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Abstract

We prove that for a 2-SLE,; pair (11, 72) in a simply connected domain D, whose bound-
ary is C'! near zo € 9D, there is some @ > 0 such that lim,_,o+ r~*P[dist(z0,n;) <7,j = 1,2]
converges to a positive number, called the boundary two-curve Green’s function. The ex-
ponent « equals 2(% — 1) if 2 is not one of the endpoints of n; and 72; and otherwise
equals % — 1. We also prove the existence of the boundary (one-curve) Green’s function
for a single-boundary-force-point SLE,(p) curve, for k and p in some range. In addition,
we find the convergence rate and the exact formula of the above Green’s functions up to
multiplicative constants. To derive these results, we construct a family of two-dimensional
diffusion processes, and use orthogonal polynomials to obtain their transition density.
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1 Introduction

1.1 Main results

This paper is the follow-up of the paper [22], in which we proved the existence of two-curve
Green’s function for 2-SLE, at an interior point, and obtained the formula of the Green’s
function up to a multiplicative constant. In the present paper, we will prove the existence of
the two-curve Green’s function for 2-SLE,; at a boundary point, and also derive its formula. In
addition, we will derive boundary Green’s function for a chordal SLE.(p) curve with a single
boundary force point, where x and p satisfy some conditions.

A 2-SLE, is a particular case of multiple SLE,;. It consists of two random curves in a simply
connected domain connecting two pairs of boundary points (more precisely, prime ends), which
satisfy the property that, when any one curve is given, the conditional law of the other curve
is that of a chordal SLE,; in a complement domain of the first curve.

The two-curve Green’s function of a 2-SLE, is about the rescaled limit of the probability
that the two curves in the 2-SLE, both approach a marked point in D. More specifically, it
was proved in [22] that, for any x € (0,8), if (n1,72) is a 2-SLE, in D, and 2y € D, then the
limit

G(z0) := lim r~*P[dist(n;,20) < 7,j =1,2] (1.1)
r—0t
converges to a positive number, where the exponent « equals ag := %. The limit G(zp)
is called the (interior) two-curve Green’s function for (n1,72). The paper [22] also derived the
convergence rate and the exact formula of G(zp) up to an unknown constant.

In this paper we study the limit in the case that zy € D, assuming that 9D is C' near z,

for some suitable exponent . Below is our first main theorem.

Theorem 1.1. Let € (0,8). Let (n1,m2) be a 2-SLE, in a simply connected domain D. Let
29 € OD. Suppose OD is C' near zg. We have the following results.



(A) If zo is not any endpoint of 1 or na, then the limit in exists and lies in (0,00) for
=0 =ay:=2(2-1).

(B) If zy is one of the endpoints of m1 and ng2, then the limit in exists and lies in (0, 00)
for a=as ::%—1.

Moreover, in each case we may compute Gp(z9) up to some constant C > 0 as follows. Let

F, o denote the hypergeometric function gFl(%, 1— 2.8, Let f map D conformally onto H

KK’

such that f(z9) = co. Let J denote the map z — —1/z.

(A1) Suppose Case (A) happens and none of n1 and n2 separates zy from the other curve. We
label the f-images of the four endpoints of n1 and no by v— < w_ < wy < vy. Then

Gp(z0) = Ci[(J o f)(20)|*' G1(w; v),

where C1 > 0 is a constant depending only on k, and

(wy —w_)(vy — Uf)>*1. (1.2)

Gitw) =TT (o= vols M —vol) Bz (= 5 0 )

oe{+,—}

(A2) Suppose Case (A) happens and one of 1 and n2 separates zy from the other curve. We
label the f-images of the four endpoints of n1 and n2 by v— < w— < wy < wvy. Then

Gp(20) = Cao|(J o f)(20)|*2Ga(w; v)

where Cy > 0 is a constant depending only on k, and

Gowrn)i= [ fup—u i [T vl (W 20D

ue{w,v} o€ft.—} (wy —v-)(vy —w-)

(B) Suppose Case (B) happens. We label the f-images of the other three endpoints of 71 and
no by wy,w_, vy, such that f~Y(vy) and 2y are endpoints of the same curve, and w, , v
lie on the same side of w_. Then

Gp(20) = C5[(J o f)'(20)** G (w; v4),

where C5 > 0 is a constant depending only on k, and

8_ 4 vy —wy) 1L
Gylwsvy) = |wy = w7 oy —w TR ) (1.4)
Vy —W-

Our second main theorem is about the boundary Green’s function of a chordal SLE,(p)
curve with a single boundary force point.



Theorem 1.2. Let k € (0,4] and p > =2 or k € (4,8) and p > § —2. Let w € R and
ve R\ {w})U{w ,wt}. Let n be a chordal SLE(p) curve in H from w to oo with the force
point v. Let zy € R\ {w} be such that zo and v lie on the same side of w, and |zo—w| > |[v—w|.

Let ag = p—f(p— (5-4), a5=2(p—(5—4)), Bo=2p+6 and B3 = p+6. Then
(i) There is a positive constant C' depending only on k and p such that, if zy # v, then
B2

Bldist(n,20) < 7] = Cr2|zo — o]z —wl (14 0=} #7), v = 0%,
Z0 — U

(i) There is a positive constant C' depending only on k and p such that, if zg = v, then

_B3
P[dist(n, z0) < 7] = Cr*|zp — w|™* (1 + O(%‘) B3+2), r—0t.
Z0 — W

For both (i) and (ii), the implicit constants depend only on k,p. Moreover, if k € (0,4] and
p € (—=2,5 —2), then (i) holds with a different constant C' > 0 if n is replaced by n N R; if
k€ (0,4] and p € (2,5 —2), or k € (4,8) and p > § — 2, then (ii) holds with a different
constant C > 0 if n is replaced by n N R.

The existence of boundary Green’s function for chordal SLE, (without force points) was
proved in [4]. It was proved in [I3, Theorem 1.8] that for x > 0 and p1,p2 € R such that
p1 > —2and p1 + p2 > § — 4, if n is an SLE«(p1, p2) curve in H from 0 to oo with force points
(0, 1), then P[dist(n, 1) < r] = r*T°M as r — 0, where a = L(p1 + 2)(p1 + p2 + 4 — £). Note
that if p; = 0, then o = as(k, p2); and if po = 0, then o = ay(k, p1). This means that Theorem
improves the estimate of Theorem 1.8 of [13] in some cases.

1.2 Strategy

For the proofs of the main theorems, we use the ideas introduced in [22]. By conformal invariance
of 2-SLE,;, we may assume that D = H := {z € C : Imz > 0}, and 2y = oo. It suffices to
consider the limit limy o L*Pn; N {|z| > L} # 0]. In Case (A) of Theorem [L.1} we label the
four endpoints of 71 and 72 by vy > wy > w_ > v_. There are two possible link patterns:
(wy > vy;w_ <> v_) and (wy <> w_;v4 <> v_), which respectively correspond to Case (Al)
and Case (A2) of Theorem

For the first link pattern, we label the two curves by n4. and n—. By translation and dilation,
we may assume that vy = 1 and v— = —1. Then we introduce a new point vy = 0, and make
an assumption that 0 € (w_,wy). We then grow 74 and n_ simultaneously from wy and w_
towards vy and v_, respectively, up to the time that either curve reaches its target, or separates
v4 or v_ from oco. The speeds of 4 and n_ are controlled by two factors: (F1) for any ¢ in the
lifespan [0, 7"), the harmonic measure of the arc between v and v_ in the unbounded connected
component of H\ (n4([0,t]) Un—([0,t])), denoted by H;, viewed from oo, increases exponentially
with factor 2. More specifically, if g; maps H; conformally onto H, and satisfies g¢(z)/z — 1 as
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z — 00, then Vi (t) — V_(t) = e (vy —v_), where Vi(t) := g;(v+). (F2) the harmonic measure
of n4([0,t]) U [vo,v4] in Hy viewed from oo agrees with that of n_([0,t]) U [v_,vo]. We will see
that there is a unique Vo(t) € (V_(t), Vi (t)) such that the continuous extension of g;* on H
maps [V_(t), Vo(t)] into [v_,vo] Un—([0,¢]), and maps [Vy(¢), Vi (¢)] into [vg, v4+]Un4([0,¢]). The
second condition means that Vi (t) — Vy(t) = Vo(t) — V_(t). In the case that n4([0,¢]) Un—([0,¢])
does not separate vy from oo, Vp(t) is simply g:(vg). We will also deal with the complicated
case that n4([0,t]) Un—([0,t]) does the separation, which may happen if k € (4, 8).

At the time T", one of the two curves, say 7.4, separates vy or v— from co. In the former case
the rest of 14 grows in a bounded connected component of H \ 14 ([0,7%)); in the latter case,
the whole 7n_ is disconnected from oo by 74 ([0,7%)). So we may focus on the parts of n; and
71— before T". Using Koebe’s 1/4 theorem (applied to g; at 0o) and Beurling’s estimate (applied
to a planar Brownian motion started near co), we find that for 0 < t < T%, the diameter of
both 1. ([0,]) and n_([0,t]) are comparable to e2. Thus, there are constants as > a; € R such
that for any L > |vy —v_|,

{T" >1og(L)/2+ a2} C {noN{|z| > L} #0,0 € {+,—}} C{T" >1og(L)/2+ar}. (1.5)

We may obtain a two-dimensional diffusion process R(t) = (R4 (t), R_(t)) € [0,1]?,0 <t <
T*, such that for every ¢t € [0,T"), R,(t) = %, o € {+,—}, where W,(t) = g:(n,(t)) €
[Vo(t),V(t)]. Note that w, = 0R,(0), 0 € {+,—}. We will derive the transition density
and quasi-invariant density of (R) using the knowledge of 2-SLE,; partition function and the
technique of orthogonal polynomials. The quasi-invariant density 5™ of (R) is a positive function
on (0, 1), whose integral against the two-dimensional Lebesgue measure is 1, and if R starts at
a random point in (0, 1)2, whose law has the density p'* against the Lebesgue measure, then (R)
is a quasi-stationary process with decay rate «y in the sense that, for any deterministic time
t >0, P[T" > t] = e 2*1! and the law of R(t) conditional on {T" > t} agrees with that of R(0).
From we know that, if (74, 7-) has the random link pattern (r4 <+ 1; —r_ <> —1) such that
(ry,r_) € (0,1)? follows the law with the density p’%, then P[n, N {|z| > L} # 0,0 € {+,—}] is
comparable to L~ . We will then combine this estimate with the technique introduced in [6]
to prove the convergence of limy,_,oo L*P[n, N{|z| > L} # 0,0 € {+,—}].

After proving the existence of the Green’s function for the above random link pattern, we
may then use an estimate on the convergence of the transition density of (R) to its quasi-
invariant density to prove the existence of the Green’s function in the case that the link pattern
is (ry <> 1;—r_ <> —1), where (r4,r_) is a deterministic point in (0,1)2. By translation and
dilation, we then have the existence of Green’s function in the case that (v4+v_)/2 € (w_, w4 ).
Finally, we will remove this assumption, and work out the general case.

The above approach, especially the transition density of (R), also gives us the exact formula
of the Green’s function up to an unknown multiplicative constant, as well as the rate of the
convergence of the rescaled probability to the Green’s function. See Theorem

For the link pattern (w4 <> w_; vy > v_), we label the curves by 1, and n,. We observe that
7y disconnects n,, from co. Thus, for L > max{|v4|, |v_|}, ny intersects {|z| > L} implies that
1, does the intersection as well. Then the two-curve Green’s function reduces to a single-curve



Green’s function. We will use a similar approach as before. We still first assume that v, = 1,
v = —1,and 0 € (w—,w4), and let vg = 0. This time, we grow 74 and n_ simultaneously
along the same curve n,, such that n, runs from w, towards w_,, o € {4+, —}. The growth is
stopped if 14 and 7_ together exhaust the range of n,,, or any of them disconnects its target
from oco. Moreover, the speeds of the curves are controlled by two factors (F1) and (F2) as in
the previous case.

We then observe that for big L, n,, intersects {|z| > L} if and only if 4 and n_ both intersect
{|z] > L}. So we may study n; and n_ instead of 1, and 7n,. The rest of the argument is
similar to that in the previous case, except that the transition density and invariant density of
the process (R) will be different. We will obtain the exact formula of the Green’s function up
to a constant as well as the rate of convergence. See Corollary

In Case (B), we may assume that v =1 and wy +w_ = 0. Let vg =0 and v_ = —1. We
label the curves by 7, and 7,, and grow 7, and 7_ simultaneously along the same curve 1,
as in Case (A2). The rest of the proof follows the same approach in the previous cases except
that the transition density and invariant density of (R) will be different, and the exponent will
be a3 instead of a;. We will obtain the exact formula of the Green’s function up to a constant
as well as the rate of convergence. See Corollary [6.7]

Recall that in Cases (A2) and (B), we are dealing with a single-curve Green’s function
about 7,,. It is known that 7, is an hSLE, (cf. [20, Proposition 6.10]) from w_ to w4 with
force points at v_ and vy (Case (A2)) or oo and v (Case (B)). The hSLE, is a special case of
the intermediate SLE,(p), abbreviated now as iSLE,(p), in the case that p = 2. The iSLE.(p)
process was introduced in [25] for x € (0,4) and p > § — 2 to prove the reversibility of a
chordal SLE,(p) curve with a single degenerate boundary force point. The name of intermediate
SLE,(p) comes form the fact that, for a chordal SLE,(p) curve in H from 0 to co with the force
point at 07, if one conditions on a part of the forward oriented curve up to a forward stopping
time and also on a part of the backward oriented curve up to a backward stopping time, then
the middle part of the curve has the law of an intermediate SLE,(p) curve. The definition of
iSLE«(p) in [25] easily extends to all x € (0,8) and p > max{—2, § — 4}.

The argument in the proof of Cases (A2) and (B) of Theorem can be used to prove a
more general result. Let £ € (0,4] and p > =2 or k € (4,8) and p > § — 2. For those x and p,
we know that iSLE,(p) satisfies reversibility. If 7, is an iSLE.(p) curve in H from w_ to w4
with force points v_ and vy, then the boundary Green’s function for 7, at co exists with the
exponent being the ag in Theorem See Theorem The Green’s function also exists if
v_ is replaced by oo, and the exponent is replaced by the ag in Theorem See Theorem
The iSLE,(p) curve reduces to a chordal SLE,(p) curve if we let v; — w7, and the Green’s
functions still exist in the limit cases. Theorem [L.2] then follows from these results via a Mobius
automorphism of H that maps w4 to oco.

1.3 Outline

Below is the outline of the paper. In Section [2| we recall definitions, notations, and some basic
results that will be needed in this paper. In Section [3] we develop a framework on a commuting



pair of deterministic chordal Loewner curves, which do not cross but may intersect each other.
The work extends the disjoint ensemble of Loewner curves that appeared in [27, 26]. At the end
of the section, we describe a way to grow the two curves simultaneously with certain properties.
In Section [4] we use the results from the previous section to study a pair of multi-force-point
SLE(p) curves, which commute with each other in the sense of [2]. We obtain a two-dimensional
diffusion process R(t) = (R4 (t), R_(t)), 0 < t < oo, for the simultaneous growth of the two
curves, and derive its transition density using orthogonal two-variable polynomials. In Section
we study three types of commuting pair of iSLE,(p) curves, which correspond to the three
cases in Theorem We prove that each of them is locally absolutely continuous w.r.t. a
commuting pair of SLE(p) curves for certain force values, and also find the Radon-Nikodym
derivative at different times. For each commuting pair of iSLE,(p) curves, we obtain a two-
dimensional diffusion process R(t) = (R4(t), R—(t)) with random finite lifetime. Then we use
the transition density of the (R) for the commuting SLE,(p) curves to derive the transition
density of the (R) for the commuting iSLE,(p) curves. In addition, we find its quasi-invariant
density and decay rate. In the last section we prove some important theorems, and finally prove
Theorems [L.1] and [L.21
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2 Preliminary

We first fix some notation. Let H = {z € C : Imz > 0}. For zp € C and S C C, let
rad,, (S) = sup{|z — 20| : z € SU{z}}. If a function f is absolutely continuous on I, and
f' = g a.e. on I, then we write f = g on I. This means that f(zo) — f(z1) = fff g(z)dx for
any x1 < x2 € I. Here g may not be defined on a subset of I with Lebesgue measure zero. We

. ae . . .
will also use “=” for PDE or SDE in some similar sense.

2.1 H-hulls and chordal Loewner equation

A relatively closed subset K of H is called an H-hull if K is bounded and H \ K is a simply
connected domain. If S is a bounded subset of H such that S UR is connected and closed, then
the unbounded connected component of H\ S is a simply connected domain, whose complement
in H is an H-hull. We call it the H-hull generated by S, and denote it by Hull(S).

For an H-hull K, there is a unique conformal map gx from H\ K onto H such that gx(z) =
z+ <€+ 0(1/2%) as z — oo for some ¢ > 0. The constant ¢, denoted by hcap(K), is called the
H-capacity of K, which is zero iff K = (). If O(H \ K) is locally connected, then g extends
continuously from H to H, which is denoted by fx.



If K1 C Ky are two H-hulls, then we define Ky/K1 = gk, (K2 \ K1), which is also an H-hull,
and we have g, = gx, /K, © 9K, and hcap(K2/K1) = hcap(K2) —hcap(K1). From heap > 0 we
see that hcap(K7), hcap(Ko/K1) < hecap(Ko) if K1 C Ko. If K3 C Ko C K3 are H-hulls, then
Kg/Kl - Kg/Kl and

(K3/K1)/(K2/ K1) = K3/ Ks. (2.1)

Let K be a non-empty H-hull. Let K" = K U {z: 2 € K}, where K is the closure of
K, and Z is the complex conjugate of z. By Schwarz reflection principle, there is a compact
set Sg C R such that gx extends to a conformal map from C \ Kdoub onto C \ Sk. Let
arx = min(K NR), bg = max(K NR), cx = min Sk, dx = maxSk. Then the extended gx
maps C\ (K9 U [ag,br]) conformally onto C \ [ef,dk]. Since gr(z) = 2+ o(1) as z — oo,
by Koebe’s 1/4 theorem, diam(K) = diam(K%°" U [ax, bk]) < di — cx.

Example. Let zp € R, r > 0. Then H := {z € H : |z — 9| < r} is an H-hull with
gua(2) = 2z + Ziioy heap(H) =%, ag = xg — 7, by =20+ 7, H® = {2 € C: |z — 20| < 7},
cyg = xo— 2r, dg = xo + 2r.

The next proposition combines Lemmas 5.2 and 5.3 of [28].

Proposition 2.1. If L C K are two non-empty H-hulls, then [ax,bx] C [ck,dk], [cL,dL] C
[ck,dK], and [ck/r,d/L] C ek, dk].

Proposition 2.2. For any x € R\ K%, 0 < ¢i(z) < 1. Moreover, gy is decreasing on
(—00,ar) and increasing on (b, 00).

Proof. By [17, Lemma C.1], there is a measure px supported on Sk with |ux| = heap(K) such

that g’ (2) — 2 = fSK Zilyd,uK(y) for any z € R\ Sk. Differentiating this formula and letting

z=12 € R\ Sk, we get (g5) (z) =1+ fSK ﬁd/”((y) >1. %0 < gj <1onR\ Kdoub,

Further differentiating the integral formula w.r.t. z, we find that (g;')"(z) = fSK ﬁd/ob[( (y)

is positive on (—o0,cx) and negative on (d,00), which means that (gj')" is increasing on
(=00, ck) and decreasing on (dg,00). Since gx maps (—o0,ax) and (bx,00) onto (—oo, cx)
and (dg,c0), respectively, we get the monotonicity of ¢f . O

Proposition 2.3. If K is an H-hull with rad,,(K) < r for some zg € R, then hcap(K) < r?,
rads, (Sk) < 2r, and |gi(2) — z| < 3r for any z € C\ Jdoub

Proof. We have K C H := {2z € H : |z — x9| < 7}. So hcap(K) < hcap(H) = r%. From
Proposition Sk C [ek,dk] C [cm,du) = [xo — 2r,xo + 2r]. So rads,(Sk) < 2r. Since
gx(2) — z is analytic on C \ K9 and tends to 0 as z — oo, by the maximum modulus
principle,

sup g (z) — 2| < lim sup lgr (2) — 2| < r+2r =3r,
Ze(C\Kdoub C\KdoubaZ%Kdoub
where the second inequality holds because z — K9°" implies that gx(2) — Sk. O



Proposition 2.4. For two nonempty H-hulls K1 C Ka such that Ko/K1 N [ck,,dK,] # 0, we
have |cx, — ¢k, |, |dx, — di,| < 4diam(K2/K7).

Proof. 1t suffices to estimate |ck, — ck,|. Let AK = K3/Kj. Let ¢} = limgqa,, gr, (). Since
gr, maps H \ Ky onto H \ AK, we have ¢, = min{ck,,aax}. Since AK N [ck,,dk,] # 0,
¢} > ¢1 — diam(AK). Thus, by Proposition

¢k, = lim gag ogk,(x) = lirg/l gak (y) > ¢ — 3diam(AK) > cx, — 4diam(AK).

xTaK2 yh /
By Proposition 2.1] ¢k, < ck,. So we get |cx, — ck,| < 4diam(AK). O
The following proposition follows immediately from Proposition 3.42 of [5].

Proposition 2.5. Suppose Ky, K1, Ko are H-hulls such that Ky C K1 N Ko. Then

heap (K1) + heap(K32) > heap(Hull(K; U K3)) + heap(K)).

Let w € C([0,T),R) for some T € (0, 00]. The chordal Loewner equation driven by @ is

2
gi(2) — w(t)’

For every z € C, let 7, be the first time that the solution g.(z) blows up; if such time does not
exist, then set 7, = oco. For t € [0,7), let Ky = {z € H: 7, < t}. It turns out that each K;
is an H-hull with hcap(K;) = 2t, K{°"® = {2z € C : 7, < t}, which is connected, and each g;
agrees with gx,. We call g; and K; the chordal Loewner maps and hulls, respectively, driven
by w. We will write hcapy(K) for hcap(K)/2. So hcapy(K;) =t for all t.

If for every t € [0,7T), fk, is well defined, and 7(t) := fk,(w(t)), 0 <t < T, is continuous
in ¢, then we say that n is the chordal Loewner curve driven by @w. Such 1 may not exist in
general. When it exists, we have 7(0) = w(0) € R, and K; = Hull(n([0,?])) for all ¢, and we say
that K;, 0 <t < T, are generated by .

Let u be a continuous and strictly increasing function on [0,7). Let v be the inverse of
u—u(0). Suppose that gi and K}*, 0 <t < T, satisfy that g;‘(t) and K:f(t), 0<t<u(T)—u(0),
are chordal Loewner maps and hulls, respectively, driven by @ o v. Then we say that gj* and
K}, 0 <t < T, are chordal Loewner maps and hulls, respectively, driven by @ with speed
du, and call (K;‘(t)) the normalization of (K}*). If (K}") are generated by a curve n%, i.e.,
K} = Hull(n"(]0,t])) for all ¢, then n* is called a chordal Loewner curve driven by @ with speed
du, and n% o v is called the normalization of n*. If u is absolutely continuous with u/ = ¢, then
we also say that the speed is ¢. In this case, the chordal Loewner maps satisfy the differential
equation Oygi(z) £ gffig)(t). We omit the speed when it is constant 1.

The following protposition is straightforward.

dhgi(z) = 0<t<T; go(2) =2



Proposition 2.6. Suppose Ky, 0 <t < T, are chordal Loewner hulls driven by w(t), 0 <t < T,
with speed du. Then for any to € [0,T), Kiy+t/ Ky, 0 <t < T —to, are chordal Loewner hulls
driven by w(ty +t), 0 <t < T — tg, with speed du(to+t). One immediate consequence is that,
for any t; <ty €[0,T), K,/ Ky, is connected.

The following proposition is a slight variation of Lemma 4.13 of [5].

Proposition 2.7. Suppose Ky, 0 <t < T, are chordal Loewner hulls driven by w(t), 0 <t < T,
with speed du. Then for any 0 <t < T,

radg o) (Kt) < 4max{/u(t) — u(0), radg(o) (w([0,]))}

The following proposition is a slight variation of Theorem 2.6 of [7].

Proposition 2.8. The H-hulls K¢, 0 < t < T, are chordal Loewner hulls with some speed if
and only if for any fived a € [0,T), limsy supy<;<, diam (K 5/ Kt) = 0. Moreover, the driving
function @ satisfies that {W(t)} = V5o Kirs/Kt, 0 < t < T; and the speed is du, where we
may take u(t) = hcapy(Ky), 0 <t <T.

Proposition 2.9. Suppose K;, 0 <t < T, are chordal Loewner hulls driven by w with some
speed. Then for any to € (0,7), ck,, < W(t) < dk,, for all t € [0,to].

Proof. Let ty € (0,T). If 0 <t < ty, by Propositions and z’&(tA) € [aKtO/Kt7bKt0/Kt] C
x50 Ay /1) C €y dicy, |- By the continuity of @, we also have @(to) € [ck,,, dK,]. O

The following proposition combines [I1, Lemma 2.5] and [10, Lemma 3.3].

Proposition 2.10. Suppose w € C([0,T),R) generates a chordal Loewner curve n and chordal
Loewner hulls Ky, 0 < t < T. Then the set of times {t € [0,T) : n(t) € R} has Lebesgue
measure zero. Moreover, if the Lebesgue measure of n([0,T)) NR is zero, then the functions
c(t) and d(t) defined by c(t) := ck, and d(t) := dg,, 0 < t < T, and ¢(0) = d(0) := w(0)
are absolutely continuous with c'(t) = ﬁ and d'(t) = m, and are decreasing and

increasing, respectively. Moreover, c¢(t) and d(t) are continuously differentiable at the set of
times t such that n(t) € R, and in that case “=” can be replaced by “=".

Definition 2.11. (i) Modified real line: For w € R, we define R, = (R \ {w}) U {w™,w™},
which has a total order endowed from R and the relation z < w~ < w' < y for any
z,y € R such that z < w and y > w. It has a topology such that (—oo,w)U {w™} and
{wt} U (w,00) are two connected components, and the natural projection m, : R,, = R
with 7, (w*) = w and 7, (z) = x for x € R\ {w} induces homeomorphisms between the
two components and (—oo, w] and [w, 00), respectively.
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(ii) Modified Loewner map: Let K be an H-hull and w € R. Let a¥% = min{w,ax}, by =
max{w, bk }, cg = limgpaw gr (), and di = limg e gre(x). They are all equal to w if
K = (. Define g% on Ry, U {+00, —00} such that gi(+o0) = +oo, g¥(z) = gk () if
z € R\ [a},b%]; gp(z) = cf if o = w™ or x € [alf,b] U (—oo,w); and g (x) = df if
z=w"t orz € [a¥%,b¥] N (w,00). Note that g% is continuous and increasing.

Proposition 2.12. Let K1 C K3 be two H-hulls. Let w € R and w € [c} ,dy |. Then
g?(z/Kl o g}”(l (x) = g}"Q (x), VxeRy,U{+oo, —o0}. (2.2)

Here if w = gy (x), then we understand g%Q/Kl o gj, () as g}”}z/Kl (wh) = d}jﬁ/Kl if x > w,

and as g}%/Kl(@*) = 0%2/[(1 if v <w.

