(0,0)−Y (0,0) , replacing the numerator (before

“:”) by g′K−,t+ (t−)(X(t+, 0)) when X(t+, 0) = Y (t+, 0), replacing the denominator (after “:”) by

g′K−(t−)(X(0, 0)) when X(0, t−) = Y (0, t−); and do both replacements when both X(t+, 0) =

Y (t+, 0) and X(0, t−) = Y (0, t−). Then all EX,Y are continuous and positive on D, and
EX,Y (t+, t−) = 1 if t+ · t− = 0. By (3.18,3.19), for σ ∈ {+,−}, if X,Y 6= Wσ, then

∂σEX,Y
EX,Y

ae
=

−2W 2
σ,1

(X −Wσ)(Y −Wσ)
∂tσ −

−2W 2
σ,1

(X −Wσ)(Y −Wσ)

∣∣∣−σ
0
∂tσ. (3.31)

3.4 A time curve in the time region

In this subsection we do not assume that (η+, η−;D) is disjoint. Let vν and Vν , ν ∈ {0,+,−},
be as before. We assume in this subsection that v+ − v0 = v0 − v− =: I > 0.

Lemma 3.21. There exists a unique continuous and strictly increasing function u : [0, T u)→
D, for some T u ∈ (0,∞], with u(0) = 0, such that for any 0 ≤ t < T u and σ ∈ {+,−},
|Vσ(u(t))− V0(u(t))| = e2t|vσ − v0|; and u can not be extended beyond T u with such property.

Sketch of the proof. We use an argument that is similar to Section 4 of [22]. Define Λ and Υ
on D by Λ = 1

2 log V+−V0
V0−V− and Υ = 1

2 log V+−V−
v+−v− . By assumption, Λ(0) = Υ(0) = 0. Since

V+ ≥ W+ ≥ V0 ≥ W− ≥ V−, by the definition of Vν , Proposition 2.13 and Lemma 3.12, for
σ ∈ {+,−}, |Vσ − V0| and |Vσ − V−σ| are strictly increasing in tσ, and |V0 − V−σ| is strictly
decreasing in tσ. Thus, Λ is strictly increasing in t+ and strictly decreasing in t−, and Υ is
strictly increasing in both t+ and t−. These monotone properties guarantee the existence and
uniqueness of u : [0, T u)→ D with Λ(u(t)) = 0 and Υ(u(t)) = t for all t.

Lemma 3.22. For any t ∈ [0, T u),

e2t|v+ − v−|/128 ≤ radv0(ησ([0, uσ(t)]) ∪ [v0, vσ]) ≤ e2t|v+ − v−|, σ ∈ {+,−}. (3.32)

34



If T u < ∞, then limt↑Tu u(t) converges to a point in ∂D ∩ (0,∞)2. If D = R2
+, then T u = ∞.

If T u =∞, then diam(η+) = diam(η−) =∞.

Proof. Let t ∈ [0, T u) and Lσ = radv0(ησ([0, uσ(t)])∪ [v0, vσ]). From (3.14) and that |V+(u(t))−
V−(u(t))| = e2t|v+ − v−|, we get e2t|v+ − v−|/8 ≤ max{L+, L−} ≤ e2t|v+ − v−|. Since
V+(u(t)) − V0(u(t)) = V0(u(t)) − V−(u(t)), from Lemma 3.19 and Beurling’s estimate (ap-
plied to a Brownian motion started from ∞), we see that max{L+, L−} ≤ 16 min{L+, L−}.
So we get (3.32). Since η+ and η− are parametrized by H-capacity, for any σ ∈ {+,−},
uσ(t) = hcap2(Hull(ησ([0, uσ(t)]))) ≤ L2

σ ≤ e4t|v+ − v−|2. Suppose T u < ∞. Then u+ and
u− are bounded on [0, T u). Since u is increasing, limt↑Tu u(t) converges to a point in (0,∞)2,
which must lie on ∂D because otherwise u may be further extended, which contradicts that u
cannot be extended beyond T u. If D = R2

+, then ∂D ∩ (0,∞)2 = ∅, so T u = ∞. Finally, if
T u =∞, then by letting t ↑ ∞ in (3.32), we get diam(ησ) =∞, σ ∈ {+,−}.

For a function X defined on D or a subset of D, we define Xu = X ◦ u. From the definition
of u, we have |V u

+(t)− V u
0 (t)| = |V u

−(t)− V u
0 (t)| = e2tI for any t ≥ 0. Let Rσ =

Wu
σ−V u0

V uσ −V u0
∈ [0, 1],

σ ∈ {+,−}, and R = (R+, R−). Let ec· denote the function t 7→ ect for c ∈ R.

Lemma 3.23. Let Ddisj = {(t+, t−) ∈ D : η+([0, t+]) ∩ η−([0, t−]) = ∅}. Let T udisj ∈ (0, T u] be

such that u(t) ∈ Ddisj for 0 ≤ t < T udisj. Then u is continuously differentiable on [0, T udisj), and

(W u
σ,1)2u′σ =

Rσ(1−R2
σ)

R+ +R−
e4·I2 on [0, T udisj), σ ∈ {+,−}. (3.33)

Proof. From (3.18) we find that the Λ and Υ introduced in the proof of Lemma 3.21 satisfy the
following differential equations on Ddisj:

∂σΛ
ae
=

(V+ − V−)W 2
σ,1∏

ν∈{0,+,−}(V
u
ν −W u

σ )
and ∂σΥ

ae
=

−W 2
σ,1∏

ν∈{0,+,−}(V
u
ν −W u

σ )
.

From Λu(t) = 0 and Ψu(t) = t, we get

∑
σ∈{+,−}

(W u
σ,1)2u′σ∏

ν∈{0,+,−}(V
u
ν −W u

σ )
≡ 0 and

∑
σ∈{+,−}

−(W u
σ,1)2u′σ∏

ν∈{+,−}(V
u
ν −W u

σ )
≡ 1.

Solving the system of equations, we get (W u
σ,1)2u′σ

ae
= (

∏
ν∈{0,+,−}(V

u
ν − W u

σ ))/(Wσ − W−σ),

σ ∈ {+,−}. Using V u
σ − V u

0 = σe2·I and W u
σ − V u

0 = Rσ(V u
σ − V u

0 ), we find that (3.33) holds

with “
ae
=” in place of “=”. Since W+ > W− on Ddisj, we get R+ + R− > 0 on [0, T udisj). So the

original (3.33) holds by the continuity of its RHS.

Now suppose that η+ and η− are random curves, and D is a random region. Then u and
T u are also random. Suppose that there is an R2

+-indexed filtration (Ft)t∈R2
+

such that D is an
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(Ft)-stopping region, and V0, V+, V− are all (Ft)-adapted. Now we extend u to R+ such that
if T u < ∞, then u(s) = limt↑Tu u(t) for s ∈ [T u,∞). The following proposition has the same
form as [22, Lemma 4.1], whose proof can also be used here.

Proposition 3.24. For every t ∈ R+, the extended u(t) is an (Ft)t∈R2
+

-stopping time.

Since u is non-decreasing, we get a new filtration (Fu(t))t≥0 by Propositions 2.26 and 3.24.

4 Commuting Pair of SLEκ(ρ) Curves

In this section, we apply the results from the previous section to study a pair of commut-
ing SLEκ(ρ) curves, which arise as flow lines of a GFF with piecewise constant boundary
data (cf. [11]). For a particular way of growing two curves simultaneously, we will obtain a
two-dimensional diffusion process, derive its SDE, and calculate its transition density using
orthogonal polynomials. The results of this section will be used in the next section to study
2-SLEκ and iSLEκ(ρ) that we are mostly interested in.

4.1 Martingale and domain Markov property

Throughout this section, we fix κ, ρ0, ρ+, ρ− such that κ ∈ (0, 8), ρ+, ρ− > max{−2, κ2 − 4},
ρ0 ≥ κ

4 − 2 (see Remark 4.14), and ρ0 + ρσ ≥ κ
2 − 4, σ ∈ {+,−}. Let w− < w+ ∈ R. Let

v+ ∈ (w+,∞) ∪ {w+
+}, v− ∈ (−∞, w−) ∪ {w−−}, and v0 ∈ (w−, w+) ∪ {w+

−, w
−
+}. Write ρ for

(ρ0, ρ+, ρ−). From ([11]) we know that there is a coupling of two chordal Loewner curves η+(t+),
0 ≤ t+ <∞, and η−(t−), 0 ≤ t− <∞, driven by ŵ+ and ŵ− (with speed 1), respectively, such
that

(A) For σ ∈ {+,−}, ησ is a chordal SLEκ(2, ρ) curve in H started from wσ with force points

at w−σ and vν , ν ∈ {0,+,−}. Here any vν equals w±−σ, then we treat it as w−σ. Let
ŵσ denote the driving function for ησ. Let ŵσ−σ, v̂

σ
ν , ν ∈ {0,+,−}, denote the force point

functions for η± started from w∓, vν , ν ∈ {0,+,−}, respectively.

(B) η+ and η− satisfy the following commutation relation: Let σ ∈ {+,−}. If τ−σ is a finite
stopping time w.r.t. the filtration (F−σt )t≥0 generated by η−σ, then a.s. there is a chordal
Loewner curve ησ,t−σ(t), 0 ≤ t < ∞, with some speed such that ησ = fK−σ(τ−σ) ◦ ησ,τ−σ ,
where K−σ(τ−σ) = Hull(η−σ([0, τ−σ])). Moreover, the conditional law of the normaliza-
tion of ησ,τ−σ given F−στ−σ is that of a chordal SLEκ(2, ρ) curve in H started from ŵ−σσ (τ−σ)
with force points at ŵ−σ(τ−σ), v̂−σν (τ−σ), ν ∈ {0,+,−}, respectively.

In fact, one may construct η+ and η− as flow lines of a GFF on H with some piecewise boundary
conditions (cf. [11]). The conditions on κ and ρ ensure that (i) there is no continuation threshold
for either η+ or η−, and so η+ and η− both have lifetime ∞ and η±(t)→∞ as t→∞; and (ii)
η+ does not hit (−∞, w−], and η− does not hit [w+,∞). If ρ0 ≥ κ

2 − 2, η+ and η− are disjoint;
otherwise they do touch but not cross each other. We call the above (η+, η−) a commuting pair
of chordal SLEκ(2, ρ) curves in H started from (w+, w−; v0, v+, v−).
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We may take τ−σ in (B) to be a deterministic time. So for each t−σ ∈ R+, a.s. there is
an SLEκ-type curve ησ,t−σ defined on R+ such that ησ = fK−σ(t−σ) ◦ ησ,t−σ . The conditions
on κ and ρ implies that the Lebesgue measure of ησ,t−σ ∩ R is 0. By setting I+ = I− = R+,
I∗+ = I∗− = Q+, we can now say that a.s. for every t−σ ∈ I∗∓, there is a chordal Loewner curve
ησ,t−σ(t), 0 ≤ t <∞, with some speed defined on R+ such that ησ = fK−σ(t−σ) ◦ ησ,t−σ and the
Lebesgue measure of ησ,t−σ ∩ R is 0. This implies that a.s. η+ and η− satisfy the conditions in
Definition 3.2 with D = R2

+. So (η+, η−) is a.s. a commuting pair of chordal Loewner curves.
Here we omit D when it is R2

+. Let K and m be the hull function and the capacity function,
W+,W− be the driving functions, and V0, V+, V− be the force point functions started from
v0, v+, v−, respectively. Then ŵσ = Wσ|−σ0 , ŵσ−σ = W−σ|−σ0 , and v̂σν = Vν |−σ0 , ν ∈ {0,+,−}.
For each (F−σt )-stopping time τ−σ, ησ,τ−σ is the chordal Loewner curve driven by Wσ|−στ−σ with
speed dm |−στ−σ , and the force point functions are W−σ|−στ−σ and Vν |−στ−σ , ν ∈ {0,+,−}.

Now we deal with the randomness. Let (F±t )t≥0 be as in (B). Define the R2
+-indexed

filtration (Ft)t∈R2
+

by F(t+,t−) = F+
t+ ∨ F

−
t− . From (A) we know that, for σ ∈ {+,−}, there

exists a standard (Fσt )-Brownian motions Bσ such that the driving functions ŵσ satisfies the
SDE

dŵσ
ae
=
√
κdBσ +

[ 2

ŵσ − ŵσ−σ
+

∑
ν∈{0,+,−}

ρν
ŵσ − v̂σν

]
dtσ. (4.1)

Here we note that B+ and B− are not independent.

Lemma 4.1. Let (η+, η−) be a random commuting pair of chordal Loewner curves with driving
functions W+ and W− started from w+, w−. Let Vν be force point functions for this pair started
from vν , ν ∈ {0,+,−}, respectively. Define U = W+ +W−+

∑
ν∈{0,+,−}

ρν
2 Vν on R2

+. Then η+

and η− is a commuting pair of chordal SLEκ(2, ρ) curves in H started from (w+, w−; v0, v+, v−)
if and only if U and U2 − κm are (Ft)t∈R2

+
-martingales.

Proof. (i) The “only if” part. Fix t− ≥ 0. From (B) and Proposition 2.14, conditional on
F−t− , U(·, t−) is a local martingale with quadratic variation 〈U(·, t−)〉t = κm(t, t−)−κm(0, t−).

Since m is Lipschitz continuous, U(·, t−) and U(·, t−)2 − κm(·, t−) are true martingales. Sym-
metrically, U(0, ·) and U(0, ·)2 − κm(0, ·) are martingales. The two statements together imply
that U and U2 − κm are (Ft)t∈R2

+
-martingales.

(ii) The “if” part. Fix a finite (F−t−)-stopping time τ−. By Proposition 2.31, U(·, τ−) and

U(·, τ−)2−κm(·, τ−) are (F(t+,τ−))t+≥0-martingales. So 〈U(·, τ−)〉t = m(t, τ−)−m(0, τ−). Using
Proposition 2.14, we see that (B) holds for σ = +. Symmetrically, (B) also holds for σ = −.
Setting τ−σ ≡ 0, σ ∈ {+,−}, in (B) we find that (A) also holds.

Remark 4.2. From the proof of Lemma 4.1 we see that Condition (B) is equivalent to a
seemingly weaker condition, in which τ−σ is only assumed to be a deterministic time.

Lemma 4.3. Let τ = (τ+, τ−) be an extended stopping time with respect to the right-continuous

augmentation (F (+)
t )t∈R2

+
of (Ft)t∈R2

+
. Let σ ∈ {+,−}. Then on the event that τ ∈ R2

+, a.s.

K(τ+ teσ)/K(τ), t ≥ 0, are generated by a chordal Loewner curve η̂σ with some speed such that
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ησ(τσ + ·) = fK(τ) ◦ η̂σ. Let hσ(t) = m(τ + teσ)−m(τ) and η̃σ = η̂σ ◦h−1
σ . Then the conditional

law of η̃σ given F (+)
τ is that of a chordal SLEκ(2, ρ) curve in H started from Wσ(τ) with force

points W−σ(τ) and Vν(τ), ν ∈ {0,+,−}, where if Vσ(τ) equals Wσ(τ), then as a force point it
is treated as Wσ(τ)σ, and if W−σ(τ), V0, or V−σ equals Wσ(τ), then it is treated as Wσ(τ)−σ.
Moreover, the driving function for η̃σ is Wσ(τ + h−1

σ (t)eσ), and the force point functions are
W−σ(τ + h−1

σ (t)eσ) and Vν(τ + h−1
σ (t)eσ), ν ∈ {0,+,−}.

Proof. Let U be as in Lemma 4.1. For X ∈ {m,W+,W−, V0, V+, V−, U}, we write Xτ ,σ(t) for
X(τ + h−1

σ (t)eσ). We write K
τ
σ(t) for K(τ + h−1

σ (t)eσ)/K(τ). By Lemma 3.7 and Proposition
2.8, when τ is finite, K(τ + teσ)/K(τ), t ≥ 0, are chordal Loewner hulls driven by Wσ(τ + teσ),
t ≥ 0, with speed dm(τ + teσ). So K

τ
σ(t), t ≥ 0, are chordal Loewner hulls driven by W

τ ,σ
σ (t),

t ≥ 0 (with speed dm(τ + h−1
σ (t)) = 1). By Lemmas 3.12 and 3.13, and Propositions 2.12 and

2.13, we find that, if X ∈ {W−σ, V0, V+, V−}, then

Xτ ,σ(t) = g
Wσ(τ)

K
τ
σ(t)

(X(τ)),
d

dt
Xτ ,σ(t)

ae
=

2

Xτ ,σ(t)−W τ ,σ
σ (t)

, t ≥ 0. (4.2)

We first assume that τ is bounded. Then for any t ≥ 0, τ + teσ is a bounded stopping time.
By Lemma 4.1, Propositions 2.31 and 2.30, if X is U or U2 − κm, then X(τ + teσ), t ≥ 0, is

a continuous (F (+)
τ+teσ

)t≥0-martingale. Since (hσ(t)) is (F (+)
τ+teσ

)-adapted, for each t ≥ 0, h−1
σ (t)

is an (F (+)
τ+teσ

)-stopping time. Since mτ ,σ(t) = t, we see that U τ ,σ(t) and U τ ,σ(t)2 − κt, t ≥ 0,

are continuous (F (+)
τ+·eσ |h−1

σ (t))t≥0-local martingales. By Levy’s characterization of Brownian

motion, we see that (U τ ,σ(t) − U(τ))/
√
κ is a Brownian motion, say B

τ
σ(t), independent of

F (+)
τ . By the definition of U and (4.2), W

τ ,σ
σ (t) satisfies the SDE:

dW τ ,σ
σ (t) =

√
κdBτ

σ(t) +
2dt

W
τ ,σ
σ (t)− gWσ(τ)

K
τ
σ(t)

(W−σ(τ))
+

∑
ν∈{0,+,−}

ρνdt

W
τ ,σ
σ (t)− gWσ(τ)

K
τ
σ(t)

(Vν(τ))
.

Since W
τ ,σ
σ (0) = Wσ(τ) and K

τ
σ(t), t ≥ 0, are chordal Loewner hulls driven by W

τ ,σ
σ (t), we

conclude that K
τ
σ(t), t ≥ 0, are a.s. generated by a chordal Loewner curve, say η̃σ, whose

conditional law given F (+)
τ is that of a chordal SLEκ(2, ρ) curve in H started from Wσ(τ) with

force points W−σ(τ) and Vν(τ), ν ∈ {0,+,−}. We also easily see that the driving function for η̃σ
is Wσ(τ +h−1

σ (t)eσ), and the force point functions are W−σ(τ +h−1
σ (t)eσ) and Vν(τ +h−1

σ (t)eσ),
ν ∈ {0,+,−}. Let η̂σ = η̃σ ◦ hσ. Then η̂σ is a chordal Loewner curve with some speed, which
generates K(τ + teσ)/K(τ), t ≥ 0. Since K(τ + teσ) is the H-hull generated by K(τ) and
ησ([τσ, τσ + t]), we get ησ(τσ + ·) = fK(τ) ◦ η̂σ.

We now consider the general case. We use Proposition 2.28 to do localization. Fix N =

(N+, N−) ∈ R2
+. Then τN is a bounded (F (+)

t )-stopping time. By the last paragraph, K(τN +

teσ)/K(τN ), t ≥ 0, are a.s. generated by a chordal Loewner curve, say η̂
N
σ , with some speed

such that ησ(τ
N
σ + ·) = fK(τN ) ◦ η̂

N
σ . Let h

N
σ (t) = m(τN + teσ)−m(τN ) and η̃

N
σ = η̂

N
σ ◦ (h

N
σ )−1.

Then the conditional law of η̃
N
σ given F (+)

τN
is that of a chordal SLEκ(2, ρ) curve in H started
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from Wσ(τN ) with force points W−σ(τN ) and Vν(τN ), ν ∈ {0,+,−}. On the event {τ ≤ N},
since τN = τ and F (+)

τN
agrees with F (+)

τ , we see that K(τ+ teσ)/K(τ), t ≥ 0, are a.s. generated

by η̂
N
σ , ησ(τ

N
σ + ·) = fK(τ) ◦ η̂

N
σ , η̃

N
σ = η̂

N
σ ◦ h−1

σ , and the conditional law of η̃
N
σ given F (+)

τ

is that of a chordal SLEκ(2, ρ) curve in H started from Wσ(τ) with force points W−σ(τ) and

Vν(τ), ν ∈ {0,+,−}. This means that η̃
N
σ and η̂

N
σ are the curves η̃σ and η̂σ we want on the

event {τ ≤ N}. We then may complete the proof by letting N+, N− →∞.

The following lemma describes the DMP of a commuting pair of chordal SLEκ(2, ρ) curves.

Lemma 4.4. Let w− < w+, v0 ∈ (w−, w+) ∪ {w+
−, w

−
+}, v+ ∈ (w+,∞) ∪ {w+

+} and v− ∈
(−∞, w−) ∪ {w−−}. Suppose (η+, η−) is a commuting pair of chordal SLEκ(2, ρ) curves started

from (w+, w−; v0, v+, v−). Let (F (+)
t )t∈R2

+
be the right-continuous augmentation of the R2-

indexed filtration (Ft)t∈R2
+

generated by η+ and η−. Let τ = (τ+, τ−) be an extended (F (+)
t )t∈R2

+
-

stopping time. Then on the event that τ ∈ R2
+ and W+(τ) > W−(τ), there a.s. exists a random

commuting pair of chordal Loewner curves (η̂+, η̂−) with some speeds, which up to a conformal
map agrees with the part of (η+, η−) after τ . Moreover, the conditional law of the normalization

of (η̂+, η̂−) given F (+)
τ is that of a commuting pair of chordal SLEκ(2, ρ) curves started from

(W+,W−;V0, V+, V−)|τ , where if Vσ(τ) = Wσ(τ) for some σ ∈ {+,−}, then Vσ(τ) is treated as
Wσ(τ)σ, and if V0(τ) = Wσ(τ) for some σ ∈ {+,−}, then V0(τ) is treated as Wσ(τ)−σ.

Proof. Let σ ∈ {+,−}. Assume that the event that τ ∈ R2
+ and W+(τ) > W−(τ) happens.

Applying Lemma 4.3, we get a pair of chordal Loewner curves with speeds η̂+ and η̂− such that
for σ ∈ {+,−}, ησ(τσ + ·) = fK(τ) ◦ η̂σ. Let hσ(t) = m(τ + teσ)−m(τ) and η̃σ = η̂σ ◦h−1

σ . Then

η̃σ is the normalization of η̂σ, and the conditional law of η̃σ given (F (+)
τ ) is that of a chordal

SLEκ(2, ρ) curve in H started from Wσ(τ) with force points W−σ(τ) and Vν(τ), ν ∈ {0,+,−}.
Moreover, the driving function for η̃σ is Wσ(τ + h−1

σ (t)eσ), and the force point functions are
W−σ(τ + h−1

σ (t)eσ) Vν(τ + h−1
σ (t)eσ), ν ∈ {0,+,−}.

Let K̂(t+, t−) = Hull(η̂+([0, t+]) ∪ η̂−([0, t−])), (t+, t−) ∈ R2
+. Then from ησ(τσ + ·) =

fK(τ) ◦ η̂σ, σ ∈ {+,−}, we get K̂(t) = K(τ + t)/K(τ), t ∈ R2
+. By (2.1), for any σ ∈ {+,−},

K̂(t−σe−σ + teσ)/K̂(t−σe−σ) = K(τ + t−σe−σ + teσ)/K(τ + t−σe−σ), t, t−σ ≥ 0.

Applying Lemma 4.3 to the stopping time τ + t−σe−σ, we find that a.s. for any t−σ ∈ Q+,

K̂(t−σe−σ + teσ)/K̂(t−σe−σ), t ≥ 0, are generated by a chordal Loewner curve with some
speed, which intersects R at a Lebesgue measure zero set. So (η̂+, η̂−) is a.s. a commuting pair
of chordal Loewner curves with some speeds.

Now (η̃+, η̃−) is the normalization of (η̂+, η̂−). We need to show that the conditional law

of (η̃+, η̃−) given F (+)
τ is that of a commuting pair of chordal SLEκ(2, ρ) curves started from

(W+,W−;V0, V+, V−)|τ . Let K̃σ(t) = Hull(ησ([0, t])), t ≥ 0, σ ∈ {+,−}, and K̃(t+, t−) =

Hull(K+(t+) ∪K−(t−)), (t+, t−) ∈ R2
+. For σ ∈ {+,−} and t ≥ 0, let F̃ σt denote the σ-algebra
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generated by F (+)
τ and η̃σ(s), s ≤ t. It suffices to show that, for any σ ∈ {+,−} and t−σ ≥ 0,

K̃(t−σe−σ + teσ)/K̃(t−σe−σ), t ≥ 0, are a.s. generated by a chordal Loewner curves with some

speed, whose normalization conditionally on F̃−σt−σ has the law of a chordal SLEκ(2, ρ) curve in

H started from Wσ(τ + h−1
−σ(t−σ)e−σ) with force points located at W−σ and Vν , ν ∈ {0,+,−},

all valued at τ + h−1
−σ(t−σ)e−σ.

It is easy to see that, for any t ∈ R2
+, τ + h−1

⊕ (t) is an extended (F (+)
t )-stopping time. To

see this, note that, for any a = (a+, a−) ∈ R2
+,

{τ + h−1
⊕ (t) ≤ a} = {τ ≤ a} ∩ {m(a+, τ−)−m(τ) ≥ t+} ∩ {m(τ+, a−)−m(τ) ≥ t−} ∈ F (+)

a .

Applying Lemma 4.3 to τ + h−1
−σ(t−σ)e−σ, we find that the family of H-hulls

K̃(t−σe−σ + teσ)/K̃(t−σe−σ) = K(τ + h−1
−σ(t−σ)e−σ + h−1

σ (t)eσ)/K(τ + h−1
−σ(t−σ)e−σ), t ≥ 0,

are generated by a chordal Loewner curve with some speed, whose normalization conditionally

on F (+)

τ+h−1
−σ(t−σ)e−σ

is that of a chordal SLEκ(2, ρ) curve in H started from Wσ(τ +h−1
−σ(t−σ)e−σ)

with force points located at W−σ and Vν , ν ∈ {0,+,−}, all valued at τ + h−1
−σ(t−σ)e−σ.

Note that the above marked points are F̃−σt−σ -measurable since they are determined by
W±(τ), Vν(τ), ν ∈ {0,+,−}, and η̃−σ(t), 0 ≤ t ≤ t−σ. To end the proof, it suffices to

show that F̃−σt−σ ⊂ F
(+)

τ+h−1
−σ(t−σ)e−σ

. By symmetry, we only need to work on the case σ = +.

For t ≥ 0, let F̂−t be the σ-algebra generated by F (+)
τ and η̂−(s), s ≤ t. Then h−1

− (t) are

(F̂−t )-stopping times for all t ≥ 0. Since η̃± = η̂±◦h−1
± , we get F̃−t− ⊂ F̂

−
h−1
− (t−)

. Now it suffices to

show that F̂−
h−1
− (t−)

⊂ F (+)

(τ+,τ−+h−1
− (t−))

. Since τ ≤ τ + h−1
− (t−)e−, we have F (+)

τ ⊂ F (+)

τ+h−1
− (t−)e−

.

Since η−(τ− + t) = fK(τ) ◦ η̂−, by continuity we can recover η̂−(s), 0 ≤ s ≤ t, using η−(s),

τ− ≤ s ≤ τ− + t, and K(τ). Thus, for any s− ≥ 0, F̂−s− ⊂ F
(+)
(τ+,τ−+s−). Let A ∈ F̂−

h−1
− (t−)

. Fix

a = (a+, a−) ∈ R2
+. Then

A ∩ {(τ+, τ− + h−1
− (t−)) < a} =

⋃
p∈Q+∩(0,a−)

(A ∩ {h−1
− (t−) ≤ p} ∩ {(τ+, τ− + p) ≤ a}) ∈ F (+)

a .

where we used the fact that A∩{h−1
− (t−) ≤ p} ∈ F̂−p ⊂ F

(+)
(τ+,τ−+p) because A ∈ F̂−

h−1
− (t−)

. Since

this holds for any a ∈ R2
+, by Proposition 2.24, A ∈ F (+)

(τ+,τ−+h−1
− (t−))

. So we get F̂−
h−1
− (t−)

⊂

F (+)

(τ+,τ−+h−1
− (t−))

, as desired.

4.2 Relation with the independent coupling

Let Pρ denote the joint law of the driving functions of a commuting pair of chordal SLEκ(2, ρ)
curves in H started from (w+, w−; v0, v+, v−). When we want to emphasize the dependence of
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w+, w−, v0, v+, v−, we write it as P(ρ0,ρ+,ρ−)
(w+,w−;v0,v+,v−). If ρ0 = 0, i.e., v0 does not play the role of a

force point, we then write the measure as P(ρ+,ρ−)
(w+,w−;v+,v−) or P(ρ+,ρ−). If ρ0 = ρ− = 0, we then

write the measure as P(ρ+)
(w+,w−;v+) or P(ρ+).

The Pρ is a probability measure on Σ2, where Σ :=
⋃

0<T≤∞C([0, T ),R) was defined in [23,
Section 2]. A random element in Σ is a continuous stochastic process with random lifetime. The
space Σ2 is equipped with an R2

+-indexed filtration (Ft)t∈R2
+

defined by F(t+,t−) = F+
t+ ∨ F

−
t− ,

where (F+
t )t≥0 and (F−t )t≥0 are the filtrations generated by the first function and the second

function, respectively. A probability measure on Σ2 is understood as the joint law of two
stochastic processes with random lifetimes.

Let Pρ+ and Pρ− denote the marginal laws of Pρ on Σ. Then Pρ is different from the product

measure Pρi := Pρ+ × Pρ−. We will derive some relation between Pρ and Pρi . Suppose now that

(ŵ+, ŵ−) follows the law Pρi instead of Pρ. Then (4.1) holds for two independent Brownian
motions B+ and B−, and η+ and η− are independent. Let Ddisj be as defined in Section 3.3
for such (η+, η−). Then (η+, η−;Ddisj) is a disjoint commuting pair of chordal Loewner curves.
Since B+ and B− are independent, for any σ ∈ {+,−} and any finite (F−σt )-stopping time
t−σ, Bσ is a Brownian motion w.r.t. the filtration (Fσt ∨F−σt−σ)t≥0, and we may view (4.1) as an

(Fσt ∨F−σt−σ)t≥0-adapted SDE. We will repeatedly apply Itô’s formula (cf. [15]) in this subsection,

where σ ∈ {+,−}, the variable t−σ of all functions is a fixed finite (F−σt )-stopping time, and
all SDE are (Fσtσ ∨ F

−σ
t−σ)tσ≥0-adapted in tσ.

By (3.25) we get the SDE for Wσ (in tσ):

∂σWσ = Wσ,1∂ŵσ +
(κ

2
− 3
)
Wσ,2∂tσ. (4.3)

We will use the boundary scaling exponent b and central charge c defined by b = 6−κ
2κ and

c = (3κ−8)(6−κ)
2κ . By (3.26) we get the SDE for W b

σ,N :

∂σW
b
σ,N

W b
σ,N

= b
Wσ,2

Wσ,1
∂ŵσ +

c

6
Wσ,S∂tσ. (4.4)

Next, we derive the SDE for ∂σEWσ ,Y for Y ∈ {W−σ, V0, V+, V−}. Note that EWσ ,Y (t+, t−) can
be expressed as a product of a function in t−σ and a function f(t,Wσ(tσeσ), Y (tσeσ)), where

f(t, w, y) :=

{
(gK−σ,tσ (t−σ)(w)− gK−σ,tσ (t−σ)(y))/(w − y), w 6= y;

g′K−σ,tσ (t−σ)(w), w = y.
(4.5)

Using (3.18,4.3) and (3.22-3.23) we see that EWσ ,Y satisfies the SDE

∂σEWσ ,Y

EWσ ,Y

ae
=
[ Wσ,1

Wσ − Y
− Wσ,1

Wσ − Y

∣∣∣−σ
0

]
dŵσ +

[ 2W 2
σ,1

(Wσ − Y )2
−

2W 2
σ,1

(Wσ − Y )2

∣∣∣−σ
0

]
∂tσ

− κ

Wσ − Y

∣∣∣−σ
0
·
[ Wσ,1

Wσ − Y
− Wσ,1

Wσ − Y

∣∣∣−σ
0

]
∂tσ +

(κ
2
− 3
) Wσ,2

Wσ − Y
∂tσ. (4.6)
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Define a positive continuous function Miρ→ρ on Ddisj by

Miρ→ρ = F−
c
6 · E

2
κ
W+,W−

·
∏

σ∈{+,−}

W b
σ,N ·

∏
ν∈{0,+,−}

V
ρν (ρν+4−κ)

4κ
ν,N ·

·
∏

σ∈{+,−}

[ ∏
ν∈{0,+,−}

E
ρν
κ
Wσ ,Vν

]
·

∏
ν1<ν2∈{0,+,−}

E
ρν1ρν2

2κ
Vν1 ,Vν2

. (4.7)

Then Miρ→ρ(t+, t−) = 1 if t+ · t− = 0. Combining (4.1,3.21,4.6,3.27,4.4,3.29,3.31) and using

the facts that ŵσ = Wσ|−σ0 , ŵσ−σ = W−σ|−σ0 and v̂σν = Vν |−σ0 , we get the SDE for Miρ→ρ in tσ

when t−σ is a fixed (F−σt )-stopping time:

∂σMiρ→ρ

Miρ→ρ
= b

Wσ,2

Wσ,1
∂Bσ −

[ 2

ŵσ − ŵσ−σ
+

∑
ν∈{0,+,−}

ρν
ŵσ − v̂σν

]∂Bσ√
κ

+

+
[ 2Wσ,1

Wσ −W−σ
+

∑
ν∈{0,+,−}

ρνWσ,1

Wσ − Vν

]∂Bσ√
κ
. (4.8)

This means that Miρ→ρ|−σt−σ is a local martingale in tσ.
For σ ∈ {+,−}, let Ξσ denote the space of simple crosscuts of H that separate wσ from w−σ

and ∞. Here we do not require that the crosscuts separate wσ from vσ or v0. For σ ∈ {+,−}
and ξσ ∈ Ξσ, let τσξσ be the first time that ησ hits the closure of ξσ; or the lifetime of η if
such time does not exist. We see that τσξσ ≤ hcap2(Hull(ξj)) < ∞. Let Ξ = {(ξ+, ξ−) ∈
Ξ+ × Ξ−,dist(ξ+, ξ−) > 0}. For ξ = (ξ+, ξ−) ∈ Ξ, let τξ = (τ+

ξ+
, τ−ξ−). We may choose a

countable set Ξ∗ ⊂ Ξ such that for every ξ = (ξ+, ξ−) ∈ Ξ there is (ξ∗+, ξ
∗
−) ∈ Ξ∗ such that ξσ

is enclosed by ξ∗σ, σ ∈ {+,−}.

Lemma 4.5. For any ξ ∈ Ξ, | logMiρ→ρ| is uniformly bounded on [0, τξ] by a constant depending
only on κ, ρ, w+, w−, v0, v+, v− and ξ.

Proof. Fix ξ = (ξ+, ξ−) ∈ Ξ. Let Kξσ = Hull(ξσ), σ ∈ {+,−} and Kξ = Kξ+ ∪K(ξ−). Then

either v0 6∈ Kξ+ or v0 6∈ Kξ− . By symmetry, we assume that v0 6∈ Kξ+ . Pick v1
0 < v2

0 ∈
(v0, w+) \ Kξ, and let V j

0 be the force point function started from vj0, j = 1, 2. By (3.13),

V+ ≥ W+ ≥ V 2
0 > V 1

0 ≥ V0 ≥ W− ≥ V− on [0, τξ]. Throughout the proof, a constant is

a positive number that depends only on w+, w−, v0, v+, v−, ξ, v
1
0, v

2
0, and a function defined

on [0, τξ] is said to be uniformly bounded if its absolute value on [0, τξ] is bounded above
by a constant. From the definition of Miρ→ρ, it suffices to prove that | logF |, | logEY1,Y2 |,
Y1 6= Y2 ∈ {W+,W−, V0, V+, V−}, | logWσ,N |, σ ∈ {+,−}, and | log Vν,N |, ν ∈ {0,+,−}, are all
uniformly bounded. By Proposition 2.2, W+,1,W−,1 are uniformly bounded by 1.

For σ ∈ {+,−}, the function (t+, t−) 7→ tσ is bounded on [0, τξ] by hcap2(Kξ). For any

t ∈ [0, τξ], since gKξ = gKξ/K(t)◦gK(t), by Proposition 2.2 we get 0 < g′Kξ ≤ g
′
K(t) ≤ 1 on [v1

0, v
2
0].
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Since [v1
0, v

2
0] is a compact subset of C\Kξ, g

′
Kξ

on [v1
0, v

2
0] is bounded from below by a constant.

So | log(g′K(t))| is uniformly bounded on [v1
0, v

2
0]. Since V j

0 (t) = gK(t)(v
j
0), j = 1, 2, we see that

1
V 2
0 −V 1

0
is uniformly bounded, which then implies that 1

|Wσ−W−σ | and 1
|Wσ−V−σ | are uniformly

bounded, σ ∈ {+,−}. From (3.20) we see that | logF | is uniformly bounded. From (3.27,3.29)
and the fact that W−σ,N |σ0 = V−σ,N |σ = 1, we see that | logW−σ,N | and | log V−σ,N |, σ ∈ {+,−},
are uniformly bounded. We also know that 1

|W+−V0| ≤
1

|V 2
0 −V 1

0 |
is uniformly bounded. From

(3.29) with σ = + and the fact that V0,N |+0 ≡ 1 we find that | log V0,N | is uniformly bounded.
Now we estimate | logEY1,Y2 |. From (3.14), for any Y1, Y2 ∈ {W+,W−, V0, V+, V−}, |Y1 −

Y2| ≤ |V+ − V−| is uniformly bounded. If Y1 ∈ {W+, V+} and Y2 ∈ {W−, V−}, then 1
|Y1−Y2| ≤

1
|V 1

0 −V 2
0 |

is uniformly bounded. From (3.30) we see that | logEY1,Y2 | is uniformly bounded. If

Y1, Y2 ∈ {W−σ, V−σ} for some σ ∈ {+,−}, then 1
|Yj−Wσ | , j = 1, 2, are uniformly bounded, and

then the uniformly boundedness of | logEY1,Y2 | follows from (3.31) and the fact that EY1,Y2 |σ0 ≡ 1.
Finally, we consider the case that Y1 = V0. If Y2 ∈ {W+, V+}, then 1

|Y2−Y1| ≤
1

|V 2
0 −V 1

0 |
, which is

uniformly bounded. We can again use (3.30) to get the uniformly boundedness of | logEY1,Y2 |.
If Y2 ∈ {W−, V−}, then 1

|Yj−W+| , j = 1, 2, are uniformly bounded. The uniformly boundedness

of | logEY1,Y2 | then follows from (3.31) with σ = + and the fact that EY1,Y2 |+0 ≡ 1.

Corollary 4.6. For any ξ ∈ Ξ, (Miρ→ρ(t ∧ τξ))t∈R2
+

is an (Ft)-Miρ→ρ(τξ)-Doob martingale

w.r.t. Pρi .

Proof. This follows from (4.8), Lemma 4.5, and the same argument as in the proof of Corollary
3.2 of [22].

Lemma 4.7. For any ξ = (ξ+, ξ−) ∈ Ξ, Pρ is absolutely continuous w.r.t. Pρi on Fτξ , and the

RN derivative is Miρ→ρ(τξ).

Proof. Let ξ = (ξ+, ξ−) ∈ Ξ. The above corollary implies that Eρi [Miρ→ρ(τξ)] = Miρ→ρ(0) = 1.