Proof. By symmetry, we may assume that = > w. Note that both sides of are continuous
on {w*} U (w,o0]. If z > b , then 2 > max{bf ,br, }, which implies that g} (z) = gx, (z) >
max{dy ,bx, K, } > b?(Q/Kl- Thus, 9}”}2/;(1 o i, (%) = 9K, 1, © 91 () = 9K, (2) = gF,(x) on
(b%,,00). We know that g} is constant on {w*} U (w,b%, |. To prove that holds for all
x > w, by continuity, it suffices to show that the LHS of 1D is constant on {w™} U (w, b, -
Since g is constant on {w*} U (w,bf |, if b = by , then the proof is done. Suppose
b, < bk, In this case, we have b, w < b, = b, So gf, maps {w*} U (w,b, ] onto
[d% s b, /K, ], Which is in turn mapped by 9%, /K, o a constant because w < dy, . O

Proposition 2.13. Let K; and n(t), 0 < t < T, be chordal Loewner hulls and curve driven
by w with speed q. Suppose the Lebesque measure of n([0,T7)) NR is 0. Let w = w(0), and
r € Ry. Define X(t) = g, (z), 0 <t <T. Then X is absolutely continuous and satisfies the
differential equation X'(t) = ﬁ% on [0,T); if v > w (resp. x < w), then X (t) > w(t)
(resp. X (t) < w(t)) on [0,T), and so is increasing (resp. decreasing) on [0,T"). Moreover, for
any 0 <t; <ty <T, |X(t1) — X(t2)| < 4ddiam(K, /Ky, ).

Proof. We may assume that the speed ¢ is constant 1. By symmetry, we may assume that
x € (—oo,w™]. If z = w™, then X(t) = cg, for t > 0 and X (0) = w(0). Then the conclusion
follows from Propositions and Now suppose x € (—oo, w).

Fix 0 < t; < t2 < T. We first prove the upper bound for | X (¢;) — X (t2)|. There are
three cases. Case 1. x ¢ Kit]., j = 1,2. In this case, X(t2) = 9K, /Ky, (X (t1)), and the upper

bound for | X (¢;) — X (t2)| follows from Proposition Case 2. = € K, C Ky,. In this case
X(t) = Ky j = 1,2, and the conclusion follows from Proposition Case 3. z ¢ K;, and
r € Ky, Then X(t1) = gk, (z0) < ck,, and X(t2) = ck,,. Moreover, we have 7, € (t1,t2],
limy,, X (t) = W(rz), and X (t) satisfies the differential equation X'(t) = m < 0 on
[t1,72). From Propositions and we know that X (t1) > w(7z) > ¢k, > ck,, = X(t2).
Since cg,, > X(t1) > X(t2) = ck,,, we have [ X (t1) — X(t2)| < [ck,, —cK,,| < 4diam (K, /Ky,)
by Propositions So X is continuous on [0,7).
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Since X (t) = gk, (z) satisfies the chordal Loewner equation driven by @ up to 7,, we know
that X'(t) = W on [0,7,). From Proposition [2.10| we know that X'(t) = W
on (75,T).The differential equation on [0,7") then follows from the continuity of X. Since

X(t) < cgy < w(t) by Proposition it is decreasing on [0, 7). O

2.2 Chordal SLE, and 2-SLE,,

If w(t) = /kB(t), 0 < t < oo, where k > 0 and B(t) is a standard Brownian motion, then
the chordal Loewner curve n driven by w is known to exist (cf. [16]), and is called a chordal
SLE,, curve in H from 0 to co. In fact, we have n(0) = 0 and lim; ,~ 7(¢) = co. The behavior
of n depends on k: if k € (0,4], n is simple and intersects R at 0; if x > 8, 7 is space-filling,
ie., H=n(Ry); if x € (4,8), n is neither simple nor space-filling. If D is a simply connected
domain with two distinct marked boundary points (or more precisely, prime ends) a and b, the
chordal SLE, curve in D from a to b is defined to be the conformal image of a chordal SLE,
curve in H from 0 to oo under a conformal map from (H; 0, c0) onto (D;a,b).

For any k > 0, chordal SLE,; satisfies conformal invariance and Domain Markov Property
(DMP). The DMP means that if 7 is a chordal SLE,; curve in D from a to b, and 7T is a stopping
time, then conditionally on the part of 1 before T and the event that 1 does not reach b at
the time 7', the part of n after T' is a chordal SLE, curve from n(7") to b in the connected
component of D \ n([0,7]) that has b on its boundary.

We will focus on the range x € (0,8) so that SLE, is non-space-filling. One remarkable
property of these chordal SLE, is its reversibility: the time-reversal of a chordal SLE, curve in
D from a to b is a chordal SLE,; curve in D from b to a, up to a time-change ([27, 9]). Another
fact that is important to us is the existence of 2-SLE,. Let D be a simply connected domain
with distinct boundary points a1, b1, as, by such that a; and by together do not separate as from
by on 0D (and vice versa). A 2-SLE, in D with link pattern (a; <> bi;as <> b2) is a pair of
random curves (11,72) in D such that for j = 1,2, 7; connects a; with b;, and conditionally
on 7n3—j, 1; is a chordal SLE, curve in the connected component of D \ 73_; whose boundary
contains a; and b;. Because of reversibility, we do not need to specify the orientation of n; and
79. If we want to emphasize the orientation, then we use an arrow like a; — b7 in the link
pattern. The existence of 2-SLE,, was proved in [3] for x € (0, 4] using Brownian loop measure
and in [I1] 9] for x € (4, 8) using flow line theory. The uniqueness of 2-SLE,; (for a fixed domain
and link pattern) was proved in [10] (for x € (0,4]) and [12] (for x € (4, 8)) using an ergodicity
argument.

2.3 SLE,(p) processes

First introduced in [8], SLE,(p) processes are natural variations of SLE,;, where one keeps track
of additional marked points, often called force points, which may lie on the boundary or interior.
For the generality needed here, all force points will lie on the boundary. In this subsection, we
review the definition and properties of SLE,(p) developed in [I1].

Letn e N,k >0, p=(p1,...,pn) € R™. Let w € Rand v = (vy,...,v,) € R?. The chordal
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SLE(p) process in H started from w with force points v is the chordal Loewner process driven

by the function @w(t), which drives chordal Loewner maps g; and hulls K, and solves the SDE

d(t) © VrdB(t) + 3 m dt, ©(0) = w,
j=1 J

where B(t) is a standard Brownian motion, and for each j, v;(t) = g (v;), 0 <t < T. Here we
use Definition In order for the existence of the solution, we require that for o € {+, -1},
> jrvj=wo Pi > —2. If this holds, then the solution exists uniquely up to the first time (called
a continuation threshold) that Zjﬁj (t)=cx, Pi < —2or Zj@,(t):th p;j < —2, whichever comes
first. If a continuation threshold does not exist, then the lifetime is co. Each vj;(t) is called
the force point function started from v;. It satisfies the differential equation v; £ ﬁ, and is
monotonically increasing or decreasing depending on whether v; > w or v; < w. ’
Using Proposition we easily get the following proposition.

Proposition 2.14. The chordal Loewner process driven by w, 0 < t < T, with hulls K, is
a chordal SLE,(pi,...,pn) process with force points (vi,...,v,) if and only if u(t) == w(t) +
> i %g}‘éo) (vj) is a local martingale with (u); = Kt up to T

A chordal SLE,(p) process generates a chordal Loewner curve 7 in H started from w up
to the continuation threshold. If no force point is swallowed by the process at any time, this
fact follows from the existence of chordal SLE, curve and Girsanov Theorem. The existence
of the curve in the general case was proved in [II]. From Proposition we know that
the chordal SLE,(p) curve n satisfies the following DMP. If 7 is a stopping time for 7, then
conditionally on the process before 7 and the event that 7 is less than the lifetime 7T, w(T +t)
and Uj(t+1¢), 1 <j <n,0<t<T—r7,are the driving function and force point functions
for a chordal SLE(p) curve ™ started from @w(7) with force points at v1(7),...,0,(7), and
n(r+-) = fr) (n7), where K (1) := Hull(5([0, 7])). Here if 9;(7) = @(7), then 5;(7) as a force
point is treated as @w(7)™ if v; > w™, or W(7)” if v; <w”.

We now relabel the force points vy,...,v, by v, <--- <o <w< fuf < < UTJ{+, where
n_ +ny =n (n_ or ny could be 0). Then for any ¢ in the life period, v,, (t) <--- < vy (t) <
w(t) <o (t) < - <Bf (t). Iffor any o € {—,+} and 1 < k < ng, Z?Zl p? > —2, then
the process will never reach a continuation threshold, and so its lifetime is co, in which case
limy_,o n(t) = co. If for some o € {+,—} and 1 < k < n,, Z§:1 p] > 5 — 2, then n does not
hit v and the open interval between vf and vy, (v5_,; = 0 -00). If x € (0,8) and for any
oe{+,—}and 1 <k <n,, Z?:l p] > 5 —4, then for every x € R\ {w}, a.s. n does not visit
x, which implies by Fubini Theorem that a.s. n MR has Lebesgue measure zero.
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2.4 Intermediate SLE,(p) processes
For a,b,c € C such that ¢ ¢ {0,—1,—2,---}, the hypergeometric function 2F}(a,b;c;z) (cf.
[14]) is defined by the Gauss series

(@)n(b)n on

(c)pn! ~

oo
2Fi(a,bic2) =)
n=0

on the disc {|z| < 1}, where (a),, is rising factorial: (a)o =1 and (a), = a(a+1)---(a+n—1)
if n > 1. We will use the following properties in this paper.

(F1) If Re(c — a — b) > 0, then lim,41 2F1(a,b;c;x) = %.
(F2) Euler transform: oFi(a,b;c;2) = (1 — 2)°" %3 F (c — a,c — b; ¢; 2).
(F3) Derivative: % oF 1 (a,b;¢;2) = “?b oF (a+ 1,0+ 1;¢+ 1; 2).
(F4) F := 9Fi(a,b;c;-) satisfies the hypergeometric differential equation:
2(1—2)F"(2) = [(a+ b+ 1)z — c]F'(2) — abF(z) = 0. (2.3)

Let s € (0,8) and p > max{-2,5 —4}. Leta= 2, b=1-12

K

c= %. Define

2 4 2 4
Fep(z) = 2F1(a, by x) = 2F1<£,1 SL e :v>
K KK
Proposition 2.15. For s € (0,8) and p > max{—2,5 — 4}, F, , extends continuously to [0,1]

such that F , is positive on [0, 1].

Proof. The assumptions on k and p imply that ¢,c —a,c—b,¢—a—b > 0. By Euler transform
and the Gauss series for oF(c — a,c — b;c;x), Fy p(x) = (1 — )%y Fy(c — a,c — b;c;x) > 0
on [0,1). By (F1), F} , is continuous and positive on [0, 1]. O

(@)

Let émp(a:) = KT F::,,(x)

+ p, which is well defined on [0, 1).

Definition 2.16. Let x € (0,8) and p > max{—2,§ —4}. Let w € R, and v1 < vy €
{wt U (w,00)U{+00} or v; > vy € {w™ } U(—o00,w)U{—00}. Suppose w(t), 0 <t < oo, solves
the following SDE with initial value w(0) = w:

. 1 1 ~  w(t) —v1(t)
di(t) 2 /rdB(t +(A - >G (ﬁ)dt,
g O G —nm a0 50/ G0 w0
where B(t) is a standard Brownian motion, v;(t) = g%, (vj), 7 = 1,2, and K; are chordal
Loewner hulls driven by w. Here we use the symbols in Definition [2.11] The chordal Loewner
curve driven by @ is called an intermediate SLE,(p), or simply iSLE(p), curve in H from w to
oo with force points vi,v2. We call v;(t) the force point function started from v;, j = 1,2. A
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force point v; or vy taking value w* or o0 is called a degenerate force point. Via a conformal
map, one can define an iSLE,(p) curve in a simply connected domain D from one prime end
w1 to another prime end wy with two force points v1 and vy such that wq, v1, v, wo are oriented
counterclockwise or clockwise, and v; may be immediately next to w;, j = 1, 2.

Remark 2.17. There are some degenerate cases. If v; = vg, then the iSLE.(p) reduces to
a chordal SLE, with no force points. If vy = £o00, then the iSLE,(p) reduces to the chordal
SLE. (p) with the force point at v;. By an iSLE,; (p) process also satisfies DMP as a chordal
SLE,(p) process does. If 7 is a finite stopping time for an iSLE(p) curve n in H with driving
function @ and force point functions 7; and T, then conditionally on the part of n before T,
there is an iSLE.(p) curve " in H from @w(7) to oo with force points v;(7),v2(7) such that
(7 +-) = frx(n7), where K () = Hull(n([0, 7])). Here if v;(7) = @(7), then v;(7) as a force
point is treated as w(7)" if v; > wt, or @(7)” if v; < w”. In the case k > 4, n swallows vy at
some finite time 7, at which va(7) = v1(7), so the DMP tells us that the remaining part of 7 is
a chordal SLE,; curve in the remaining domain.

Using the standard argument in [I9], we obtain the following proposition describing an
iSLE,(p) curve in H in the chordal coordinate in the case that the target is not co.

Proposition 2.18. Let wy # ws € R. Let v; € Ry, U{oo} \{woe} and va € Ry, U{oo} \{wo}
be such that the cross ratio R := % € {0"} U (0,1). Let x € (0,8) and p >
max{—2,5§ —4}. Let i) be an iSLE.(p) curve in H from wo to we with force points at vy, vs.
Stop 1 at the first time that it separates weo from oo, and parametrize the stopped curve by
H-capacity. Then the new curve, denoted by n, is the chordal Loewner curve driven by some
function Wy, which satisfies the following SDE with initial value wy(0) = wy:
divo(t) 2\/RdB(t) + —— 6 &
W =VK N~
’ o (1) — oo 1)
1 1 ~ wo (t) — 01 (1)) (Va(t) — Weo (¢
n ( B ) -Gn,p((tf‘)( ) — 01(1) (©(t) — Woo ))) n
(@o(t) —02(1))(01(t) — Woo (1))

w(t) —ou(t)  w(t) —va2(t)
where B(t) is a standard Brownian motion, Weo(t) = gr, (weo) and v;(t) = gi°(vs), j = 1,2,
and K are the chordal Loewner hulls driven by wy.

Definition 2.19. We call the n in Proposition an iSLE(p) curve in H from wgy to wee
with force points at v1, vg, in the chordal coordinate; call wy the driving function; and call Wxe,
v1 and 09 the force point functions started from weo, v1 and ve, respectively.

Proposition 2.20. We adopt the notation in the last proposition. Let T be the first time that
Woo 0T V2 is swallowed by the hulls. Note that |Wy — Weo|, |U1 — V2|, Wo — V2|, and |Wee — V1| are
all positive on [0,T). We define M on [0,T) by

. B~ 2etamR) ~ 22 ~ 12
M = [y — @oo| = 01 — Tl =5 [l — Tol ¥ [doe — 1] % Fro(

(o — 1) (Woo — a2))*1
(Wo — V2)(Weo —V1)/
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Then (M(t)) is a positive local martingale, and if we tilt the law of n by M, then we get the
law of a chordal SLE,(2,p,p) curve in H started from wo with force points weo, v1 and ve,
respectively. More precisely, if 7 < T is a stopping time such that M is uniformly bounded
on [0,7], then E[M(7)/M(0)] = 1, and if we weight the underlying probability measure by the
weight M (7)/M(0), then the law of n stopped at the time T under the new measure is that of a
chordal SLE(2, p, p) curve in H started from wo with force points weo, v1 and vy, respectively,
stopped at the time T.

Proof. This follows from some straightforward applications of It6’s formula and Girsanov The-
orem, where we use (2.3)), Propositions and Actually, the calculation will be simpler
if we tilt the law of a chordal SLE,(2, p, p) curve by M ~! to get an iSLE,(p) curve. O

An iSLE,(2) process was called a hypergeometric SLE,, abbreviated as hSLE,;, in [20]. It is
important because of its connection with 2-SLE,: if (n1,72) is a 2-SLE, in D with link pattern
(a1 — b1; a2 — ba), then for j = 1,2, the marginal law of n; is that of an hSLE,; curve in D from
a; to b; with force points b3_; and as—; (cf. [20, Proposition 6.10]). For other p, an iSLE.(p)
process was called hSLE, (v) in [20], where v = p — 2.

It was proved in [25] that iSLE.(p) satisfies reversibility for x € (0,4) and p > § — 2,
i.e., the time-reversal of an iSLE.(p) curve in D from w; to we with force points v; and vy
is an iSLE,(p) curve in D from wy to w; with force points v and vy. If both v; and v are
degenerate, we get the reversibility of a chordal SLE,(p) curve with one degenerate force point.
If v is non-degenerate and vy is degenerate, then we find that the time-reversal of a chordal
SLE,(p) curve with one non-degenerate force point, is an iSLE,(p) curve with one degenerate
force point and one non-degenerate force point. If k = 4, since Fy, = 1, an iSLE4(p) is just
a chordal SLE4(p, —p), whose reversibility was proved earlier in [26] for p > % — 2 = 0. Miller
and Sheffield proved ([10, 9]) that chordal SLE,(p) with one or two degenerate force point(s)
satisfies reversibility for x € (0,4) and p > —2, or s € (4,8) and p > § — 4. But they did not
give a description of the time-reversal of a chordal SLE,(p) with one or two non-degenerate
force points. Wu recently proved ([20]) that for x € (4,8) and p > § — 2, a non-degenerate
iSLE,(p) curve also satisfies reversibility. She derived this result by showing that the law of
such iSLE,(p) can be obtained by weighting a chordal SLE, by some power of the boundary
excursion kernel at the two force points in one complement domain of the whole chordal SLE,
curve, and using the reversibility of chordal SLE, derived in [9] for x € (4,8). By letting the
force points tend to the endpoints, one can easily obtain the reversibility of iSLE,(p) with one
or two degenerate force points. Wu conjectured that the reversibility of iSLE,(p) also holds for
k€ (0,8) and p € (max{—2,§ —4},5 —2). As said before, this was proved for x € (0,4] and
p > §—2. In fact, the proofs in [25] and [26] also works in the case x € (0,4] and p € (-2, § —2)
without any modification. The proposition below combines these known results.

Proposition 2.21. Let k € (0,4] and p > —2 or k € (4,8) and p > § — 2. Let n be an
iSLE,(p) curve in a simply connected domain D from wy to we with force points vi and vs.
Then after a time change, the time-reversal of n becomes an iSLE.(p) curve in D from ws, to
wo with force point vo and vi. Here if both force points are degenerate, the statement becomes
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the reversibility of a degenerate chordal SLE,(p); when only one force point is degenerate, the
statement is about the time-reversal of a non-degenerate chordal SLE,(p).

2.5 Two-parameter stochastic processes

In this subsection we briefly recall the framework used in [22] Section 2.3]. We assign a partial
order < to R2 = [0,00)? such that t = (t;,t_) < (s;,s_) = s iff t; < sy and t_ < s_.
It has a minimal element 0 = (0,0). We write t < s if 4 < s; and t- < s_. We define
tAs=(t1 Asi,taAsy). Given t,s € R, we define [t,s] = {r € Ri :t<r<s} Lete, =(1,0)
and e_ = (0,1). So (t4,t_) =tye, +t_e_. We introduce an extra element oo = (c0,00) and
understand that co >t for any t € Ri.

Definition 2.22. Let F;, t € Ri, be a family of o-algebras on a measurable space €2 such
that F; C Fs whenever t < s. Then we call (fi)teRi an R?-indexed filtration on Q. Let

]-"L(H =N s>t Fs, t € R2. Then we call (]:L(Jr))teRi the right-continuous augmentation of
(‘a)tGRi . We say that (F;) is right-continuous if .7-"£(+) = F, forallt € R2. A family of random
variables (X @))teRi defined on € is called an (F;)-adapted process if for any ¢ € R3, X(t) is
Fi-measurable. It is called continuous if ¢ — X () is sample-wise continuous.

Definition 2.23. A random map T : Q — R U {oo} is called an extended (Fz)zeRi -stopping

time if for any deterministic t € R2, {T <t} € F;. If T does not take value co, then we remove
the term “extended”. For an extended (F;)-stopping time T', we define a new o-algebra Fr by
Fr={AeF:An{T <t} e F,Vte Ri} The stopping time T is called bounded if there is
a deterministic ¢t € Ri such that T < ¢.

Proposition 2.24. Let (‘Fi)zeRi be an Ri—indexed filtration with the right-continuous augmen-
tation (.7-"£(+)). Then the right-continuous augmentation of (.7-"£(+)) is itself. Thus, (FE(JF)) is right-
continuous. A random map T is an extended (};H))-stoppmg time if and only if {I' <t} € F
for any t € R?; and for such T, A € fq(f) if and only if AN{T <t} € F; for anyt € R%. If
(T™)nen is a decreasing sequence of extended (fL(jL))—stoppmg times, then T := inf, T™ is also
an extended (ft(ﬂ)—stopping time, and }"gr) =N, ]:it).

Proof. This follows from the same arguments that were used to prove similar statements about
the right-continuous R -indexed filtrations. O

Definition 2.25. A relatively open subset R of Ri is called a history complete region, or simply
an HC region, if for any ¢t € R, we have [0,t] C R. Given an HC region R, for o € {+, -},
define TR : Ry — Ry U {oo} by TR(t) = sup{s > 0: se, +te_, € R}, where we set sup () = 0.

A map D from ( into the space of HC regions is called an (}-E)LGRi -stopping region if for
anyt € R2, {w € Q:t € Dw)} € F A random function X(¢) with a random domain D
is called an (}—t);eRi -adapted HC process if D is an (}—E)EERi -stopping region, and for every
t € R%, X, restricted to {t € D} is F;-measurable.
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The following propositions are simple extensions of Lemmas 2.7 and 2.9 of [22].

Proposition 2.26. Let T and S be two extended (}—é)tGRi -stopping times. Then (i) {I < S} €
Fs; (i) if S is a constant s € R% or oo, then {T < S} € Fr; and (iii) if f is an Fr-measurable
function, then 1ip<gyf is Fs-measurable. In particular, if T < S, then Fr C Fg.

Proposition 2.27. Let (Xé)zeRi be a continuous (]—"i)éeki—adapted process. Let T be an ex-

tended (‘Fi)telRi -stopping time. Then Xt is Fr-measurable on {T € R%}.

We will need the following proposition to do localization. The reader should note that for
an (.Fé)teRi—stopping time T and a deterministic time ¢ € R%, T A ¢ may not be an (./T'i)teRi‘
stopping time. This is the reason why we introduce a more complicated stopping time.

Proposition 2.28. Let T be an extended (}—t);GRi -stopping time. Fir a deterministic time
t e Ri. Define Tt such that if T < t, then Tt = T; and if T £ t, then Tt = t. Then Tt
is an (}-E)EGRi -stopping time bounded above by t, and Fy: agrees with Fp on {T < t}, i.e.,
{T <t} e FrenFr, and for any A C {T <t}, A€ Fp if and only if A € Fr.

Proof. Clearly Tt < t. Let s € Ri. If t < s, then {T% < s} is the whole space. If t £ s, then
{TE<s}={T<t}N{T <s}={T <tAs} € Fs CFs. SoTtisan (]:i)teRi—stopping time.

By Proposition {T' <t} € Fr. Suppose A C {I <t} and A € Fr. Let s € Ri. If
t<s then AN{Tt<s}=A=AN{T <t} € F, C F,. Ift £ s, then AN{Tt < s} = AN{T <
tAs} € Fins C Fs. So A € Fpe. In particular, {T' < t} € Fpe. On the other hand, suppose
AC{T <t} and A € Fyr. Let§€Ri. Ift<s then AN{T <s}=A=An{It<t}e FC
Fo. Ift £ s, then AN{T <s} =AN{T <t} N{L <s} =AN{Tt < s} € F;. Thus, A € Fr.
So for A C{T <t}, A€ Fpif and only if A € Fr. O

From now on, we fix a probability measure P on (Q, F := Vier? Fi), and let E denote the
corresponding expectation.

Definition 2.29. An (]—"L)teRi—adapted process (X;) is called an (fi)LeRi—martingale (w.r.t. P)
if for any s <t € R%, a.s. E[X;|F,] = X,. If there is X € L'(Q, F,P) such that X, = E[X|F],
t € RZ, then we call (X;) an X-Doob martingale w.r.t. (F;).

Proposition 2.30. Let (]-"L)&Ri be an R% -indezed filtration, and (]:L(H) be its right-continuous

augmentation. Then a continuous (Ft)-martingale is also an (Ffﬂ)—martmgale.

Proof. Let X be a continuous (F;)-martingale. Let s <t € R%, and A € .7:§(+). Fix ¢ € R% with
e >0. Then A € Fgye. From E[X (t+¢)|Fste] = X(s+e) we get E[14X (t+¢)] = E[14X (s+¢)].
By letting £ | 0 and using uniform integrability, we get E[14X ()] = E[14X(s)]. So we get
E[X(t)\}"ﬁ(ﬂ] = X (s), as desired. O

The following proposition is Lemma 2.11 of [22].
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Proposition 2.31 (Optional Stopping Theorem). Suppose <X£)t6Ri s a continuous <}—£)§6Ri'
martingale. Then the following are true. (i) If (X;) is an X-Doob martingale for some X € L',
then for any (]:t)ze]Ri -stopping time T, X7 = E[X|Fr]. (i) If T < S are two bounded (‘FE)EEREL'
stopping times, then E[Xg|Fr] = X7.

The following proposition about the DMP of 2-SLE is Lemma 6.1 of [22].

Proposition 2.32. Let (n4,n-) be a 2-SLE, in a simply connected domain D with link pattern
(agr — by;a_ — b). Suppose, for o € {+,—}, 1, is parametrized by the H-capacity viewed
from b; (determined by a conformal map from D onto H that takes bj to o), and let (F{ )i>o be
the filtration generated by 1. Note that the lifetime of n, is oo for o € {+,—}. Let Fy, 4 )=
]-";_i VF,, (ty,t-) € R2. Let 7 = (14,7_) be an (fi)zeRi -stopping time. Let Dy denote the
connected component of D\ (n4 ([0, 74]) Un—([0,7_])) whose boundary contains by, o € {+,—}.
Then conditionally on F; and the event that D = D =: D; and that ny(74+) # n—(7—),
Nt lirs oo) @nd N—|(r_ o) form a 2-SLE, in Dr with link pattern (ny (1) — by;n_(7_) = b_).