So we may define a probability measure Pρξ by dPρξ = Miρ→ρ(τξ)dP
ρ

i .

Since Miρ→ρ(t+, t−) = 1 when t+t− = 0, from the above corollary we know that the marginal

laws of Pρξ agree with that of Pρi , which are Pρ+ and Pρ−. Suppose (ŵ+, ŵ−) follows the law Pρξ .

Then ŵ− follows the law Pρ−. Now we write τ± for τ±ξ± , and τ for τξ. From Lemma 2.31 and

Corollary 4.6,
dP
ρ

ξ |F(t+,τ−)

dP
ρ

i |F(t+,τ−)

= Miρ→ρ(t+ ∧ τ+, τ−), 0 ≤ t+ < ∞. From Girsanov Theorem and

(4.8), we see that, under Pρξ , ŵ+ satisfies the following SDE up to τ+:

dŵ+ =
√
κdB

τ−
+ + κb

W+,2

W+,1

∣∣∣−
τ−
dt+ +

2W+,1

W+ −W−

∣∣∣−
τ−
dt+ +

∑
ν∈{0,+,−}

ρνW+,1

W+ − Vν

∣∣∣−
τ−
dt+,
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where B
τ−
+ is a standard (F(t+,τ−))t+≥0-Brownian motion under Pρξ . Using Lemma 3.13 and

(3.25) we find that W+(·, τ−) under Pρξ satisfies the following SDE up to τ+:

dW+|−τ−
ae
=
√
κW+,1|−τ−dB

τ−
+ +

2W 2
+,1

W+ −W−

∣∣∣∣−
τ−

dt+ +
∑

ν∈{0,+,−}

ρ+W
2
+,1

W+ − Vν

∣∣∣∣−
τ−

dt+. (4.9)

There is a similar SDE for W−(τ+, ·).
Note that the SDE (4.9) agrees with the SDE for W+(·, τ−) if (η+, η−) is a commuting pair

of chordal SLEκ(2, ρ) curves started from (w+, w−; v0, v+, v−). The same is true if τ− is replaced

by t− ∧ τ− for any deterministic t− ≥ 0. Thus, Pρξ agrees with Pρ on Fτξ , which implies the

conclusion of the lemma.

Corollary 4.8. If T is an (Ft)t∈R2
+

-stopping time, and is bounded above by τξ for some ξ ∈ Ξ.

Then Pρ|FT is absolutely continuous w.r.t. Pρi |FT , and the RN derivative is Miρ→ρ(T ).

Proof. This follows from Lemma 4.7, Proposition 2.31, and Corollary 4.6.

4.3 Diffusion processes along a time curve

Now assume that v+ − v0 = v0 − v−. Let u = (u+, u−) : [0, T u) → R2
+ be as in Section 3.4.

By Lemma 3.22, a.s. T u = ∞. Recall that for a function X on R2
+, we define Xu = X ◦ u.

By Proposition 3.24, u(t) is an (Ft)-stopping time for each t ≥ 0. We then get an R+-indexed
filtration Fut := Fu(t), t ≥ 0, from Proposition 2.26. For ξ = (ξ+, ξ−) ∈ Ξ, let τuξ denote the

first t ≥ 0 such that u1(t) = τ1
ξ1

or u2(t) = τ2
ξ2

, whichever comes first. Note that such time

exists and is finite because (τ1
ξ1
, τ2
ξ2

) ∈ D. The following proposition has the same form as [22,
Lemma 4.2], whose proof can also be used here.

Proposition 4.9. For ξ ∈ Ξ, u(τuξ ) is an (Ft)t∈R2
+

-stopping time, τuξ is an (Fut )t≥0-stopping

time, and for any t ≥ 0, u(t ∧ τuξ ) is an (Ft)t∈R2
+

-stopping time.

First assume that (ŵ+, ŵ−) follows the law Pρi . Let η± be the chordal Loewner curve driven
by ŵ±. Let Ddisj be as before. Let ŵ±∓(t) and v̂±ν (t), ν ∈ {0,+,−} be the force point functions

for η± started from w∓ and vν , ν ∈ {0,+,−}, respectively. Define B̂σ, σ ∈ {+,−}, by

√
κB̂σ(t) = ŵσ(t)− wσ −

∫ t

0

2ds

ŵσ(s)− ŵσ−σ(s)
−

∑
ν∈{0,+,−}

∫ t

0

ρνds

ŵσ(s)− v̂σν (s)
. (4.10)

Then B̂+ and B̂− are independent standard Brownian motions. So we get five (Ft)-martingales

on Ddisj: B̂+(t+), B̂−(t−), B̂+(t+)2 − t+, B̂−(t−)2 − t−, and B̂+(t+)B̂−(t−). Fix ξ ∈ Ξ. Using
Propositions 2.31 and 3.24 and the facts that u± is uniformly bounded above on [0, τξ], we

conclude that B̂u
σ(t ∧ τuξ ), B̂u

σ(t ∧ τuξ )2 − uσ(t ∧ τuξ ), σ ∈ {+,−}, and B̂u
+(t ∧ τuξ )B̂u

−(t ∧ τuξ ) are
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all (Fut )-martingales under Pρi . Thus, the quadratic variation and covariation of B̂u
+ and B̂u

−
satisfy

d〈B̂u
+〉t

ae
= u′+(t)dt, d〈B̂u

−〉t
ae
= u′−(t)dt, d〈B̂u

+, B̂
u
−〉t = 0 (4.11)

up to τuξ . From Lemmas 4.6 and 2.31 we know that Mu
iρ→ρ(t ∧ τuξ ), t ≥ 0 is an (Fut )t≥0-

martingale. Let T udisj denote the first t such that u(t) 6∈ Ddisj. Since T udisj = supξ∈Ξ τ
u
ξ =

supξ∈Ξ∗ τ
u
ξ , and Ξ∗ is countable, we see that, T udisj is an (Fut )t≥0-stopping time. We now compute

the SDE for Mu
iρ→ρ(t) up to T udisj in terms of B̂u

+ and B̂u
−. Using (4.7) we may express Mu

iρ→ρ as a

product of several factors. Among these factors, EuW+,W−
, (W u

σ,N )b, (EuWσ ,Vν
)ρν/κ, σ ∈ {+,−},

ν ∈ {0,+,−}, contribute the martingale part; and other factors are differentiable in t. For
σ ∈ {+,−}, using (4.3,3.25,3.26) we get the (Fut )-adapted SDEs:

dW u
σ = W u

σ,1dŵ
u
σ +

(κ
2
− 3
)
Wσ,2u

′
σdt+

2(W u
−σ,1)2

W u
σ −W u

−σ
u′−σdt, (4.12)

dW u
σ,1

W u
σ,1

=
W u
σ,2

W u
σ,1

√
κdB̂u

σ + drift terms.

Since W u
σ,N =

Wu
σ,1

(Wσ,1|σ0 )u , and (Wσ,1|σ0 )u(t) = Wσ,1(u−σ(t)e−σ) is differentiable in t, from the last

displayed formula, we get the SDE for W b
σ,N :

d(W u
σ,N )b

(W u
σ,N )b

ae
= b

W u
σ,2

W u
σ,1

√
κdB̂u

σ + drift terms.

For the SDE for (EuW+,W−
)
2
κ , note that when X = W+ and Y = W−, the numerators and

denominators in (3.30) never vanish. So using (4.12) we get

d(EuW+,W−
)
2
κ

(EuW+,W−
)
2
κ

ae
=

2

κ

∑
σ∈{+,−}

[ W u
σ,1

W u
σ −W u

−σ
− 1

ŵuσ − (ŵσ−σ)u

]√
κdB̂u

σ + drift terms.

We may express EuWσ ,Vν
(t) as a product of a function in u−σ(t), which is differentiable, and a

function of the form f(u(t), ŵuσ(t), (v̂σν )u(t)), where f(·, ·, ·) is given by (4.5). Using (4.12) we
get the SDE for (EuWσ ,Vν

)
ρν
κ :

d(EuWσ ,Vν
)
ρν
κ

(EuWσ ,Vν
)
ρν
κ

ae
=
ρν
κ

[ W u
σ,1

W u
σ − V u

ν

− 1

ŵuσ − (v̂σν )u

]√
κdB̂u

σ + drift terms.

Here if (v̂σν )u(t) = ŵuσ(t)±, we understand the function inside the square brackets as

lim
v→ŵσ(uσ(t))

g′K−σ,uσ(t)(u−σ(t))(ŵσ(uσ(t)))

gK−σ,uσ(t)(u−σ(t))(ŵσ(uσ(t)))− gK−σ,uσ(t)(u−σ(t))(v)
− 1

ŵσ(uσ(t))− v
=

1

2

W u
σ,2(t)

W u
σ,1(t)

.
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Combining the last three displayed formulas and using the fact that Mu
iρ→ρ and B̂u

± are all

(Fut )-local martingales under Pρi , we get

dMu
iρ→ρ

Mu
iρ→ρ

ae
=

∑
σ∈{+,−}

[
κb

W u
σ,2

W u
σ,1

+ 2
[ W u

σ,1

W u
σ −W u

−σ
− 1

ŵuσ − (ŵσ−σ)u

]
+

+
∑

ν∈{0,+,−}

ρν

[ W u
σ,1

W u
σ − V u

ν

− 1

ŵuσ − (v̂σν )u

]] dB̂u
σ√
κ
, (4.13)

where if (v̂σν )u(t) = ŵuσ(t)±, the function inside the square brackets is understood as 1
2

Wu
σ,2(t)

Wu
σ,1(t) .

From Corollary 4.8 and Proposition 4.9 we know that, for any ξ ∈ Ξ and t ≥ 0,

dPρ|Fu(t∧τuξ )

dPρi |Fu(t∧τuξ )

= Mu
iρ→ρ(t ∧ τuξ ). (4.14)

We will use a Girsanov argument to derive the SDEs for ŵu+ and ŵu− up to T udisj under Pρ.
For σ ∈ {+,−}, define a process B̃u

σ(t) such that B̃u(t) = 0 and

dB̃u
σ =dB̂u

σ −
[
κb

W u
σ,2

W u
σ,1

+
[ 2W u

σ,1

W u
σ −W u

−σ
− 2

ŵuσ − (ŵσ−σ)u

]
+

∑
ν∈{0,+,−}

[ ρνW
u
σ,1

W u
σ − V u

ν

− ρν
ŵuσ − (v̂σν )u

]] u′σ(t)√
κ
dt. (4.15)

Lemma 4.10. For any σ ∈ {+,−} and ξ ∈ Ξ, |B̃u
σ | is bounded on [0, τuξ ] by a constant

depending only on κ, ρ, w+, w−, v0, v+, v− and ξ.

Proof. Throughout the proof, a positive number that depends only on κ, ρ, w+, w−, v0, v+, v−

and ξ is called a constant. It is clear that B̂u
+(t) = U(u+(t), 0) − U(0, 0) and B̂u

−(t) =
U(0, u−(t)) − U(0, 0), where U := W+ + W− +

∑
ν∈{0,+,−}

ρν
2 Vν . By Proposition 2.3, V+ and

V− are bounded in absolute value by a constant on [0, τξ], and so are W+, V0,W−, U because

V+ ≥ W+ ≥ V0 ≥ W− ≥ V−. Thus, B̂u
σ , σ ∈ {+,−}, are bounded in absolute value by a

constant on [0, τuξ ]. By (3.14) and that V u
+(t)− V u

−(t) = e2t(v+ − v−) for 0 ≤ t < T u, we know

that e
2τuξ ≤ 4 diam(ξ+ ∪ ξ− ∪ [v−, v+])/|v+ − v−|. This means that τuξ is bounded above by a

constant. Since u([0, τuξ ]) ⊂ [0, τξ], it remains to show that, for σ ∈ {+,−},

Wσ,2

Wσ,1
,

Wσ,1

Wσ −W−σ
− 1

ŵσ − ŵσ−σ
,

Wσ,1

Wσ − Vν
− 1

ŵσ − v̂σν
, ν ∈ {0,+,−},

are all bounded in absolute value on [0, τξ] by a constant.
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Because 1
ŵσ−ŵσ−σ

=
Wσ,1

Wσ−W−σ

∣∣∣−σ
0

, the boundedness of
Wσ,1

Wσ−W−σ −
1

ŵσ−ŵσ−σ
on [0, τξ] simply

follows from the boundedness of
Wσ,1

Wσ−W−σ , which in turn follows from 0 ≤ Wσ,1 ≤ 1 and that

|Wσ −W−σ| is bounded from below on [0, τξ] by a positive constant, where the latter bound
was given in the proof of Lemma 4.5.

For the boundedness of
Wσ,2

Wσ,1
on [0, τξ], we assume σ = + by symmetry. Since W+,j(t+, t−) =

g
(j)
K−,t+ (t−)(ŵ+(t+)), j = 1, 2, and K−,t+(·) are chordal Loewner hulls driven by W−(t+, ·) with

speed W−,1(t+, ·)2, by differentiating
g′′
K−,t+(t−)

(ŵ+(t+))

g′
K−,t+(t−)

(ŵ+(t+))
w.r.t. t−, we get

W+,2(t+, t−)

W+,1(t+, t−)
=

∫ t−

0

4W 2
−,1W+,1

(W+ −W−)3

∣∣∣∣
(t+,s−)

ds.

From the facts that 0 ≤ W+,1,W−,1 ≤ 1 and that |W+ − W−| is bounded from below by a
constant on [0, τξ], we see that the integrand in the above displayed is bounded in absolute

value by a constant, from which follows the boundedness of
W+,2

W+,1
.

For the boundedness of
Wσ,1

Wσ−Vν −
1

ŵσ−v̂σν
on [0, τξ] with σ = +, we note that W+,1(t+, t−) =

g′K−,t+ (t−)(ŵ+(t+)), W+(t+, t−) = gK−,t+ (t−)(ŵ+(t+)), and Vν(t+, t−) = g
η−,t+ (0)

K−,t+ (t−)(v̂
+
ν (t+)). By

differentiating w.r.t. t−, we get

W+,1(t+, t−)

W+(t+, t−)− Vν(t+, t−)
− 1

ŵ+(t+)− v̂+
ν (t+)

=

∫ t−

0

2W 2
−,1W+,1

(W+ −W−)2(Vν −W−)

∣∣∣∣
(t+,s−)

ds.

Since 0 ≤ W+,1 ≤ 1, |W+ −W−| is bounded from below by a constant on [0, τξ], and Vν −W−
does not change sign (but could be 0), it suffices to show that

∣∣ ∫ t−
0

2W 2
−,1

Vν−W− |(t+,s−) ds
∣∣ is bounded

by a constant on [0, τξ]. This holds because the integral equals Vν(t+, t−)−Vν(t+, 0), and |Vν | is
bounded by a constant on [0, τξ]. The boundedness in the case σ = − holds symmetrically.

Lemma 4.11. Under Pρ, there is a stopped planar Brownian motion B(t) = (B+(t), B−(t)),
0 ≤ t < T udisj, such that, for σ ∈ {+,−}, ŵuσ satisfies the SDE

dŵuσ
ae
=
√
κu′σdBσ +

[
κb

W u
σ,2

W u
σ,1

+
2W u

σ,1

W u
σ −W u

−σ
+

∑
ν∈{0,+,−}

ρνW
u
σ,1

W u
σ − V u

ν

]
u′σdt, 0 ≤ t < T udisj.

Here by saying that (B+(t), B−(t)), 0 ≤ t < T udisj, is a stopped planar Brownian motion, we
mean that B+(t) and B−(t), 0 ≤ t < T udisj, are local martingales with d〈Bσ〉t = t, σ ∈ {+,−},
d〈B+, B−〉t = 0, 0 ≤ t < T udisj.

Proof. For σ ∈ {+,−}, define B̃u
σ using (4.15). By (4.13), B̃u

σ(t)Mu
iρ→ρ(t), 0 ≤ t < T udisj, is an

(Fut )-local martingale under Pρi . By Lemmas 4.5 and 4.10, for any ξ ∈ Ξ, B̃u
σ(t∧τuξ )Mu

iρ→ρ(t∧τuξ ),

47



t ≥ 0, is an (Fut )-martingale under Pρi . Since this process is (Fu(t∧τuξ ))-adapted, and Fu(t∧τuξ ) ⊂

Fu(t) = Fut , it is also an (Fu(t∧τuξ ))-martingale. From (4.14) we see that (B̃u
σ(t ∧ τuξ ))t≥0, is

an (Fu(t∧τuξ ))t≥0-martingale under Pρ. A standard argument shows that (B̃u
σ(t ∧ τuξ ))t≥0 is an

(Fut = Fu(t))t≥0-martingale under Pρ. Since T udisj = supξ∈Ξ∗ τ
u
ξ , we see that, for σ ∈ {+,−},

B̃u
σ(t), 0 ≤ t < T udisj, is an (Fut )-local martingale under Pρ.

From (4.11) we know that, under Pρi ,

〈B̃u
σ(· ∧ τuξ )〉t = uσ(t ∧ τuξ ), σ ∈ {+,−}; 〈B̃u

+(· ∧ τuξ ), B̃u
−(· ∧ τuξ )〉t = 00 (4.16)

Since Pρ � Pρi on Fu(t∧τuξ ) for any t ≥ 0, we also have (4.16) under Pρ. Since T udisj = supξ∈Ξ∗ τ
u
ξ ,

we conclude that, under Pρ,

〈B̃u
σ〉t = uσ(t), σ ∈ {+,−}; 〈B̃u

+, B̃
u
−〉t ≡ 0, 0 ≤ t < T udisj.

Since B̃u
σ(t), 0 ≤ t < T udisj, σ ∈ {+,−}, are (Fut )-local martingales under Pρ, we get the stopped

planar Brownian motion (B+(t), B−(t)), 0 ≤ t < T udisj, such that dB̃u
σ(t) =

√
u′σ(t)dBσ(t).

Using (4.10) and (4.15) we then complete the proof.

From now on, we work under the probability measure Pρ. Combining Lemma 4.11 with
(4.12) and (3.18), we get an SDE for W u

σ − V u
0 up to T udisj:

d(W u
σ − V u

0 )
ae
=W u

σ,1

√
κu′σdB

u
σ +

∑
ν∈{0,+,−}

ρν(W u
σ,1)2u′σ

W u
σ − V u

ν

dt+
2(W u

σ,1)2u′σ
W u
σ −W u

−σ
dt

+
2(W u

−σ,1)2u′−σ
W u
σ −W u

−σ
dt+

2(W u
σ,1)2u′σ

W u
σ − V u

0

dt+
2(W u

−σ,1)2u′−σ
W u
−σ − V u

0

dt.

Recall that Rσ =
Wu
σ−V u0

V uσ −V u0
∈ [0, 1], σ ∈ {+,−}, and R = (R+, R−). Combining the above SDE

with (3.33), we find that Rσ, σ ∈ {+,−}, satisfies the following SDE up to T udisj:

dRσ
ae
= σ

√
κRσ(1−R2

σ)

R+ +R−
dBσ +

(2 + ρ0)− (ρσ − ρ−σ)Rσ − (ρ+ + ρ− + ρ0 + 6)R2
σ

R+ +R−
dt. (4.17)

We will later show in Theorem 4.13 that (4.17) holds throughout R+.
Let X = R+ − R− and Y = 1 − R+R−. From (4.17) we know that X and Y satisfy the

following SDEs up to T udisj:

dX = dMX − [(ρ+ + ρ− + ρ0 + 6)X + (ρ+ − ρ−)]dt, (4.18)

dY = dMY − [(ρ+ + ρ− + ρ0 + 6)Y − (ρ+ + ρ− + 4)]dt, (4.19)
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where MX and MY are local martingales whose quadratic variation and covariation satisfy the
following equations up to T udisj:

d〈X,X〉 = κ(Y −X2)dt, d〈X,Y 〉 = κ(X −XY )dt, d〈Y, Y 〉 = κ(Y − Y 2)dt. (4.20)

Let ∆ denote the triangle domain {(x, y) : |x| < y < 1}. Then (X,Y ) ∈ ∆ because Y ≤ 1 and
Y ±X = (1±R+)(1∓R−) ≥ 0 as R+, R− ∈ [0, 1].

Lemma 4.12. If R+ and R− satisfy (4.17) for a stopped planar Brownian motion (B+, B−)
up to some stopping time τ , then a.s. limt↑τ R(t) 6= 0.

Proof. We know that X := R+−R− and Y := 1−R+R− satisfy (4.18,4.19,4.20) up to τ , and as
t ↑ τ , R(t)→ 0 iff (X(t), Y (t))→ (0, 1). From (4.19,4.20) there is a stopped Brownian motion
BY (t), 0 ≤ t < τ , such that Y satisfies the following SDE:

dY =
√
κY (1− Y )dBY − [(ρ+ + ρ− + ρ0 + 6)Y − (ρ+ + ρ− + 4)]dt, 0 ≤ t < τ.

Define R0(t) = X(t)/Y (t) whenever Y (t) 6= 0. It suffices to show that (R0(t), Y (t)) does not
tend to (0, 1) as t ↑ τ . Assume Y (0) 6= 0. Let T be τ or the first time that Y (t) = 0, whichever
comes first. From (4.20) we know that R0 satisfies d〈R0〉t = (1− R2

0)/Y dt and d〈R0, Y 〉t = 0.
Combining this with (4.18,4.19), we see that there exists BR0 such that (BR0(t), BY (t)), 0 ≤
t < T , is a stopped planar Brownian motion, and R0 satisfies the following SDE:

dR0 =

√
κ(1−R2

0)

Y
dBR0 −

(ρ+ + ρ− + 4)R0 + (ρ+ − ρ−)

Y
dt, 0 ≤ t < T.

Let v(t) =
∫ t

0 κ/Y (s)ds, 0 ≤ t < T , and T̃ = sup v([0, T )). Let R̃0(t) = R0(v−1(t)) and

Ỹ (t) = Y (v−1(t)), 0 ≤ t < T̃ . Then there is a stopped planar Brownian motion (B̃R0(t), B̃Y (t)),
0 ≤ t < T̃ , such that R̃0 and Ỹ satisfy the following SDEs on [0, T̃ ):

dR̃0 =

√
1− R̃2

0dB̃R0 − (aR0R̃+ bR0)dt, (4.21)

dỸ = Ỹ

√
1− Ỹ dB̃Y − Ỹ (aY (Ỹ − 1) + bY )dt, (4.22)

where aY = (ρ+ + ρ− + ρ0 + 6)/κ, bY = (ρ0 + 2)/κ, aR0 = aY − bY , bR0 = (ρ+ − ρ−)/κ.

Let Θ = arcsin(R̃0) and Φ = log(1+
√

1−Ỹ
1−
√

1−Ỹ
). Then Θ ∈ [−π/2, π/2] and Φ ∈ R+. Using

(4.22,4.21) we find that Θ and Φ satisfy the following SDEs on [0, T̃ ):

dΘ = dB̃R0 − (aR0 −
1

2
) tan Θdt− bR0 sec Θdt;

dΦ = −dB̃Y +
(
bY −

1

4

)
coth

(Φ

2

)
dt+

(3

4
− aY

)
tanh

(Φ

2

)
dt.
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Moreover, limt↑T (R0(t), Y (t)) = (0, 1) is equivalent to lim
t↑T̃ (Θ(t),Φ(t)) = (0, 0). As Θ(t)→ 0,

Θ behaves like a standard Brownian motion; while as Φ(t)→ 0, Φ behaves like a Bessel process
of dimension δ such that δ−1

2 = 2(bY − 1
4). Since Θ and Φ are independent, as (Θ,Φ) →

(0, 0),
√

Θ2 + Φ2 behaves like a Bessel process of dimension δ + 1 = 4bY + 1 = 4
κ(ρ0 + 2) + 1.

Since ρ0 ≥ κ
4 − 2, we get δ + 1 ≥ 2. Thus, a.s. lim

t↑T̃
√

Θ(t)2 + Φ(t)2 6= 0, which implies

that lim
t↑T̃ (Θ(t),Φ(t)) 6= (0, 0). The above argument can be made rigorous using Girsanov

Theorem on a sequence of stopping times. So on the event {T = τ} ⊃ {Y (t) 6= 0 on [0, τ)},
a.s. limt↑T (R0(t), Y (t)) 6= (0, 1). From the Markov property of (X,Y ), we see that, for any
q ∈ Q+, on the event {q < τ} ∩ {Y (t) 6= 0 on [q, τ)}, a.s. limt↑T (R0(t), Y (t)) 6= (0, 1). Since
{limt↑T Y (t) = 1} ⊂

⋃
q∈Q+

{q < τ} ∩ {Y (t) 6= 0 on [q, τ)}, we get a.s. limt↑T (R0(t), Y (t)) 6=
(0, 1), which implies that limt↑τ R(t) 6= 0.

Theorem 4.13. Under Pρ, R+ and R− satisfy (4.17) throughout R+ for a pair of independent
Brownian motions B+ and B−.

Proof. We already know that R+ and R− satisfy (4.17) for a stopped planar Brownian motion
(B+, B−) up to T udisj, the first t such that η+([0, u+(t)]) intersects η−([0, u−(t)]), If ρ0 ≥ κ

2 − 2,
a.s. T udisj =∞, and so (4.17) holds throughout R+, and B+ and B− are independent Brownian
motions. For the rest of the proof, assume that ρ0 <

κ
2 − 2. Then a.s. T udisj < ∞. Set n = 0.

Let wn+ = w+, wn− = w−, vnν = vν , ν ∈ {0,+,−}, ηn+ = η+, and ηn− = η−.
Let mn denote the capacity function for (ηn+, η

n
−), let Wn

+ and Wn
− be the driving functions,

and let V n
ν , ν ∈ {0,+,−}, be the force point functions started from vn0 , v

n
+, v

n
−, respectively. Let

Fn(t+,t−) be the σ-algebra generated by ηn+|[0,t+] and ηn−|[0,t−], (t+, t−) ∈ R2
+. Since vn+ ≥ wn+ ≥

vn0 ≥ wn− ≥ vn−, and vn+ − vn0 = vn0 − vn−, we have the time curve un = (un+, u
n
−) : R+ → R2

+

such that V n
σ (u(t)) − V n

0 (u(t)) = e2t(vnσ − vn0 ), t ≥ 0, σ ∈ {+,−}. For each t ≥ 0, un(t)

is an (Fnt )t∈R2
+

-stopping time. Define Fn,ut = Fnu(t), t ≥ 0. Let Rnσ(t) =
Wn
σ (un(t))−V n0 (u(t))

V nσ (un(t))−V n0 (u(t)) ,

t ≥ 0, σ ∈ {+,−}. Then there is a stopped (Fn,ut )t≥0-planar Brownian motions (Bn
+(t), Bn

−(t)),
0 ≤ t < τn, where τn is the first t such that ηn+([0, un+(t)]) intersects ηn−([0, un−(t)]), which is
a finite (Fn,ut )-stopping time, such that Rn+ and Rn− satisfy the (Fn,ut )-adapted SDE (4.17)
up to τn. Then τn := un(τn) is an (Fnt )-stopping time. From Lemma 4.12 we have a.s.
(Rn+(τn), Rn−(τn)) 6= (0, 0), which implies that Wn

+(τn) 6= Wn
−(τn).

Set wn+1
σ = Wn

σ (τn), σ ∈ {+,−}; vn+1
ν = V n

ν (τn) if V n
ν (τn) 6∈ {wn+1

+ , wn+1
− }, ν ∈ {0,+,−};

vn+1
σ = Wn

σ (τn)σ if V n
σ (τn) = Wn

σ (τn), σ ∈ {+,−}; and vn+1
0 = Wn

σ (τn)−σ if V n
0 (τn) =

Wn
σ (τn), σ ∈ {+,−}. By Lemma 4.4, there a.s. exists a commuting pair of chordal Loewner

curves (η̂n+1
+ , η̂n+1

− ) with some speeds, which up to a conformal map agrees with the part of
(ηn+, η

n
−) after τn. Moreover, if one defines hnσ(t) = mn(τn + teσ) − mn(τn), t ≥ n, and let

ηn+1
σ = η̂n+1

σ ◦ (hnσ)−1, σ ∈ {+,−}, then (ηn+1
+ , ηn+1

− ) is the normalization of (η̂n+1
+ , η̂n+1

− ), and
its conditional law given Fnτn is that of a commuting pair of chordal SLEκ(2, ρ) curves in H
started from (wn+1

+ , wn+1
− ; vn+1

0 , vn+1
+ , vn+1

− ).
Since vn+1

+ ≥ wn+1
+ ≥ vn+1

0 ≥ wn+1
− ≥ vn+1

− and vn+1
+ − vn+1

0 = vn+1
0 − vn+1

− , the argument
in the previous two paragraphs also work with n+ 1 in place of n, except that now Fn+1

(t+,t−) is
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the σ-algebra generated by Fnτn , ηn+1
+ |[0,t+] and ηn+1

− |[0,t−], (t+, t−) ∈ R2
+. So we may iterate

the above procedure with n = 0, 1, 2, 3, and etc.
Fix any n ∈ N ∪ {0}. By Lemma 3.18 and that η̂n+1

σ = ηnσ ◦ hnσ, σ ∈ {+.−}, we see that, if
X ∈ {W+,W−, V0, V+, V−}, then Xn(τn+ ·) = Xn+1 ◦hn⊕, where hn⊕ := hn+⊕hn−. Let ũn+1(t) =
hn⊕(un(τn+ t)−un(τn)), t ≥ 0. Then for ν ∈ {0,+,−}, V n+1

ν ◦ ũn+1(t) = V n
ν (un(τn+ t)), t ≥ 0.

By the definition of un, we have for ν ∈ {+,−},

V n+1
ν ◦ ũn+1(t)− V n+1

0 ◦ ũn+1(t) = e2t(V n
ν ◦ ũn+1(0)− V 0

ν ◦ ũn+1(0)).

Since ũn+1(0) = 0, ũn+1 satisfies the same property as un+1. By the uniqueness of the
time curve, we have un+1 = ũn+1 = hn⊕(un(τn + ·) − un(τn)), which implies that, for X ∈
{W+,W−, V0, V+, V−}, Xn+1 ◦ un+1 = Xn(τn + (hn⊕)−1 ◦ un+1(·)) = Xn ◦ un(τn + ·). Thus,
Rn+1
σ = Rnσ(τn + ·), σ ∈ {+,−}. Since this holds for any n ≥ 0, and R0

σ = Rσ, we get
Rnσ = Rσ(µn−1 + ·), σ ∈ {+,−}, where µn =

∑n
k=0 τ

k, n ≥ 0.

Since Bn+1
+ and Bn+1

− are independent (Fu,n+1
t )t≥0-Brownian motions, and Fu,n+1

0 = Fu,nτn ,
we see that (Bn+1

+ , Bn+1
− ) is a planar Brownian motion independent of Fu,nτn . Since Fu,nτn con-

tains Fu,k
τk

for each k ≤ n, and (Bk
+(t), Bk

−(t)) is (Fu,kt )t≥0-adapted, we then conclude that

(Bn+1
+ , Bn+1

− ) is independent of (Bk
+(t), Bk

−(t)), 0 ≤ t < τk, 0 ≤ k ≤ n. Thus, (Bk
+(t), Bk

−(t)),
0 ≤ t < τk, k ≥ 0, form an i.i.d. sequence of stopped planar Brownian motions.

Let µ∞ = limµn =
∑∞

n=0 τ
n. Since τn, n ≥ 0, are i.i.d. positive random variables, we have

a.s. µ∞ =∞. We now define B+ and B− on R+ such that for σ ∈ {+,−},

Bσ(t) =

n−1∑
j=0

Bj
σ(τ j) +Bn

σ (t− µn−1), if µn−1 ≤ t ≤ µn, n ≥ 0.

Then B+ and B− are independent Brownian motions. Since Rn± and Bn
± satisfy (4.17) up to

τn, we find that R± and B± satisfies (4.17) on [0,∞), and the proof is done.

Remark 4.14. The assumption ρ0 ≥ κ
4 − 2 is used in the proof of Lemma 4.12, which is used

twice in the proof of Theorem 4.13, and will also be used later in the proof of Lemma 5.15.

To emphasize the dependence of w+, w−, v0, v+, v−, we write Pρ as P(ρ0,ρ+,ρ−)
(w+,w−;v0,v+,v−). If

ρ0 = 0, i.e., v0 does not play the role of a force point, we write the measure as P(ρ+,ρ−)
(w+,w−;v+,v−).

4.4 Transition density

Suppose R+(t) and R−(t), t ≥ 0, satisfy the SDE (4.17) on R+. In this subsection, we are
going to use orthogonal polynomials to derive the transition density of R(t) = (R+(t), R−(t)),
t ≥ 0, against the Lebesgue measure restricted to [0, 1]2. A similar approach was first used
in [24, Appendix B] to calculate the transition density of radial Bessel processes, where one-
variable orthogonal polynomials was used. Two-variable orthogonal polynomials was used in
[22, Section 5] to calculate the transition density of a two-dimensional diffusion process. Here
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we will use another family of two-variable orthogonal polynomials to calculate the transition
density of the (R) here. In addition, we are going to derive the invariant density of (R), and
estimate the convergence of the transition density to the invariant density.

Recall that X := R+ − R− and Y := 1 − R+R− satisfy (4.18,4.19,4.20) throughout R+,
and (X,Y ) a.s. stays in ∆ \ {(0, 1)}. We will first find the transition density of ((X(t), Y (t))).
Assume that the transition density p(t, (x, y), (x∗, y∗)) exists, and is smooth in (x, y), then it
should be a solution to the PDE

− ∂tp+ Lp = 0, (4.23)

where L is the second order differential operator defined by

L =
κ

2
(y − x2)∂2

x + κx(1− y)∂x∂y +
κ

2
y(1− y)∂2

y

−[(ρ+ + ρ− + ρ0 + 6)x+ (ρ+ − ρ−)]∂x − [(ρ+ + ρ− + ρ0 + 6)y − (ρ+ + ρ− + 4)]∂y.

We perform a change of coordinate (x, y) 7→ (r, h) by x = rh and y = h (for y 6= 0). Direct
calculation shows that

∂r = h∂x, ∂h = r∂x + ∂y, ∂2
r = h2∂2

x, ∂2
h = r2∂2

x + 2r∂x∂y + ∂2
y , ∂r∂h = rh∂2

x + h∂x∂y.

Let

α0 =
2

κ
(ρ0 + 2)− 1, α± =

2

κ
(ρ± + 2)− 1, β = α+ + α− + 1;

λn = −n(n+ α0 + β + 1), λ(r)
n = −n(n+ β), n ≥ 0.

Define two differential operators for the coordinate (r, h) by

L(r) = (1− r2)∂2
r − [(α+ + α− + 2)r + (α+ − α−)]∂r;

L(h) = h(1− h)∂2
h − [(α0 + β + 2)h− (β + 1)]∂h.

Direct calculation shows that, when y 6= 0, L = κ
2 [L(h) + 1

hL
(r)], and

[L(h) +
1

h
λ(r)
n ]hn = hn[L(h) − 2n(h− 1)∂h + λn],

where each hn in the formula is understood as a multiplication operator. From (2.5) we know

that Jacobi polynomials P
(α+,α−)
n (r), n ≥ 0, satisfy that

L(r)P (α+,α−)
n (r) = λ(r)

n P (α+,α−)
n (r), n = 0, 1, 2, . . . ;

and the functions P
(α0,β+2n)
m (2h− 1), m ≥ 0, satisfy that

(L(h) − 2n(h− 1)∂h + λn)P (α0,β+2n)
m (2h− 1) = λm+nP

(α0,β+2n)
m (2h− 1), m = 0, 1, 2, · · · .

For n ≥ 0, define a two-variable polynomial Q
(α+,α−)
n (x, y) such that

Q(α+,α−)
n (x, y) = ynP (α+,α−)

n (x/y), if y 6= 0.
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Such Q
(α+,α−)
n (x, y) is homogeneous of degree n with nonzero coefficient for xn. For every pair

of integers n,m ≥ 0, define a two-variable polynomial vn,m(x, y) of degree n+m by

vn,m(x, y) = P (α0,β+2n)
m (2y − 1)Q(α+,α−)

n (x, y).

Then vn,m is also a polynomial in r, h with the expression:

vn,m = hnP (α0,β+2n)
m (2h− 1)P (α+,α−)

n (r). (4.24)

From the above displayed formulas, we find that, on R2 \ {y 6= 0},

2

κ
Lvn,m = [L(h) +

1

h
λ(r)
n ](hnP (α0,β+2n)

m (2h− 1)P (α+,α−)
n (r))

= hn[L(h) − 2n(h− 1)∂h + λn](P (α0,β+2n)
m (2h− 1)P (α+,α−)

n (r)) = λn+mvn,m.

Since vn,m is a polynomial in x, y, by continuity the above equation holds throughout R2. Thus,
for every n,m ≥ 0, vn,m(x, y)e

κ
2
λn+mt solves (4.23), and the same is true for any linear combina-

tion of such functions. From (4.24) we get an upper bound of ‖vn,m‖∞ := sup(x,y)∈∆ |vn,m(x, y)|:

‖vn,m‖∞ ≤ ‖P (α0,β+2n)
m ‖∞‖P (α+,α−)

n ‖∞. (4.25)

Since P
(α+,α−)
n , n ≥ 0, are mutually orthogonal w.r.t. the weight function Ψ(α+,α−), and

for any fixed n ≥ 0, P
(α0,β+2n)
m (2h − 1), m ≥ 0, are mutually orthogonal w.r.t. the weight

function Ψ(α0,β+2n)(2h − 1) = 1(0,1)(h)2α0+β+2n(1 − h)α0hβ+2n, we conclude that vn,m(x, y),
n,m ∈ N ∪ {0}, are mutually orthogonal w.r.t. the weight function

Ψ(x, y) := 1∆(x, y)
1

y

(
1− x

y

)α+
(

1 +
x

y

)α−
(1− y)α0yβ

= 1∆(x, y)(y − x)α+(y + x)α−(1− y)α0 .

Moreover, we have

‖vn,m‖2Ψ = 2−(α0+β+2n+1)‖P (α0,β+2n)
m ‖2

Ψ(α0,β+2n) · ‖P (α+,α−)
n ‖2

Ψ(α+,α−) . (4.26)

Let f(x, y) be a polynomial in two variables. Then f can be expressed by a linear com-
bination f(x, y) =

∑∞
n=0

∑∞
m=0 an,mvn,m(x, y) (note that every polynomial in x, y of degree

less than k can be expressed as a linear combination of vn,m with n + m < k), where an,m :=
〈f, v(n,m)〉Ψ/‖vn,m‖2Ψ are zero for all but finitely many (n,m). Define

f(t, (x, y)) =

∞∑
n=0

∞∑
m=0

an,mvn,m(x, y)e
κ
2
λn+mt =

∞∑
n=0

∞∑
m=0

〈f, vn,m〉Ψ
‖vn,m‖2Ψ

· vn,m(x, y)e
κ
2
λn+mt.