2.6 Jacobi polynomials

For a, f > —1, Jacobi polynomials ([I4, Chapter 18]) qua’ﬁ)(:v), n=20,1,2,3,..., are a class of
classical orthogonal polynomials with respect to the weight W(®8)(z) := 1 n(1—m2)%(1 +x)b.
This means that each Rga’ﬁ ) (x) is a polynomial of degree n, and for the inner product defined
by (f, 9)ga.p) = f_ll f(2)g(x)¥(@P) (2)dz, we have <P7Ea”8)7P7S’La”3)>\I/(a,B) = 0 when n # m. The

(a,B) I'(atn+l) p(aﬁ)(_l) = (-1)" I'(B+n+1)

normalization is that P, "’ (1) = AT (at1) > In BINGESVR and

go+h+1 Fn+a+1T(n+B+1)

Hqua’B)H?p(a ) = :
’ 2n+a+pB+1 nll'(n+a+5+1)

(2.4)

For each n > 0, P,ga’ﬁ ) (x) is a solution of the second order differential equation:

(1—a2®y" —[(a+B+2z+(a= By +nn+a+B+1)y=0. (2.5)

When max{«, 5} > —%, we have an exact value of the supernorm of P,ﬁ"’ﬂ) over [—1,1]:

I'(max{a, B} +n+1)
n!I'(max{ca, 8} +1)

125l oo = max{| PP (1)], [ P2 (~1)]} = (2.6)

For general a, 8 > —1, we get an upper bound of HP,SLD[”B )||oo using lb the exact value of
P}f"ﬁ)(l), and the derivative formula d%P,(La’B) (z) = %Pﬁf{lﬁﬂ (x) for n > 1:

I'max{e, 8} +n+1)
I'(n)l(max{a, 8} +2)°

MNa+n+1)

Pl <

+(a+p+n+1)- (2.7)
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3 Deterministic Ensemble of Two Chordal Loewner Curves

In this section, we develop a framework about commuting pairs of deterministic chordal Loewner
curves, which will be needed to study the commuting pairs of random chordal Loewner curves
in the next two sections. The major length of this section is caused by the fact that we allow
that the two Loewner curves have intersections. The ensemble without intersections appeared
earlier in [27), 26]. For completeness, we also include a subsection about disjoint ensembles,
where some similar calculation first appeared in [8]. In the last subsection, we describe a way
to grow two curves simultaneously, which is important for the Green’s functions.

3.1 Ensemble with possible intersections

Let w_ < wy € R. Suppose for o € {+, -}, n5(t), 0 <t < Ty, is a chordal Loewner curve (with
speed 1) driven by w, started from w,, such that 14 does not hit (—oo,w_], and n_ does not
hit [w4,00). Let K,(t,) = Hull(n([0,t,]), 0 < t; < Ty, 0 € {+,—}. Then K,(-) are chordal
Loewner hulls driven by @, heapy (K, (t5)) = to, and by Proposition [2.8]

{W5(ts)} = (| Kolto +0)/Ko(ts), 0<ts <T,. (3.1)
6>0

The corresponding chordal Loewner maps are g, ), 0 < t < Ty, 0 € {+,—}. From the
assumption on 74 and n_ we get

ag_ @)y Sw- <Ak (1) bK,(t,) <wy < bK+(t+)7 for t1,t_ > 0. (3.2)

Since each K,(t) is generated by a curve, fx_(; is well defined. Let Z, = [0,75), 0 € {+,—},
and for (t4,t_) € I, x Z_, define

K(t-‘r? ) HUH(U+([0 t-‘rD Un- ([07 t—]))v (t-‘r? ) hC&pQ(K(t-H t—))' (33)

It is obvious that K(-,-) and m(-,-) are increasing (may not strictly) in both variables. Let
H(ty,t-) = H\ K(t4,t-). For 0 € {+,—}, t_y € T_, and t, € I,, define K, (t,) =
K(ty,t-)/K_4;(t—s). Then we have

IK(tpt) = K4, (t4) O YK () = IK_ 1, (t-) © IK 4 (t4)- (3.4)

From (3.2) we get ag s, + ) = ag_¢_y if t— >0, and b, ¢ ) = bx, (s, if £+ > 0. Since each
K(t4,t_) is generated by two compact curves, fx (., ;) is well defined.

Lemma 3.1. For any t, <t/ € I, andt_ <t €Z_, we have

m(t, ") —m(t,,t-) —m(ty,t_) +m(ty,t-) <0. (3.5)

Especially, m is Lipschitz continuous with constant 1 in any variable, and so is continuous on
I+ X T .
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Proof. Let t4 <t/ € T, and t_ <t e Z_. Since K(t/,,t_) and K (t4,t_) together generate
the H-hull K(#/,,t" ), and they both contain K(t4,t_), we obtain (3.5 from Proposition
The rest statements follow easily from (3.5)), the monotonicity of m, and that m(¢4,0) = ¢4
and m(0,t_) =¢_ for any t4+ € Z,. O

Definition 3.2. Let ny, 7y, K4(-), K(-,-), m(+,-) be as above. Let D C Z; x Z_ be an HC
region as in Definition Suppose that there are dense subsets Z} and Z* of 7, and Z_,
respectively, such that for any o € {+,—} and t_, € Z* , the following two conditions hold:

(I) K(ty,t-)/K_o(t_y),0 <ty < TP(t_,), are chordal Loewner hulls generated by a chordal
Loewner curve, denoted by 74;__, with some speed.

(I1) 1o+, ([0,TP(t-,))) N R has Lebesgue measure zero.

Then we call (n4,n—;D) a commuting pair of chordal Loewner curves, and call K(-,-) and
m(-, ) the hull function and the capacity function, respectively, for this pair.

Remark 3.3. Later in Lemma we will show that Conditions (I) and (II) hold for all
tg €L 5, 0€{+,—}.

From now on, let (n4,7-;D) be a commuting pair of chordal Loewner curves, and let 77

and Z* be as in Definition
Lemma 3.4. K(-,-) and m(-,-) restricted to D are strictly increasing in both variables.

Proof. By Condition (I), for any ¢ € {+,—} and t_, € 7%, t — K(t_,e_, + te,) and
t = m(t_se_, + te,) are strictly increasing on [0,7(t_,)). By (3.5) and the denseness of
I* . in Z_,, this property extends to any t_, € Z_,. O

In the rest of the section, when we talk about K (t4,t_), m(t4,t_), K;; (t4+)and K_; (t_),
it is always implicitly assumed that (t4,¢_) € D. So we may now say that K(-,-) and m(-, ")
are strictly increasing in both variables.

Lemma 3.5. (i) For (ay,a_) € D and o € {+,—},

lim sup sup  diam(Koy_, (to +6)/Koy_, (t5)) = 0.
610 o<t <ay 0<t_<a_

(ii) For any (a4,a—) € D and o € {+,—},

lim sup sup sup sup 9K (12)(2) = 9K, (t5)(2)] = 0.
M0 0<ty<ao t€(te to+0) 0<t—g<a—o 2C\Koy,_ (t,)doub

(i4) The map (t4,t—,2) = gx(, +_)(2) is continuous on

{(t4stos2) (b2 t2) € D,z € C\ Kty 1)),
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Proof. (i) By symmetry, it suffices to work on the case o = 4. We may assume that a; € Z7
and a_ € Z*. Let r > 0. Since 74 is continuous, there is § > 0 such that (a4 + d,a_) € D,
and if ¢4 € [0,a4], then diam(ns([t4,t+ +0])) < r. Fix t; € [0,a4] and t_ € [0,a_]. Let
S =A{lz = n4(t4)| = r} and Any = ny([t4,t4 4 6]). Then Any C {|z — n4(t4)] < r}. By
Lemma [3.4] there is z, € Any N H(ty,a—) C H(ty,t-). Since z, € {|z — ny(t4)] < r}, the
set SN H(ty,t_) has a connected component, denoted by J, which separates z, from oo in
H(ty,t_). Such J is a crosscut of H(t4,t_), which divides H(t4,t_) into two domains, where
the bounded domain, denoted by D, contains z,.

Now Any N H(ty,a—) C H(ty,a—)\ J. We claim that there is one connected component
of H(ty,a_) \ J, denoted by N, such that Any N H(ty,a_) C N. Note that J N H(ty,a_)
is a disjoint union of crosscuts, each of which divides H(t4,a_) into two domains. To prove
the claim, it suffices to show that, for each connected component Jy of J N H(t1,a_), Any N
H(ty,a_) is contained in exactly one connected component of H(t4,a_) \ Jo. Suppose that
this is not true for some Jy. Let Jj =g K(t +,a_)(J0)- Then J| is a crosscut of H, which divides
H into two domains, both of which intersect Any = gg s, o )(Any N H(ty,a-)). Since Any
has positive distance from S D J, and gat+7a7) |z extends continuously to H, A7y has positive
distance from Jj). Thus, there is another crosscut .Jj of H, which is disjoint from and surrounded
by J{, such that the subdomain of H bounded by J{ and Jj, is disjoint from A7, . Let the three
connected components of H \ (Jj U J{) be denoted by D', A, D" respectively, from outside to
inside. Then A7y intersects both D’ and D”, but is disjoint from A.

Let Ani = ny([t+,t+ + s]) and AL = g, o (AN N H(ty,a-)), 0 < s < 4. For
each s € [0,0], K(t4+ + s,a_) is the H-hull generated by K(t;,a—) and An3. So K’ (s) :=
Kio (ty +5)/Kia_(ty) = Kty + s,a-)/K(ty,a-) (by (2.1)) is the H-hull generated by
A7, Since A is disjoint from A7}, it is either contained in or is disjoint from K’ (s). Since
a— € T*, by Condition (I) and Proposition K’ (s), 0 < s <4, are chordal Loewner hulls
with some speed, and so the closure of each K’ (s) is connected. By choosing s small enough,
we can make the diameter of K, (s) less than the diameter of A. Then A is not contained in
K, (s), and so must be disjoint from K’ (s). By the connectedness of its closure, K, (s) is then
contained in either D’ or D”. On the other hand, since 7}’ intersects both D’ and D", K', (J)
does the same thing. Thus, there is so € (0,6) such that for all s € (so,d], K, (s) intersects
both D" and D", and for s € [0,s0), K’ (s) is contained in either D’ or D”. For s > s,
because K’ (s) is connected, K, (s) intersects A, and so must contain A. Since H \ K’ (s) is
connected and unbounded, we get AUD"” C K’ (s) for s > sg. The hulls K’ (s), s € [0, s0), are
either all contained in D” or all contained in D’. In the former case, hcap(K’, (s)) < hcap(D”)
for s < sg, and hcap(K’ (s)) > hcap(D” U A) for s > sg, which contradicts the continuity
of s — hcap(K/ (s)). Suppose the latter case happens. Since Aﬁi intersects both D’ and
D", there is s« € (80,0] such that ny (t4 + s.) € H(ty,a-), and g, o (4 (t4 +51)) € D"
By Lemma there is a sequence s, | s, such that ny(t; + s,) € H(ty + S«,a—). Then
H\ K (s4) 2 9k, a0 )4t 4 80) = 9k, .0 )0+t + 5:)) € D" N K (s:). But this is
impossible since H\ K’ (s,) C D’ and dist(D’, D") > 0. The claim is now proved.

Since N C H(t4,a—)\J C H(t+,t_)\ J and N is connected, we know that N is contained
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in one connected component of H(t4,t_)\ J. Since N D Any N H(t4,a_) 5 z, and z, lies
in the connected component D; of H(ty,t_)\ J, we get Any NH(ty,a—) C N C Dy. Since
Any NH(ty,a_) is dense in Any NH(t4,t_) (Lemma3.4), and Any has positive distance from
J, we get Any NH(ty,t_) C Dy. Since K(t4+ +0,t_) is the H-hull generated by K(t4,t_) and
Any NH(tg,t-), we get K(t4 +9d,t_)\ K(t+,t_) C Dy.

We now write g for gg(, ¢ ). From the last paragraph we know that K’ (d) is contained
in the subdomain of H bounded by the crosscut g(J). Thus, diam(K’ (6)) < diam(g(J)).
Let L = max{|z| : z € K(ay,a_)} < oo and R = 2L. From n4(t;+) € K(at+,a_), we get
|n+(t4+)| < L. Suppose r < L. Then the arc J and the circle {|z — ny(t4)| = R} are separated
by the annulus centered at 7 (t4) with inner radius r and outer radius R — L = L. Let
J ={lz=ns(ty)|=R}NHand Dy = (HN{|z —n+(t+)] < R}) \ K(t4,t_). By comparison
principle ([I]), the extremal length of the curves in D ;s that separate J from J’ is bounded above
by 27 /log(L/r). By conformal invariance, the extremal length of the curves in the subdomain
of H bounded by the crosscut g(J'), denoted by Dy, that separate g(.J) from g(J') is also
bounded above by 27 /log(L/r). By Proposition g(J") c {|z]| < R+ 3L = 5L}. So the
Euclidean area of D is bounded above by 25mL? /2. By the definition of extremal length,
there exists a curve in  with Euclidean length less than

2[(2r/ log(L /7)) * (25w L?/2)]"/? = 107 L  (log(L/r)) "'/,

which separates g(J) from g¢(J'}). This implies that the diam(g(J)) is bounded above by
107 L * (log(L/r))~%/2, and so is that of K’ (§) = K4 (t+ +8)/K44 (t+). For every e > 0,
there exists r € (0, L) such that 107 L * (log(L/r))~/? < e. Choose & > 0 for such r. Then we
have diam (K ;_ (t4+ +9)/Ky+_(t4+)) < e. This finishes the proof of (i).
(ii) This follows from (i), Prop081t10n and gg, () T KL o (8)/ Koo (t2) © IRk oo (t2)-
(iii) This follows from (ii), (3.4) and the fact that for each (t4,t-) € D, ggp ¢ ) is a
conformal map defined on C\ K (t+, t_)doub, O

Remark 3.6. From the proof of Lemma (i) we find that, for o € {4+, =}, if s, < t, € I,
and t_, € Z_, satisfy that (t4,t_) € D, then

diam(K,;_, (ts)/Koi_, (50)) < 10xL * log(L/r) "2, if r < L,
where L = max{|z| : z € n+-([0,t4]) Un—_([0,t_])} and r = diam(ny([ss, t+]))-

For a function X defined on a subset of Z, xZ_, 0 € {+,—} and t, € Z,, we use X|{ (t) to
denote the function X (t,e, + te_,), which depends on only one variable; and use 04+ X (resp.
0_X) to denote the partial derivative of X w.r.t. the first (resp. second) variable.

Lemma 3.7. There are two functions W, W_ € C(D,R) such that for any o € {+,—} and
teg €L o, Kot (t5), 0 <ty < TP(t_,), are chordal Loewner hulls driven by Wo ;% with

8p€6d dm |t__0;,7 and fO?" any (t+7t—) € D; ﬁa(to—) = fK(t+,t_)(W0'(t+7t—))‘
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Proof. By symmetry, we only need to prove the case that ¢ = 4. Since

heapy (K4 ¢ (t4 + 6)) — heapy (K4 ¢ (t4)) = m(t4 + 0,¢—) — m(t4,¢-),

by Lemma (i) and Proposition we know that, forevery t_ € Z_, K4, (t1),0 <t. <TP(t_),
are chordal Loewner hulls with speed dm(-,¢_), and the driving function, denoted by W.(-,t_),
satisfies that

() Ko (b +0)/Kpi (t4) = {Wi(ty,t-)}, V(ty,t-) €D. (3.6)
550

We now show that fre, . \(Wi(ty,t-)) = n4(ty). Fix (t4,t-) € D. From Lemma
we may find a sequence ¢} | ¢, such that n(t7}) € K(t7,t_) \ K(t4,t—) for all n. Then

we get gr(r, ) (M4 (th)) € KL, t-)/K(ty,t-) = Kiy (#h)/Ky4 (t4). From we get
9K (bt (N4 () = Wi(ts,t-). From the continuity of fx( . ) and 74, we then get

Nt (ts) = Jim n+(th) = Jim freq, O+ (E) = Fr(ey o)W (t4,t-)).

It remains to show that W, is continuous on D. As a driving function, it is continuous in
t4+. It now suffices to show that for any (ay,a_) € D, the family of functions [0,a_] > t_
Wi(ty, ), 0 <ty < ay, are equicontinuous. Fix (ay,a_) € D, t; € [0,ay] and t5 < 2 €
[0,a_]. By Lemma there is a sequence &, | 0 such that z, := 1y (ty + d,) € H(t,t%).
Then gK(t+,tZ)(Z”> € K(tJr + O tL) K (ty ) = K, (4 +06n)/K, i (t4), j =1,2. From

we get
Wt ) = g, oy (o)l < diam(K, s (b4 +60)/K i (1)), =12
Since gK(t+,t2_)(Zn) T YKt 2) /K (ty,th) © gK(t+,t1_)(Zn)a by Proposition we get
9k (2,2 ) (2n) = Gk (e, 1y (20)] < Bdiam(K (ty,t2)/K (4, 1)) = 3diam(K_,, (12)/K_, (t1)).
Combining the above displayed formulas and letting n — oo, we get
(Wb, t2) = Wy (ty, 1) < 3diam (K, (t2)/K_ (1)),
which together with Lemma [3.4] (i) implies the equicontinuity that we need. O

Definition 3.8. We call W, and W_ the driving functions for the commuting pair (n4,n—; D).

Remark 3.9. By || and Propositions and for 751+ < 752+ €7, and t_ € Z_ such that
(t3,t-) €D,
(Wi (th,t-) = Wi (th, t-)] < ddiam(K, (83)/ Ky (13)).

This combined with the last displayed formula in the above proof and Remark implies that,
if n4 extends continuously to [0, 7] and 7_ extends continuously to [0,7_], then Wy and W_
are uniformly continuous on D, and so extend continuously to D.
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Lemma 3.10. For any o € {+,—} and t_, € I_,, the chordal Loewner hulls Ky (ts) =
Kty t)/)K_+(t_y), 0 < ty, < TP(t_,), are generated by a chordal Loewner curve, denoted
by Not_,, which intersects R at a set with Lebesgue measure zero such that ngl[O,Tgp(tia)) =
fK_,(t_,) ©Not_,- Moreover, for o € {+, =}, (t4,t-) = No1_,(ts) is continuous on D.

Proof. 1t suffices to work on the case that o = +. First we show that there exists a continuous
function (t4,t_) — 14 (t4) from D into H such that

N+ (1) = fr_@)y (e (1)), V(ty,t-) €D. (3.7)

Let t_ € Z* and (t4+,t_) € D. By Lemma there is a sequence t"} | ¢, such that for all n,
(th,1-) € D and ny () € H\ K(t4,¢-). Then we get gx ¢ y(n+(th)) € gre_ ) (K@, =) \
K(ty,t-)) = Kqp (¢9)\Kyy_(t+). By Condition (I), (M, K4 ¢ (¢9) \ Ky (t4) = {4 (t4)}-

Thus, gx__y(n+(t%)) = 14t (t4). From the continuity of fr_(,_) and 1, we find that (3.7)
holds if t_ € Z* . Thus,

Nt (ty) = grx_@y(n+(ty)), if (4, t-) €Dyt € I and ny(t4) e H\ K_(t-).  (3.8)

Fixa_ €Z*. Let R={ty € Zy : (ty,a_) € D,ny(t;) € H\ K_(a_)}, which by Lemma [3.4]is
dense in [0,7P(a_)). By Propositions [2.3| and

lim  sup sup sup |gx__)(n+(t+)) — 9x_@ )(n+(t+))| =0.  (3.9)
6—=0% ¢ €l0,a_] ¥ €[0,a_]N(t_—b,t_+5) t+ER

This combined with (3.8) implies that

lim sup sup sup [nys (t4) —npyp (t4) = 0. (3.10)
6—=0% ¢ €l0,a_]NT* + €[0,a_]NT*N(t_—8t_+6) t4+ER

By the denseness of R in [0,7P(a_)) and the continuity of each n4, , t_— € I*, we know
that still holds if sup,, ¢ is replaced by supt+€[ 0,TP(a_))" Since Z* is dense in Z_, the
contlnulty of each ny,; , t_ € T*, together with (3.10) implies that there exists a continuous
function [0,7P(a_)) x [0,a_] > (t+,t ) = N (t+) € H, which extends those 77+¢—‘[0,Tf (a_))>
t— € I* N [0,a_]. Running a_ from 0 to 7_, we get a continuous function D > (t4,t_) —
Nt (ty) € H, which extends those ny; , t_ € IT*. Since ny;_(t4) = gx__)(n4+(t4)) for all
ty € Rand t_ € [0,a_] NZ*, from we know that it is also true for any t_ € [0,a_].
Thus, 74 (t+) = fx_@_)(mrs_(t4)) for all £, € R and ¢t € [0,a]. By the denseness of R in
[0,7P(a_)) and the contmulty of i, fr__) and 4, we get for all t_ € [0,a_] and
ty € [0,7P(a_)). Running a_ from 0 to 7_ we then get (3.7) for all (t;,t_) € D.

For (t4,t_) € D, since K(t4+,t_) is the H-hull generated by K_(¢t_) and n4([0,¢4]) N (H \
K_(t-)), we see that K, (ty) = grx_@_)(K(t4,t-) \ K_(t-)) is the H-hull generated by
gr_ @) ([0, 84]) N (H\ K (2-))) = npe ([0, 84]) N H. So Ky (t4) = Hull(ny;([0,4]))-
By Lemma for any t_ € [0,T-), ny_(t4), 0 <ty <TP(t), is the chordal Loewner curve
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driven by W, (-,¢-) with speed dm(-,t-). So we have 0+ (t+) = fx,, . )(Wi(ts,t-)),

which together with 71 (t4) = fr(, +_)(Wt(t4,1-)) implies that i (t4) = fx_ )+ (t+)).
Finally, we show that 14 ;_ MR has Lebesgue measure zero for allt_ € Z_. le t €Z_ and

t. € I, such that (t,t_) € D. It suffices to show that 77+7t_([0,/tt+]) N R has Lebesgue
measure zero. There exists a sequence Z* > t™ | t_ such that (t4,t") € D for all n.
Let K, = K_(t")/K_(t-), gn = 9Kk,, and f, = g,'. Then fx ) = fx_ () © gn on
H \ Kp, which together with fx_(;_y(n+:_(t+)) = n4+(t+) = fx_@n)(n4n (t4)) implies that
Man (E4) = gn (e (B4)) g (75+) € H\ Ky. By continuity we get 14 n (t4.) = gn(n+.¢_ (t+))
if o (t4) € F\ Koy 0< 4 < Ty Thus, 10 ([0,75]) N (RN [are,, bies]) © falen ([0,5:]) 0
(R\ [ck,,dK,])). By Condition (II), 1y ([0,#4]) N R has Lebesgue measure zero for all n.
From the analyticity of f, on R\ [ck,,dk,] we know that 7, ; ([0,7.]) N (R \ [axk,,bx,]) has
Lebesgue measure zero. Sending n — oo and using the fact that [ag,,bk,] I {W_(t=)} (by
(3.1)), we see that 14 ; ([0,7;]) NR also has Lebesgue measure zero. O

Lemma 3.11. For any o € {+,~} and (t4,t-) € D, Wo(ts) = fr_,, (1_o)(Wo(ts,t-)) €
O(H\ K o, (t—o))-

Proof. By symmetry, it suffices to work on the case 0 = 4. For any (t4,t_) € D, by Lemma

4| there is a sequence t" | ¢4 such that ni (¢7}) lies in K (¢ ,¢t_) \ K(t4,t_) for all n. From
and Lemma [3.7) we get gx, (¢,)(n+(t})) = Wi (t4) and greey oy (04 (83)) = Wi (ty, 1)
From 1) we get g, (1) = fo,tJF(tf) © gK(t4,t_)- From the continuity of fK,,t+(t,) on H,
we then get w4 (t+) = fx_ o ti)(W+(t+,t,)). Finally, w, (t+) € O(H\ K_; (t_)) because
Wi(ty,t—) € OH and fg_ oy (to) I8 conformal in H and continuous on H. O

3.2 Force point functions

For o € {+,—}, define C; and D, on D such that if t; > 0, Co(t4,t-) = ck,, @, and
Dy(ty,t-) = di,, (t,); and if t, = 0, then Cp = Dy = W, at t_se_
chordal Loewner hulls driven by Wg|t_i with some speed, by Proposition we get

o Since Kyp (-) are

Co <W,<D,, onD, o¢c{+,—}. (3.11)
Since Kyt (to) is the H-hull generated by 75+, ([0,15]), we get

fiai_ ) ([Coltrs ), Do (e, t-)]) C 1ot ([0,25]). (3.12)

Lemma 3.12. Let Iy = (w—,wi) U{w_, w4}, I+ = (wg,00) U{w}, I- = (—oo,w_) U{w_},
and Ry, = IoUIL UI_. Assign the obvious order to Ry, endowed from R; and assign the topology

to Ry, such that 1_, 1y, 1 are three connected components of Ry, which are homeomorphic to
W+(O,t_) ° w—
Ik o (1) O IK_(t)

satisfies the

(—o0, w_], [w—,w4], [wy, 00), respectively. Then for any t = (t4+,t_) € D,

and gK (t+(’ )) gK " (ty) agree on Ry, and the common function, denoted by gg@),

following properties.
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(i) g}ﬂ?(t) is increasing and continuous on Ry, and agrees with gy on Ry \ K(2).

(i13) g%(t) maps I V(K (t)U{wl}) and I_N(K()U{w}) to {D4(t)} and {C_(t)}, respectively.

() If Ki(t4)NK_(t_) =0, gK(t) maps Io N (K1 (t1) U{w;} and Iy N (K_(t-) U {w'}) to
{C4(t)} and {D_(t)}, respectively.

(1) T RAE) NE=(1-) £ 0. g maps o to {C+(0)} = {D-(1)}

(vi) The map (t,v) g%(t) (v) from D x Ry, to R is jointly continuous.

Here we are using Definition and understand gy ° (t )(wf) as gK_U(t_G)(wU)i.

Proof. Fix t = (t4,t_) € D. For 0 € {+,—}, we write K for K(t), K, for K,(ts), K,
for Koy, (te), wo for Wo(t—ge_), Co for Co(t), and Dy for Do(t). The equality now reads

g}”{ og = gf Ly K . We are going to show that both sides are well defined and satisfy (i-iv)
+

with a slight modification in (iv) (see below). First consider gl{ o gKi.

(i) From Lemma w— = fx,(w-). Since ny starts from w,, which is > w_, and does
not hit (—oo,w_|, we have w_ ¢ K. So w_ = gk, (w-). Thus, g%i maps [, U Iy and I_
respectively into {w'} U (w_, 00) and (—oo,w_) U {w_}, which are all contained in Rg_. So

g;”; o g}”(: is well defined. The continuity and monotonicity of the composition follows from the

continuity and monotonicity of both g?{‘ and g}”(:

Let v € R, \ K. Then v ¢ K, and glug(v) = gk, (v). We claim that g, (v) ¢ K_. If
this is not true, there exists a sequence (z,) in K_ such that z, — gk, (v), which implies that
Jry(2n) = v. Since K- = K/K,, fx,(2.) € fx (K/K;) = K\ Ky, which implies that
v € K, a contradiction. From the claim we get g?{‘ o gluéi( v) =g o9k, (v) =gk (v).

to = 0, e, K, = K, = (D we understand aKJ bKU = ¢k, = dg, = w,, and af{ =
bg, =cg. =di = Ws. Then it is always true that ax, = min{n, NR}, bx, = max{n, N R}
ap = mln{ngﬂR}, b =max{n,NR}, cz = Cy,and di = D,. Since nt = fr (7+), we get
bl?+ —gK,(bzq), agp —gK+(aK ); and ifKﬂK:(b (I~ =gK_ (CLK+) bg :gK+(bK )
(ii) Since Iy N (K U {wl}) = {w+} U (wy,bg] = {w]} U (w+,bK+] is mapped by gK to a

single point, it is also mapped by g: ogn K to a single point, which by (i) is equal to

li — 1 = 1 ~ =d- =D.,.
o) = i gk, oo ()= i 0k ) = d, = D

To show that I_ N K is mapped by g}u; o gK+ to C_, by (i) it suffices to show that
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limgq, 9K (z) = ggi o g}”{;(w:) = cz_. This holds because

w_ w — W [~ . . .
95 ° 9k, (w2) =gz (W2) =cp = x}g}i 9g_(z) = Im gz ogi,(z) = lim grc(w).

(iii) Suppose Ky NK_ = (. Then IpN (K4 U{w}}) = [ak,,w;)U{w]} is mapped by g%i

to a single point, so is also mapped by g}u; o g}u(: to a single point. By (i) the latter point is

lim gg(x) = x%gfrj 9%, ©9YK_ () = lim 9%, (y) = C, = Cy.
+

atax, yhag,

Since In N (K_ U{w"}) = (w_,bx_] U {w"} is mapped by g}v{i to {wr} U (w_,bz ], it is
mapped by g?{: o g}”& to {dz } ={D_}.

(iv) Suppose K NK_ # (). For now, we only show that Iy is mapped to {D_}. Thent,,t_ >
0, and [cx, ,di, ]N K # 0, which implies that cx, < bz . Thus, gi* (Io) C {@T}U(@-, b |,
from which follows that g;fg o gt (Ip) ={dz_} ={D-}.

Now g}u:(: o glugr satisfy (i-iv). By symmetry, this is also true for g?{i o gy, where for (iv),

Iy is mapped to {C4}. It remains to show that the two functions agree on R,,. From (ii) we
know that g}”{ o gy and g}”{ o g}”& agree on R, \ K. By (i,ii) the two functions also agree
— + 77 - -
on Iy NK and I_ N K. Thus they agree on both I, and I_. By (i,iii) they agree on Iy when
K, NK_ = (. To prove that they agree on Iy when K, N K_ # ), by (iv) we only need to
show that R, = djz in that case.
First, we show that dz < Cz, - Suppose di; > e, - Then J := (c[~(+,df~(_) Cleg ,di |0

[z, dg,]- So fz,(J) C O\ K,). If fz (J) C R, then it is disjoint from K. Since K, is
generated by 74, which does not spend any nonempty interval of time on R, we see that f Ry (J)
is disjoint from [a R b fﬂr]’ which then implies that J is disjoint from [c 7 d [~(+], a contradiction.
So there is xg € J such that fz (z9) C H. This then implies that fx(z9) = frx_ © ffﬂr (x0) €
H\ K. But on the other hand, since 7 € [cz ,dg |, fx(w0) = fx,off (x0) C fr,(1-) =1,
which contradicts that fx(wo) € H\ K_. Sodg < i,

Second, we show that d Zﬁ+. Elppose dg < cg, . Let J = (df(,’ch)' Then
ffq(‘]) = (ffq(df(,)vafq)' From K N K_ # () we know ag, <dg_. Fromap = 9k, (aK_)
and ax = ax_ we get

dg >cp = x%brﬁ_ 95 (x) = y%gg_ 95 o9k, (y) = y%iﬁg_ 9z, © 9Kk ().
Thus, fl}+(dl?7) > hmyTCLK7 9K _ (y) = ¢k _. So we get ff(+(J) C [CK—’al?Jr] C [CK_,dK_],
which is mapped into n_ by fx_. Thus, fx(J) C n—. Symmetrically, fx(J) C n4+. Since
n- = fx,(n-) and fx(J) C O(H\ K), for every x € J, there is z_ € _ NO(H \ K_) such that
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Jx(x) = fx, (2-). Thenthereisy_ € [cz ,di ]suchthat z_ = fz (y-). So fx(x) = fr(y-).
Similarly, for every x € J, there is y € [cz ,dz | such that fx(x) = fx(yy). Here yy,y-
depend on z. Pick 2! < 2% € J such that fx(z') # fx(2?). This is possible because fx(J) has
positive harmonic measure in H\ K. Then there exist y! € [qu’ d fq] and y2 € [cz ,dz ]such
that fx(z') = fx(y{) and fr(2%) = fr(y?). This is impossible because y} > 2% > z > 2.
Sodz > CR, - Combining the last two paragraphs, we get ¢ R, = dj; , as desired.

(v) From (i) we know that g%(t) is continuous on R, for any ¢t € D. It suffices to show
that, for any (a4,a—) € D, the family of maps [0,a+] 3 t4 — g}”*((t) (v), (t=,v) € [0,a—] x Ry,
are equicontinuous, and the family of maps [0,a_] > t_ — g%{(t) (v), (t4,v) € [0,a4] x Ry, are

equicontinuous. The first statement follows from the expression g}”?(t) = glvgjio’i;:) o g;”(: (t)
Proposition and Lemma (i). The second is symmetric. O

Lemma 3.13. For any (t4,t-) € D and 0 € {+,—}, Wy(t4,t-) = g?(/::it"éi)(@a(ta)).

Proof. Fix t = (t4,t_) € D. By symmetry, we may assume that o = +. If t_ = 0, it is obvious
since W (-,0) = wy and K_;_ (0) = . Suppose t_ > 0. From and Lemma[3.12 (iii,iv) we
know that W,.(t) > C(t) > D_(t) = di_, (t_)- Since Wy (ty) = fK77t+(t7)(W+ (t)) by Lemma
we find that either W, (t) = dg_,, () and Wy (ty) = br_,, (), or Wi(t) > dg_, (1)
and W, (t) = IK_., (t_)(W4(t4+)). In either case, we get the equality. O

Definition 3.14. For v € R, we call V(¢) := 9%(15) (v), t € D, the force point function (for the
commuting pair (n4,n—; D)) started from v, which is continuous by Lemma

Remark 3.15. Suppose for o € {+,—}, 7,(t), 0 < t, < Ty, is a chordal Loewner curve with
speed duy, where u,(0) = 0, and D C [0,T4) x [0,7-). Let ug(t+,t-) = (uy(ty),u_(t-)).
If (ny o u;l,n, ou”tug(D)) is a commuting pair of chordal Loewner curves, then we call
(n+,n—; D) a commuting pair of chordal Loewner curves with speeds (du4,du_), and call (n4 o
ui' - ouZ';ug (D)) its normalization. For such (n4,7—; D), most lemmas in this section still
hold (except that m may not be Lipschitz continuous), and we may still define the hull function
K(-,-) and the capacity function m(,-) using (3.3), define the driving functions Wy and W_
using Lemma and define the force point functions by V(t) = g}”?( 0 (v).

Definition 3.16. Let (74,7_; D) and (774,7—; D) be two commuting pairs of chordal Loewner
curves with some speeds. Let K(-,-) be the hull function for (n4,n_;D). Let 7 = (74,7-) € D.
We say that, up to a conformal map, (74, 7—; 25) agrees with (n4,n—; D) after 7, if D= {t—1:
teD,t>r1}and 0e(1o +1) = fr(r) 0 Mo(t), 0 <t <TP(r—) —t, 0 € {+,—}.

Lemma 3.17. Let (n4,n—; D) be a commuting pair of chordal Loewner curves with some speeds.
Let K,m, Wy be its hull function, capacity function, and driving functions, respectively. Let
7 € D. Suppose for o € {+,—}, there is a dense subset f; of I, = 0, T, — 75), such
that ¥ > 0, and for every t_, € T* , the H-hulls K(T + t_se_, + toe,)/K(T + t_se_,),

o’

29



0<t, < TE(T_(, +t_y) — 75, are generated by a chordal Loewner curve with some speed, which
intersects R at a set of Lebesgue measure zero. For o € {+,—}, let 1, be the chordal Loewner
curve that generates K (T +tqe,)/K(1), 0 <to < TP (T—0) — 7o LetD={t—7:teD,t>r1}.
Then (N4, 17— D) is a commuting pair of chordal Loewner curves with some speeds, which up to
a conformal map agrees with the part of (n4+,n—; D) after T.

Proof. Fix o € {+,—}. Since K (1 +te,)/K (1) is the H-hull generated by 1, ([0,t]), K (T +te,)
is the H-hull generated by K(7) and fg(r) © 7([0,]) for each 0 <t < Ty := TP(1_y) — 7o
Since K (z +te,) is the H-hull generated by K(r) and 7y([7,, 7, +]) for all 0 <t < i,, we get
(7o +1) = fr() 0N (t), 0 <t < T,

It remains to show that (74,7— D) is a Commutmg pair of chordal Loewner curves. Note
that TD( t) =TP(1—6 +t) — 75, 0 € {+,—}. Define K on D using with 771 in place of
n+. For t = (ty,t-) € D, since K(t) is the H-hull generated by 17+([0 t+]) and n—([0,t_]),
K(1) U fr(r)(K(t)) is the H-hull generated by K(r) and fx(r) © 7 ([0,t5]) = 05 ([70, 7o + t5]),
o € {+,—}, which is K(r +1). So for t € D, Kt +t)/K(r) = K(t). By assumption, for
every o € {+,—}andt_, € T*, Koy, (to) = K(t)/K_o(t_o) = K(14+1t_oe_, +toe,)/ K (T+

t_ge_,),0<ty <TP(t_,), are generated by a chordal Loewner curve with some speed. O

Lemma 3.18. Suppose up to a conformal map, (74, 1n—; 5) agrees with the part of (n4,n—; D)
after 7. Then the following hold.

(i) Let K,m,Wy and K m, Wi be the hull function, capacity function, and driving functions
for (n4,n—; D) and (4+,7- D) respectively. Then for anyt € D, K(t) = K(r +1t)/K(7),

ﬁl(t) (I_‘_t) (7), and W (7) = W0(1+t)7 oc {+7_}'

(ii) Let wy = Wy (0) and W, = W, (0), 0 € {+,—}. Let v € Ry and V(t) be the force point
function for (ny,n—;D) started from v. Define v € Ry such that if V(1) & {w4,w_},
then v = V(z); and if V(1) = wy and v - (v —wgy) > 0, , then v = Wy, o,v € {+,—}. Let
V be the force point function for (ify,7—; D) started from . Then V =V (r + ) on D.

Proof. (i) The formula K (t) = K(r + t)/K (1) follows from the argument in the second para-
graph of the previous proof. It then 1mphes that m(t) = m(r +¢) — m(z). The formula
W, (t) = Wy(z + ) then follows from , and that K (t) = K(I +1t)/K(1)

(i) For t = (t4,t_) € D, by (i), Proposmon Z and Lemma it V(r) & {wy,w_},

SN W (0t i N Wi, m—to) W_(1) ~
VO =9z0,5 0 %% )0 = Ikt K tt) O IK(rar 41 /K@) (V)

Wi (rg,7—+t_) (r) (7+,0)
KR e t) © IR (e 417K (D) © IR @)K (r0.0) © Ty, 0) )

Wiy, m—+to) (7+,0) w
7gK(+I+Z)/K(T+,T,+t ) gK(T;T +t_)/K (74,0 )OQKE+,0)(”)

Wi (rg,7—+t_) W4 (0,7—+t_) w_
K(+z+2)/K(T+,L+t7) © gK(+T+,r,+t,)/K(0,r,+t,) © 9K(0,7,+t,)(v)
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W (0,7—+t— w— W W
= QK&(J(:Q "o QK(o,T,JFt,)(U) = gf;(éﬁ) )(v) =V(r+1).

Here we used Proposition in the 3" and the 5% lines and Lemma in the 4" line.
We now consider the case that V() € {wy,w_}. By symmetry, we may assume that V(r) =

w— = W_(7). Suppose v > w_. In the second line of the displayed formula, we will en-
counter glvg(; Erzl_ o
gIVg’TELI)T_ Iy K(T)(W, (7)1), which is consistent with our definition of ¥ in this case. With this
understanding, the equality in the third line still holds by Proposition In fact, we have

+

= Gte 0 (0) > i g (wo) = Wo(71,0), and g (720 (2) = V(r) = W_(1), so by

Y K(T)(W_ (1)), which is not defined. However, we now understand it as

W ((‘I‘;,.,O II/I(/(Z()/K(S:HO
Proposition [2.12 gK(;_+z7T_+t_)/K(I)(W_(T+70)+) = gK(iI'+7:47:7_+t_)/K(T+,0)($)' So the displayed
formula holds with this explanation. The case that v < w_ is similar. O

From now on, we fix vy € (w_,wy)U{w’, wi}, vy € (wyi,00)U{wl}, and v_ € (—oo,w_)U
{wZ}, and let V,(t), t € D, be the force point function started from v,, v € {0,+,—}. By
Lemma Vo<C_<D_<Vy<Cy <Dy <V, which combined with (3.11]) implies

VoSO <SW_<D_<WSCLe Wy <Dy <V, (3.13)
The following Lemma describes some connections between Vg, Vi, V_ and 04, n—.

Lemma 3.19. For anyt = (t4,t_) € D, we have
V() = V- (O)]/4 < diam(K () U [o_,v4]) < [V (t) - V- (1) (3.14)

few (Vo@), Vo ()]) € nu([0,8]) U vo, ], v € {+, =} (3.15)

Here for x,y € R, the [z,y] in is the line segment connecting x with y, which is the same
as [y,z); and if any v,, v € {0,+, -}, takes value w} or w, for some o € {+,—}, then its

appearance in 3.15) is understood as w,.

Proof. Fix t = (t4,t_) € D. We write K for K(t), K1 for K (t4), f(i for Ky (t+), nt for
ni([oatﬂ:])> 77:& for ni,ty([ovt:t]x and X for X@)? X e {%7 Vi, V—7C+>C—7D+aD—}'

Since gx maps C\ (K" U [v_,v,]) conformally onto C \ [V_,Vy], fixes oo, and has
derivative 1 at oo, by Koebe’s 1/4 theorem, we get . For by symmetry we only
need to prove the case v = +. From we have Vo) < Cy < Dy <V,. By and Lemma
We get fx([Cy,Dy]) C fx_(N+) = n4. It remains to show that fx((D4+,Vy]) C [wo,v4]
and fx([Vo,Cy)) C [vo,wo]. If Vi = Dy, then (D4, Vi] = 0, and fx((D+,V4]) C [wo,v4]
holds trivially. Suppose Vi > D,. By Lemma W’ D, = limzimax((?ﬂR)U{w+}) gk (x), and
Vi = gk(vy). So fix maps (Dy,Vy] onto (max((K NR) U {wy}),vi] C [we,vy]. If Vo =
Cy, then [Vp,Cy) = 0, so fx([Vo,C+)) C [vo,wp] holds trivially. If Vy < C4, by Lemma
W (iii,iv), Ky N K_ =0, vg # Ky, and Cy = WM i (RrrR) Ufws 1) gk (z). Now either
vo € KU {w'} and Vy = gx(vy), or vo € K_ U {w"} and Vo = D_. In the first case, we
have fx([Vo,C+)) C [vo,min((K+ NR) U {w4})) C [vo,wy]. In the second case, we have
Fic([Vo, C1)) = [max((K_ NR) U {w_}), min((K5 NR) U {w, })) C [vo, w3]. 0
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3.3 Ensemble without intersections

We say that the commuting pair (n4,n—; D) is disjoint, if 74 ([0,¢+]) N n_([0,t-]) = 0 for any
(ty,t-) € D. If ny(t), 0 <t <T,, o € {+,—}, are two chordal Loewner curves that intersect
R at a Lebesgue measure zero set, then we can obtain a disjoint commuting par (n.,n_; D)
by defining DSl — {(t+7t—) € [07T+) X [OvT—) : 77+([07t+]) N n—([ovt—]) = Q)}

In this subsection, we assume that (n4,n—;D) is disjoint. From Lemma we know that
for any o € {+,—} and (t4,t-) € D, dist(@W,(t5), K—ot,(ts)) > 0. So gx_,, (_,) is analytic
at Wy(t,) = Wy(tse,). By Lemma Wo(ts,t-) = 9k_,.,. (t_o)(Wo(ts)). We further define
Wsj,7=1,2,3, and W, g on D by

WJ,S . 3 (WO',2 2
Wer 2

Wi (br:8) = 057 1) (alte))s Wors = W) eeltor 316)
They are all continuous on D because (t4,t_,z) — gg)ﬂ . (t,[,)(z) is continuous by Lemma

Note that W s(t+,t-) is the Schwarzian derivative of gr__, (;_,) at Wo(ts).

Lemma 3.20. m is continuously differentiable with Oy m = Wil, oe{+, -}

Proof. This follows from a standard argument, which first appeared in [7, Lemma 2.8]. The
statement for ensemble of chordal Loewner curves first appeared in [27, Formula (3.7)]. O

So for any o € {+,~} and t_, € T_y, Kyt ,(ts), 0 < t, < TP(t_,), are chordal Loewner
hulls driven by W, |;"7 with speed (Wo,1(; %, )2, and we get the differential equation for g Ko (to):

2(Wa 1(t+775 )
5 ) = ; , 3.17
tagKU,t,o(trf)( ) IKoy_ . (z) (t+, t_ ) ( )

which together with Lemmas and implies the differential equations for Vg, Vi, V_:

2

0.V, & 2Wo 0 3.18
O'V_m) VG{,-f-,—}, ( )

and the differential equations for W, Wy 1 and W, g:

2W2 O_oWor = —2W2,, 0w 12W32 W2,

8— o — - ) oWo,S = T, 11 \d-
W, — W_U Wor (Wi — W_)2 ST T W, — WA

(3.19)

Define F' on D by

Bt 12Wia (s, 5o )P Wi (s4,5-)°
F(t = d y : ds_d . 3.20
(i) = exp / / (Wi (s4,8-) = W_(s4,5-))* ’ S+) ( )

Then F' is continuous and positive with F(¢t4,¢t_) =1 when ¢4 - t_ = 0. From (3.19) we get

0. F
F

=W,s, oe{+, -} (3.21)
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By , Vi>Wye>Cr >V >D_>W_ >V_onD. For disjoint commuting pair, we
further have C; > D_. To see this, let t € D. We may choose v} < v3 € (w_,wy) \ K(t) and
let V§ be the force point function started from v}, j = 1,2. Then we have Cy(t) > V() >
Vi () > D_(t) and V@ (t4,t-) = gr, +)(03) > gr(y 1) (vg) = Vo (t4,1-), where the strict
inequality holds because Voj@) =9k (vj), 7 =1,2. By Lemma

Volty,to) = 9K _ 54, (t_a)(va(taﬁa))§ (3.22)

Vb(t_;_,t_) = gK,gyto_(t,O-)(‘/O(tO'Qo'))a if Vo ¢ K_o(t_g). (3.23)

We emphasize that each “g functions” in the formulas is not a modified Loewner map, i.e., it
is analytic at the point at which it is evaluated on the RHS.

Let t = (t4+,t_) € D. For 0 € {+, —}, differentiating w.r.t. to, letting 2 = gg_1,)(2),
and using Lemma [3.13| and (3.17}f3.16]) we get

9 ) 29y 1-g)(@o(ta))? S SRS L) NN
+IK_, _)\&) = = — — = . .
t K sto (t ) gKfo',tg- (tfo-)(z) — gK—o-,tg (tfo-)(wg(to')) z — wg'(ta')

Letting H\ K_5¢,(t—s) 2 Z — Ws(ty) and using the power series expansion of 9K gy, (t_o) AL
To(ts), we get
oK o, (too) P=io (1) = —3Wor2(t), o€ {+,—}. (3.25)

Differentiating (3.24)) w.r.t. z and letting z — W, (t,), we get

31&0 Q,K_G,ta (t—o) (/Z\)

N ©)

1 (Wa,z(t)>2 AWes(0)

B 3 -} 2
iy (t) 2 \Woul(t) 3Woi(t)’ oef{+ -} (3.26)

For ¢ € {+,—}, define W, x on D by W,y = %ﬁg Since W51]y” = 1, we get

Won(ty,t-) =1 when t;t_ = 0. From (3.19)) we get

aO'W—O'7N _2W02',1 _2W3,1

= tO’ _—_ —
Wfa,N (W—O' - W0)2 (W—O' - W0)2

—0

Ot,, o€ {+ —} (3.27)

0

We now define Vp v, Vi N, V- ny on D by
Vin(t) = g,[(_w”(t_#)(Vu(tyﬁu))/gll(_#(t_u)(Uu)a pe{+ -k

Vo (®) = g . oy Voltoeo)) /0y (@0)s i v0 & Koli—s), o€{r—}. (3.28)

By (3.2243.23]), the RHS of these two formulas are well defined. There is no contradiction in
(3.28)) because when vy & K_(t_) and vy € K, (t4) both hold, for either o = + or —, the RHS

of " equals g’[((t+,t_)(vo)/(g’[<+(t+)(vo)g/K_ (t_)(vo)) by "
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Note that V, n(t4,t-) = 1 if t4t_ = 0 for v € {0,+,—}. From (3.223.23) and (3.4]3.17)

we find that these functions satisfy the following differential equations on D:

OoVun _ —Wonr 5 =Wy |77, 0 if v, & Ko(ty)
VV,N o (VI/ — W0'>2 o (VV . Wo’)2 2 S {+,_}7 Ve { ,—O'}7 1I vy, g O'( O')‘
(3.29)
We now define Ex)y on D for X #Y € {W,,W_,Vy,V,,V_} as follows. First, let
X(ty,t-) =Y (ty,t-))(X(0,0) — Y(0,0
Exyl(ty,t_) = (X(ty,t-) —Y(ty,t-))(X(0,0) —Y(0,0)) (3:30)

(X (t4,0) = Y(t4,0))(X(0,t-) = Y(0,2-))’

if the denominator is not 0. If the denominator is 0, then since V; > W, >V > W_ > V_
and W, > W_, there are two cases. Case 1. {X,Y} C {W,,V,,Vp}. Case 2. {X,Y} C
{W_,V_,Vp}. By symmetry, we will only describe the definition of Ex y in Case 1. If X(t,0) =

Y (t4+,0), by Lemmas [3.12] and [3.13] X (¢4,-) = Y (t4,-). If X(0,¢-) = Y(0,¢_), then we must
have X (0) = Y(0), and so X(0,-) = Y(0,-). For the definition of Exy in Case 1, we modify
3.30) by writing the RHS as Xﬁéfb;ﬁ%iéf : X)((%b;:gg:é;), replacing the numerator (before
=) by gk, L )(X(t+, 0)) when X (¢4,0) = Y (¢4,0), replacing the denominator (after “:”) by
gK_( _)(X(O 0)) when X (0,t_) = Y(0,¢t_); and do both replacements when both X (¢;,0) =
Y (t4+,0) and X(0,t—) = Y (0,t—). Then all Fxy are continuous and positive on D, and

Exy(ty,t-)=1ift -t =0. By-,-forae{+ -} if X, Y # W, then

oE ae _2W3 _2W02 e
o Bxy ae 1 Oty — = Oty (3.31)
EX,Y (X - WU)(Y — Wg) (X — WJ)(Y — Wo’) 0

3.4 A time curve in the time region

In this subsection we do not assume that (n4,n—; D) is disjoint. Let v, and V,,, v € {0,+, —},
be as before. We assume in this subsection that v, — vy =vg —v_ =: 1 > 0.

Lemma 3.21. There exists a unique continuous and strictly increasing function w : [0,T") —
D, for some T" € (0,00], with u(0) = 0, such that for any 0 < t < T" and o € {+,—},
Vo (u(t) — Vo(u(t))] = e*|v, — vo|; and u can not be extended beyond T" with such property.

Sketch of the proof. We use an argument that is similar to Section 4 of [22]. Define A and Y
on D by A = 3log {; V+ Vf and T = 1log = V . By assumption, A( ) = T(0) = 0. Since
Ve >We >V > W > V_, by the definition of V,,, Proposition [2.13] and Lemma for
o€ {+,-}, |Vo — V| and \V V_,| are strictly increasing in ¢, and Vo — V_s| is strictly
decreasing in t,. Thus, A is strictly increasing in ¢4 and strictly decreasing in ¢t_, and Y is
strictly increasing in both ¢4 and ¢_. These monotone properties guarantee the existence and

uniqueness of u : [0,7%) — D with A(u(t)) =0 and Y (u(t)) =t for all ¢. O

Lemma 3.22. For any t € [0,T"),

X vy —v_|/128 < rady, (15([0, us (t)]) U [vo, v6]) < €*|vy —v_|, o€ {+, -} (3.32)
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If T < oo, then limyrw u(t) converges to a point in D N (0,00)2. If D = RZ, then T" = cc.
If T" = oo, then diam(n4) = diam(n-) = co.

Proof. Let t € [0,T") and L, = rady, (1, ([0, us(t)]) Ulvo, vs]). From and that |V (u(t))—
V_(u(®)] = e*lvy — v_|, we get e*|vy —v_|/8 < max{L,,L_} < e*|v; —v_|. Since
Vi(u(t)) — Vo(u(t)) = Vo(u(t)) — V_(u(t)), from Lemma and Beurling’s estimate (ap-
plied to a Brownian motion started from oo), we see that max{Ly,L_} < 16 min{L4,L_}.
So we get . Since ny and n_ are parametrized by H-capacity, for any o € {+,—},
Uy (t) = heapy(Hull(n, ([0, u, (£)]))) < L2 < e*|vy — v_|?. Suppose T% < oco. Then uy and
u_ are bounded on [0,7"). Since u is increasing, lim7u u(t) converges to a point in (0, 00)?,
which must lie on 9D because otherwise u may be further extended, which contradicts that «
cannot be extended beyond T%. If D = Ri, then 9D N (0,00)? = ), so T" = oo. Finally, if
T" = oo, then by letting ¢ 1 co in , we get diam(n,) = 0o, o € {+, —}. O

For a function X defined on D or a subset of D, we define X* = X owu. From Ehe gleﬁnition
of u, we have |V (t) — V()| = [V(t) — V{“(t)| = €*'I for any t > 0. Let R, = % € [0,1],

o€ {+,—},and R= (Ry,R_). Let ¢ denote the function ¢ — e for ¢ € R.

Lemma 3.23. Let DY) = {(t,,t_) € D:ny([0,¢t:]) Nn_([0,t_]) = B}. Let Tgs € (0,7 be
such that u(t) € DU for 0 <t < T¥- Then u is continuously differentiable on [0,Tg;), and

o 1- 2
R ( Ra) 64~IQ

u \2 _ u
( 0,1) U’;’ - R+ + R on [OaTdisj)v S {"’7 _}' (333)

Proof. From (3.18]) we find that the A and T introduced in the proof of Lemma satisfy the
following differential equations on D4si:

9 A ae (V+ - V_)WOQ',l d 9.7 ae _Wil
il = an el = X
HVG{O,%*}(VVU - W) Hue{0,+,f}(vyu - W)

From A%(t) = 0 and ¥"(t) = t, we get

Wy 2u/ —(Wu 2u/
( 0',1) ua . =0 and Z ( U,l)u o . 1.
HVE{O,—{-,—}(VV - WO’) O’G{-i—,—} HV€{+,—}(VV - Wo’)

oce{+,—}

Solving the system of equations, we get (W2 )%u, x ILego,+,—3 (V2" = W5)/(We — W_),
o€ {+,—}. Using V¥ — Vi = 0e®T and W¥ — V¥ = R, (V¥ — Vi), we find that (3.33) holds
with “=” in place of “=". Since W, > W_ on DU we get Ry + R_ > 0 on [O,Téﬁsj). So the

original (3.33]) holds by the continuity of its RHS. O

Now suppose that ny and n_ are random curves, and D is a random region. Then u and
T are also random. Suppose that there is an Ri—indexed filtration (}—E)teRi such that D is an
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(F¢)-stopping region, and Vp, Vi, V_ are all (F;)-adapted. Now we extend u to R4 such that
if T" < oo, then u(s) = limypu u(t) for s € [T, 00). The following proposition has the same
form as [22, Lemma 4.1], whose proof can also be used here.

Proposition 3.24. For every t € R, the extended u(t) is an (}—t);GRi -stopping time.