Then f(t, (r, s)) solves (4.23). Let (X(t), Y (t)) be a stochastic process in ∆, which solves
(4.18,4.19,4.20) with initial value (x, y). Fix t0 > 0 and define Mt = f(t0 − t, (X(t), Y (t))),
0 ≤ t ≤ t0. By Itô’s formula, (Mt) is a bounded martingale, which implies that

E[f(X(t0), Y (t0))] = E[Mt0 ] = M0 = f(t0, (x, y))
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=
∞∑
n=0

∞∑
m=0

∫ ∫
∆
f(x∗, y∗)Ψ(x∗, y∗)

vn,m(x∗, y∗)vn,m(x, y)

‖vn,m‖2Ψ
· e

κ
2
λn+mt0dx∗dy∗. (4.27)

For t > 0, (x, y) ∈ ∆, and (x∗, y∗) ∈ ∆, define

p(t, (x, y), (x∗, y∗)) = 1∆(x∗, y∗)Ψ(x∗, y∗)
∞∑
n=0

∞∑
m=0

e
κ
2
λn+mt

vn,m(x, y)vn,m(x∗, y∗)

‖vn,m‖2Ψ
. (4.28)

Let p(x∗, y∗) = CΨ1∆(x∗, y∗)Ψ(x∗, y∗), where CΨ = 1/‖vn,m‖2Ψ. Note that λ0 = 0 and v0,0 ≡ 1

since Pα0,β
0 = P

α+,α−
0 ≡ 1. So p(x∗, y∗) corresponds to the first term in the series.

Lemma 4.15. For any t0 > 0, the series in (4.28) (without the factor Ψ(x∗, y∗)) converges
uniformly on [t0,∞) ×∆ ×∆, and there is Ct0 ∈ (0,∞) depending only on κ, ρ, and t0 such

that for any (x, y) ∈ ∆ and (x∗, y∗) ∈ ∆,

|p(t, (x, y), (x∗, y∗))− p(x∗, y∗)| ≤ Ct0e−(ρ++ρ−+ρ0+6)tΨ(x∗, y∗), t ≥ t0. (4.29)

Moreover, for any t > 0 and (x∗, y∗) ∈ ∆,

p(x∗, y∗) =

∫ ∫
∆
p(x, y)p(t, (x, y), (x∗, y∗))dxdy. (4.30)

Proof. The uniform convergence of the series in (4.28) follows from (4.29), which in turn follows
from Stirling’s formula, (4.25,4.26,2.4,2.7), and the facts that 0 > λ1 = − 2

κ(ρ++ρ−+ρ0+6) > λn
for any n > 1 and λn � −n2 for big n. Formula (4.30) follows from the orthogonality of vn,m
w.r.t. 〈·, ·〉Ψ and the uniform convergence of the series in (4.28).

Lemma 4.16. The process ((X(t), Y (t))) that satisfies (4.18,4.19,4.20) has a transition density:
p(t, (x, y), (x∗, y∗)), and an invariant density: p(x∗, y∗).

Proof. Fix (x, y) ∈ ∆ \ {(0, 1)}. Let (X(t), Y (t)) be the process that satisfies (4.18,4.19,4.20)
with initial value (x, y). It suffices to show that, for any continuous function f on ∆, we have

E[f(X(t0), Y (t0))] =

∫ ∫
∆
pt0((x, y), (x∗, y∗))f(x∗, y∗)dx∗dy∗. (4.31)

By Stone-Weierstrass theorem, f can be approximated by a polynomial in two variables uni-
formly on ∆. Thus, it suffices to show that (4.31) holds whenever f is a polynomial in x, y,
which follows immediately from (4.27). The statement on p(x∗, y∗) follows from (4.30).

Since X = R+−R−, Y = 1−R+R−, and the Jacobian of the transformation is −(R+ +R−),
we arrive at the following result.
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Corollary 4.17. The process (R(t)) has a transition density:

pR(t, r, r∗) := 1(0,1)2(r∗) · p(t, (r+ − r−, 1− r+r−), (r∗+ − r∗−, 1− r∗+r∗−)) · (r∗+ + r∗−),

and an invariant density: pR(r∗) := 1(0,1)2(r∗) · p(r∗+ − r∗−, 1 − r∗+r∗−) · (r∗+ + r∗−); and for any
t0 > 0, there is Ct0 ∈ (0,∞) depending only on κ, ρ, and t0 such that for any r ∈ [0, 1]2 and
r∗ ∈ (0, 1)2,

|pR(t, r, r∗)− pR(r∗)| ≤ Ct0e−(ρ++ρ−+ρ0+6)tpR(r∗), t ≥ t0.

5 Other Commuting Pair of SLE Curves

In this section, we study three commuting pairs of SLEκ-type curves, and compare them with
the commuting SLEκ(ρ) curves in the previous section. It turns out that each of them is
“locally” absolutely continuous w.r.t. a commuting pair of chordal SLEκ(ρ) curves for some
suitable force values. So the results in the previous section can be applied here.

5.1 Two curves in a 2-SLEκ

First, we consider 2-SLEκ. Let κ ∈ (0, 8). Let v− < w− < w+ < v+ ∈ R. Suppose that (η̂+, η̂−)
is a 2-SLEκ in H with link pattern (w+ → v+;w− → v−). Then for σ ∈ {+,−}, η̂σ is an hSLEκ
curve in H from wσ to vσ with force points w−σ and v−σ.

Stop η̂+ and η̂− at the first time that they disconnect ∞ from any of its force points,
and parametrize the stopped curves by H-capacity. Then we get two chordal Loewner curves,
which are denoted by η+ and η−. For σ ∈ {+,−}, ησ is an hSLEκ curve in H from wσ to
vσ with force points w−σ and v−σ, in the chordal coordinate. Let ŵσ(t), 0 ≤ t < T± (the
lifetime), be the chordal Loewner driving function for η±; let Kσ(·) be the chordal Loewner
hulls driven by ŵσ; and let (Fσt )t≥0 be the filtration generated by ησ. For σ ∈ {+,−}, if τ−σ
is a stopping time for η−σ, then conditionally F−στ−σ and the event that τ−σ < T−σ, the whole
ησ and the part of η̂−σ after η(τ−σ) together form a 2-SLEκ in H \K−σ(τ−σ) with link pattern
(wσ → vσ; η−σ(τ−σ)→ v−σ). Thus, the conditional law of η̂σ is that of an hSLEκ curve from wσ
to vσ in H \K−σ(τ−σ) with force points η−σ(τ−σ) and v−σ. This implies that there a.s. exists
a chordal Loewner curve ησ,τ−σ with some speed such that ησ = fK−σ(τ−σ) ◦ ησ,τ−σ , and the
conditional law of the normalization of ησ,τ−σ given F−στ−σ is that of an hSLEκ curve in H from
gK−σ(τ−σ)(wσ) to gK−σ(τ−σ)(vσ) with force points ŵ−σ(τ−σ) and gK−σ(τ−σ)(v−σ), in the chordal
coordinate.

Thus, (η+, η−) a.s. satisfies the conditions in Definition 3.2 with D1 := I+×I−, Iσ = [0, Tσ)
and I∗σ = Iσ ∩ Q, σ ∈ {+,−}. So (η+, η−;D1) is a.s. a commuting pair of chordal Loewner
curves. We now adopt the functions from Section 3. Define a function M1 on D1 by

M1 =
∏

σ∈{+,−}

(
|Wσ − Vσ|

8
κ
−1|Wσ − V−σ|

4
κ

)
· Fκ,2

((W+ −W−)(V+ − V−)

(W+ − V−)(V+ −W−)

)−1
. (5.1)
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Since Fκ,2 is continuous and positive on [0, 1], |Wσ−Vσ|, |Wσ−V−σ| ≤ |V+−V−|, and 8
κ−1, 4

κ > 0,
we get an upper bound of M1 as follows, where C > 0 depends only on κ:

M1 ≤ C|V+ − V−|2( 12
κ
−1). (5.2)

Let F(t+,t−) = F+
t+ ∨F

−
t− for (t+, t−) ∈ R2

+. We will prove that M1 extends to continuously R2
+,

and becomes (Ft)-martingale, which acts as Radon-Nikodym derivatives between measures. We
first need some deterministic properties of M1.

For σ ∈ {+,−} and R > |v+− v−|/2, let τσR be the first time that |ησ(t)− (v+ + v−)/2| = R
if such time exists; otherwise τσR = Tσ. Let τR = (τ+

R , τ
−
R ). Note that τ+

R , τ
−
R ≤ m(τR) ≤ R2/2

because if K ⊂ {z ∈ H : |z − (v+ + v−)/2| ≤ R}, then hcap2(K) ≤ R2/2.

Lemma 5.1. M1 a.s. extends continuously to R2
+ with M1 ≡ 0 on R2

+ \ D1.

Proof. It suffices to show that for σ ∈ {+,−}, as tσ ↑ Tσ, M1 → 0 uniformly in t−σ ∈ [0, T−σ).
By symmetry, we may assume that σ = +. For a fixed t− ∈ [0, T−), as t+ ↑ T+, η+(t+) tends to
either some point on [v+,∞) or some point on (−∞, v−). We know that Fκ,2 is continuous and

positive on [0, 1]. So the factor Fκ,2

(
(W+−W−)(V+−V−)
(W+−V−)(V+−W−)

)−1
is uniformly bounded on D1. Since

the union of (the whole) η+ and η− is bounded, by (3.14) |V+ − V−| is bounded on D1, which
implies that |W± − V±| and |W± − V∓| are also bounded on D1. Thus, it suffices to show that
when η+ terminates at [v+,∞), W+ − V+ → 0 as t+ ↑ T+, uniformly in [0, T−); and when η+

terminates at (−∞, v−), W− − V− → 0 as t+ ↑ T+, uniformly in [0, T−).
For any t = (t+, t−) ∈ D1, neither η+([0, t+]) nor η−([0, t−]) hit (−∞, v−] ∪ [v+,∞), which

implies that v+, v− 6∈ K(t) and V±(t) = gK(t)(v±). Suppose that η+ terminates at x0 ∈
[v+,∞). Since SLEκ is not boundary-filling for κ ∈ (0, 8), we know that dist(x0, η−) > 0. Let
r = min{|w+ − v+|,dist(x0, η−)} > 0. Fix ε ∈ (0, r). Since x0 = limt↑T+ η+(t), there is δ > 0
such that |η+(t) − x0| < ε for t ∈ (T+ − δ, T+). Fix t+ ∈ (T+ − δ, T+) and t− ∈ [0, T−). Let
J be the connected component of {|z − x0| = ε} ∩ (H \ K(t)) whose closure contains x0 + ε.
Then J disconnects v+ and η+(t+, T+) from ∞ in H \K(t). Thus, gK(t)(J) disconnects V+(t)
and W+(t) from ∞. Since η+ ∪ η− is bounded, there is a (random) R ∈ (0,∞) such that
η+ ∪ η− ⊂ {|z− x0| < R}. Let ξ = {|z− x0| = 2R} ∩H. By comparison principle, the extremal
length ([1]) of the family of curves in H\K(t) that separate J from ξ is bounded above by π

log(R/ε) .

By conformal invariance, the extremal length of the family of curves in H that separate gK(t)(J)
from gK(t)(ξ) is also bounded above by π

log(R/ε) . Now gK(t)(ξ) and gK(t)(J) are crosscuts of H
such that the former encloses the latter. Let D denote the subdomain of H bounded by gK(t)(ξ).
From Proposition 2.3 we know that D ⊂ {|z−x0| ≤ 5R}. So the Euclidean area of D is less than
13πR2. By the definition of extremal length, there is a curve γ in D that separates gK(t)(J)

from gK(t)(ξ) with Euclidean distance less than 2
√

13πR2 ∗ π
log(R/ε) < 8πR ∗ log(R/ε)−1/2.

Since gK(t)(J) disconnects V+(t) and W+(t) from ∞, γ also separates V+(t) and W+(t) from

∞. Thus, |W+(t) − V+(t)| < 8πR ∗ log(R/ε)−1/2 if t+ ∈ (T+ − δ, T+) and t− ∈ [0, T−). This
proves the uniform convergence of limt+↑T+ |W+ − V+| = 0 in t− ∈ [0, T−) in the case that
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limt+↑T+ η+(t+) ∈ [v+,∞). The proof of the uniform convergence of limt+↑T+ |W+ − V−| = 0 in
t− ∈ [0, T−) in the case that limt+↑T+ η+(t+) ∈ (−∞, v−] is similar.

From now on, we understand M1 as a continuous stochastic process defined on R2
+ with

constant zero on R2
+ \ D1.

Lemma 5.2. Let R > 0. Then M1(t ∧ τR), t ∈ R2
+, is an M1(τR)-Doob martingale w.r.t.

the filtration (F+

t+∧τ+R
∨ F−

t−∧τ−R
)(t+,t−)∈R2

+
. Moreover, if the underlying probability measure is

weighted by M1(τR)/M1(0), then the new law of (ŵ+, ŵ−) agrees with the P(2,2)
(w+,w−;v+,v−) on the

σ-algebra F+

τ+R
∨ F−

τ−R
.

Proof. Fix t− ≥ 0. Let τ̂R− = t−∧τ−R , u(t) = m(t, τ̂R− )−m(0, τ̂R− ), and η̃+,τ̂−R
= η+,τ̂−R

◦u−1. Then

η̃+,τ̂−R
is the normalization of η+,τ̂−R , and the conditional law of η̃+,τ̂−R

given F−
τ̂−R

is that of an

hSLEκ curve in H from W+(0, τ̂−R ) to V+(0, τ̂−R ) with force points W−(0, τ̂−R ) and V−(0, τ̂−R ), in
the chordal coordinate. Moreover, the driving function for η̃+,τ̂−R

isW+(u−1(t), τ̂−R ), and by Lem-

mas 3.13 and 3.12, the force point functions started from V+(0, τ̂−R ), W−(0, τ̂−R ) and V−(0, τ̂−R )
are V+(u−1(t), τ̂−R ), W−(u−1(t), τ̂−R ) and V−(u−1(t), τ̂−R ), respectively. Thus, M1(u−1(t), τ̂−R )
agrees with the M given in Proposition 2.20 with ρ = 2, w0 = W+(0, τ̂−R ), w∞ = V+(0, τ̂−R ),
v1 = W−(·, τ̂−R ) and v2 = V−(·, τ̂−R ).

For t ≥ 0, let F̃t denote the σ-algebra generated by F−
τ̂−R

and η̃+,τ̂−R
(s), 0 ≤ s ≤ t. Let

T̃+ denote the lifetime of η̃+,τ̂−R
. Then u maps [0, T+) onto [0, T̃+). By Proposition 2.20,

M1(u−1(t), τ̂−R ), 0 ≤ t < T̃+, is a local martingale w.r.t. the filtration (F̃t)t≥0. By the definition
of η̃+,τ̂−R

, for any 0 ≤ t < T+, η+(t) = fK−(τ̂−R ) ◦ η̃+,τ̂−R
(u(t)). Extend u to R+ such that if

t ≥ T+ then u(t) = T̃+. Then for every t ≥ 0, u(t) is an (F̃t)-stopping time because for any
a ≥ 0, u(t) > a if and only if a < T̃+ and hcap2(Hull(fK−(τ̂−R ) ◦ η̃+,τ̂−R

([0, a]))) < t. So we get a

filtration (F̃u(t))t≥0, and M1(t, τ̂−R ), 0 ≤ t < T+, is an (F̃u(t))t≥0-local martingale.

From η+(t) = fK−(τ̂−R ) ◦ η̃+,τ̂−R
(u(t)), 0 ≤ t < T+, we know that F+

t ∨ F
−
τ̂−R
⊂ F̃u(t) for t ≥ 0.

Since τ+
R is an (F+

t )t≥0-stopping time, it is also an (F̃u(t))t≥0-stopping time. Since τ̂−R ≤ τ
−
R , by

the boundedness of M1 on [0, τR], M1(t ∧ τ+
R , τ̂

−
R ), t ≥ 0, is a bounded (F̃u(t))t≥0-martingale.

Since F+

t+∧τ+R
∨F−

τ̂−R
⊂ F̃u(t+) and τ̂−R = t−∧ τ−R , we conclude that M1(t+∧ τ+

R , t−∧ τ
−
R ), t+ ≥ 0,

is a bounded (F+

t+∧τ̂+R
∨F−

t−∧τ−R
)t+≥0-martingale. This holds for any t− ≥ 0. Symmetrically, for

any t+ ≥ 0, M1(t+∧τ+
R , t−∧τ

−
R ), t− ≥ 0, is a bounded (F+

t+∧τ+R
∨F−

t−∧τ−R
)t−≥0-martingale. Thus,

M1(t∧ τR), t ∈ R2
+, is a bounded (F+

t+∧τ+R
∨F−

t−∧τ−R
)(t+,t−)∈R2

+
-martingale. Since M1(t∧ τR)→

M1(τR) as t+, t− →∞, M1(t ∧ τR) is an M1(τR)-Doob martingale.
By weighting the underlying probability measure by M1(τR)/M1(0), we get another prob-

ability measure. To describe the joint law of ŵ+ and ŵ− restricted to FτR under the new
probability measure, we study the new marginal law of η− up to τ−R and the new conditional
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law of η+ up to τ+
R given that part of η−. We may do the weighting in two steps. First, weight

the original measure by N1 := M1(0, τ−R )/M1(0, 0) to get a new measure P1; second, weight
P1 by N2 := M1(τ+

R , τ
−
R )/M1(0, τ−R ) to get P2. Since N1 depends only on η−, after the first

step, the conditional law of η+ given any part of η− does not change. By Proposition 2.20, the
η− up to τ−R under P1 is a chordal SLEκ(2, 2, 2) curve in H started from w− with force points
v−, w+, v+, respectively, up to τ−R . Since N1 = 0 when τ−R = T−, P1 is supported by {τ−R < T−},
on which M1(0, τ−R ) > 0. So N2 is P1-a.s. well defined. Since E[N2|F−τ−R

] = 1, after the second

step, the law of η− up to τ−R does not change further. To describe the conditional law of η+

up to τ+
R = τ+

R (η+) given η− up to τ−R , it suffices to consider the conditional law of η+,τ−R
up

to τ+
R (η+) since we may recover η+ using η+ = fK−(τ−R ) ◦ η+,τ−R

. By Proposition 2.20 again,

the conditional law of the normalization of η+,τ−R
up to τ+

R (η+) under P2 is that of a chordal

SLEκ(2, 2, 2) curve in H started from W+(0, τ−R ) with force points at V+(0, τ−R ), W−(0, τ−R ) and
V−(0, τ−R ), respectively. Thus, under P2 the joint law of η+ up to τ+

R and η− up to τ−R agrees
with that of a commuting pair of SLEκ(2, 2, 2) curves started from (w+, w−; v+, v−) respectively

up to τ+
R and τ−R . This means that P2 = P(2,2)

(w+,w−;v+,v−) on F+

t+∧τ+R
∨ F−

t−∧τ−R
, as desired.

We let P2−SLE
(w+→v+;w−→v−) denote the joint law of the driving functions ŵ+ and ŵ− here. From

the lemma, we find that, for any t = (t+, t−) ∈ R2
+ and R > 0,

dP(2,2)
(w+,w−;v+,v−)|(F

+

t+∧τ+R
∨ F−

t−∧τ−R
)

dP2−SLE
(w+→v+;w−→v−)|(F

+

t+∧τ+R
∨ F−

t−∧τ−R
)

=
M1(t ∧ τR)

M1(0)
, R > 0. (5.3)

Theorem 5.3. Under P(w→v), M1(t) is an (Ft)t∈R2
+

-martingale; and for any extended (Ft)-
stopping time τ ,

dP(2,2)
(w+,w−;v+,v−)|Fτ ∩ {τ ∈ R2

+}

dP2−SLE
(w+→v+;w−→v−)|Fτ ∩ {τ ∈ R2

+}
=
M1(τ)

M1(0)
. (5.4)

Proof. Since F+

t+∧τ+R
∨ F−

t−∧τ−R
agrees with F+

t+ ∨ F
−
t− = Ft on {t ≤ τR}, from (5.3) we get

dP(2,2)
(w+,w−;v+,v−)|(Ft ∩ {t ≤ τR})

dP2−SLE
(w+→v+;w−→v−)|(Ft ∩ {t ≤ τR})

=
M1(t)

M1(0)
, ∀t ∈ R2

+, R > 0,

which implies by sending R→∞ that

dP(2,2)
(w+,w−;v+,v−)|Ft

dP2−SLE
(w+→v+;w−→v−)|Ft

=
M1(t)

M1(0)
, ∀t ∈ R2

+. (5.5)

From this we conclude that M1 is an (Ft)-martingale under P2−SLE
(w+→v+;w−→v−).
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Let τ be an extended (Ft)-stopping time. Fix A ∈ Fτ such that A ⊂ {τ ∈ R2
+}. Let t ∈ R2

+.
Define the (Ft)-stopping time τ t as in Proposition 2.28, which gives A ∩ {τ ≤ t} ∈ Fτ t ⊂ Ft.
Using (5.5) and applying Proposition 2.31 to the stopping times t, τ t and the martingale M1, we

get P(2,2)
(w+,w−;v+,v−)[A∩{τ ≤ t}] = E2−SLE

(w+→v+;w−→v−)[1A∩{τ≤t}
M1(τ)
M1(0) ]. Sending both coordinates of

t to ∞, we get P(2,2)
(w+,w−;v+,v−)[A] = E2−SLE

(w+→v+;w−→v−)[1A
M1(τ)
M1(0) ]. So we get the desired (5.4).