Since u is non-decreasing, we get a new filtration (Fy))i>0 by Propositions and

4 Commuting Pair of SLE,(p) Curves

In this section, we apply the results from the previous section to study a pair of commut-
ing SLE.(p) curves, which arise as flow lines of a GFF with piecewise constant boundary
data (cf. [11]). For a particular way of growing two curves simultaneously, we will obtain a
two-dimensional diffusion process, derive its SDE, and calculate its transition density using
orthogonal polynomials. The results of this section will be used in the next section to study
2-SLE,; and iSLE,(p) that we are mostly interested in.

4.1 Martingale and domain Markov property

Throughout this section, we fix &, po, p1, p— such that & € (0,8), py,p— > max{-2,5 — 4},
po > % —2 (see Remark {4.14)), and po + po > § — 4, 0 € {+,—}. Let w_ < wy € R. Let
vy € (wy,00) U{wl}, vo € (—oo,w_) U{w”}, and vy € (w_,w;) U{wh, wi}. Write p for
(po, p+, p—). From ([11]) we know that there is a coupling of two chordal Loewner curves n (¢, ),
0 <ty <oo,and n_(t_), 0 <t_ < oo, driven by w4 and w_ (with speed 1), respectively, such
that

(A) For o € {+,—}, 1, is a chordal SLE.(2, p) curve in H started from w, with force points
at w_, and v, v € {0,4,—}. Here any v, equals wjfg, then we treat it as w_,. Let
W, denote the driving function for 7,. Let w? _,v7, v € {0, +, —}, denote the force point

functions for ny started from w+,v,, v € {0, +, —}, respectively.

(B) n4+ and n_ satisfy the following commutation relation: Let o € {+,—}. If 7_, is a finite
stopping time w.r.t. the filtration (F; 7);>0 generated by n_, then a.s. there is a chordal
Loewner curve ny¢_,(t), 0 <t < oo, with some speed such that 7, = fx__(r_,)© Mo ,»
where K_,(7_,) = Hull(n—,([0,7—5])). Moreover, the conditional law of the normaliza-
tion of 7,,_, given F7 is that of a chordal SLE.(2, p) curve in H started from @, (7_)
with force points at ©_o(7_4), 7,7 (T_s), v € {0, 4, —}, respectively.

In fact, one may construct 74+ and 7 as flow lines of a GFF on H with some piecewise boundary
conditions (cf. [I1]). The conditions on k and p ensure that (i) there is no continuation threshold
for either 1, or n_, and so n; and 7_ both have lifetime co and 7. (t) — oo as t — co; and (ii)
14 does not hit (—oo,w_|, and n_ does not hit [w,,00). If pg > § — 2, ny and 7_ are disjoint;
otherwise they do touch but not cross each other. We call the above (14,7-) a commuting pair
of chordal SLE,(2, p) curves in H started from (w,w_;vo,vy,v_).
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We may take 7_, in (B) to be a deterministic time. So for each t_, € R, a.s. there is
an SLE,-type curve ny;_, defined on Ry such that 7, = fx__(_,)©o¢_,. The conditions
on k and p implies that the Lebesgue measure of n,; N R is 0. By setting 7, =7_ = R,
Iy =1 = Q4, we can now say that a.s. for every t_, € 7%, there is a chordal Loewner curve
Not_,(t), 0 <t < oo, with some speed defined on Ry such that n, = fx__(_,)©7ot_, and the
Lebesgue measure of n,;_, N R is 0. This implies that a.s. ny and 7_ satisfy the conditions in
Definition with D = R%. So (n4,7-) is a.s. a commuting pair of chordal Loewner curves.
Here we omit D when it is ]Ri. Let K and m be the hull function and the capacity function,
W, ,W_ be the driving functions, and Vp, Vy,V_ be the force point functions started from
00, U4, v—, respectively. Then w, = Wy|,7, w?, = W_,|;7, and 0 = V,|,7, v € {0,+,—}.
For each (F; 7)-stopping time 7_g, 7,,r_, is the chordal Loewner curve driven by W |7 with
speed dm |? , and the force point functions are W_,|77 and V, |77 , v € {0, +, —}.

Now we deal with the randomness. Let (Fi)i>o be as in (B). Define the R? -indexed
filtration <}—§)EER§F by Fu,v) = .7-"{: V F, . From (A) we know that, for o € {4, —}, there
exists a standard (F;)-Brownian motions B, such that the driving functions @, satisfies the
SDE

~ ae 2 Pv
d, = \/EdBU + [m + Z m} dts. (41)
V6{07+7_}

Here we note that By and B_ are not independent.

Lemma 4.1. Let (n4,n-) be a random commuting pair of chordal Loewner curves with driving
functions W1 and W_ started from wy,w_. Let V,, be force point functions for this pair started
from vy, v € {0, +, =}, respectively. Define U =Wy +W_+3, 5 L2V, on R2. Then n;
and n— is a commuting pair of chordal SLE.(2, p) curves in H started from (wy,w_;vo, vy, v_)
if and only if U and U? — km are (}-L)teRi -martingales.

Proof. (i) The “only if” part. Fix ¢— > 0. From (B) and Proposition conditional on
F; , U(-,t_) is a local martingale with quadratic variation (U(-,t_)); = km(t,t_) —rm(0,t_).
Since m is Lipschitz continuous, U(-,t_) and U(-,¢t_)? — km(-,¢_) are true martingales. Sym-
metrically, U(0, -) and U(0,-)? — km(0, -) are martingales. The two statements together imply
that U and U? — km are (Fz)ieRi—martingales.

(ii) The “if” part. Fix a finite (F, )-stopping time 7_. By Proposition m U(-,7—) and
U(-,7—)?—rkm(-,7) are (F, » )i, >o-martingales. So (U(-,7_))¢ = m(t,7_)—m(0,7_). Using
Proposition we see that (B) holds for ¢ = +. Symmetrically, (B) also holds for o = —.
Setting 7, =0, 0 € {+,—}, in (B) we find that (A) also holds. O

Remark 4.2. From the proof of Lemma we see that Condition (B) is equivalent to a
seemingly weaker condition, in which 7_, is only assumed to be a deterministic time.

Lemma 4.3. Let 7 = (74, 7_) be an extended stopping time with respect to the right-continuous
augmentation (ft(Jr))zeRi of (}—E)EGR? Let o € {+,—}. Then on the event that T € R%, a.s.
K(r+te,)/K(T), t >0, are generated by a chordal Loewner curve 1, with some speed such that
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No(To ++) = fK(r) 7o Let ho(t) = m(z +te,) —m(z) and 7o = 7z 0 h;'. Then the conditional
law of Ny given fﬁ) is that of a chordal SLE.(2,p) curve in H started from Wy (1) with force
points W_, (1) and Vi, (), v € {0,+, =}, where if V,(7) equals W, (), then as a force point it
is treated as Wy (7)7, and if W_,(1), Vo, or V_o equals W, (1), then it is treated as W, (1)~ 7.
Moreover, the driving function for 7y is Wy (T + h;1(t)e,), and the force point functions are
W_o( +h; (t)e,) and V,(r + h; (t)e,), v € {0,+,—}.

Proof. Let U be as in Lemma For X € {m, W, W_,Vy, V4, V_, U}, we write XZ7(t) for
X(1+ h;1(t)e,). We write K5 (t) for K(r + h;'(t)e,)/K(r). By Lemma and Proposition
when 7 is finite, K (17 +te,)/K(7), t > 0, are chordal Loewner hulls driven by W, (r +te,),
t > 0, with speed dm(7 + te,). So Kz(t), t > 0, are chordal Loewner hulls driven by Wz (t),
t >0 (with speed dm(r + h;'(t)) = 1). By Lemmas and and Propositions and
we find that, if X € {W_,,Vp,Vy,V_}, then

T,0 WU T d T.O 2
XP7() = 9,55 (X @), X 0% oy 120 (1.2)

We first assume that 7 is bounded. Then for any ¢t > 0, 7 +te, is a bounded stopping time.
By Lemma Propositions and if X is U or U%2 — km, then X(7 +te,), t > 0, is
a continuous (Fz(iiéd)tzg—martingale. Since (hq(t)) is (]-“I(ﬁgd)—adapted, for each t > 0, h;'(t)
is an (]:z(izg )-stopping time. Since m™7(t) = t, we see that UT?(t) and U7 (t)? — kt, t > 0,
are continuous (]—"I(i?%] hgl(t))tzo—local martingales. By Levy’s characterization of Brownian
motion, we see that (UT7(t) — U(r))/+/k is a Brownian motion, say Bz(t), independent of
F) . By the definition of U and (4.2), WX (t) satisfies the SDE:

. - 2dt pydt
dVVoTy (t) = \/EdBE(t) + .0 Wo (1) + Z T,0 Wo (1) ’
Wo (1) = 9z iy Weo (1)) Lefoy, 3 Wo (1) = 952y (Vul(1))

Since W57(0) = W,(r) and Kz(t), t > 0, are chordal Loewner hulls driven by Wz (t), we
conclude that Kz(t), t > 0, are a.s. generated by a chordal Loewner curve, say 7,, whose
conditional law given F) is that of a chordal SLE.(2, p) curve in H started from W, (7) with
force points W_, (1) and V, (1), v € {0, +, —}. We also easily see that the driving function for 7,
is W,(+h;(t)e,), and the force point functions are W_, (7 +h;(t)e,) and V, (T +h; ' (t)e,),
v € {0,+,—}. Let j, = 7y © hy. Then 7, is a chordal Loewner curve with some speed, which
generates K (7 + te,)/K(r), t > 0. Since K(r + te,) is the H-hull generated by K(z) and
770([7—077_0 + t])? we get 770(7—0 + ) = fK(I) 0 7o

We now consider the general case. We use Proposition to do localization. Fix N =
(Nyy,No) € Ri. Then 7% is a bounded (]:t(+))—stopping time. By the last paragraph, K (¥ +
te,)/K(tX), t > 0, are a.s. generated by a chordal Loewner curve, say 7o, with some speed
such that nJ(TUM—i— ) = o . Let hoﬂ(t) =m(rY¥ +te,) — m(rY) and iy =no (hgﬂ)_l.
Then the conditional law of ﬁgﬂ given F (j\r,) is that of a chordal SLE,(2, p) curve in H started

T
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from W, (&) with force points W_, () and V,, (&), v € {0,4, —}. On the event {r < N},
since ¥ = 7 and ]-'ig) agrees with ]:TH) we see that K (r+te,)/K (1), t > 0, are a.s. generated

by ﬁgﬂ, ng(Tgﬂ +) = fr@ © 7’7} , n(],—v = 77,, o h;1, and the conditional law of ﬁgﬂ given .7-"£+)
is that of a chordal SLE, (2, p) curve in H started from W, (z) with force points W_,(r) and
Vu(1), v € {0,+,—}. This means that ﬁ(,ﬂ and ﬁUM are the curves 77, and 7), we want on the
event {7 < N}. We then may complete the proof by letting N, N_ — oo. O

The following lemma describes the DMP of a commuting pair of chordal SLE, (2, p) curves.

Lemma 4.4. Let w_ < wy, vg € (w—,wy) U {wl wi}, vy € (wi,00) U{wl} and v_ €
(—oo,w_)U{w_}. Suppose (n4,m-) is a commuting pair of chordal SLE.(2,p) curves started

from (wy,w_;vp,vy,v_). Let (}—g(ﬂ)geRi be the right-continuous augmentation of the Ro-

indezed filtration (fi)geRi generated by ny andn_. Let T = (14, 7_) be an extended (f£(+))§€Ri'

stopping time. Then on the event that T € R% and W (1) > W_(1), there a.s. exists a random
commuting pair of chordal Loewner curves (14,n—) with some speeds, which up to a conformal
map agrees with the part of (ny,n—) after 7. Moreover, the conditional law of the normalization

of (M4+,M-) given ]-"é ) s that of a commuting pair of chordal SLE.(2,p) curves started from

(W, W5 Vo, Vi, V)7, where if V(1) = Wy(T) for some o € {+, =}, then V,(1) is treated as
Wo(1)?, and if Vo(r) = We(z) for some o € {+, —}, then Vo(1) is treated as Wy (1)™°

Proof. Let o € {+,—}. Assume that the event that 7 € R2 and W, (r) > W_(7) happens.
Applying Lemma [£.3] we get a pair of chordal Loewner curves with speeds 74 and 7_ such that
for o € {+, =}, 16(7o ++) = fK(r) ©To- Let ho(t) = m(r +te,) —m(7) and 7jy = 7jy 0 h;*. Then
7o is the normalization of 7, and the conditional law of 7, given (fé”) is that of a chordal
SLE,(2, p) curve in H started from W, (r) with force points W_,(7) and V, (), v € {0,4, —}.
Moreover, the driving function for 7, is W, (r + h;1(t)e,), and the force point functions are
W_,(t+ h;Y(t)e,) Vi(r + byl (t)e,), v € {0,+,—}.

Let K(ty,t_) = Hull(@4([0,t4]) UH_([0,t_])), (t4,t_) € R2. Then from n,(75 + ) =
JK(@z) © Moy 0 € {4, —}, we get I/(\'(i) =K(r+t)/K(r),t € R%. By (2 , for any o € {+, -},

K(t-ge_, +te,)/K(tge_,) = K(T +t o, +1e,)/K(r +t ge_,), tto>0.

}}\pplying Lemma to the stopping time 7 4+ t_,e_,, we find that a.s. for any t_, € Q,
K(t_se_, + te,)/K(t_se_,), t > 0, are generated by a chordal Loewner curve with some
speed, which intersects R at a Lebesgue measure zero set. So (74,7-) is a.s. a commuting pair
of chordal Loewner curves with some speeds.

Now (74,7—) is the normalization of (74,7-). We need to show that the conditional law
of (n4+,m-) given ]-"gr) is that of a commuting pair of chordal SLE(2, p) curves started from
Wy, W_; Vo, Vi, Vo)|;. Let Ky (t) = Hull(no([0,4])), t > 0, 0 € {+,—}, and K(ty,t_ ) =

Hull(K{ (t4) UK_(t_)), (t4,t-) €ER2. For 0 € {+,—} and t > 0, let F? denote the o-algebra
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generated by féﬂ and 77,(s), s < t. It suffices to show that, for any o € {+,—} and t_, > 0,
K(t_ge_,+te,)/K(t_se_,), t >0, are a.s. generated by a chordal Loewner curves with some
speed, whose normalization conditionally on ‘ft__i has the law of a chordal SLE(2, p) curve in
H started from W, (7 + h:},(t_g)g_a) with force points located at W_, and V,,, v € {0,+, —},
all valued at 7+ h=L(t_o)e_,.

It is easy to see that, for any t € Ri, T+ hél@) is an extended (}"t(ﬂ)—stopping time. To
see this, note that, for any a = (at,a_) € RZ,

{r+h3'(0) < a} = {r <a} N {m(ay,m) —m(r) > 4} 0 {m(rs,a ) —m(s) >t} € FLP
Applying Lemma {.3[to 7 + h™%(t_,)e_,, we find that the family of H-hulls

K(t_ge_y+te,)/K(t_ge_,) = K(T +hZL(t-o)e_y + hy' (t)e,) /K (T +hZi(t_g)e_,), t>0,

are generated by a chordal Loewner curve with some speed, whose normalization conditionally

on ]:(31 e is that of a chordal SLE, (2, p) curve in H started from W, (r + h=l(t_o)e )

with force pomts located at W_, and V,,, v € {0 +,—1}, all valued at 7+ h™L(t_o)e_,
Note that the above marked points are F ?-measurable since they are determmed by
Wi(r), Vl,(z), v € {0,4,—}, and 7_,(t), 0 < t < t_y. To end the proof, it suffices to

show that f_ C f( ) Lt )e, By symmetry, we only need to work on the case 0 = +.

For t > 0, let ]:t be the o-algebra generated by ]:7(-+) and 77_(s), s < t. Then h”'(t) are

(.7? )-stopping times for all ¢ > 0. Since 71 = niohi , we get .7-" C J—" 1y Now it suffices to

(+) (+) (+)
show that ]-'h:l(t_) C ]:(7'4.,7'_+h:1(t_))' Since 7 < 7+ h”'(t_)e_, we have FrC ]:z+h:1(t_)g_'

Since n—(7— +1t) = fg(r) © -, by continuity we can recover 7_(s), 0 < s < t, using 7-(s),
- <s<7_+t,and K(r). Thus, for any s_ > 0, .7-" c Fh LetAEJ?_,1 . Fix

(T4 T—Fs-)" RNt
a=(ay,a_) € RZ. Then

An{(rp,m—+hZM () <ab = |J  (An{pZ't) <pyn{(r— +p) <a}) € FiP.
p6Q+ﬁ(0,a7)
where we used the fact that AN{h"'(t_) < p} € ]—" C ]:((T+)T +p) because A € .7?__ Sy Since

. 2 .. (+)
this holds for any a € R%, by Proposition [2.24, A € ‘7:(7+,T_+h ey So we get .7-" 1 )

(+) .
.7-"(T+’Ti+h:1(ti)), as desired. .

4.2 Relation with the independent coupling

Let P2 denote the joint law of the driving functions of a commuting pair of chordal SLE(2, p)
curves in H started from (w4, w—_;vg,v4,v—). When we want to emphasize the dependence of

40



(P0,p+,p-)

Wy, W_, Vo, V4, V_, We Write it as P(w+ w ey v )* If po =0, i.e., vg does not play the role of a

force point, we then write the measure as ]P’(p%p*), or PP+r-) 1t po = p— = 0, we then
(w4, w_;vy,v_)
write the measure as P+ L or Ple+),
(W+,w_,v+)

The P2 is a probability measure on X2, where ¥ := |, <T<00o C([0,T),R) was defined in [23]
Section 2]. A random element in ¥ is a continuous stochastic process with random lifetime. The
space Y2 is equipped with an Ri—indexed filtration (]:E)EERi defined by F, ; )= .7-";; vV F,
where (F; )i>0 and (F; )i>o are the filtrations generated by the first function and the second
function, respectively. A probability measure on %2 is understood as the joint law of two
stochastic processes with random lifetimes.

Let P% and P2 denote the marginal laws of P2 on ¥. Then P2 is different from the product
measure IP’Z-B = ]Pﬁ x P2 . We will derive some relation between P2 and IPZ-B. Suppose now that
(W4, w-) follows the law IP)Z-B instead of P2. Then holds for two independent Brownian
motions B, and B_, and 7, and n_ are independent. Let DU be as defined in Section
for such (ny,n_). Then (ny,n_; DY) is a disjoint commuting pair of chordal Loewner curves.
Since B} and B_ are independent, for any o € {+,—} and any finite (F, ?)-stopping time
t_o, By is a Brownian motion w.r.t. the filtration (77 V ;7 );>0, and we may view as an
(FZVF;? )i0-adapted SDE. We will repeatedly apply It6’s formula (cf. [15]) in this subsection,
where o € {4+, —}, the variable ¢_, of all functions is a fixed finite (F, ?)-stopping time, and
all SDE are (F{ V F; 7 );,>0-adapted in t,.

By we get the SDE for W, (in t,):

O Wy = Wy 105 + (g . 3) W20t (4.3)

We will use the boundary scaling exponent b and central charge ¢ defined by b = 6;7” and

¢ = Bn=86=1) By (3.26) we get the SDE for WP

8UI/Vok'),N —b Wo,2

= byt 00, + %Wg,sata. (4.4)
o,N 7,

Next, we derive the SDE for 0,Ew, y for Y € {W_,,Vy, V,V_}. Note that Eyw, y(t+,t_) can
be expressed as a product of a function in ¢_, and a function f(¢, W, (tse,),Y (t5€,)), where

I _ ooty (W) = 9K, )W)/ (W —y), wF#y;
t,w,y) = e TroiTe 4.5
Jlwy) { Tic_o 1m0 w=y. (45)
Using (3.18l4.3) and (3.224{3.23)) we see that Eyy, y satisfies the SDE
IoEw,y ae [ Won Wor |797 .. 27 2W7, o
) = |: ) _ ) :|dwo _|_ |: } _ } i|6to'
EWU,Y Wg -Y Wg —Ylo (Wg — Y)2 (Wg — Y)2 0
K i Won Won 701 R ) Wopo
-] 1 _ o to+ (= —3) =22 0t,. 4,
Ws—Ylo [WJ—Y Ws—Ylo ? +(2 3 VVU—Y8 (4.6)
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Define a positive continuous function M;,,, on DIsi by

. W
Mipsp = F 6 W+,W, H : H VV,N )
06{+, } VG{O,"F,—}
o Py Py
I1 [ 11 Evﬁg,w}' 11 Ey,"v,,- (4.7)
selh-} veot) n<we(0+-)

Then Mw_>p(t+, _)=1ift4 -t_ = 0. Combining 1. 3. 21|,.,|3 27|.,| 3. 29|,|3 31’ and using

the facts that W, = W, |7, w7, = W_,|y7 and ] = V,[;7, we get the SDE for M;,,, in t,
when t_, is a fixed (F; 7)-stopping time:

OrMigp _\ Wos o [ 2 Y _pe ]9,

Mig—>g WU,l ve{ot,—} We — Ug \/E
AW, pWor 10B,
+ [W Lt 2w V] e (48)

ve{0,+,—}

This means that Mip—m‘t__ ‘Z is a local martingale in t,.

For o € {+,—}, let Z, denote the space of simple crosscuts of H that separate w, from w_,
and oo. Here we do not require that the crosscuts separate w, from v, or vy. For o € {4, -}
and & € Z,, let ng be the first time that 7, hits the closure of &;; or the lifetime of 7 if
such time does not exist. We see that 7¢ < hcapy(Hull(§;)) < oo. Let = = {(4+,6-) €
Ep x 2 ,dist(§4,6-) > 0}, For £ = (&,6-) € E, let 7'5 = (gr ¢ ). We may choose a
countable set Z* C = such that for every £ = (&4,&-) € = there is (£,£") € Z* such that &,
is enclosed by &, 0 € {+,—}. B

Lemma 4.5. For any § € E, |log M, | is uniformly bounded on [0, ¢] by a constant depending
only on kK, p, wy,w—, v, vy,v— and §.

Proof. Fix & = (¢4,6) € E. Let Ke, = Hull(&,), 0 € {+,—} and K¢ = K¢, UK(£). Then
either vy & Kia or vy & K By symmetry, we assume that vg 957 K7§+ Pick v} < vg €
(v, w4 ) \Fé, and let Voj be the force point function started from vg, j =1,2. By ,
Vi > Wy > V02 > Vol > Vo > W_ > V_ on [0,7]. Throughout the proof, a constant is
a positive number that depends only on w4, w _71}0: v+,v_,§,vé,vg, and a function defined
on [0,7¢| is said to be uniformly bounded if its absolute value on [0, 7¢] is bounded above
by a constant. From the definition of M;,,, it suffices to prove that [log F|, |log Ey; v,|,
Yi# Yo e {W,, W_ Vo, Vi, Vo3, [logW, N, 0 € {+,—}, and |logV,, n|, v € {0,+, —}, are all
uniformly bounded. By Proposition W, 1, W_ 1 are uniformly bounded by 1.

For o € {+,—}, the function (¢4,¢_) + t, is bounded on [0, 7'5] by hcapQ(Kg) For any

t €10, Té], since g, = 9K /K (1) CIK () by Proposmonwe get 0 < gK5 < gK( B < 1 on [vd,v3].
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Since [vg,v3] is a compact subset of C\fé, g’KE on [v},v3] is bounded from below by a constant.
So \log(g’K(t))| is uniformly bounded on [v},v3]. Since VOj(z) = 9K (1) (vg), Jj = 1,2, we see that
ﬁ is uniformly bounded, which then implies that m and m are uniformly
bounded, o € {+, —}. From (3.20]) we see that |log F'| is uniformly bounded. From (3.27}|3.29)
and the fact that W_, n|§ = V_, n|7 = 1, we see that |log W_, n| and |log V_, x|, 0 € {+, -},
are uniformly bounded. We also know that is uniformly bounded. From

1 1
WiVel S V2]
1) with o = + and the fact that VO,N|5r = 1 we find that |log V x| is uniformly bounded.

Now we estimate |log Ey, y,|. From (3.14)), for any Y;,Ys € {W,, W_, Vo, Vi, V_}, Y] —

Ys| < |V4 — V_| is uniformly bounded. If Y7 € {W,,V,} and Yo € {W_,V_}, then ﬁ <

is uniformly bounded. From (3.30) we see that |log Ey; y,| is uniformly bounded. If

IVoliVOQ\
Y1,Y, € {W_,,V_,} for some o € {+,—}, then Wlwal’ j = 1,2, are uniformly bounded, and
then the uniformly boundedness of |log Ey, y, | follows from (3.31]) and the fact that Ey, y,|§ = 1.
Finally, we consider the case that Y7 = V. If Y5 € {W,,V,}, then \YgiYﬂ < ‘VOQiV()ll’ which is
uniformly bounded. We can again use to get the uniformly boundedness of |log Ey; y,|.
If Yo € {W_,V_}, then W’ j = 1,2, are uniformly bounded. The uniformly boundedness

of |log Ey, v,| then follows from (3.31) with o = + and the fact that Eyl7y2|ar =1. O

Corollary 4.6. For any § € E, (Mip—p(t A Té))LGRi is an (Fy)-Mip—p(7¢)-Doob martingale

w.r.t. ]P’Z-B.

Proof. This follows from (4.8)), Lemma and the same argument as in the proof of Corollary
3.2 of [27. O

Lemma 4.7. For any § = ({1,£_) € E, P2 is absolutely continuous w.r.t. ]P’Z-B on Fr., and the
RN derivative is MiB_m(Té). -

Proof. Let £ = ({4,&-) € E. The above corollary implies that EZ.B[MZ-E_,B(@)] = Mip-p(0) = 1.
So we may define a probability measure Pg by d}P’g = MiBﬁB(Té)d]P’f.
Since Mip—p(t+, t_) =1whent;t_ =0, from the above corollary we know that the marginal

laws of IP’g agree with that of ]P’iﬁ, which are IEDB+ and P2 . Suppose (@4, @_) follows the law ]P’g.
Then @_ follows the law P2. Now we write T+ for . and T for Te. From Lemma and

i’

AP\ F i, o .
Corollary ﬁ = Mipp(t+ AN74,7-), 0 <ty < oco. From Girsanov Theorem and
il (b)) - -

1) we see that, under Pg, wy satisfies the following SDE up to 7.:

~ T W+ 21 2W+ 1
divs =/rdB b2 gy, 2L
Wy =VRdBy + x Wyl T e

- _ W, -V,
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where B is a standard (F(ty 7))ty >0-Brownian motion under IP’? Using Lemma [3.13| and

3.25)) we find that W, (-, 7_) under IP’? satisfies the following SDE 1Ip to T4

P+W<2h1

t. . 4.
W, =V, dt (4.9)

2W2 |
AW |- = VW, | dBY + ﬁ dt+ + )
ve{0,+,—}

T—

There is a similar SDE for W_ (74, ).
Note that the SDE (4.9)) agrees with the SDE for W, (-, 7—) if (n4,7n-) is a commuting pair
of chordal SLE,(2, p) curves started from (w,,w_;vg,v4,v_). The same is true if 7_ is replaced

by t_ A 7_ for any deterministic t_— > 0. Thus, ]P’g agrees with P2 on J7,, which implies the
conclusion of the lemma. - O

Corollary 4.8. IfT is an (]:z);elRi -stopping time, and is bounded above by e Jor some § € =.
Then P2|Fr is absolutely continuous w.r.t. IP’Z-B|]:Z, and the RN derivative is M;p—,,(T).

Proof. This follows from Lemma Proposition 2.:31} and Corollary [4.6] O

4.3 Diffusion processes along a time curve

Now assume that vy —vg = vg — v—. Let u = (uy,u_) : [0,7%) — R2 be as in Section
By Lemma [3.22 a.s. T" = oco. Recall that for a function X on Ri, we define X% = X o u.
By Proposition [3.24] u(t) is an (F;)-stopping time for each t > 0. We then get an R -indexed
filtration F}' := Fy ), t > 0, from Proposition For { = (&4,6-) € &, let 7'5“ denote the

first ¢ > 0 such that uy(t) = 7'€1 or us(t) = 7'5 , whichever comes first. Note that such time

exists and is finite because (7'511,7'522) € D. The following proposition has the same form as [22,
Lemma 4.2], whose proof can also be used here.

Proposition 4.9. For § € E, Q(Tg) is an (‘FE)LGRi -stopping time, T¢' is an (Fi")e>0-stopping

time, and for any t > 0, u(t A Tg) s an (]:é)teRi -stopping time.

First assume that (w4, w_) follows the law IP)* Let n4 be the chordal Loewner curve driven
by @w+. Let DYSI be as before. Let @ ( ) and T (t), v € {0,+, —} be the force point functions

for ny4 started from ws and v, v € {0, +, —}, respectively. Define Eg, o€ {+,—-}, by

\/Eﬁo(t):@a(t)—wa—/o @U(s)z_dfﬁg ol 3 /wg p”_dsva 3 (4.10)

I ve{0,+,—

Then §+ and B_ are independent standard Brownian motions. So we get five (F;)-martingales
on DUsl: By (ty), B_(t-), B4(t4)? —ty, B_(t_)> —t_, and By(ty)B_(t_). Fix { € Z. Using
Propositions and and the facts that ug is uniformly bounded above on [0, 7¢], we
conclude that By(t A7), B (t A 7'5“)2 —ug(t A7), 0 € {+,—}, and B\i(t A T?)B\E(t A7) are
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all (F}*)-martingales under IP’iB. Thus, the quadratic variation and covariation of Ei and BY
satisfy

d(BY), £/ (t)dt, d(B“); = (t)dt, d(B%,B"); =0 (4.11)
up to 7. From Lemmas and we know that Mfé_@(t A7), t > 0is an (F')i>0-

martingale. Let T§; denote the first ¢ such that u(t) ¢ DA Since Ty = supge ¢ =
SUP¢cz+ Tg, and Z* is countable, we see that, T%

disj
the SDE for M, _, (t) up to Tj; in terms of Efﬁ and BY. Using |D we may express M* . asa

’LB—>B
product of several factors. Among these factors, EIQ/LVJ”V[L7 ( ;L,N)ba (Eﬁ/mvu)p“/“, o€ {+,—},
v € {0,4,—}, contribute the martingale part; and other factors are differentiable in ¢. For

o € {+,—}, using (4.3l3.25/3.26) we get the (F}*)-adapted SDEs:

is an (F}*)¢>0-stopping time. We now compute

AWy = Weids + (5 —3)W, i 4 2V (4.12)
o o,1 o ) 0,2Us W},‘ — WBU _gat, .
dWt wh ~
W(;ll = W;j VKkdBY + drift terms.

Since Wy = %, and (W51|8)"(t) = Wy 1(u_s(t)e_,) is differentiable in ¢, from the last

displayed formula, we get the SDE for Wg N

d(WuN)b ae Wu2 D
T ZEb 22\ /kdBY + drift terms.
(Win)P Wi

For the SDE for (E{,‘V+7W7)%, note that when X = W, and Y = W_, the numerators and
denominators in (3.30|) never vanish. So using (4.12)) we get

2
d(EW, w )= ae 2 Wy 1 .
B A SR - 0,1 _ w .
(B, w )e & > i —me (@7 )“] VhdD; & duift terms.
Wy, W_ ocef{+,—-} 7 o o o

We may express Eyj, . (t) as a product of a function in u_,(¢), which is differentiable, and a
t

t
function of the form f(u(t), w%(t), (v9)“(t)), where f(-,-,-) is given by (4.5). Using (4.12)) we

Pv

get the SDE for (Ey, )~

(B, v,)" e pup Wea 1 s
W = ; |:W07_J' — VVU — ﬁ}g' _ (i)\g)u \/EdBU + dI‘lft terms.

Here if (09)%(t) = w(t)*, we understand the function inside the square brackets as

. T o0 @ (o (1) LW
V=0 (ua (1) 9K, o oy (o) (W (Ua(t) = 9K, o) (V) Wolus(t)) —v  2WZ(1)
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Combining the last three displayed formulas and using the fact that M:;) o and qu[ are all

(F*)-local martingales under IP’iB, we get

dM;;)HPaie Z |:/§bW 2|: ;1 _ 1 :|+
ZZ—)B oce{+,~} Wu ng - WiLO’ @g - (@za)u
" ~
1 1 dBY
S e = (1.13)
Z/E{OZ+ } W’U« - VVu wg - (Ug)u \/E
where if (07)"(t) = @W%(t)*, the function inside the square brackets is understood as %%28
o,1
From Corollary and Proposition [4.9 we know that, for any £ € Z and ¢ > 0,
dP?| Fynry) _ME (e (4.1
—_— = tAT). .
S
dPiB’fg(t/\‘rg Rt -

We will use a Girsanov argument to derive the SDEs for @4 and w" up to T, disj under P2,
For o € {+,—}, define a process B%(t) such that B“(t) = 0 and

dBY =dB% b Waa 2Wo 2
o = T " W;1+[Wg—wua - (w7, )“}
!

pVthl Pv :| uo‘(t)
+ Z u , v u nHo\u (415)
VE{O,—‘F,—} [WO' - Vl/ wO’ - (/Ul/) :| \/E

Lemma 4.10. For any o € {+,—} and £ € E, |BY| is bounded on [0,7¢] by a constant
depending only on k, p, w4, w—_, v, v4,v— and §. N

Proof. Throughout the proof, a positive number that depends only on &, p,w,w_, v, vy, v
and ¢ is called a constant. It is clear that Efﬁ(t) = U(uy(t),0) — U(0,0) and B“(t) =
U(0,u—(t)) = U(0,0), where U := Wy + W_ +3° 5 4 &V, By Proposition V., and
V_ are bounded in absolute value by a constant on {0, Té], and so are W, Vo, W_ U because
Ve > Wy > Vo > W_ > V_. Thus, E},‘, o € {+,—}, are bounded in absolute value by a
constant on [0, 7¢']. By 1) and that V(t) — V4(t) = e (vy —v_) for 0 <t < T%, we know
that e ¢ < 4diam(&4 U&- U v, v4])/lvy —v-|. This means that 7¢' is bounded above by a
constant. Since u([0, 7¢']) C [0, 7¢], it remains to show that, for o € {+,-},

Woo Wor 1 Wor 1
Woi Wo=W_y @p—0°, Wy—V, Wy—103

oz v

ve{0,+,—},

are all bounded in absolute value on [0, Té] by a constant.
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1 _ Wcr,l -9 Wo‘,l 1 :
Because AT, T Wo—We, )0 , the boundedness of ——3— — Tr—ar, on [0, Té] simply

follows from the boundedness of %, which in turn follows from 0 < W, < 1 and that

|Ws — W_g| is bounded from below on [0, 7¢] by a positive constant, where the latter bound
was given in the proof of Lemma
[0 T¢], we assume o = + by symmetry. Since Wy ;(t4,1-) =

g%) ot )(w+(t+)), Jj= 1,2, and K_ ;. (-) are chordal Loewner hulls driven by W_(t,,-) with

9% oy (o y (@4 (24))

speed W_ 1 (t4,-)?, by differentiating — w.r.t. t_, we get

QK gy (e )(w+(t+))

ds.

(t4,5-)

Wi a(te,t-) _/t AW2 W
Wialte,t-)  Jo (Wp—W_)3

From the facts that 0 < W, ;,W_; < 1 and that |W; — W_| is bounded from below by a

constant on [0, 7¢|, we see that the integrand in the above displayed is bounded in absolute

value by a constant, from which follows the boundedness of %*’2

Wo‘,l _ 1
W,—V, ~ @,—2%
. ~ -t (0)
Ii o, 1y (@+(t4)), Wo(tast) = gr, o) (@4 (t4)), and V(B4 1) = g5 tf (@ (t4)). By
differentiating w.r.t. t_, we get

Woa(te i) 1 _ /t‘ 2W2 W, ds
(t+)  Jo

Wity t) = Vit t)  @y(te) — 0 Wi —W_)2(V, = W) |

For the boundedness of on [0, 7¢] with o = +, we note that W, 1(t4,t-) =

ty,s—)
Since 0 < W41 <1, [Wy — W_| is bounded from below by a constant on [0, 7¢|, and V,, — W_

does not change sign (but could be 0), it suffices to show that ! fo’ 2W2 = (s ds! is bounded

by a constant on [0, 7¢]. This holds because the integral equals V,, (t+, _) V. (t+, 0), and |V, | is
bounded by a constant on [0, Té]. The boundedness in the case 0 = — holds symmetrically. [

Lemma 4.11. Under P2, there is a stopped planar Brownian motion B(t) = (B4 (t), B_(t)),

0 <t <Ty, such that, for o € {+,—}, Wy satisfies the SDE
W 23 pWay
A ae 9 /
@ = \fruhdB, + [k i 2 4 T WEU + Wg_VVu]uadt, 0<t< Tl

V€{07+7_}

s is a stopped planar Brownian motion, we

Here by saying that (B (t), B_(t)), 0 <t < T,
0 are local martingales with d{B,); =t, 0 € {+,—},

mean that B4 (t) and B_(t), 0 <t < T}

disj’
d(By,B_)y=0,0 <t < T

Proof. For o € {+,—}, define BY using (4.15). By (4.13), BY(t )M;‘pﬁp( ), 0 <t < Ty, is an
(F)-local martingale under IP’?. By Lemmas|ﬁ|and 4.10} for any £ € E, B (t/\T5 )Mﬁ)ﬁp(t/\@“),
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t >0, is an (F}*)-martingale under IP’Z.B. Since this process is (]—"ﬁ(tmg))—adapted, and ]-"@(tmg) C

Fuwy = Fi', it is also an (]-'H(MTg))—martingale. From (4.14) we see that (BY(t A Tg))tzo, is

an (fg(tATg))tzo—martingale under P2. A standard argument shows that (B%(t A 7¢))i>0 s an

(F# = Fy@))tzo-martingale under P2, Since Tiiy = Supgez+ 7¢', we see that, for o € {+, -},
BY(t), 0 <t < T¥;» is an (F')-local martingale under P2.

From 1) we know that, under IP’Z-B,

(Be( ATt =ug(tATE), o €{+, =} (BL(ATE), B ATE))e = 00 (4.16)

Since P2 <« IP’? on ]:u(t/\fg) for any ¢t > 0, we also have (4.16|) under P2. Since T4 = SUPgez+ Tg,

we conclude that, under P2,
(BYY = uq(t), o€{+,—} (BY,B") =0, 0<t<Tyy.

Since BY(t), 0 < t < Tg» 0 € {+,—}, are (F)-local martingales under P2, we get the stopped
planar Brownian motion (B4 (t), B-(t)), 0 < t < T, such that dBY(t) = \/ul, (t)dBy(t).

Using (4.10) and (4.15)) we then complete the proof. O

From now on, we work under the probability measure P2. Combining Lemma with

1) and 1D we get an SDE for W' — Vi' up to T ;:

ae v Wy 2’LL:7 2 - 2”;
MU R PV R DR UL U LT
ve{0,4+,—} o v o —0
20W ) 2(WH )2l 2(W )’
( —a,l) Jdt—i— ( 0,1) Udt—i— ( 071) Udt.
We - W, W — Vg W, =V

Recall that R, = VVV:Xf‘ €0,1, 0 € {+,—}, and R = (R4, R_). Combining the above SDE

with (3.33), we find that Ry, o € {+, -}, satisfies the following SDE up to T}j.:

isj*

0'1* 2 2 - o M—o o — 2

dR, =
\ R+ R R, +R_

We will later show in Theorem that (4.17)) holds throughout R, .
Let X =Ry —R_and Y =1— RyR_. From (4.17) we know that X and Y satisfy the

U

following SDEs up to Tt
dX =dMx — [(p+ + p— + po + 6)X + (p3 — p-)]dt, (4.18)

dY =dMy — [(p+ +p— +po + G)Y — (p+ +p- + 4)]dt, (419)
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where Mx and My are local martingales whose quadratic variation and covariation satisfy the

following equations up to TG

dX,X)=r(Y = XHdt, d(X,Y)=r(X—-XY)dt, d(Y,Y)=r(Y —Y?adt. (4.20)

Let A denote the triangle domain {(z,y) : |#| <y < 1}. Then (X,Y) € A because Y < 1 and
Y+X=(01+R)1FR)>0as R, R €01

Lemma 4.12. If Ry and R_ satisfy (4.17) for a stopped planar Brownian motion (By, B_)
up to some stopping time T, then a.s. hmtTT R(t) #0.

Proof. We know that X := Ry —R_ and Y := 1— R} R_ satisfy (4.18§] 4.20) up to 7, and as
t1 7, R(t) — 0iff (X(¢),Y(t)) — (0,1). From (4.19§4.20) there is a stopped Brownian motion
By (t), 0 <t < 7, such that Y satisfies the following SDE:

=VKrY(1=Y)dBy — [(p+ +p—+po+6)Y —(psr +p_+4)|dt, 0<t<T.

Define Ry(t) = X (t)/Y (t) whenever Y (t) # 0. It suffices to show that (Ro(t),Y (t)) does not
tend to (0,1) as ¢ T 7. Assume Y (0) # 0. Let T be 7 or the first time that Y (¢) = 0, whichever
comes first. From we know that Ry satisfies d(Ro); = (1 — R3)/Ydt and d{(Ry,Y); = 0.
Combining this with (4.18[4.19)), we see that there exists Bp, such that (Bg,(t), By (t)), 0 <
t < T, is a stopped planar Brownian motion, and Ry satisfies the following SDE:

_ R2 _
ARy — k(1 RO)dBR (p+ +p—+4)Ro+ (p+ — p

v 0 — v _)dt, 0<t<T.

Let v(t fo kY (s)ds, 0 < t < T, and T = supw([0,T)). Let Ro(t) = Ro( ~1(t)) and
Y(t) = Y( —1(t),0< t< T. Then there is a stopped planar Brownian motion (BRO( ), By (1)),
0 <t < T, such that Ry and Y satisfy the following SDEs on [0, T):

dRy = \/1 — R2dBg, — (ar, R + b, )dt, (4.21)
dY =Y\/1—YdBy — Y (ay(Y — 1) + by)dt, (4.22)

where ay = (p+ + p— + po + 6)/k, by = (po + 2)/k, ar, = ay — by, br, = (p+ — p-)/~.

Let © = arcsin(Rg) and & = Iog( \/LY) Then © € [—7/2,7/2] and ® € R;. Using
(4.224.21)) we find that © and ® Satlsfy the following SDEs on [0, T):

d® = dBg, — (ag, — %) tan ©dt — bg, sec Odt;
dd = —déy + (by — i) coth (%)dt + (Z — ay) tanh (%)dt.
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Moreover, limur(Ro(t), Y (t)) = (0, 1) is equivalent to limtTf(@(t), ®(t)) = (0,0). As O(t) — 0,
© behaves like a standard Brownian motion; while as ®(¢) — 0, ® behaves like a Bessel process
of dimension § such that 5% = 2(by — 1). Since © and @ are independent, as (6, D) —
(0,0), vVO? 4+ ®2 behaves like a Bessel process of dimension § + 1 = 4by + 1 = %(PO +2)+1.
Since pg > § — 2, we get 6 + 1 > 2. Thus, as. lim 7 VO(t)? + ®(t)? # 0, which implies
that limtTf(G(t), ®(t)) # (0,0). The above argument can be made rigorous using Girsanov
Theorem on a sequence of stopping times. So on the event {T' = 7} D {Y(¢) # 0 on [0,7)},
a.s. limyr(Ro(t), Y (t)) # (0,1). From the Markov property of (X,Y), we see that, for any
q € Q4, on the event {¢g < 7} N{Y(t) # 0 on [¢,7)}, a.s. limyr(Ro(t),Y (t)) # (0,1). Since
{limpur Y(t) = 1} C Ugeg. {a < 71N {Y(¢) # 0on [g,7)}, we get a.s. limyur(Ro(t), Y (t)) #
(0,1), which implies that limu, R(t) # 0. O

Theorem 4.13. Under P2, Ry and R_ satisfy throughout Ry for a pair of independent
Brownian motions By and B_.

Proof. We already know that R and R_ satisfy (4.17)) for a stopped planar Brownian motion
(B4, B-) up to Ty, the first ¢ such that 71 ([0, u4(?)]) intersects n—([0,u—(t)]), If po > § — 2,
a.s. Tfjlsj = 00, and so lb holds throughout R, and By and B_ are independent Brownian
motions. For the rest of the proof, assume that pg < § — 2. Then a.s. Th < 0. Set n = 0.
Let w} = wy, w” =w_, v} = v, v € {0,+, -}, n} =n4, and n* =1n_.

Let m" denote the capacity function for (n7,n™), let Wi and W’ be the driving functions,
and let V', v € {0, +, —}, be the force point functions started from v, v}, v", respectively. Let
]-"(T; ) be the o-algebra generated by 1’|+, ] and 7" |jo;_}, (t4,1-) € R2. Since v > w” >
vg > w! > ", and v} —vf = vj — v, we have the time curve u" = (u/,u”) : R — ]R

such that V™(u(t)) — V@ (u(t)) = e (v? —vB), t > 0, 0 € {+,—}. For each t > 0, u ()

is an (F}'),cpz -stopping time. Define F"" = Fo, ¢ > 0. Let Ri(t) = o) ‘Y%(( ),
t >0, 0 € {+,—}. Then there is a stopped (F;"")¢>o-planar Brownian motions (B (t), B"(t)),
0 <t < 7" where 7" is the first ¢ such that 77 ([0, u’} (¢)]) intersects n” ([0, u" (¢)]), Wthh is

a finite (F;"")-stopping time, such that R and R™ satisfy the (F;"")-adapted SDE (4.17)
up to 7. Then 7" := u"(7") is an (F}')-stopping time. From Lemma we have a.s.
(R (™), R™ (")) # (0,0), which implies that W} (") # W™ (").

Set witt = W (1 ”), o€ {+,—}; vntt = V() if V() & {withw™ Y, v e {0, 4, - )
n+1 — Wn( n) if Vn( n) Wn( n)7 o € {+ } and ,Un+1 Wn( n)— if Vn( n) —

W2 (r™), o € {+,—}. By Lemma [4.4] there a.s. exists a commuting pair of chordal Loewner
curves (7’ T ”H) with some speeds, which up to a conformal map agrees with the part of
(%, n™) after 7". Moreover, if one defines h2(t) = m" (" + te,) — m" ("), t > n, and let

et =qgntlo (hg) Lo e {+,—}, then (i, n"!) is the normahzatlon of (0 ”+1,7ﬁ+1), and
its conditional law given F% is that of a commuting pair of chordal SLE(2,p) curves in H
started from (w’™, w" vg'H AR

Since UTFI > w"+1 > U"Jrl > ™t > "t and U”Jrl vg”rl U(r)erl — v™"1 the argument

in the previous two paragraphs also work with n + 1 in place of n, except that now f’(’iilt_) is
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the o-algebra generated by FJ, nt \[0 ¢, and n” ntl o] (t+,t-) € R2. So we may iterate
the above procedure with n =0, 1,2, 3, and etc.

Fix any n € NU{0}. By Lemma [3.18 and that 727 = 0 o hZ, o € {+.—}, we see that, if
X e {Wy,W_,Vy,Vy,V_}, then X™(7"+-) = Xn+1 oh” where hglg = h" @h” Let 2" (t) =
h (u™ (" +t) —u" (™)), t > 0. Then for v € {0,+, -}, V”Jrl a" T (t) = VR (u (T 1)), t > 0.
By the deﬁn1t10n of u™, we have for v € {4, —},

Vyn—l—l Ogn—i-l(t) . Vanrl Ogn—i-l(t) — 62t(VVn Oﬂn+1(0) _ V19 o@n—&—l(o))'

Since a"T1(0) = 0, U™ satisfies the same property as u"t'. By the uniqueness of the
time curve, we have u"*! = u”Jrl = hg(u"(t™ + ) — u™(7")), which implies that, for X €
(W, W, Vo, Vi, V}, X o umtt = X0z 4 ()~ o w1()) = X" o (s + ). Thus,

R = RP(" + ), 0 € {+,—}. Since this holds for any n > 0, and R} = R,, we get
R = R,(u" 1 + ), 0 € {+,—}, where u" =Y }_, 7%, n > 0.

Since BT and B! are independent (F;""");>o-Brownian motions, and Fy" ! = Fi",
we see that (B!, B"™) is a planar Brownian motion independent of Fri". Slnce F' con-
tains ]-"f,;k for each k < n, and (B%(t), B (1)) is (F**)i>0-adapted, we then conclude that
(BT, B™1) is independent of (B (¢), B (t)), 0 <t < 7%, 0 < k < n. Thus, (B¥(¢), B (t)),
0<t<7k k>0, form an i.i.d. sequence of stopped planar Brownian motions.

Let fioo = limp,, = Y 07 7. Since 7", n > 0, are i.i.d. positive random variables, we have
a.s. 1 = oo. We now define By and B_ on R, such that for o € {+, -},

n—1

Bo(t) =Y BI(r) + Byt — ptn-1), if ptp1 St < pin, 020,
§=0

Then B, and B_ are independent Brownian motions. Since R} and B% satisfy (4.17) up to
7", we find that Ry and By satisfies (4.17]) on [0, 00), and the proof is done. O

Remark 4.14. The assumption pg > § — 2 is used in the proof of Lemma which is used
twice in the proof of Theorem and will also be used later in the proof of Lemma [5.15

(p0,p+5p-) If
(w+7w yV0,V+,V )
(p+:p-)

(w-‘r’w yU4,U )

To emphasize the dependence of w,,w_,vg,vy,v_, we write P2 as P

po = 0, i.e., vy does not play the role of a force point, we write the measure as P

4.4 Transition density

Suppose R (t) and R_(t), t > 0, satisfy the SDE on Ry. In this subsection, we are
going to use orthogonal polynomials to derive the transition density of R(t) = (R4 (t), R_(t)),
t > 0, against the Lebesgue measure restricted to [0,1]2. A similar approach was first used
in |24, Appendix B] to calculate the transition density of radial Bessel processes, where one-
variable orthogonal polynomials was used. Two-variable orthogonal polynomials was used in
[22] Section 5] to calculate the transition density of a two-dimensional diffusion process. Here
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we will use another family of two-variable orthogonal polynomials to calculate the transition
density of the (R) here. In addition, we are going to derive the invariant density of (R), and
estimate the convergence of the transition density to the invariant density.

Recall that X := Ry — R_ and Y := 1 — Ry R_ satisfy (4.184.19}}4.20|) throughout R,
and (X,Y) a.s. stays in A\ {(0,1)}. We will first find the transition density of ((X(t),Y (¢))).

Assume that the transition density p(t, (z,y), (x*,y*)) exists, and is smooth in (z,y), then it
should be a solution to the PDE
— O+ Lp=0, (4.23)

where L is the second order differential operator defined by

L= g(y — 22)02 + k(1 — y)9,0y + gy(l ~9)9;

=[(p+ + p—+ po+6)x + (p+ — p-)|0z — [(p+ + p— + po + 6)y — (p+ + p— + 4)]0y.

We perform a change of coordinate (x,y) + (r,h) by x = rh and y = h (for y # 0). Direct
calculation shows that

Oy = hdy, Op =10, +0y, O =h02, O = 1202 +2r0,0,+ 02, 0,0 = rho? + hd, 0.

Let

3o

P
ap=—(po+2)—1 ar=—(p++2)-1 F=ar+a +1

A=-nn+a+8+1), XD =—nn+p), n>o.

Define two differential operators for the coordinate (r, h) by
L0 = (11102 — [(ay + a +2)r + (ay — a_)]d);
ﬁ(h‘) = h(l - h)a}% - [(ao + 6+ 2)h - (ﬂ + 1)]8h.
Direct calculation shows that, when y # 0, £ = g[ﬁ(h) + %E(’”)], and

AR = R [L™) — 2n(h — 1)0p + Anl,

where each A" in the formula is understood as a multiplication operator. From (2.5) we know
that Jacobi polynomials P,SLO“”O‘_)(T), n > 0, satisfy that

L0 plore) () =\ plosa)(py n=0,1,2,...;
and the functions P,%ao’ﬁJrQn)(Zh — 1), m > 0, satisfy that
(LM —2n(h — 1)), + M) P82 (25 — 1) = A, PO (2 — 1) m =10,1,2,-- .
For n > 0, define a two-variable polynomial Q,(fl*’a*)(at, y) such that

QY+ (w,y) = y" P+ (x/y), ify #0.
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Such Q,(f“”a_)(x, y) is homogeneous of degree n with nonzero coefficient for z™. For every pair
of integers n,m > 0, define a two-variable polynomial v, ,,(x,y) of degree n + m by

vnn(,y) = Pof 2y — 1)QEH) (2, ).
Then vy, ,, is also a polynomial in r, h with the expression:
Upm = WP PO0AT20) (o _ 1) plaas) (), (4.24)

From the above displayed formulas, we find that, on R? \ {y # 0},

gﬁvmm =[c® 4 %Agﬂ](hnpégo»“?n)(% — 1) Pl+a-)(r))
K

= h"LP —2n(h — 1)8), + M) (POPF2) (20 — 1) P (1) = Ayt Unm.

Since vy, is a polynomial in x 2 Y by cont1nu1ty the above equation holds throughout R2. Thus,
for every n,m > 0, vy m(z, y) 3 n+mt golves , and the same is true for any linear combina-
tion of such functions. From (4.24)) we get an upper bound of |[vn,m|lec = SUP(5 e [Vnm (2, y)|:

onmlloo < 1B oo | P+ oo (4.25)

Since P(O“”O‘_)7 n > 0, are mutually orthogonal w.r.t. the weight function W(®+2-) and
for any fixed n > 0, P(ao’ﬂ+2n)(2h — 1), m > 0, are mutually orthogonal w.r.t. the weight
function \IJ(O‘O’BJFQ”)(QI’L 1) = 1(1)(h)2%0FF+2n(1 — p)*hPF2n we conclude that vy m(z,y),
n,m € NU {0}, are mutually orthogonal w.r.t. the weight function

Vag) = 1ale) s (1-2)" (14 2) " (= gy’

Moreover, we have

=2 (@0+A+2n+1) HP 007/8+2n)"‘11(a0 B+2n) HP7(LQ+7 (4'26)

an,mH%I/ H\I,(a+ a_):

Let f(z,y) be a polynomial in two variables. Then f can be expressed by a linear com-
bination f(z,y) = Y oo Do GnmUn,m(z,y) (note that every polynomial in z,y of degree
less than k can be expressed as a linear combination of v, ,, with n +m < k), where a,, , :=
(f,v(nm))w/||vnml|3 are zero for all but finitely many (n,m). Define

(fs Unm)w 5
g g oV, (2, ) €2t = E E ’ < (2, y)e2 Antmt,

., 2
n=0m=0 n=0m=0 ||van

Then f(t, (r s)) solves Let (X(t),Y(t)) be a stochastic process in A, which solves
(4.18|}4.19li4.20)) w1th 1n1t1al Value (x, y) Fix t9 > 0 and define M; = f(tog — t,(X(¢),Y (1)),
0 <t <tp. By Itd’s formula, (M;) is a bounded martingale, which implies that

E[f(X(to), Y (to))] = E[My,] = Mo = f(to, (v, y))
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— Z Z // f(l'*,y*)q/((l}*,y*)vn’m(x Y )Un,m(1'7y) -e%/\"*'mtodm*dy*. (4.27)
A

n=0m=0 an,m H%IJ

For t > 0, (z,y) € A, and (2*,y*) € A, define

p(t, (z,y), (v, y")) = 1a (2", y" ) (@*,y") D > eBnamt U@ Yoam @ YT) -y og)

"=0m=0 lenm

Let p(z*,y*) = Cyla(z*,y*)¥(z*,y*), where Cy = 1/||vnml|/3. Note that A\g = 0 and vgp = 1
since P(?O’B = Py =1. So p(x*, y*) corresponds to the first term in the series.