Corollary 5.4. For any extended (Ft)-stopping time τ ,

dP2−SLE
(w+→v+;w−→v−)|Fτ ∩ {τ ∈ D1}

dP(2,2)
(w+,w−;v+,v−)|Fτ ∩ {τ ∈ D1}

=
M1(τ)−1

M1(0)−1
.

Proof. This follows from Theorem 5.3 and the fact that M1 > 0 on D1.

For convenience, we write P1 for P2−SLE
(w+→v+;w−→v−). Assume now that v0 := (v+ + v−)/2 ∈

[w−, w+]. We understand v0 as w−σσ if (v+ + v−)/2 = wσ, σ ∈ {+,−}. Let V0 be the force
point function started from v0. By Section 3.4, we may define the time curve u : [0, T u)→ D1

such that Vσ(u(t)) − V0(u(t)) = e2t(vσ − v0), 0 ≤ t < T u, σ ∈ {+,−}, and u can not be
extended beyond T u with such property. We follow the notation there, for every X defined on
D, we use Xu to denote the function X ◦ u defined on [0, T u). We also define the processes

Rσ =
Wu
σ−V u0

V uσ −V u0
∈ [0, 1], σ ∈ {+,−}, and R = (R+, R−). Since Tσ is an (Fσt )t≥0-stopping time

for σ ∈ {+,−}, D1 = [0, T+) × [0, T−) is an (Ft)-stopping region. We now extend u to R+

such that if s ≥ T u then u(s) = limt↑Tu u(t). By Proposition 3.24, for any t ≥ 0, u(t) is an
(Ft)t∈R2

+
-stopping time.

Let I = v+ − v0 = v0 − v−. Let α1 = 2(12
κ − 1) and define

G1(r+, r−) =
∏

σ∈{+,−}

(1− rσ)
8
κ
−1(1 + rσ)

4
κFκ,2

( 2(r+ + r−)

(1 + r+)(1 + r−)

)−1
. (5.6)

Then Mu
1 (t) = (e2tI)α1G1(R(t)) on [0, T u). So we obtain the following lemma.

We are going to derive the transition density of the process (R(t))0≤t<Tu under P1. In fact,
T u is P1-a.s. finite, and by saying that p̃R1 (t, r, r∗) is the transition density of (R) under P1, we
mean that, if (R(t)) starts from r, then for any bounded measurable function f on (0, 1)2, and
any t > 0,

E1[1{Tu>t}f(R(t))] =

∫
[0,1]2

f(r∗)p̃R1 (t, r, r∗)dr∗.

Applying Corollary 5.4 to the (Ft)-stopping time u(t) for any deterministic t ≥ 0, and using
that u(t) ∈ D1 iff t < T u, we get

dP1|Fut ∩ {T u > t}
dP(2,2)|Fut ∩ {T u > t}

=
Mu

1 (t)−1

Mu
1 (0)−1

= e−2α1tG1(R(0))

G1(R(t))
, t ≥ 0.

Combining it with Corollary 4.17, we get the following transition density.
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Lemma 5.5. Let pR1 (t, r, r∗) be the function pR(t, r, r∗) given in Corollary 4.17 with ρ0 = 0
and ρ+ = ρ− = 2. Then under P1, the transition density of (R) is

p̃R1 (t, r, r∗) := e−2α1tpR1 (t, r, r∗) · G1(r)

G1(r∗)
.

5.2 Opposite pair of iSLEκ(ρ) curves, the generic case

Second, we consider another pair of random curves. Let κ and ρ be as in Proposition 2.21, i.e.,
κ ∈ (0, 4] and ρ > −2 or κ ∈ (4, 8) and ρ ≥ κ

2−2. Let w− < w+ ∈ R. Let v− ∈ (−∞, w−)∪{w−−}
and v+ ∈ (w+,∞)∪ {w+

+}. Let η̂+ be an iSLEκ(ρ) curve in H from w+ to w− with force points
v+ and v−, and let η̂− be its reversal. Then η̂− is an iSLEκ(ρ) curve in H from w− to w+ with
force points v− and v+.

For σ ∈ {+,−}, stop η̂σ at the first time that it disconnects w−σ from ∞, and parametrize
the stopped curve by H-capacity. The chordal Loewner curve: ησ(t), 0 ≤ t < Tσ (lifetime), is an
iSLEκ(ρ) curve in H from wσ to w−σ with force points vσ and v−σ, in the chordal coordinate.
Let ŵσ denote the driving function. We still let Kσ(·) and (Fσt )t≥0 denote the H-hulls and
the filtration generated by ησ, σ ∈ {+,−}, and let K(t+, t−) = Hull(K+(t+) ∪K−(t−)). From
the DMP and reversibility of iSLEκ(ρ), we know that, for σ ∈ {+,−}, if τ−σ is a stopping
time for η−σ, then conditionally on F−στ−σ and the event that τ−σ < T−σ, the other curve η̂σ
from its beginning up to the time that it hits η(τ−σ) is an iSLEκ(ρ) curve in H \ K−σ(τ−σ)
from wσ to η−σ(τ−σ) with force points being vσ and another point, which is the point on
{v−σ} ∪K−σ(τ−σ) ∩ R that is closest to (−σ) · ∞. Thus, a.s. there is a chordal Loewner curve
ησ,τ−σ with some speed, such that the part of ησ up to the time that it disconnects η−σ(τ−σ)
from ∞ equals the fK−σ(τ−σ)-image of ησ,τ−σ , and the conditional law of the normalization of
ησ,τ−σ given F−στ−σ is that of an iSLEκ(ρ) curve in H from gK−σ(τ−σ)(wσ) to ŵ−σ(τ−σ) with force

points gK−σ(τ−σ)(vσ) and g
w−σ
K−σ(τ−σ)(v−σ) (Definition 2.11), in the chordal coordinate.

Thus, a.s. η+ and η− satisfy the conditions in Definition 3.2 with I± = [0, T±), I∗± = I±∩Q,
and

D2(η+, η−) := {(t+, t−) ∈ I+ × I− : ∃t′ = (t′+, t
′
−) ∈ I+ × I− with t′+ > t+ and t′− > t−

such that K(·, ·) is strictly increasing in both variables on [0, t′]}, (5.7)

which is an HC region. So (η+, η−;D2(η+, η−)) is a.s. a commuting pair of chordal Loewner
curves. Let W+ and W− be the driving functions, and let V+ and V− be the force point functions

started from v+ and v−, respectively. Let (F (+)
t )t∈R2

+
be the right-continuous augmentation of

(Ft)t∈R2
+

. Then D2(η+, η−) is an (F (+)
t )-stopping region.

We now write D2(η+, η−) simply as D2. Define a non-negative function M2 on D2 by

M2 = |W+ −W−|
8
κ
−1|V+ − V−|

ρ(2ρ+4−κ)
2κ

∏
σ∈{+,−}

|Wσ − V−σ|
2ρ
κ · Fκ,ρ

((V+ −W+)(W− − V−)

(W+ − V−)(V+ −W−)

)−1
.

(5.8)
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It is well defined and continuous on D2 because 8
κ − 1 > 0, and W+ − V−, V+ −W−, V+ − V−

are not zero, where the latter facts follow from that η+ does not hit (−∞, v−] before T+ and
that η− does not hit [v+,∞) before T−. We first present some deterministic results on M2.

Lemma 5.6. There is a constant C ∈ (0,∞) depending only on κ and ρ such that

M2 ≤ C
( |W+ −W−|
|V+ − V−|

)( 8
κ
−1)∧ 2ρ−(κ−8)

κ |V+ − V−|
(ρ+2)(2ρ−(κ−8))

2κ . (5.9)

In particular, since ( 8
κ −1)∧ 2ρ−(κ−8)

κ > 0 and |W+−W−| ≤ |V+−V−|, we get a simpler upper

bound: M2 ≤ C|V+ − V−|
(ρ+2)(2ρ−(κ−8))

2κ ; using that |V+ − V−| ≥ |v+ − v−|, we get another upper

bound: M2 ≤ C ′|W+ −W−|(
8
κ
−1)∧ 2ρ−(κ−8)

κ |V+ − V−|
(ρ+2)(2ρ−(κ−8))

2κ , where C ′ ∈ (0,∞) depends
only on κ, ρ, |v+ − v−|.

Proof. It suffices to prove (5.9). First, the factor Fκ,ρ(
(V+−W+)(W−−V−)
(W+−V−)(V+−W−))−1 in (5.8) is bounded

from below and above by positive constants depending only on κ and ρ because Fκ,ρ is contin-
uous and positive on [0, 1]. Since V− ≤ W− ≤ W+ ≤ V+, we have (W+ − V−) + (V+ −W−) ≥
V+ − V−. So one of W+ − V− and V+ −W− is at least (V+ − V−)/2. By symmetry, we only
need to consider the case that V+ −W− ≥ (V+ − V−)/2. In that case, |V+ −W−| � |V+ − V−|,
and we have

M2 � |W+ −W−|
8
κ
−1|V+ − V−|

ρ(2ρ+4−κ)
2κ

+ 2ρ
κ |W+ − V−|

2ρ
κ

=
( |W+ −W−|
|W+ − V−|

) 8
κ
−1( |W+ − V−|
|V+ − V−|

) 2ρ−(κ−8)
κ |V+ − V−|

(ρ+2)(2ρ−(κ−8))
2κ

≤
( |W+ −W−|
|V+ − V−|

)( 8
κ
−1)∧ 2ρ−(κ−8)

κ |V+ − V−|
(ρ+2)(2ρ−(κ−8))

2κ ,

as desired, where in the last step we used that |W+−W−|
|W+−V−| ,

|W+−V−|
|V+−V−| ≤ 1 and the inequality that

for 0 ≤ x, y ≤ 1 and a, b > 0, xayb ≤ (xy)a∧b.

Lemma 5.7. M2 a.s. extends continuously to R2
+ with M2 ≡ 0 on R2

+ \ D2.

Proof. Since for σ ∈ {+,−}, ησ a.s. extends continuously to [0, Tσ], by Remark 3.9, W+ and
W− a.s. extend continuously to D2. From (3.14) we know that a.s. |V+−V−| is bounded on D2.
Thus, by Lemma 5.6 it suffices to show that (the continuations of) W+ and W− a.s. agree on
∂D2 ∩ R2

+. Define subsets of ∂D2:

A+ = {(t+, TD2
− (t+)) : t+ ∈ Q ∩ (0, T+)}, A− = {(TD2

+ (t−), t−) : t− ∈ Q ∩ (0, T−)}.

Then A+ ∪A− is dense in ∂D2 ∩ (0,∞)2. Thus, it suffices to show that W+ and W− a.s. agree
on A+ ∪ A−. By symmetry, we only need to show that W+ and W− a.s. agree on A+. Since
A+ is countable, it suffices to show that, for any s+ ∈ Q+, on the event that s+ < T+, a.s.
W+(s+, T

D2
− (s+)) = W−(s+, T

D2
− (s+)). Since W+ ≥ W−, if the equality does not hold, then
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there exists s− ∈ Q with (s+, s−) ∈ D2 such that inf
t−∈[s−,T

D2
− (s+))

W+(s+, t−)−W−(s+, t−) > 0.

Thus, it suffices to show that, for any (s+, s−) ∈ Q2
+, on the event that (s+, s−) ∈ D2, a.s.

inf
t−∈[s−,T

D2
− (s+))

(W+(s+, t−)−W−(s+, t−)) = 0.

Fix (s+, s−) ∈ Q2
+. We will show that the probability of the event E that (s+, s−) ∈ D2

and inf
t−∈[s−,T

D2
− (s+))

(W+(s+, t−) −W−(s+, t−)) > 0 is zero. Suppose the event E happens.

Since (s+, s−) ∈ D2, we may choose a (random) sequence δn ↓ 0 such that η+(s+ + δn) ∈
H \ K(s+, s−) for all n. Let zn = gK(s+,s−)(η+(s+ + δn)) ∈ K(s+ + δn, s−)/K(s+, s−),

n ∈ N, then zn → W+(s+, s−) by (3.6). Since K−,s+(t−), 0 ≤ t− < TD2
− (s+), are chordal

Loewner hulls driven by W−(s+, ·) with speed dm(s+, ·), by Proposition 2.6, K−,s+(s− +

t)/K−,s+(s−), 0 ≤ t < TD2
− (s+) − s−, are chordal Loewner hulls driven by W−(s+, s− + ·)

with speed dm(s+, s− + ·). By Lemma 3.13, W+(s+, t) = g
W−(s+,0)
K(s+,t)/K+(s+)(ŵ+(s+)). By Propo-

sition 2.12, W+(s+, s− + t) = g
W−(s+,s−)
K−,s+ (s−+t)/K−,s+ (s−)(W+(s+, s−)), 0 ≤ t < TD2

− (s+) − s−.

Since W+(s+, t−) > W−(s+, t−) for s− ≤ t− < TD2
− (s+), we find that W+(s+, t−) has pos-

itive distance from K−,s+(t−)/K−,s+(s−) for all t− ∈ [s−, T
D2
− (s+)). Moreover, from that

lim
t−↑T

D2
− (s+)

W+(s+, t−) − W−(s+, t−) > 0, we know that W+(s+, s−) has positive distance

from the H-hull generated by the union of K−,s+(t−)/K−,s+(s−) = K(s+, t−)/K(s+, s−) over

all t− ∈ [s−, T
D2
− (s+)), which is K(s+, T

D2
− (s+))/K(s+, s−). Since zn → W+(s+, s−), for

n big enough, zn is not contained in K(s+, T
D2
− (s+))/K(s+, s−). Thus, for n big enough,

η+(s+ +δn) = fK(s+,s−)(zn) is not contained in K(s+, T
D2
− (s+))\K(s+, s−), which implies that

η+(s+ + δn) ∈ H \K(s+, T
D2
− (s+)) because η+(s+ + δn) ∈ H \K(s+, s−).

By the DMP and reversibility of iSLEκ(ρ), conditionally first on η+([0, s+]) and then on
η−([0, TD2

− (s+)]), the part of η+ after s+ and the part of η− after TD2
− (s+) are two pieces

of the same iSLEκ(ρ) curve in the closure of one connected component of H \ (η+([0, s+]) ∪
η−([0, TD2

− (s+)])) (with opposite directions). Since η+(s+ + δn) ∈ H \ K(s+, T
D2
− (s+)) for n

big enough, this connected component has to be H \K(s+, T
D2
− (s+)). So a.s. K(·, ·) is strictly

increasing on [0, s+ + δ]× [0, TD2
− (s+) + ε] in both variables for some δ, ε > 0, which contradicts

that (s+, T
D2
− (s+)) 6∈ D2. Thus, the event E has probability zero, and the proof is done.

From now on, we understand M2 as the continuous extension defined in Lemma 5.7. Let
τ±R and τR, R > 0, be as in the last subsection.

Lemma 5.8. For any R > 0, (M2(t∧ τR))t∈R2
+

is an M2(τR)-Doob martingale w.r.t. the filtra-

tion (F+

t+∧τ+R
∨F−

t−∧τ−R
)(t+,t−)∈R2

+
. Moreover, if the underlying probability measure is weighted by

M2(τR)/M1(0), then the new law of (ŵ+, ŵ−) agrees with the probability measure P(ρ,ρ)
(w+,w−;v+,v−)

on the σ-algebra F+

τ+R
∨ F−

τ−R
.

Proof. We follow the argument in the proof of Lemma 5.2, where the key ingredient is Propo-
sition 2.20, except that here we use Lemma 5.6 instead of (5.2).
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We now use PiSLE(ρ)
(w+↔w−;v+,v−) to denote the joint law of the ŵ+ and ŵ− here.

Theorem 5.9. Under Pρw↔w, M2(t) is an (Ft)t∈R2
+

-martingale; and for any extended (Ft)-
stopping time τ ,

dP(ρ,ρ)
(w+,w−;v+,v−)|Fτ ∩ {τ ∈ R2

+}

dPiSLE(ρ)
(w+↔w−;v+,v−)|Fτ ∩ {τ ∈ R2

+}
=
M2(τ)

M2(0)
.

Proof. This is similar to the proof of Theorem 5.3 except that here we use Lemma 5.8.

Corollary 5.10. Let (F (+)
t )t∈R2

+
be the right-continuous augmentation of (Ft)t∈R2

+
. Then M2(t)

is an (F (+)
t )t∈R2

+
-martingale under PiSLE(ρ)

(w+↔w−;v+,v−), and for any extended (F (+)
t )-stopping time

τ ,

dP(ρ,ρ)
(w+,w−;v+,v−)|F

(+)
τ ∩ {τ ∈ R2

+}

dPiSLE(ρ)
(w+↔w−;v+,v−)|F

(+)
τ ∩ {τ ∈ R2

+}
=
M2(τ)

M2(0)
. (5.10)

Proof. By Proposition 2.30, M2 is an (F (+)
t )-martingale under PiSLE(ρ)

(w+↔w−;v+,v−). Using Theorem

5.9 and Proposition 2.31, we easily get (5.10) in the case that τ is a bounded (F (+)
t )-stopping

time. The results extends to the general case by Proposition 2.28.

Lemma 5.11. For any extended (F (+)
t )-stopping time τ , M2(τ) is PiSLE(ρ)

(w+↔w−;v+,v−)-a.s. positive

on the event {τ ∈ D2}.

Proof. Let τ be an extended (F (+)
t )-stopping time. Then {τ ∈ D2} ∈ F (+)

τ because for any

a ∈ R2
+,

{τ ∈ D2} ∩ {τ < a} =
⋃

t<t′∈[0,a)∩Q2
+

({τ ≤ t} ∩ {K(·, ·) is strictly increasing on [0, t′]}) ∈ Fa.

Let A = {τ ∈ D2} ∩ {M2(τ) = 0} ∈ F (+)
τ . We are going to show that PiSLE(ρ)

(w+↔w−;v+,v−)[A] = 0.

Since M2(τ) = 0 on A ∈ F (+)
τ ∩ R2

+, by Corollary 5.10, P(ρ,ρ)
(w+,w−;v+,v−)[A] = 0. Applying

Corollary 5.10 to τ + t, where t ∈ Q2
+, we find that PiSLE(ρ)

(w+↔w−;v+,v−)-a.s M2(τ + t) = 0 on A.

Thus, on the event A, PiSLE(ρ)
(w+↔w−;v+,v−)-a.s. M2(τ + t) = 0 for any t ∈ Q2

+, which implies by the

continuity that M2 ≡ 0 on τ + R2
+, which further implies that W+ ≡ W− on (τ + R2

+) ∩ D2,
which in turn implies by Lemma 3.7 that η+(τ+ + t+) = η−(τ− + t−) for any t = (t+, t−) ∈ R2

+

such that τ + t ∈ D2, and so K(·, ·) can not be strictly increasing on [0, τ + t] for any t > 0,

which then contradicts that τ ∈ D2. So we have PiSLE(ρ)
(w+↔w−;v+,v−)[A] = 0.
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Corollary 5.12. For any extended (F (+)
t )-stopping time τ ,

dPiSLE(ρ)
(w+↔w−;v+,v−)|F

(+)
τ ∩ {τ ∈ D2}

dP(ρ,ρ)
(w+,w−;v+,v−)|F

(+)
τ ∩ {τ ∈ D2}

=
M2(τ)−1

M2(0)−1
.