Lemma 4.15. For any to > 0, the series in (without the factor VU (z*,y*)) converges
uniformly on [to,00) X A x A, and there is Cy, € (0,00) depending only on &, p, and ty such
that for any (z,y) € A and (z*,y*) € A,

|p(ta (:C,y),(x*,y*)) —p(ﬂ?*,y*ﬂ < Ctoei(p++p_+p0+6)tqj(x*7y*)7 t > to. (429)

Moreover, for any t > 0 and (z*,y*) € A,

p(a*,y") = / /A P, y)p(t, (2, 9), (" y"))dedy. (4.30)

Proof. The uniform convergence of the series in (4.28)) follows from (4.29)), which in turn follows

from Stirling’s formula, (4.25 2.7), and the facts that 0 > A\; = —%(er—i—p_ +po+6) > A\,

for any n > 1 and \,, < —n? for big n. Formula (4.30) follows from the orthogonality of vy,
w.r.t. (-,-)g and the uniform convergence of the series in (4.28]). O

Lemma 4.16. The process ((X(t),Y (t))) that satisfies has a transition density:
p(t, (z,y), (*,y*)), and an invariant density: p(x*,y*).

Proof. Fix (x,y) € A\ {(0,1)}. Let (X(t),Y(t)) be the process that satisfies (4.18}4.19ll4.20))

with initial value (x,%). It suffices to show that, for any continuous function f on A, we have

ELf(X (to), Y (to))] = / /A Pro (@, ), (&, y*)) F (& ) dar*dy (4.31)

By Stone-Weierstrass theorem, f can be approximated by a polynomial in two variables uni-
formly on A. Thus, it suffices to show that (4.31) holds whenever f is a polynomial in z,y,
which follows immediately from (4.27)). The statement on p(z*,y*) follows from (4.30). O

Since X = Ry —R_,Y =1—R;R_, and the Jacobian of the transformation is —(Ry+ R_),
we arrive at the following result.
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Corollary 4.17. The process (R(t)) has a transition density:
PR(E1,7) = a2 (1) plt, (g — 7, 1= 1), (15 — %, 1= ) - (] 477,

and an invariant density: p®(r*) := Lo2(r") - p(r =72, 1 —rir2) - (vl +r2); and for any
to > 0, there is Cy, € (0,00) depending only on k, p, and ty such that for any r € [0, 1)? and
r* € (0,1)2,

pR(t,r, %) — pR(r")| < Crpe= Prto- Pt QiR g > .

5 Other Commuting Pair of SLE Curves

In this section, we study three commuting pairs of SLE-type curves, and compare them with
the commuting SLE(p) curves in the previous section. It turns out that each of them is
“locally” absolutely continuous w.r.t. a commuting pair of chordal SLE,(p) curves for some
suitable force values. So the results in the previous section can be applied here.

5.1 Two curves in a 2-SLE,

First, we consider 2-SLE,. Let s € (0,8). Let v— < w_ < wy < vy € R. Suppose that (74,7-)
is a 2-SLE,; in H with link pattern (w; — vi;w_ — v_). Then for o € {4, —}, 7, is an hSLE,,
curve in H from w, to v, with force points w_, and v_g.

Stop 74+ and 7)_ at the first time that they disconnect oo from any of its force points,
and parametrize the stopped curves by H-capacity. Then we get two chordal Loewner curves,
which are denoted by 74 and n_. For o € {+,—}, 7, is an hSLE, curve in H from w, to
vy with force points w_, and v_,, in the chordal coordinate. Let w,(t), 0 < ¢t < T4 (the
lifetime), be the chordal Loewner driving function for n4; let K,(-) be the chordal Loewner
hulls driven by w,; and let (F/)i>0 be the filtration generated by 7,. For o € {+, -}, if 7_,
is a stopping time for 15, then conditionally F 7 and the event that 7_, < T, the whole
7, and the part of 77, after n(7_,) together form a 2-SLE,; in H\ K_,(7—,) with link pattern
(Wg = Vo;N—0(T—0) = V—g). Thus, the conditional law of 7, is that of an hSLE, curve from w,
to vy in H \ K_,(7_,) with force points 1_,(7_,) and v_,. This implies that there a.s. exists
a chordal Loewner curve 7, _ with some speed such that n, = fK,U(r,g) © No,r_,, and the
conditional law of the normalization of 7, ,_, given F? is that of an hSLE, curve in H from
9K (r_0)(Ws) t0 g (r_.)(vs) with force points @, (7-5) and gg__(r_,)(v—s), in the chordal
coordinate.

Thus, (14,n-) a.s. satisfies the conditions in Definition [3.2| with Dy :=Z xZ_, I, = [0,T})
and 7y = Z,NQ, o € {+,—}. So (n+,n—;D1) is a.s. a commuting pair of chordal Loewner
curves. We now adopt the functions from Section [3] Define a function M; on Dy by

(5.1)

Wy —W_)(Vy — V—)>_1_

M, = H (’Wa - VU‘%71|W‘7 B V_"|%> 'F”’Q((WJF Vo) (Vp —Wo)

oce{+,—}
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Since F}, 5 is continuous and positive on [0, 1], [W,—V, |, [Wo—V_,| < [Vi—V_|,and 1,2 > 0,
we get an upper bound of M as follows, where C' > 0 depends only on k:

M, < OV, — Vo221, (5.2)

Let Fo, ¢ )= ]-'tt vV F, for (ty,t_) € Ri. We will prove that M; extends to continuously Ri,
and becomes (F;)-martingale, which acts as Radon-Nikodym derivatives between measures. We
first need some deterministic properties of Mj.

For o € {+,—} and R > |vy —v_|/2, let 7§, be the first time that |n,(t) — (v4 +v_)/2| =R
if such time exists; otherwise 7% = T,,. Let 7 = (74,75 ). Note that 775,75 < m(ry) < R?/2
because if K C {z € H: |z — (vy +v_)/2| < R}, then hcap,(K) < R2?/2.

Lemma 5.1. M a.s. extends continuously to Ri with M7 =0 on Ri \D;.

Proof. Tt suffices to show that for o € {+,—}, as t, T T,,, M7 — 0 uniformly in t_, € [0,T_,).
By symmetry, we may assume that o = +. For a fixed t_ € [0,T_), as t+ T T, n4+(t4+) tends to
either some point on [v4, 00) or some point on (—oo,v_). We know that F} o is continuous and

positive on [0,1]. So the factor FKQ(E%i :3’))(9?__&//&1 is uniformly bounded on D;. Since
the union of (the whole) 4 and n_ is bounded, by (3.14) |V — V_| is bounded on D;, which
implies that [Wy — V| and |Wy — V4| are also bounded on D;. Thus, it suffices to show that
when 7 terminates at [vy,00), Wi — V4 — 0 as ¢4 T T, uniformly in [0,7_); and when 7
terminates at (—oo,v_), W_ —V_ — 0 as t4 1 T, uniformly in [0, 7_).

For any ¢t = (t4,t_) € Dy, neither n4([0,¢4]) nor n_([0,¢_]) hit (—oo,v_] U [v4,00), which
implies that vy, v ¢ K(t) and Vi(t) = gg(v+). Suppose that n, terminates at zg €
[v4,00). Since SLE, is not boundary-filling for £ € (0,8), we know that dist(zg,n—) > 0. Let
r = min{|wy — vy|,dist(xzg,n-)} > 0. Fix € € (0,7). Since zo = limy7, 14 (), there is 6 > 0
such that |ny(t) —xo| < e for t € (T4 —0,T4). Fix ty € (T —§,T+) and t— € [0,7-). Let
J be the connected component of {|z — x| = ¢} N (H \ K(¢)) whose closure contains zg + €.
Then J disconnects vy and ny (ty, 7% ) from oo in H\ K(t). Thus, gk (J) disconnects V, (%)
and W, (¢) from oco. Since ny Un— is bounded, there is a (random) R € (0,00) such that
Ny Un— C {|z —xo| < R}. Let £ = {|z — x| = 2R} NH. By comparison principle, the extremal
length ([1]) of the family of curves in H\ K (¢) that separate J from ¢ is bounded above by oa(R/3) "
By conformal invariance, the extremal length of the family of curves in H that separate g () (J)
from gg ;) (§) is also bounded above by m. Now gx 1) (§) and gk 4)(J) are crosscuts of H
such that the former encloses the latter. Let D denote the subdomain of H bounded by g (;)(§)-
From Proposition [2.3|we know that D C {|z—=zo| < 5R}. So the Euclidean area of D is less than
137R?. By the definition of extremal length, there is a curve v in D that separates gK(;)(J )

from gg () (§) with Euclidean distance less than 2\/137TR2 * og(rrsy < STR log(R/e)~ /2.

Since gg(#)(J) disconnects V, () and W (t) from oo, v also separates Vy(t) and W, (t) from
oo. Thus, |[Wi(t) — Vi(t)| < 87R*log(R/e)~Y?if ty € (Ty —§,T¢) and t_ € [0,7_). This
proves the uniform convergence of limy 47, [W3 — V4| = 0in t_ € [0,7_) in the case that
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limg, 47, N4 (t4) € [v4,00). The proof of the uniform convergence of lim; 17, [W4 —V_| =0 in
t— € [0,7-) in the case that lim 47, 74 (t4) € (—o0,v_] is similar. O

From now on, we understand M; as a continuous stochastic process defined on Ri with
constant zero on R? \ D.

Lemma 5.2. Let R > 0. Then Mi(t AN1p), t € R%—’ is an My(TR)-Doob martingale w.r.t.
the filtration (f+ otV ft_/\ 7)(t+ t)eR? - Moreover, if the underlying probability measure is
R

weighted by My(Tgr)/M1(0), then the new law of (W4, W_) agrees with the sz)z)w sy O the
o-algebra FY vV F .
R R

Proof. Fixt_ > 0. Let 7' = t_A7g, u(t) = m(t,7%) —m(0,7%), and My o =y 5o OU ~1. Then
R - is the normalization of 4 »_,, and the conditional law of 7 7o glven .7: is that of an

hSLE, curve in H from W, (0,75) to V(0,75) with force points W_ (0 Th) and V_(0,75), in
the chordal coordinate. Moreover, the driving function for 77, o I Wi (u='(t),7), and by Lem-

mas and the force point functions started from V, (0,75 ), W_(0,7;) and V_(0,75)
are Vi(u™'(t),75), W-_(u"'(t),7z) and V_(u"'(t),75), respectively. Thus, M(u='(t),75)
agrees with the M given in Proposition with p = 2, wo = W,(0,75), weo = V4(0,75),
vy =W_(-,75) and vo = V_(-, 7).

For t > 0, let F; denote the o-algebra generated by .7-";}; and ﬁ+,?§(s), 0 <s <t Let

T, denote the lifetime of n, o Then u maps [0,7}) onto [0,7%). By Proposition [2.20

Mi(u=(t),75), 0 <t < Ty, is a local martingale w.r.t. the filtration (F;);>0. By the definition
of 7, o for any 0 < t < Ty, ny(t) = fK,(?g) o, Tg(“(t))' Extend u to Ry such that if

t > T, then u(t) = Ty. Then for “every t > 0, u(t) is an (F;)-stopping time because for any
a >0, u(t) > a if and only if a < T} and hcapy(Hull(f} ) © ., T_([O al))) <t. So we get a
filtration (F, (t))t>0, and My (t,75), 0 <t < T4, is an (Fu (t))t>0-local martingale.

From 7, (t) = fK (#7) oy T*( u(t)), 0 <t < Ty, we know that F;" \/.7-":, C fu(t) for ¢t > 0.

-
Since 73 is an (F;");>o-stopping time, it is also an (f (t))t=>0-stopping time. Slnce T < 7g, by
the boundedness of My on [0,7g], M1(t A75,7T5), t > 0, is a bounded (]:u(t))t>0 martingale.
Since .7:: . \/.7-1_ c F u(ty) and T = t_ ATy, we conclude that M (t4 AT, t— ATg), t4 >0,
is a bounded (]:t+ et VF )t >o-martingale. This holds for any ¢_ > 0. Symmetrically, for
+\ TR R -

any ty > 0, My(t4 ATH, t_ATR), t— > 0, is a bounded (.F;ATEvftiATE)tfzo—martingale. Thus,
Mi(tATpR), t € R2,is a bounded (.7-"+A + VFE© )(t+7t7)eRz+—martingale. Since Mi(tATR) —
Mi(TR) as t4,t_ — 0o, M1(t ATR) is an Ml(zR) Doob martingale.

By weighting the underlying probability measure by M;i(ry)/M1(0), we get another prob-

ability measure. To describe the joint law of wy and @_ restricted to ., under the new
probability measure, we study the new marginal law of n_ up to 7 and the new conditional

o7



law of n4 up to TE given that part of n_. We may do the weighting in two steps. First, weight
the original measure by Ny := M;(0,75)/M1(0,0) to get a new measure IP;; second, weight
Py by Ny := Ml(T];t,Tg)/Ml (0,75) to get ;. Since Ny depends only on 7_, after the first
step, the conditional law of 1, given any part of 7_ does not change. By Proposition [2.20] the
n— up to 75 under Py is a chordal SLE,(2,2,2) curve in H started from w_ with force points
v_,wy, vy, respectively, up to 7. Since N1 = 0 when 7, = T_, Py is supported by {7, <T_},
on which M;(0,7;) > 0. So Ny is P1-a.s. well defined. Since E[N2|]-"T_§] = 1, after the second

step, the law of n_ up to 7, does not change further. To describe the conditional law of 7
up to Tg = T}J{(T]Jr) given 77— up to 7, it suffices to consider the conditional law of , - up
TR

to 7';{(1”) since we may recover 74 using ny = fK,(r};) 0Ny = By Proposition [2.20 again,

the conditional law of the normalization of 7 - Up to 74 (n4) under Py is that of a chordal
SLE,(2,2,2) curve in H started from W, (0,7 ) with force points at V. (0,75), W_(0,7) and
V_(0,7g ), respectively. Thus, under P2 the joint law of 7, up to TE and 17— up to 7, agrees

with that of a commuting pair of SLE, (2, 2,2) curves started from (wy,w_; vy, v_) respectively

up to TE and 7. This means that Py = Péii)’w_;wﬁv_) on F;AT; \% ‘Ft__/wg’ as desired. O
We let IP’?;SLE 4 denote the joint law of the driving functions w, and w_ here. From
oUW —v_)
the lemma, we find that, for any ¢ = (t4,¢_) € RZ and R > 0,
(2,2) + -
dP(w+,w7;U+,v7)|(]:t+/\7—g v ]:t,/\frg) . Ml(t/\IR) R>0 (5 3)
2—SLE -+ — - ) . .
d]p(w+—>v+;wf—>v7) ’(]:t+m;; v ‘Ft_AT,;) M (0)

Theorem 5.3. Under Py, Mi(t) is an (]:L)EERi -martingale; and for any extended (Fy)-
stopping time T,

2,2
d]P’Ewﬁ’wim’vi)\]-“l N{r e R2} _ My(z) 5.4)
dP?;ijwaﬁM \F-n{reR:} Mi(0) '
Proof. Since f;.:/\rg v }—t__/wg agrees with .7-}': VF, =Fon{t<rtp}, from 1) we get
P> (FeN {t < zr})
(w4, w—sv4,v-) L =R _ Ml (t) Vi € R2 R 0
dP?~—SLE (Fin{t<znh) M)y 550 70
(wy—v4;w_—v_) t = =LR =

which implies by sending R — oo that

(2,2)
Plopw vl Pt MO eR2 (5.5)
2—SLE 9 12 . .
dP(w+—>v+;w7—>u,)|}—t Mi(0)

2—SLE

From this we conclude that M; is an (F;)-martingale under P s vy w0
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Let 7 be an extended (F;)-stopping time. Fix A € F; such that A C {r € R2}. Let t € R2.
Define the (F;)-stopping time 7t as in Proposition [2.28 which gives AN {r < t} € F« C Fi.
Using (5.5)) and applying Proposition to the stopping times ¢, 7t and the martingale M7, we

2.2

get PEer,w,;u,v,)[Am {r <t} = E?;fiEq;+;w,—>u,) [Lm&g;}%]- Sending both coordinates of
2,2 - M .
t to oo, we get P§w+),w,;v+,u,)[A] = E?wfi%+;w,—>u,)[1f4 Mi%;] So we get the desired li O
Corollary 5.4. For any extended (F)-stopping time T,
2-SLE
dP(w+—>v+;w_—>v_)|f1 N {I € Dl} o My (I)_l
2,2 - 1
dIP’Ewﬁ’wfm?vi) \F,n{rep} M)

Proof. This follows from Theorem and the fact that M; > 0 on D;. O

For convenience, we write Py for P2~SLE Assume now that vg := (vy +v_)/2 €

(w+—v4;w_—v_)"
[w_,wy]. We understand vy as w,? if (vy +v_)/2 = w,, 0 € {+,—}. Let Vj be the force
point function started from vg. By Section we may define the time curve u : [0,T%) — Dy
such that V,(u(t)) — Vo(u(t)) = e*(v, — 1), 0 < t < T% o € {+,—}, and u can not be
extended beyond T with such property. We follow the notation there, for every X defined on
D, we use X" to denote the function X o u defined on [0,7%). We also define the processes

R, = Vi € (0.1, o € {+,~}, and R = (R4, R-). Since T, is an (Ff)zo-stopping time
for o € {+,—}, D1 = [0,T4) x [0,T-) is an (F)-stopping region. We now extend u to Ry
such that if s > T" then u(s) = limypw« u(t). By Proposition for any ¢ > 0, u(t) is an
(ft)teRi—stopping time.

Let I = vy —vg = vg — v_. Let a; = 2(22 — 1) and define

Ty, r_) = B rd 2(ry +7-) -1
Gi(re,r-) UEH}(l o)r 1+ 7o) Fﬁ,z<(1+r+)(1+r_)> . (5.6)

Then M(t) = (2! I)*1G1(R(t)) on [0,T"). So we obtain the following lemma.

We are going to derive the transition density of the process (R(t))o<t<r« under Py. In fact,
T is Py-a.s. finite, and by saying that plt(¢,r,7*) is the transition density of (R) under Py, we
mean that, if (R(t)) starts from r, then for any bounded measurable function f on (0,1)2, and
any t > 0,

Applying Corollary to the (F;)-stopping time wu(t) for any deterministic ¢ > 0, and using
that u(t) € Dy iff t < T, we get

BT OAT >t MPOT e GiIRO)
BCA|Fp N {T > 1} M(0)! GiED) =

Combining it with Corollary we get the following transition density.
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Lemma 5.5. Let p{%(t,z, r*) be the function pR(t,z, r*) given in Corollary with pg = 0
and py = p— = 2. Then under Py, the transition density of (R) is
Gi(r)

Gl (7"*) '

Pt r,r) = e 2Rt 1 1)

5.2 Opposite pair of iSLE,(p) curves, the generic case

Second, we consider another pair of random curves. Let k and p be as in Proposition [2.21] i.e.,
k€ (0,4]and p > —2o0rk € (4,8) and p > §—2. Let w_ < wy € R. Let v_ € (—oo,w_)U{w_}
and vy € (wy,00)U{w]}. Let 71 be an iSLE,(p) curve in H from w, to w_ with force points
v4 and v_, and let 7)_ be its reversal. Then 7_ is an iSLE,(p) curve in H from w_ to w; with
force points v_ and v..

For o € {+,—}, stop 7, at the first time that it disconnects w_, from oo, and parametrize
the stopped curve by H-capacity. The chordal Loewner curve: 7,(t), 0 < t < T, (lifetime), is an
iSLE.(p) curve in H from w, to w_, with force points v, and v_,, in the chordal coordinate.
Let w, denote the driving function. We still let K,(-) and (F{):>0 denote the H-hulls and
the filtration generated by 7,, o € {+,—}, and let K (t4,t_) = Hull(K (t+) U K_(¢_)). From
the DMP and reversibility of iSLE,(p), we know that, for o € {4, -}, if 7_, is a stopping
time for n_,, then conditionally on F_° 7 and the event that 7, < T, the other curve Ny
from its beginning up to the time that it hits n(7_,) is an iSLE(p) curve in H \ K_,(7_)
from w, to n_s(7—y) with force points being v, and another point, which is the point on
{v_s} UK_;(7—») NR that is closest to (—o) - co. Thus, a.s. there is a chordal Loewner curve
No,r_, With some speed, such that the part of 1, up to the time that it disconnects 7_,(7_)
from oo equals the fx__(;_,)-image of 1y ., and the conditional law of the normalization of
Nor_, given F 7 is that of an iSLE,(p) curve in H from gx_ (- y(ws) to @W_q (7o) with force
points gx__(r_,)(vs) and g}U{:‘;(T_g)(v,a) (Definition [2.11)), in the chordal coordinate.

Thus, a.s. n4 and 7 satisfy the conditions in Deﬁnitionwith 7, =100,Ty), 75 =7.NQ,
and

Do(ny,n-) :={(ty,t-) €Ty xI_:3t' = (¢, ,t") € T4 x I_ with ¢/, >t and t/ > t_
such that K(-,-) is strictly increasing in both variables on [0, ']}, (5.7)

which is an HC region. So (n4+,7n—;D2(n4+,n-)) is a.s. a commuting pair of chordal Loewner
curves. Let W and W_ be the driving functions, and let V. and V_ be the force point functions

started from v4 and v_, respectively. Let (}—;(Jr));eRi be the right-continuous augmentation of
(}—E)zeRi- Then Dy(n4,n—) is an (fi(—'—))—stopping region.

We now write Da(n4,n—) simply as Dy. Define a non-negative function My on Dy by

8_ p(2p+4—r) 2p Vi W) (W_ —V_)\-1
My = W= WV VT WV R (G )
oe{+,—} A

(5.8)
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It is well defined and continuous on Dy because % —1>0,and W, = V_,Vy —W_,V, —V_
are not zero, where the latter facts follow from that ny does not hit (—oo,v_| before Ty and
that 7— does not hit [v4, 00) before 7. We first present some deterministic results on Mp.

Lemma 5.6. There is a constant C' € (0,00) depending only on k and p such that

Wi — W_|\ (B-pa2e=te=2) (p+2)(2p=(x=8))
M, < C(’Wi—‘ﬂ') Ve — V| (5.9)
1) A 2p—(l€—8)
(p+2)(2p (r=8)) .
bound: My < C|Vy —V_| ; using that |Vo — V_| > vy —v_|, we get another upper
771)/\20 (H 8) (p+2)(2ﬂ (k—8)) /
bound: My < C'|Wy — W_| Vi — V_| , where C" € (0,00) depends
only on K, p, vy —v_|.

Proof. 1t suffices to prove . First, the factor F“’P(Ele/a 7 gg/‘i— V—g)*l in is bounded
from below and above by positive constants depending only on s and p because Fj , is contin-
uous and positive on [0,1]. Since Vo < W_ < W, < V., we have (W, —V_) + (V; —W_) >
Vi —V_. So one of Wy —V_ and Vi — W_ is at least (V. — V_)/2. By symmetry, we only
need to consider the case that V. — W_ > (V4 — V_)/2. In that case, |V, — W_| < |V, —V_|,
and we have

In particular, since (2 — >0 and |Wi —W_| <|Vy —=V_|, we get a simpler upper

p(2p+ ~)+2p

= Wy — W |= Vi — V| Wy — V¥
Wi — W_|\ -1/ [W,y — V| 2= (+2)(2p=(n=8))
:<’ywi—v_\’> (’yV:—v_\‘> Vi = V-]

(s 1A 2p=(r=8)

(Wi —W_|\G-D -
(=)

(+2) 20— (=)

’V-‘r_V‘ 3

as desired, where in the last step we used that |‘I{,VV+ V“//‘l‘, w//: V- ‘| < 1 and the inequality that

for 0 < z,y <1and a,b >0, 2% < (zy)*\’. O
Lemma 5.7. My a.s. extends continuously to Ri with My =0 on Ri \ Ds.

Proof. Since for o € {+,—}, 1, a.s. extends continuously to [0,7}], by Remark W, and
W_ a.s. extend continuously to Dy. From (3.14) we know that a.s. |V, — V_| is bounded on Ds.
Thus, by Lemma it suffices to show that (the continuations of) W, and W_ a.s. agree on
0Dy N Ri. Define subsets of 9Ds:

Ap = {(t, T2 (t4)) st € QN0 T2}, A- = {(TP2(t_),t) £ € QN (0,T1)}.

Then A, U A_ is dense in 9Dy N (0, 00)2. Thus, it suffices to show that W, and W_ a.s. agree
on Ay U A_. By symmetry, we only need to show that W, and W_ a.s. agree on A,. Since

A, is countable, it suffices to show that, for any s, € Q4, on the event that s, < T, a.s.
Wy (sy,TP2(s4)) = W_(sy,TP?(s1)). Since W, > W_, if the equality does not hold, then
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there exists s € Q with (s1, s—) € Dy such that inf, _ els. P2 (s, ) Wi(sq,t—)—W_(s4,t_) > 0.

Thus, it suffices to show that, for any (s;,s_) € Q+, on the event that (s4,s_) € Dy, a.s.

-)
i ft,e[s,,Tf2(s+))(W+(5+vt*) — W_(s4,1-)) = 0.
Fix (s4,s-) € Qi. We will show that the probability of the event E that (s4,s—) € D

and inft,e[s, 7P (s+))(W+(s+,t_) — W_(s4,t_)) > 0 is zero. Suppose the event E happens.

Since (s4,s—) € Da, we may choose a (random) sequence &, | 0 such that ny(sy + d,) €
H\ K(s4,s—) for all n. Let z, = gK(s+7 (s + 0n)) € K(s4 + dn,s-)/K(s+,5-),
n € N, then z, — Wi(s+,s—) by (3 Since K_, (t-), 0 < t_ < TP2(s,), are chordal
Loewner hulls driven by W_(s4,-) w1th speed dm(sy,-), by Proposition K_ s (s +

)/ K_s.(s-), 0 <t < TP2(s,) — s_, are chordal Loewner hulls driven by W_(sy,s_ + -)

with speed dm(s4,s— +-). By Lemma [3.13] W, (s4,t) = gg@fg’/;{+(s+)(@+(s+)). By Propo-

sition [2.12) Wi(sq,s— +t) = gIVg:(i*(’; J)rt)/Kis (s )(W+(s+, 5), 0 <t < TP(sy) —s_.