Proof. This follows from Corollary 5.10 and Lemma 5.11.

The following lemma describes the DMP for PiSLE(ρ)
(w+↔w−;v+,v−), which is similar to Lemma 4.4.

Theorem 5.13. Suppose (ŵ+, ŵ−) follows the law PiSLE(ρ)
(w+↔w−;v+,v−). We write D2 for the

D2(η+, η−). Let τ = (τ+, τ−) be an extended (F (+)
t )t∈R2

+
-stopping time. Then on the event that

τ ∈ D2, a.s. there is another random commuting pair of chordal Loewner curves (η̂+, η̂−; D̂2)
with some speeds, which agrees with the part of (η+, η−;D2) after τ . Moreover, D̂2 = D2(η̂+, η̂−)
as in (5.7), and the normalization of (η̂+, η̂−; D̂2), denoted by (η̃+, η̃−; D̃2), satisfies the follow-

ing properties. For σ ∈ {+,−}, let F̃σt be the σ-algebra generated by F (+)
τ and η̃σ(s), s ≤ t. Let

F̃(t+,t−) = F̃+
t+ ∨ F̃

−
t−, and (F̃ (+)

t ) be the right-continuous augmentation of (F̃t). Then for any

extended (F̃ (+)
t )-stopping time S̃, we have P[S̃ ∈ D̃2|F (+)

τ , τ ∈ D2] = PiSLE(ρ)
(W+↔W−;V+,V−)|τ [S̃ ∈ D̃2].

Here if for some σ ∈ {+,−}, Vσ(τ) = Wσ(τ), then Vσ(τ) is treated as Wσ(τ)σ.

Remark 5.14. A stronger statement should be true: the conditional joint law of the driving

functions for η̃+ and η̃− given F (+)
τ is PiSLE(ρ)

(W+↔W−;V+,V−)|τ . But the statement of the lemma is

sufficient for our purpose.

Proof. Suppose that τ ∈ D2 happens. To prove the existence of (η̂+, η̂−; D̂2), which agrees with
the part of (η+, η−;D2) after τ , by Lemma 3.17, it suffices to show that, for any σ ∈ {+,−}
and any q = (q+, q−) ∈ Q2

+, on the event τ + q ∈ D2, a.s. K(τ + q−σe−σ + teσ)/K(τ + q−σe−σ),
0 ≤ t ≤ qσ, are generated by a chordal Loewner curve with some speed, which intersects R at a
Lebesgue measure zero set. This follows from Lemma 4.4 and Corollary 5.12 (applied to τ + q).

Let K̂(·, ·) be the hull function for (η̂+, η̂−). Since ησ(τσ + ·) = fK(τ) ◦ η̂σ, σ ∈ {+,−}, we get

K̂ = K(τ + ·)/K(τ). So D̂2 = {t− τ : t ∈ D2, t ≥ τ} = D2(η̂+, η̂−).
Let (η̃+, η̃−; D̃2) be the normalization of (η̂+, η̂−; D̂2). Let hσ(t) = m(τ + teσ)−m(τ), t ≥ 0,

σ ∈ {+,−}, and h⊕ = h+ ⊕ h−. Then η̃σ = η̂σ ◦ h−1
σ , σ ∈ {+,−}, and D̃2 = h⊕(D̂2). We add

tilde to denote the functions from Section 3 and M2 in (5.8) for (η̃+, η̃−; D̃2). By Lemma 3.17,

for X ∈ {W+,W−, V+, V−}, X̃ = X(τ + h−1
⊕ (·)). So M̃2 = M2(τ + h−1

⊕ (·)).
The argument at the end of the proof of Lemma 4.4 works here to show that, for any

t ∈ R2
+, τ + h−1

⊕ (t) is an extended (F (+)
t )-stopping time, and F̃t ⊂ F (+)

τ+h−1
⊕ (t)

. Let S̃ be an

extended (F̃ (+)
t )-stopping time. Let S = τ + h−1

⊕ (S̃). Then S is an extended (F (+)
t )-stopping

time because for any a ∈ R2
+,

{S < a} =
⋃
p∈Q2

+

({S̃ < p} ∩ {τ + h−1
⊕ (p) < a}) ∈ Fa,
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where we used that {S̃ < p} ∈ F̃p ⊂ F (+)

τ+h−1
⊕ (p)

. We now write P for PiSLE(ρ)
(w+↔w−;v+,v−), P̃ for

PiSLE(ρ)
(W+↔W−;V+,V−)|τ , P′ for P(ρ,ρ)

(w+,w−;v+,v−), and P̃′ for P(ρ,ρ)
(W+↔W−;V+,V−)|τ . To prove that P[S̃ ∈

D̃2|F (+)
τ , τ ∈ D2] = P̃[S̃ ∈ D̃2], it suffices to show that, for any A ∈ F (+)

τ with A ⊂ {τ ∈ D2},
we have

P[A ∩ {S̃ ∈ D̃2}] = E[1AP̃[S̃ ∈ D̃2]]. (5.11)

Note that S̃ ∈ D̃2 if and only if S ∈ D2. By Corollary 5.12, the LHS of (5.11) equals

P[A ∩ {S ∈ D2}] = E′
[
1A∩{S∈R2

+}
M2(S)

M2(0)

]
.

Applying Corollary 5.12 twice (to P and P̃), we find that the RHS of (5.11) equals

E′
[
1A

M2(τ)

M2(0)
Ẽ′
[
1{S̃∈R2

+}
M̃2(S̃)

M̃2(0)

]]
= E′

[
Ẽ′
[
1A∩{S∈R2

+}
M2(S)

M2(0)

]]
= E′

[
1A∩{S∈R2

+}
M2(S)

M2(0)

]
,

where in the first equality, we used M̃2(S̃) = M2(S) and M̃2(0) = M2(τ), and in the second
equality we used Lemma 4.4. So we get (5.11), and the proof is done.

For convenience, we write P2 for PiSLE(ρ)
(w+↔w−;v+,v−). We now also assume that v0 := (v+ +

v−)/2 ∈ [w−, w+], and let V0 be the force point function started from v0. We may define the
time curve u : [0, T u) → D2 and the processes Rσ(t), σ ∈ {+,−}, and R(t) as in Section 3.4,

and extend u to R+ such that u(s) = limt↑Tu u(t) for s ≥ T u. Since D2 is an (F (+)
t )-stopping

region, by Proposition 3.24, for any t ≥ 0, u(t) is an (F (+)
t )-stopping time.

Applying Corollary 5.12 to u(t) for any deterministic t ≥ 0, we get

dP2|F (+)
u(t) ∩ {t < T̃ u}

dP(ρ,ρ)|F (+)
u(t) ∩ {t < T̃ u}

=
Mu

2 (t)−1

Mu
2 (0)−1

= e−2α2tG2(R(0))

G2(R(t))
,

where α2 = (ρ+2)(2ρ+8−κ)
2κ and

G2(r+, r−) := 2
ρ(2ρ+4−κ)

2κ (r+ + r−)
8
κ
−1

∏
σ∈{+,−}

(1 + rσ)
2ρ
κ · Fκ,ρ

((1− r+)(1− r−)

(1 + r+)(1 + r−)

)−1
. (5.12)

So we obtain the following lemma.

Lemma 5.15. Let pR2 (t, r, r∗) be the function pR(t, r, r∗) given in Corollary 4.17 with ρ0 = 0
and ρ+ = ρ− = ρ. Then under P2, the transition density of (R) is

p̃R2 (t, r, r∗) := e−2α2tpR2 (t, r, r∗) · G2(r)

G2(r∗)
.
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5.3 Opposite pair of iSLEκ(ρ) curves, a limit case

Third, we consider another pair of random curves. Let κ and ρ be as in the last subsection.
Let η̂+ be an iSLEκ(ρ) curve in H from w+ to w− with force points v+,−∞. So its reversal
η̂− is an iSLEκ(ρ) curve in H from w− to w+ with force points −∞, v+. Define the chordal
Loewner curves η+(t+), 0 ≤ t+ < T+, and η−(t−), 0 ≤ t− < T−, with driving functions ŵ+ and
ŵ−, respectively, in the same way as in the previous subsection. Define D3 = D2(η+, η−) using
(5.7). Then (η+, η−;D3) is a.s. a commuting pair of chordal Loewner curves. Let W+ and W−
be the driving functions, and let V+ be the force point function started from v+.

Define a non-negative function M3 on D by

M3 = |W+ −W−|
8
κ
−1|V+ −W−|

2ρ
κ · Fκ,ρ

(V+ −W+

V+ −W−

)−1
.

Let V− be the force point function started from w−−. Since V+ ≥ W+ ≥ W− ≥ V−, there are
C > 0 depending on κ, ρ and C ′ depending on κ, ρ and |v+ − w−| such that

M3 ≤ C
(W+ −W−
V+ −W−

) 8
κ
−1(V+ −W−

V+ − V−

) 2
κ

(ρ−(κ
2
−4))

(V+ − V−)
2
κ

(ρ−(κ
2
−4))

≤ C ′(W+ −W−)( 8
κ
−1)∧ 2

κ
(ρ−(κ

2
−4))(V+ − V−)

2
κ

(ρ−(κ
2
−4)).

Here we use the fact that 8
κ − 1, 2

κ(ρ− (κ2 − 4)) > 0, V+ ≥ v+, and V− ≤ w−. Then the exactly
same proof of Lemma 5.7 can be used here to prove the following lemma.

Lemma 5.16. M3 a.s. extends continuously to R2
+ with M3 ≡ 0 on R2

+ \ D3.

We now understand M3 as the continuous extension defined on R2
+. Let PiSLE(ρ)

(w+↔w−;v+) denote

the joint law of ŵ+ and ŵ−. Then similar arguments as in the previous subsection give the
following propositions.

Theorem 5.17. Under PiSLE(ρ)
(w+↔w−;v+), M3 is an (Ft)t∈R2

+
-martingale; and for any extended

(F (+)
t )-stopping time T ,

dP(ρ)
(w+,w−;v+)|F

(+)
T ∩ {T ∈ R2

+}

dPiSLE(ρ)
(w+↔w−;v+)|F

(+)
T ∩ {T ∈ R2

+}
=
M3(T )

M3(0)
.

Corollary 5.18. For any extended (F (+)
t )-stopping time T , M3(T ) is PiSLE(ρ)

(w+↔w−;v+)-a.s. positive

on the event {T ∈ D3}, and

dPiSLE(ρ)
(w+↔w−;v+)|F

(+)
T ∩ {T ∈ D3}

dP(ρ)
(w+,w−;v+)|F

(+)
T ∩ {T ∈ D3}

=
M3(T )−1

M3(0)−1
.
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Theorem 5.19. The statement in Theorem 5.13 holds with PiSLE(ρ)
(w+↔w−;v+) and PiSLE(ρ)

(W+↔W−;V+)|τ

in place of PiSLE(ρ)
(w+↔w−;v+,v−) and PiSLE(ρ)

(W+↔W−;V+,V−)|τ , respectively.

In this subsection, we have marked points v+ > w+ > w−. We introduce two more marked
points v0 and v− by v0 = (w+ + w−)/2 and v− = 2v0 − v+. Let V0 and V− be the force point

functions started from v0 and v−, respectively. For convenience, we write P3 for PiSLE(ρ)
(w+↔w−;v+).

Under P3, we may define the time curve u : [0, T u)→ D2 and the processes Rσ(t), σ ∈ {+,−},
and R(t) as in Section 3.4. Then for each t ≥ 0, (the extended) u(t) is an (F (+)

t )-stopping time.
Applying Corollary 5.18 to u(t) for any deterministic t ≥ 0, we get

dP3|F (+)
u(t) ∩ {t < T u}

dP(ρ)|F (+)
u(t) ∩ {t < T u}

=
Mu

3 (t)−1

Mu
3 (0)−1

= e−2α3tG3(R(0))

G3(R(t))
,

where α3 = 2ρ+8−κ
κ and

G3(r+, r−) := (r+ + r−)
8
κ
−1(1 + r−)

2ρ
κ · Fκ,ρ

(1− r+

1 + r−

)−1
. (5.13)

Using an argument similar to the proof of Lemma 5.15, we get the following lemma.

Lemma 5.20. Let pR3 (t, r, r∗) be the function given in Corollary 4.17 with ρ0 = ρ− = 0 and
ρ+ = ρ. Then under P3, the transition density of (R) is

p̃R3 (t, r, r∗) := e−2α3tpR3 (t, r, r∗) · G3(r)

G3(r∗)
.

Using Lemmas 5.5, 5.15, and 5.20, we can obtain a quasi-invariant density of R under
either P1, P2, or P3 as follows. For j = 1, 2, 3, let pRj (r∗) be the invariant density of R under

P(2,2), P(ρ,ρ), and P(ρ), respectively, given by Corollary 4.17, and let G1, G2, G3 be given by
(5.6,5.12,5.13), respectively. Define

Zj =

∫
(0,1)2

pRj (r∗)

Gj(r∗)
dr∗, p̃Rj =

1

Zj
pRj
Gj
, j = 1, 2, 3. (5.14)

It is straightforward to check that Zj ∈ (0,∞), j = 1, 2, 3.

Lemma 5.21. Let α1, α2, α3 be given by Lemmas 5.5, 5.15, and 5.20, respectively.

(i) For any j ∈ {1, 2, 3}, t > 0 and r∗ ∈ [0, 1]2,∫
[0,1]2

p̃Rj (r)p̃Rj (t, r, r∗)dr = e−2αjtp̃Rj (r∗).

This means, under the law Pj, if the process (R) starts from a random point in (0, 1)2

with density p̃Rj , then for any deterministic t ≥ 0, the density of (the survived) R(t) is

e−2αjtp̃Rj . So we call p̃Rj a quasi-invariant distribution for (R) under Pj.
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(ii) Let β1 = 10, β2 = 2ρ + 6, and β3 = ρ + 6. For j ∈ {1, 2, 3}, under the law Pj, for any
r ∈ (0, 1)2, if R starts from r, then

Pj [T u > t] = ZjGj(r)e−2αjt(1 +O(e−βjt)); (5.15)

p̃Rj (t, r, r∗) = Pj [T u > t]p̃Rj (r∗)(1 +O(e−βjt)). (5.16)

Here we emphasize that the implicit constants in the O symbols do not depend on r.

Proof. Part (i) follows easily from (4.30). For part (ii), suppose R starts from r. Using Corollary
4.17, Lemmas 5.5, 5.15, and 5.20, and formulas (5.14), we get

Pj [T u > t] =

∫
(0,1)2

p̃Rj (t, r, r∗)dr∗ =

∫
(0,1)2

e−2αjtpRj (t, r, r∗)
Gj(r)

Gj(r∗)
dr∗

=

∫
(0,1)2

e−2αjtpRj (r∗)(1 +O(e−βjt))
Gj(r)

Gj(r∗)
dr∗ = ZjGj(r)e−2αjt(1 +O(e−βjt)),

which is (5.15). We also have

p̃Rj (t, r, r∗) = e−2αjtpRj (t, r, r∗)
Gj(r)

Gj(r∗)

= e−2αjtpRj (r∗)(1 +O(e−βjt))
Gj(r)

Gj(r∗)
= e−2αjtZj p̃Rj (r∗)(1 +O(e−βjt))Gj(r),

which together with (5.15) implies (5.16).

6 Boundary Green’s Functions

We are going to prove the main theorems and some other important theorems in this section.

Lemma 6.1. Let U1 and U2 be two simply connected subdomains of the Riemann sphere Ĉ,
both of which contain ∞ and do not contain 0. Suppose f maps U1 conformally onto U2 and
fixes ∞. Suppose for j = 1, 2, fj maps D∗ := Ĉ \ {|z| ≤ 1} conformally onto Uj and fixes ∞,
such that f2 = f ◦ f1. Let aj = limz→∞ |fj(z)|/|z| > 0, j = 1, 2, and a = a2/a1. If R > 4a1,
then {|z| > R} ⊂ U1, and {|z| > aR+ 4a2} ⊂ f({|z| > R}) ⊂ {|z| > aR− 4a2}.

Proof. That {|z| ≥ R} ⊂ U1 when R > 4a1 follows from Koebe’s 1/4 theorem applied to
J ◦ f1 ◦ J , where J(z) := 1/z. Define gj = fj/aj , j = 1, 2. Fix z1 ∈ U1. Let z2 = f(z1) ∈ U2,
w0 = f−1

1 (z1) = f−1
2 (z2) ∈ D∗, and wj = gj(w0) = zj/aj , j = 1, 2. Let Rj = |zj |, j = 1, 2,

and rj = |wj |, j = 0, 1, 2. Then Rj = ajrj , j = 1, 2. Applying Koebe’s distortion theorem
to J ◦ gj ◦ J , we find that r0 + 1

r0
− 2 ≤ rj ≤ r0 + 1

r0
+ 2, j = 1, 2, which implies that

|R1/a1−R2/a2| = |r1−r2| ≤ 4. Thus, aR1−4a2 ≤ R2 ≤ aR1 +4a2, which implies that f maps
{|z| > R} into {|z| > aR − 4a2}, and f({|z| = R}) ⊂ {|z| ≤ aR + 4a2}. The latter inclusion
implies that f({|z| > R}) ⊃ {|z| > aR+ 4a2} because f(∞) =∞.
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Theorem 6.2. Let κ ∈ (0, 8). Let v− < w− < w+ < v+ ∈ R be such that 0 ∈ [v−, v+]. Let
(η̂+, η̂−) be a 2-SLEκ in H with link pattern (w+ → v+;w− → v−). Let α1 = 2(12

κ −1), β1 = 10,
and G1(w; v) be as in (1.2). Then there is a constant C > 0 depending only on κ such that, as
L→∞,

P[η̂σ ∩ {|z| > L} 6= ∅, σ ∈ {+,−}] = CL−α1G1(w; v)
(

1 +O
( |v+ − v−|

L

) β1
β1+2

)
, (6.1)

where the implicit constant depends only on κ.

Proof. Let p(w; v;L) denote the LHS of (6.1). Construct the random commuting pair of chordal
Loewner curves (η1, η2;D) from η̂1 and η̂2 as in Section 5.1, where D = [0, T+) × [0, T−), and
Tσ is the lifetime of ησ, σ ∈ {+,−}. We adopt the symbols from Sections 3.1. Note that, when
L > |v+| ∨ |v−|, η̂+ and η̂− both intersect {|z| > L} if and only if η+ and η− both intersect
{|z| > L}. In fact, for any σ ∈ {+,−}, ησ either disconnects vj from∞, or disconnects v−j from
∞. If ησ does not intersect {|z| > L}, then in the former case, η̂σ grows in a bounded connected
component of H\ησ after the end of ησ, and so can not hit {|z| > L}; and in the latter case η−σ
grows in a bounded connected component of H\ησ, and can not hit {|z| > L}. We first consider
a very special case: v+ = 1, v− = −1, w+ = r+ ∈ [0, 1), and w− = −r− ∈ (−1, 0]. Let v0 = 0.
Let Vν be the force point function started from vν , ν ∈ {0,+,−}. Since |v+ − v0| = |v0 − v−|,
we may define a time curve u : [0, T u)→ D as in Section 3.4 and adopt the symbols from there.
Define p(r;L) = p(r+,−r−; 1,−1;L).

Suppose L > 2e6, and so 1
2 log(L/2) > 3. Let t0 ∈ [3, 1

2 log(L/2)). If both η+ and η− intersect
{|z| > L}, then there is some t′ ∈ [0, T u) such that either η+(u+([0, t′])) or η−(u−([0, t′]))
intersects {|z| > L}, which by (3.32) implies that L ≤ 2e2t′ , and so T u > t′ ≥ log(L/2)/2 > t0.
Thus, {ησ ∩ {|z| > L} 6= ∅, σ ∈ {+,−}} ⊂ {T u > t0}. By (3.32) again, rad0(ησ([0, uσ(t0)])) ≤
2e2t0 < L. So ησ([0, uσ(t0)]), σ ∈ {+,−}, do not intersect {|z| > L}.

Let ĝut0(z) = (gK(u(t0))(z) − V u
0 (t0))/e2t0 . Then ĝut0 maps C \ (K(u(t0))doub ∪ [v−, v+]) con-

formally onto C \ [−1, 1], and fixes ∞ with ĝut0(z)/z → e−2t0 as z → ∞. From V u
− ≤ v− < 0,

V u
+ ≥ v+ > 0, and V u

0 = (V u
+ + V u

−)/2, we get |V u
0 (t0)| ≤ |V u

+(t0)− V u
−(t0)|/2 = e2t0 . Applying

Lemma 6.1 to f = ĝut0 and f2(z) = (z + 1/z)/2 (a1 = e2t0/2 and a2 = 1/2) and using that
L > 2e2t0 , we get {|z| > L} ⊂ C \ (K(u(t0))doub ∪ [v−, v+]) and

{|z| > L/e2t0 − 2} ⊃ ĝut0({|z| > L}) ⊃ {|z| > L/e2t0 + 2}. (6.2)

Note that both η+ and η− intersect {|z| > L} if and only if T u > t0 and the ĝut0-image of the
parts of ησ after uσ(t0), σ ∈ {+,−}, both intersect the ĝut0-image of {|z| > L}. From Proposition

2.32, conditionally on F (+)
u(t0) and the event that T u > t0, the ĝut0-image of the parts of η̂σ after

ησ(uσ(t0)), σ ∈ {+,−}, form a 2-SLEκ in H, with link pattern (W u
σ (t0) − V u

0 (t0))/e2t0 =
σRσ(t0)→ (V u

σ (t0)− V u
0 (t0))/e2t0 = σ1, σ{+,−}. From (6.2) we get

p(R(t0);
L

e2t0
+2) ≤ P[ησ∩{|z| > L} 6= ∅, σ ∈ {+,−}|F (+)

u(t0), T
u > t0] ≤ p(R(t0);

L

e2t0
−2)]. (6.3)
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We use the approach of [6] to prove the convergence of limL→∞ L
α1p(r, L). We first estimate

p(L) :=
∫

[0,1]2 p(r;L)p̃R1 (r)dr, where p̃R1 is the quasi-invariant density for the process (R) under

P1 = P2−SLE
(w+→v+;w−→v−) given in Lemma 5.21. This is the probability that the two curves in a

2-SLEκ in H with link pattern (r+ → 1;−r− → −1) both hit {|z| > L}, where (r+, r−) is a
random point that follows the density p̃R1 . From Lemma 5.21 we know that, for the deterministic
time t0, P[T u > t0] = e−α1t0 and the law of (R(t0)) conditionally on the event {T u > t0} still has
density p̃R1 . Thus, the conditional joint law of the ĝut0-images of the parts of η̂σ after ησ(uσ(t0)),
σ ∈ {+,−} given Fut0 and the event that T u > t0 agrees with that of (η̂+, η̂−). From (6.3) and
that {ησ ∩ {|z| > L} 6= ∅, σ ∈ {+,−}} ⊂ {T u > t0} we get

e−2α1t0p(L/e2t0 − 2) ≥ p(L) ≥ e−2α1t0p(L/e2t0 + 2), if L > 2e2t0 .

Let q(L) = Lα1p(L). Then (if t0 ≥ 3 and L > 2e2t0)

(1− 2e2t0/L)−α1q(L/e2t0 − 2) ≥ q(L) ≥ (1 + 2e2t0/L)−α1q(L/e2t0 + 2). (6.4)

Suppose L0 > 4 and L ≥ e6(L0 + 2). Let t1 = log(L/(L0 + 2))/2 and t2 = log(L/(L0 − 2))/2.
Then L/e2t1 − 2 = L/e2t2 + 2 = L0, t2 ≥ t1 ≥ 3 and L = (L0 − 2)e2t2 > 2e2t2 ≥ 2e2t1 . From
(6.4) (applied here with t1 and t2 in place of t0 on the LHS and RHS, respectively) we get

(1 + 2/L0)α1q(L0) ≥ q(L) ≥ (1− 2/L0)α1q(L0), if L ≥ e6(L0 + 2) > 6e6. (6.5)

From (3.32) we know that T u > t0 implies that both η+ and η− intersect {|z| > e2t0/64}. Since
P[T u > t0] = e−2α1t0 > 0 for all t0 ≥ 0, we see that p is positive on [0,∞), and so is q. From
(6.5) we see that limL→∞ q(L) converges to a point in (0,∞). Denote it by q(∞). By fixing
L0 ≥ 4 and sending L→∞ in (6.5), we get

q(∞)L−α1
0 (1 + 2/L0)−α1 ≤ p(L0) ≤ q(∞)L−α1

0 (1− 2/L0)−α1 , if L0 > 4. (6.6)

Now we estimate p(r;L) for a fixed deterministic r ∈ [0, 1)2 \ {(0, 0)}. The process (R)
starts from r and has transition density given by Lemma 5.5. Fix L > 2e6 and choose t0 ∈
[3, log(L/2)/2). Then both η+ and η− intersect {|z| > L} implies that T u > t0. From Lemma
5.21 we know that P1[T u > t0] = Z1G1(r)e−2α1t0(1+O(e−β1t0)) and the law of R(t0) conditional
on {T u > t0} has a density on (0, 1)2, which equals p̃R1 · (1 +O(e−β1t0)). Using (6.3,6.6) we get

p(r;L) = Z1q(∞)G1(r)e−2α1t0(L/e2t0)−α1(1 +O(e−β1t0))(1 +O(e2t0/L)).

For L > e36, by choosing t0 such that e2t0 = L2/(2+β1) and letting C0 = Zq(∞), we get

p(r;L) = C0G1(r)L−α1(1 +O(L−β1/(2+β1))).

Since G1(r+, r−) = G1(r+,−r−; 1,−1), we proved (6.1) for v± = ±1, w+ ∈ [0, 1), and w− ∈
(−1, 0]. Since G1(aw+ + b, aw− + b; av+ + b, av− + b) = a−α1G1(w+, w−; v+, v−) for any a > 0
and b ∈ R, by a translation and a dilation, we get (6.1) in the case that (v+ +v−)/2 ∈ [w−, w+].
Here the assumption that 0 ∈ [v+, v−] is used to control the amount of translation.
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Finally, we consider all other cases, i.e., (v+ + v−)/2 6∈ [w−, w+]. By symmetry, we may
assume that (v+ + v−)/2 < w−. Let v0 = (w+ + w−)/2. Then v+ > w+ > v0 > w− > v−, but
v+ − v0 < v0 − v−. We still let Vν be the force point functions started from vν , ν ∈ {0,+,−}.
By (3.18) V ν satisfies the PDE ∂+Vν

ae
=

2W 2
+,1

Vν−W+
on Ddisj

1 as defined in Section 3.3. Thus, on

Ddisj
1 , for any ν1 6= ν2 ∈ {+,−, 0}, ∂+ log |Vν1 − Vν2 |

ae
= −2

(Vν2−W+)(Vν1−W+) , which implies that

∂+(V+−V0V0−V− )

∂+ log |V+ − V−|
=

V+ − V0

W+ − V0
· V+ − V−
V0 − V−

> 1. (6.7)

Fixing t− = 0. The displayed formula means that V+(t,0)−V0(t,0)
V0(t,0)−V−(t,0) is increasing with a rate faster

than log |V+(t, 0) − V−(t, 0)|. From the assumption, V+(0,0)−V0(0,0)
V0(0,0)−V−(0,0) = v+−v0

v0−v− ∈ (0, 1). Let τ be

the first t such that V+(t,0)−V0(t,0)
V0(t,0)−V−(t,0) = 1; if such time does not exist, then set τ = T+. Then τ is an

(F+
t+)t+≥0-stopping time, and from (6.7) we know that, for any 0 ≤ t < τ , |V+(t, 0)−V−(t, 0)| <

e|v+−v−|, which implies by (3.14) that diam(η+([0, t])) < e|v+−v−|. From (5.1) we know that
M1 = G1(W ;V ). Here and below, we write W and V for (W+,W−) and (V+, V−), respectively.
From Lemma 5.2 we know that for any L ∈ (0,∞), (M1(t ∧ τ+

L , 0))t≥0 is a Doob-martingale,
where M1(t, 0) = 0 if t ≥ T+. Taking L = (e + 1)|v+ − v−|, we find that τ+

L > τ . In fact, if
η+([0, t]) intersects {|z| > L}, then diam(η+([0, t])) > L − |w+| > L − |v+ − v−| ≥ e|v+ − v−|,
which then implies that |V+(t, 0) − V−(t, 0)| > e|v+ − v−| by (3.14), and so t > τ because
diam(η+([0, η])) ≤ e|v+ − v−|. So by Proposition 2.31,

E[1{τ<T+}G1(W ;V )|(τ,0)] = E[M1(τ, 0)] = M1(0, 0) = G1(w; v). (6.8)

Using the same argument as in the proof of (6.3) with (τ, 0) in place of u(t0) and gK(τ,0) in
place of ĝut0 , we get

p((W ;V )|(τ,0);L+) ≤ P[ησ ∩ {|z| = L} 6= ∅, σ ∈ {+,−}|F+
τ , τ < T+] ≤ p((W ;V )|(τ,0);L−),

(6.9)
where Lµ = L+ µ · |V+(τ, 0)− V−(τ, 0)|, µ ∈ {+,−}.

If τ < T+, from the definition of τ we know that V0(τ, 0) = (V+(τ, 0) + V−(τ, 0))/2. Since
W+ ≥ V0 ≥ W−, we have (V+(τ, 0) + V−(τ, 0))/2 ∈ [W−(τ, 0),W+(τ, 0)]. Also note that
V−(τ, 0) ≤ v− ≤ 0 and V+(τ, 0) ≥ v+ ≥ 0. So we may apply the result in the particular case to
get

p((W ;V )|(τ,0);L±) =C0G1(W ;V )|(τ,0) · L−α1
±

(
1 +O

(( |V+(τ, 0)− V−(τ, 0)|
L±

)β1/(2+β1)))
=C0G1(W ;V )|(τ,0) · L−α1

(
1 +O

(( |v+ − v−|
L

)β1/(2+β1)))
. (6.10)

Here in the last step we used |V+(τ, 0)−V−(τ, 0)| ≤ e|v+−v−| and L± = L(1+O(|v+−v−|/L)).
Plugging (6.10) into (6.9), taking expectation on both sides of (6.9), and using the fact that
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τ < T+ when η+ ∩ {|z| = L} 6= ∅, we get

p(w; v;L) =C0E[1{τ<T+}G1(W ;V )|(τ,0)] · L−α1(1 +O((|v+ − v−|/L)β1/(2+β1)))

=C0G1(w; v) · L−α1(1 +O((|v+ − v−|/L)β1/(2+β1))),

where in the last step we used (6.8). The proof is now complete.

Theorem 6.3. Let κ ∈ (4, 8). Then Theorem 6.2 holds with the same α1, β1, G1 but a different
positive constant C under either of the following two modifications:

(i) the set {|z| > L} is replaced by (L,∞), (−∞,−L), or (L,∞) ∪ (−∞,−L);

(ii) the event that ησ ∩ {|z| > L} 6= ∅, σ ∈ {+,−}, is replaced by η+ ∩ η− ∩ {|z| > L} 6= ∅.

Proof. The same argument in the proof of Theorem 6.2 works here, where the assumption that
κ ∈ (4, 8) is used to guarantee that the probability of the event is positive for all L > 0.

Theorem 6.4. Let κ ∈ (0, 4] and ρ > −2, or κ ∈ (4, 8) and ρ ≥ κ
2 − 2. Let w− < w+ ∈ R,

v+ ∈ {w+
+} ∪ (w+,∞) and v− ∈ {w−−} ∪ (−∞, w−) be such that 0 ∈ [v−, v+]. Let η̂ be an

iSLEκ(ρ) curve in H from w+ to w− with force points at v+ and v−. Let α2 = ρ+2
κ (ρ− (κ2 −4)),

β2 = 2ρ+ 6, and

G2(w; v) = |w+ −w−|
8
κ
−1|v+ − v−|

ρ(2ρ+4−κ)
2κ

∏
σ∈{+,−}

|wσ − v−σ|
2ρ
κ Fκ,ρ

((v+ − w+)(w− − v−)

(w+ − v−)(v+ − w−)

)−1
.

Then there is a constant C > 0 depending only on κ, ρ such that, as L→∞,

P[η̂ ∩ {|z| > L} 6= ∅] = CL−α2G2(w; v)
(

1 +O
( |v+ − v−|

L

) β2
β2+2

)
,

where the implicit constant depends only on κ, ρ. Moreover, if κ ∈ (0, 4] and ρ ∈ (−2, κ2 − 2),
then the above statement holds (with a different positive constant C) if the set {|z| > L} is
replaced by (L,∞), (−∞,−L), or (L,∞) ∪ (−∞,−L).

Proof. Let p(w; v;L) denote the probability that η̂ intersects {|z| > L}, and let p(r;L) =
p(r+,−r−; 1,−1;L) for r = (r+, r−) ∈ [0, 1]2 \ {(0, 0)}. Let η̂+ = η̂ and η̂− be the time-
reversal of η̂. Construct the random commuting pair of chordal Loewner curves (η+, η−;D2)
from η̂+ and η̂− as in Section 5.2, where D2 is defined by (5.7). Then for L > max{|v+|, |v−|},
η̂ ∩ {|z| > L} 6= ∅ if and only if ησ ∩ {|z| > L} 6= ∅, σ ∈ {+,−}.

The rest of the proof follows the same line as that of Theorem 6.2 except that we now apply
Lemma 5.21 with j = 2 and use Lemma 5.8 and Theorem 5.13 in place of Lemma 5.2 and
Proposition 2.32, respectively. More specifically, to obtain the counterpart of (6.3), we apply

Theorem 5.13 to τ = u(t0) and S̃ = S̃
µ

= (S̃µ+, S̃
µ
−), µ ∈ {+,−}, where

S̃µσ := inf{t : |η̃σ(t)− V u
0 (t)| > L+ µ · 2et0}, σ ∈ {+,−}.
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By convention, if S̃µ+ or S̃µ− is not well defined, then we set S̃
µ

=∞. To obtain the counterpart

of (6.9), we apply Theorem 5.13 to τ = (τ, 0) and S̃ = S̃
µ

= (S̃µ+, S̃
µ
−), µ ∈ {+,−}, where

S̃µσ := inf{t : |η̃σ(t)| > L+ µ · |V+(τ, 0)− V−(τ, 0)|}, σ ∈ {+,−}.

In either case S̃
µ

is a stopping time w.r.t. the right-continuous augmentation of the filtration

(F̃t)t∈R2
+

, where F̃(t+,t−) is generated by η̃+|[0,t+], η̃−|[0,t−], and F (+)
τ . We also use the fact that

G2(r+, r−) = G2(r+,−r−; 1,−1).
Finally, the statement about the case κ ∈ (0, 4] and ρ ∈ (−2, κ2 − 2) follows from the same

argument as above, where the conditions on κ and ρ guarantees that the probability that η̂
intersects (L,∞) or (−∞,−L) is positive for any L > 0.

Corollary 6.5. Let κ ∈ (0, 8). Let v− < w− < w+ < v+ ∈ R be such that 0 ∈ [v−, v+]. Let
(η̂w, η̂v) be a 2-SLEκ in H with link pattern (w+ ↔ w−; v+ ↔ v−). Let α2 = 2(12

κ − 1), β2 = 10,
and G2(w; v) be as in (1.3). Then there is a constant C > 0 depending only on κ such that, as
L→∞,

P[η̂u ∩ {|z| > L} 6= ∅, u ∈ {w, v}] = CL−α2G2(w; v)
(

1 +O
( |v+ − v−|

L

) β2
β2+2

)
,

where the implicit constant depends only on κ.

Proof. This follows from Theorem 6.4 and the facts that η̂w is an hSLEκ, i.e., iSLEκ(2) curve in
H from w+ to w− with force points at v+, v−, and that when L > max{|v+|, |v−|}, η̂w ∩ {|z| >
L} 6= ∅ implies that η̂v ∩ {|z| > L} 6= ∅ as well.

Theorem 6.6. Let κ ∈ (0, 4] and ρ > −2, or κ ∈ (4, 8) and ρ ≥ κ
2 − 2. Let w− < w+ ∈ R and

v+ ∈ {w−+} ∪ (w+,∞) be such that 0 ∈ [w−, v+]. Let η̂ be an iSLEκ(ρ) curve in H from w+ to
w− with force points at v+ and ∞. Let α3 = 2

κ(ρ− (κ2 − 4)), β3 = ρ+ 6, and

G3(w; v+) = |w+ − w−|
8
κ
−1|v+ − w−|

2ρ
κ Fκ,ρ

(v+ − w+

v+ − w−

)−1
.

Then there is a constant C > 0 depending only on κ, ρ such that, as L→∞,

P[η̂ ∩ {|z| > L} 6= ∅] = CL−α3G3(w; v+)
(

1 +O
( |w+ − v−|

L

) β3
β3+2

)
,

where the implicit constant depends only on κ, ρ. Moreover, if κ ∈ (0, 4] and ρ ∈ (−2, κ2 − 2),
then the statement holds (with a different positive constant C) if the set {|z| > L} is replaced by
(L,∞) or (L,∞)∪ (−∞,−L); if κ ∈ (4, 8) and ρ ≥ κ

2 −2, then the statement holds if {|z| > L}
is replaced by (−∞,−L) or (L,∞) ∪ (−∞,−L).

Proof. The proof follows the same line as that of Theorems 6.4 and 6.2 except that we now
introduce v0 := (w+ +w−)/2 and v− := 2v0−v+ as in Section 5.3. Then we can define the time
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curve u as in Section 3.4 without an additional assumption. We now apply Lemma 5.21 with
j = 3 and use Theorem 5.13 in place of Proposition 2.32. Note that the G3(r+, r−) in (5.13)
agrees with the G3(r+,−r−; 1,−1) here. The last sentence follows from the same argument and
the fact that the events are positive for any L > 0 in each case.

Corollary 6.7. Let κ ∈ (0, 8). Let w− < w+ < v+ ∈ R be such that 0 ∈ [w−, v+]. Let (η̂w, η̂v)
be a 2-SLEκ in H with link pattern (w+ ↔ w−; v+ ↔ ∞). Let α3 = 12

κ − 1, β3 = 8, and
G3(w; v+) be as in (1.4). Then there is a constant C > 0 depending only on κ such that, as
L→∞,

P[η̂u ∩ {|z| > L} 6= ∅, u ∈ {w, v}] = CL−α3G3(w; v+)
(

1 +O
( |w+ − v−|

R

) β3
β3+2

)
,

where the implicit constant depends only on κ.

Proof. This follows from Theorem 6.6 and the facts that η̂w is an hSLEκ, i.e., iSLEκ(2) curve
in H from w+ to w− with force points at v+,∞, and that η̂v ∩{|z| > L} 6= ∅ for any L > 0.

Proof of Theorem 1.1. This follows from Theorem 6.2, Corollary 6.5, and Corollary 6.7.

Proof of Theorem 1.2. By symmetry, we may assume that z0 = 0 and w > v ≥ 0. Let J(z) =
−1/z, which is a Möbius automorphism of H, and swaps 0 and∞. Now J(η) is an SLEκ(ρ) curve
in H from J(w) to 0 with the force point at J(v), its reversal is an iSLEκ(ρ) curve in H from 0
to J(w) with force points at 0+ and J(v). Note that dist(η, 0) < r iff J(η) ∩ {|z| > 1/r} 6= ∅.
So (i) follows from Theorem 6.4 by setting w+ = 0, w− = − 1

w , v+ = 0+ and v− = − 1
v ; and (ii)

follows from Theorem 6.6 by setting w+ = 0, w− = − 1
w , and v+ = 0+.
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