Since Wy (s4,t-) > W_(sq,t_) for s_ < t_ TP2(S+) we find that W, (sy,t_) has pos-
itive distance from K_, (t_)/K_,, (s-) for all t_ € [s_,TP2(s,)). Moreover, from that

limt_TTDQ(SJr) Wi(sy,t—) — W_(s4,t-) > 0, we know that W, (s4,s_) has positive distance

from the H-hull generated by the union of K_, (t_)/K_,, (s—) = K(s4,t_)/K(s4,5-) over
all t_ € [s_,TP2(sy)), which is K(si,T"?(s;))/K(sy,s_). Since z, — W,y (sy,s_), for
n big enough, z, is not contained in K(si, T 2(sy))/K(st,s_). Thus, for n big enough,
N4+ (8+ +6n) = fK(s;,s_)(2n) is DOt contained in K (s, TP2(s,))\ K (s4,s_), which implies that
Ne(sy +6,) € H\ K(s4,TP2(s4)) because n4(s4 + 0,) € H\ K(s4,s_).

By the DMP and reversibility of iSLE.(p), conditionally first on 74([0,s+]) and then on
n_([0,T72(s.)]), the part of 7, after sy and the part of n_ after T22(s,) are two pieces
of the same iSLE,(p) curve in the closure of one connected component of H \ (74 ([0, s4]) U
n_([0,772(s,)])) (with opposite directions). Since 1y (sy + 6,) € H\ K(sy4,T2(sy)) for n
big enough, this connected component has to be H\ K (sy,T22(sy)). So a.s. K(-,-) is strictly
increasing on [0, s4 + 6] x [0, T72(s4 ) +¢] in both variables for some d,e > 0, which contradicts
that (s4,TP2(s.)) € Dy. Thus, the event E has probability zero, and the proof is done. O

From now on, we understand My as the continuous extension defined in Lemma Let
T;{F and 7p, R > 0, be as in the last subsection.

Lemma 5.8. For any R > 0, (MQ(U\IR))tERi is an Msy(1)-Doob martingale w.r.t. the filtra-
tion <J_-;:—/\T§ \/ft__ /\T;t)(t‘ht*)eRi. Moreover, if the underlying probability measure is weighted by
(p:p)

(w00 v-)

Ms(1R)/M1(0), then the new law of (i, w_) agrees with the probability measure P’
on the o-algebra F*, vV F_.
R

R

Proof. We follow the argument in the proof of Lemma [5.2] where the key ingredient is Propo-
sition except that here we use Lemma |5.6| instead of (5.2]). O
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We now use PSFE() v to denote the joint law of the w, and w_ here.

(w+<_>w7§'l}+, -
Theorem 5.9. Under P, Ma(t) is an (]-'E)zeRi—martmgale; and for any extended (F3)-
stopping time T,
(psp)
dP(w%w oy )|]-' N{r eR? +} _ Ms(z)
dPlSLE(P) |F.n{r e R?l-} Mz(Q)

(w+ WV 7’U—)

Proof. This is similar to the proof of Theorem except that here we use Lemma ]

Corollary 5.10. Let (]'—;(ﬂ)teR? be the right-continuous augmentation of <‘F§)t€Ri' Then Ms(t)

is an (‘7:2( ))teR2 -martingale under IP)I(iLEiﬁL Y and for any extended (fi(ﬂ)—stoppmg time
T,

dIP’EfUi)w . )\ﬂ(* N{re®d} A
P FHn{rerz} M(0)

S (5.10)

(ww_v4,0-)

iSLE(p)
(w+ WV, V- )

Proof. By Proposition [2.30, M, is an (]—'E(H)—martingale under P . Using Theorem

and Proposition [2.31], we easily get (5.10) in the case that 7 is a bounded (.FL(JF))—stopping
time. The results extends to the general case by Proposition [2.28 O

iSLE(p)
(w"r(_)w— U4 7”—)

Lemma 5.11. For any extended (]-'E(H)—stoppmg time 7, Ma(t) is P
on the event {T € Dy}.

-a.s. positive

Proof. Let T be an extended (.7:2(+))—stopping time. Then {7 € Dy} € fﬁ) because for any
acR?,

{reD}n{r<a}l= U ({z <t} n{K(:,") is strictly increasing on [0,t']}) € F,.
t<t’'€[0,a)NQ%
_ _ (+) iISLE(p) _
Let A = {7 € Do} N{Mz(r) =0} € Fz"’. We are going to show that P vw_oy 0 )[A] =0.
Since My(r) = 0 on A € ]-'(+) N RZ, by Corollary [5.10 Pgﬁii)w—'w u,)[A] = 0. Applying

iSLE(p)
(W rw_;v4,v_)

Corollary |5.10[ to 7 + ¢, where t € Q+, we find that P

-a.s Ma(r +t) = 0 on A.
Thus, on the event A, IP’E?UEFELTL,U%U?)—&S. Ms(7 +t) = 0 for any t € Q2 , which implies by the

continuity that My = 0 on 7 + R%, which further implies that W, = W_ on (7 + R2) N Dy,
which in turn implies by Lemma [3.7| that ny (74 +t1) = n_(7— +t_) for any t = (t4,t_) € R%
such that 7 + ¢ € Do, and so K(-,-) can not be strictly increasing on [0, 7 + t]| for any ¢ > Q

which then contradicts that 7 € Dy. So we have IP’i(i}LE(p ) . [A] = 0. O
+Hw*vv+71}*)
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Corollary 5.12. For any extended (]—"L(H)—stopping time T,

iISLE(p) (+)
WPy crwsp o) F7 T E Do} My(r)~!
+ - -1
dpr? TNz ey M2(0)
Proof. This follows from Corollary and Lemma [5.11 O
The following lemma describes the DMP for ]P’i(iLE(p ) ) , which is similar to Lemma
+(—>'LU7,'U+,Uf)

iSLE(p)
(wow_vp,v-)"

Theorem 5.13. Suppose (W, w-) follows the law P We write Dy for the

Da(ny,m-). Let T = (14,7_) be an extended (]:é ))EERi -stopping time. Then on the event that

T € Do, a.s. there is another random commuting pair of chordal Loewner curves (ﬁ+,ﬁ_;52)
with some speeds, which agrees with the part of (n4+,n—;D2) after 7. Moreover, Dy = Da(14+,1-)
as in , and the normalization of (Mg, 1— 132) denoted by (N4, 17— 52) satisfies the follow-
ing propertzes Foro € {+,-}, let f” be the o-algebra generated by .7-"<+) and n5(s), s <t. Let

]:(u,t ) = ]:t v ]:t , and (]:t( )) be the right- contmuous augmentation of (]:t) Then for any

extended (]-;H))—stoppmg time S, we have P[S € Dg|]:1 ,T €Dyl = PI(%E;%/V;W V,)\T[S € Dyl.

Here if for some o € {+,—}, Vo(1) = W,(1), then V,(1) is treated as W, (7).

Remark 5.14. A stronger statement should be true: the conditional joint law of the driving
iSLE(p)

(W s W3V Vo) But the statement of the lemma is

functions for 4 and 7_ given fﬁ) is P
sufficient for our purpose.

Proof. Suppose that 7 € Dy happens. To prove the existence of (74, 7—; 732), which agrees with
the part of (n4,n—;Ds) after 7, by Lemma it suffices to show that, for any o € {+,—}
and any ¢ = (q4,q-) € Qi, on the event 7 +q € Do, a.s. K(T +q-oe_,+te,)/K(T+q-0e_,),
0 <t < q,, are generated by a chordal Loewner curve with some speed, which intersects R at a
Lebesgue measure zero set. This follows from Lemma and Corollary - applied to 7 +¢).
Let K(-,-) be the hull function for (74,7-). Since 7]0(7'0 ) = fk(x) © Mo, 0 € {+,—}, we get
K=K(r+)/K(z). SoDy={t—71:t€ Dot >71}=Do(ify,7).

Let (74, 7—; D) be the normalization of (7, 7_; D). Let hy(t) = m(r +te,) —m(7), t >0,
o€ {+,—},and hgg = hy ®h_. Then 7, =7, 0h, !, o 6 +,—}, and Dy = he(Ds). We add
tilde to denote the functions from Section |3[ and My in for (174, 7] 252) By Lemma
for X € {Wy,W_,V,,V_.}, X = X(7 4+ h3'(-)). So My = MQ(T + Rzl ().

The argument at the end of the proof of Lemma works here to show that, for any

t € R%, 7+ hg'(t) is an extended (]-"( )) -stopping time, and F, C ]:( ) 1y Let S be an

extended (]-Z(Jr))—stopping time. Let S =7 + hg' (S). Then S is an extended (]—"t(ﬂ)—stopping
time because for any a € RZ,

{S<a}= |J {S<pn{z+h5'(p) <a}) € Fu,

peQ?

64



5 = (+) . iSLE(p) >
where we used that {S < p} € F, C .7: 1) We now write P for ]P)(w+<—>w,;u+,v,)7 P for

Pl(%fg/(/_,w,v )y P’ for ngi)w_7v+ o)’ and P for PE‘;VP)HW_’V% Vo)l To prove that ]P’[S €
DQ|J’:I ,T € D] = [§ € Dy, it suffices to show that, for any A € fﬁ) with A C {1 € Dy},
we have L L

P[AN{S € Do}| = E[14P[S € D4]]. (5.11)

Note that S € Ds if and only if S € Dy. By Corollary the LHS of 1) equals

MQ(S)}

PAN{S € Do}] = E [1Am{SeR Y My (0)

Applying Corollary twice (to P and P), we find that the RHS of (5.11) equals

# PPl Tl =¥ B lsan g ]) =B lmsan ]

where in the first equality, we used Ms(S) = M(S) and My(0) = My(r), and in the second
equality we used Lemma So we get , and the proof is done. O
iSLE(p)

(w4 rw_;v4,v—
v_)/2 € [w_,w4], and let Vj be the force point function started from vy. We may define the
time curve u : [0,T%) — Dy and the processes R,(t), 0 € {+,—}, and R(t) as in Section

and extend v to R4 such that u(s) = limypw u(t) for s > T, Since Dy is an (Féﬂ)—stopping

For convenience, we write Py for P ) We now also assume that vy := (v +

region, by Proposition [3. 24 for any t > 0, u(t) is an (.FL(H)—stopping time.
Applying Corollary [5.12[ to u(t) for any deterministic ¢t > 0, we get

dPQ’f('H N {t < T“} B Mg(t)fl B e—2a2t GZ(E(O))
dP PP)\IH n{t<Tv} My0)~* Ga(R(t))
where ag = w and
p(2ptd—r) 8_ 2 1—r)(—ro)\?
Go(ry,r_):=2" 2x  (ry +r_)s 1 H (1+ry)% -Fﬁvp<§1+7ﬁ321+r_§> . (5.12)

oe{+,—}
So we obtain the following lemma.

Lemma 5.15. Let p¥(t,r,r*) be the function p®(t,r,r*) given in Corollary with pg = 0
and py = p— = p. Then under Py, the transition density of (R) is

Ga(r)

Py (t,r,r*) == e 2 pii(t,r, %) - Ga(r*)
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5.3 Opposite pair of iSLE,(p) curves, a limit case

Third, we consider another pair of random curves. Let xk and p be as in the last subsection.
Let 7+ be an iSLE,(p) curve in H from w4 to w_ with force points vy, —0o0. So its reversal
71— is an iSLE4(p) curve in H from w_ to w4 with force points —oo,v;. Define the chordal
Loewner curves 74 (t4+), 0 <ty < T4, and n_(t_), 0 <t_ < T_, with driving functions w; and
w_, respectively, in the same way as in the previous subsection. Define D3 = Dy (14, n—) using
(5.7). Then (ny,n—;D3) is a.s. a commuting pair of chordal Loewner curves. Let Wy and W_
be the driving functions, and let V. be the force point function started from v,..
Define a non-negative function M3 on D by

V+—W+> 1

My =Wy —W_ sV, —W_[¥ - F, (V o

Let V_ be the force point function started from w”. Since V. > W, > W_ > V_ there are
C > 0 depending on k, p and C’ depending on k, p and |vy — w_| such that

K

W_>*—1(V+—W_) 2 (p—(5-4))

2 K
Ve 1) 2e—(5-1)
Ve — W Ve V. (Vi = Vo)

M3<C(

< Wy — W) EDAZ=(5=0) (7, _ )2 (o—(5-4)

Here we use the fact that 3 —1,2(p — (§ —4)) >0, V. > vy, and V- < w_. Then the exactly

same proof of Lemma [5.7] can be used here to prove the following lemma.

Lemma 5.16. Ms a.s. extends continuously to Ri with M3 =0 on Ri \ Ds.

iSLE(p)
(wirw_jvyp
the joint law of w4 and w_. Then similar arguments as in the previous subsection give the

following propositions.

We now understand Ms as the continuous extension defined on }RQ Let P ) denote

iSLE(p)
(wrw—sv4

Theorem 5.17. Under P ) Ms is an (}—é)teR’i -martingale; and for any extended

(]:é(ﬂ)—stopping time T,

dPEZ})%w oy |f ﬁ{T € R2 } Mg(z)
dPo "0 FED (T ery}y  Ms(Q)

(wirw_;vy)

iSLE(p)
(wiw—sv4

Corollary 5.18. For any extended (}"L(H)-stoppmg time T, M3(T) is P
on the event {T' € D3}, and

)=a-3. positive

iSLE(p
dP(w+<£>w i) |]: N{T € D3} B Ms(T)!
dPE’Ll))+,w_;U+)“FZ N {I S D3} M3(Q)_l
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iSLE(p)
(ww—sv4)

iSLE(p)

and Py Sw v,

Theorem 5.19. The statement in Theorem |5.15 holds with P

iSLE(p) iSLE(p)
(wirw_;v4,0_) and IPD(W+ —W_ VL, Vo)

in place of P respectively.

In this subsection, we have marked points vy > wy > w_. We introduce two more marked

points vp and v_ by vg = (wy +w_)/2 and v_ = 2vy — v4. Let Vj and V_ be the force point
iSLE(p)

(ww_jvp)’
Under P3, we may define the time curve u : [0,7%) — Ds and the processes R, (t), o € {+,—},
and R(t) as in Section Then for each t > 0, (the extended) u(t) is an (.7-",5(+))—stopping time.

Applying Corollary to u(t) for any deterministic ¢ > 0, we get :

functions started from vy and v_, respectively. For convenience, we write P3 for P

(+) U _
dBs| Fyiy Nt <T"} gty 205t G3(B(0)

dP0)|F ) n{t < Ty M(0) G3(R(1)’
where a3 = w and
8_ 2p 1—rpy\-t
Gs(ry,r_) = (ry+r_)n Y1 +7r ) -Fw<1 Mf) . (5.13)

Using an argument similar to the proof of Lemma [5.15] we get the following lemma.

Lemma 5.20. Let p3R(t,1, r*) be the function given in Corollary with po = p— = 0 and
p+ = p. Then under Ps, the transition density of (R) is

~R Gs(r)
* 2a3t, R * 3

t,r,r’) i =e 93 t,r,r) - .

P3 ( ) P3 ( ) G3(T*)

Using Lemmas and we can obtain a quasi-invariant density of R under
either Py, Py, or P3 as follows. For j = 1,2,3, let pf”(f*) be the invariant density of R under
P22 PPr) and PW, respectively, given by Corollary and let G1,G2,G3 be given by
(5.65.12l5.13]), respectively. Define

R (,.% R
pi(r*) . 5, 1Pt
;= ~dr’, pil=—5 -2 j=123. (5.14)
’ / e}

It is straightforward to check that Z; € (0,00), j =1,2,3.

Lemma 5.21. Let oy, az, a3 be given by Lemmas[5.5, and[5.20, respectively.
(i) For any j € {1,2,3}, ¢t > 0 and r* € [0,1]?,
[ @R s = e ).
(0,1]?
This means, under the law P;, if the process (R) starts from a random point in (0,1)>
with density ﬁf, then for any deterministic t > 0, the density of (the survived) R(t) is

e‘mitﬁf. So we call ]7;% a quasi-invariant distribution for (R) under P;.
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(it) Let p1 =10, B2 = 2p+6, and f3 = p+ 6. For j € {1,2,3}, under the law P;, for any
r € (0,1)%, if R starts from r, then

Pi[T" > t] = Z;Gj(r)e **" (1 + O(e ")) (5.15)
Prt,r, %) = P[T" > pi(r*) (1 + O(e 1)), (5.16)

Here we emphasize that the implicit constants in the O symbols do not depend on r.

Proof. Part (i) follows easily from (4.30). For part (11) suppose R starts from r. Using Corollary

- Lemmas n H, and |5 m, and formulas , we get

- on. G,(r)
P;[T" >t 2/ pr(t,r,r*)dr* :/ e~ 20l (¢, r, 1) S dr
il ] oD ( ) . i ( )Gj(t*)

= [ e+ 0 ) S 0 = 2,650 1+ 0 ),
(0,1)2

G;(r*)
which is (5.15). We also have

o0, G;(r)
PRt ) — ¢ 2a]tpR t,T,[* J -
i ( ) i ( )Gj(z ]
_672a]~t R( *)(1+O( 7ﬁjt)) Gj(f) _ 72ajtZ'~R( *)(1+O( fﬁjt))G'( )
which together with ((5.15]) implies ([5.16)). O

6 Boundary Green’s Functions

We are going to prove the main theorems and some other important theorems in this section.

Lemma 6.1. Let Uy and Uy be two simply connected subdomains of the Riemann sphere @,
both of which contain oo and do not contain 0. Suppose f maps Uy conformally onto Uy and
fizes 0o. Suppose for j = 1,2, f; maps D* := C \ {|2] < 1} conformally onto U; and fizes oo,
such that fo = fo fi. Let a;j = lim, oo |fj(2)|/|2] > 0, j =1,2, and a = az/a1. If R > 4aq,
then {|z| > R} C Uy, and {|z| > aR +4a2} C f({|z] > R}) C {|z] > aR — 4as}.

Proof. That {|z| > R} C U; when R > 4a; follows from Koebe’s 1/4 theorem applied to
Jo fioJ, where J(z) := 1/z. Define g; = fj/aj, j = 1,2. Fix 21 € U;. Let 22 = f(21) € Uy,
wo = f11(z1) = f3 ' (22) € D, and w; = gj(wo) = 2z;/aj, j = 1,2. Let Rj = |z, j = 1,2,
and r; = |wj|, j = 0,1,2. Then R; = a;rj, j = 1,2. Applying Koebe’s distortion theorem
to J o gjoJ, we find that ro + % -2<7r; <rg+ % + 2, 5 = 1,2, which implies that
|R1/a1 — Ra/as| = |r1 —r2| < 4. Thus, aRy —4ay < Ry < aRj +4ag, which implies that f maps
{lz| > R} into {|z| > aR — 4as}, and f({|z| = R}) C {|]z| < aR + 4az}. The latter inclusion
implies that f({|z| > R}) D {|z] > aR + 4as} because f(o0) = oc. O
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Theorem 6.2. Let k € (0,8). Let v— < w_ < wy < vy € R be such that 0 € [v_,v4]. Let
(h4,7-) be a 2-SLE, in H with link pattern (wy — vy;w_ — v_). Let g = 2(2 1), 1 = 10,
and G1(w;v) be as in . Then there is a constant C' > 0 depending only on k such that, as
L — oo,

_B1_
Bli, 1 {21 > L) # 0.0 € {+.-)] = 0L~ Gy(ao) (14 021 9) o)

where the implicit constant depends only on k.

Proof. Let p(w;v; L) denote the LHS of . Construct the random commuting pair of chordal
Loewner curves (11, 72; D) from 7; and 72 as in Section where D = [0,7}) x [0,7-), and
T, is the lifetime of 75, o € {+, —}. We adopt the symbols from Sections Note that, when
L > |vy| V Ju_], N+ and 7— both intersect {|z| > L} if and only if 4 and 7n— both intersect
{lz| > L}. In fact, for any o € {+, —}, 1, either disconnects v; from oo, or disconnects v_; from
oo. If 7, does not intersect {|z| > L}, then in the former case, 7, grows in a bounded connected
component of H\ 7, after the end of 7,, and so can not hit {|z| > L}; and in the latter case n_,
grows in a bounded connected component of H\ 7,, and can not hit {|z| > L}. We first consider
a very special case: vy =1, v_ = -1, wy =ry €[0,1), and w_ = —r_ € (—1,0]. Let vg = 0.
Let V,, be the force point function started from v,, v € {0,+, —}. Since vy — vg| = |vg — v_|,
we may define a time curve u : [0,7") — D as in Section and adopt the symbols from there.
Define p(r; L) = p(r4, —r—_;1,—1; L).

Suppose L > 25, and so 3 log(L/2) > 3. Let to € [3,  log(L/2)). If both 14 and n_ intersect
{]z| > L}, then there is some ¢’ € [0,7") such that either 74 (uy([0,#])) or n—(u_([0,t]))
intersects {|z| > L}, which by implies that L < 2¢%, and so T% > t' > log(L/2)/2 > t.
Thus, {ne N{|z| > L} #0,0 € {+,—}} C {T" > to}. By again, rado (1, ([0, us(t0)])) <
2e%0 < L. So 1,([0,us(t0)]), ¢ € {+,—}, do not intersect {|z| > L}.

Let 32 (2) = (9xc(utoy (=) — Vi (t0))/e. Then gt maps € \ (K (u(t0))*™ U [v_, v4]) con-
formally onto C\ [—1,1], and fixes oo with ¥ (z)/z — e %0 as z — oco. From V" < v_ <0,
Vi >wvp >0, and V' = (VI + V¥) /2, we get [Vi(to)] < |[V(to) — V%(to)|/2 = e*°. Applying
Lemma to f =g and fa(2) = (2 +1/2)/2 (a1 = €**/2 and ay = 1/2) and using that
L > 2e%0 we get {|z| > L} € C\ (K (u(ty))®" U[v_,v]) and

{|z| > L/e* —2} > gt ({|2| > L}) D {|2| > L/e** + 2}. (6.2)

Note that both 1y and n_ intersect {|z| > L} if and only if 7" > ¢y and the gj! -image of the

parts of 1), after u,(to), o € {4, —}, both intersect the gi! -image of {|z| > L}. From Proposition
2.32 conditionally on }"éa) and the event that T > to, the gj;-image of the parts of 7), after
No(us(to)), o € {+,—}, form a 2-SLE, in H, with link pattern (WX(ty) — Vi(to))/e*0 =

oR,(to) = (VE(to) — Vi(to))/e* = o1, o{+,—}. From (6.2) we get

P(B(t0); —5+2) < Plaon{lz] > L} # 0,0 € {4+, HFLE) T > to] < pl(Rlto); gz ~2)]. (6.3

’ €2t0 B
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We use the approach of [6] to prove the convergence of limy,_, o L' p(r, L). We first estimate
p(L) := f[o’l}g p(r; L)pR(r)dr, where plt is the quasi-invariant density for the process (R) under

P, = %;f];EUJr;w_ ) given in Lemma [5.21} This is the probability that the two curves in a

2-SLE,, in H with link pattern (ry — 1;—r_ — —1) both hit {|z| > L}, where (ry,r_) is a
random point that follows the density 5{2. From Lemmawe know that, for the deterministic
time to, P[T% > to] = e~ 1% and the law of (R(to)) conditionally on the event {T" > ¢} still has
density plt. Thus, the conditional joint law of the gi,-images of the parts of 7, after 1, (uq(to)),
o € {+,—} given F! and the event that T" > tq agrees with that of (7y,7_). From and
that {n, N {|z| > L} # 0,0 € {+,—}} C{T" > to} we get

e 2aton(L/e*0 —2) > p(L) > e 2™op(L/e*0 + 2, if L > 20,
Let (L) = L®p(L). Then (if to > 3 and L > 2¢%)
(1 —2¢%0 /L)y~ 1q(L/e*0 —2) > q(L) > (14 2% /L)"1q(L/e*® + 2). (6.4)

Suppose Lo > 4 and L > e5(Lg +2). Let t; = log(L/(Lo + 2))/2 and ts = log(L/(Lo — 2))/2.
Then L/e?t —2 = L/e*? +2 = Ly, to > t; > 3 and L = (Lg — 2)e?2 > 222 > 2¢%1. From
(6.4) (applied here with ¢; and ¢2 in place of to on the LHS and RHS, respectively) we get

(1+2/Lo)* q(Lo) > q(L) > (1 — 2/Lo)* q(Ly), if L >e5(Lo+2) >6e5.  (6.5)

From ([3.32)) we know that T" > to implies that both 77, and 7_ intersect {|z| > !0 /64}. Since
P[T% > to] = e~ 2*1t0 > for all ¢y > 0, we see that p is positive on [0,00), and so is ¢. From
(6.5) we see that limy_,~ q(L) converges to a point in (0,00). Denote it by g(c0). By fixing
Ly > 4 and sending L — oo in , we get

q(00)Ly ™ (1 4+2/Lo)~** < p(Lo) < q(oo) Ly (1 —2/Lg)™*, if Ly > 4. (6.6)

Now we estimate p(r; L) for a fixed deterministic r € [0,1)2\ {(0,0)}. The process (R)
starts from r and has transition density given by Lemma Fix L > 2e% and choose to €
[3,10g(L/2)/2). Then both n4 and n_ intersect {|z| > L} implies that T" > 3. From Lemma
We know that Py [T > to] = Z1G1(r)e 2% (140(e~P1%0)) and the law of R(t) conditional
on {T" >t} has a density on (0, 1)2, which equals pf - (1 + O(e~#1%)). Using we get

p(r; L) = Z1q(00)Gi(r)e >0 (L/e*) =1 (1 + O(e”110))(1 4 O(e**/L)).
For L > €%, by choosing ty such that e?0 = L2/2+51) and letting Cy = Zq(o0), we get
p(r; L) = CoGr(r) L™ (1 + O(L~P/(2+Ay),

Since Gy (ry,r—) = G1(r4,—r—_;1,—1), we proved for vy =41, wy €[0,1), and w_ €
(=1,0]. Since G1(aws + b, aw— + b;avy + b,av— +b) = a~ Gy (w4, w_;vy,v_) for any a > 0
and b € R, by a translation and a dilation, we get in the case that (vy+v_)/2 € [w_, w4].
Here the assumption that 0 € [v4,v_] is used to control the amount of translation.
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Finally, we consider all other cases, i.e., (v4 +v_)/2 & [w—_,w;]. By symmetry, we may
assume that (vy +v_)/2 < w_. Let vg = (wy +w_)/2. Then vy > wy > vy > w_ > v_, but
vy — vy < vg — v—. We still let V,, be the force point functions started from v,, v € {0, +, —}.

2 ..
By (3.18) V¥ satisfies the PDE 9,V, = évfa,’i on Dihs] as defined in Section Thus, on
D(liisj, for any vy # vy € {+,—,0}, 4 log|V,, — V,,| & (V,,2—W+3(2V,,1—W+)’ which implies that
V-V
lp=v)  Vi-Vo Vi-V_

> 1. (6.7)

8+10g’V+—V_|_W+—Vb Vb—v_
V+(t70)7V0(t70)
Vo(t,0)—V_(t,0)
than log |V (¢,0) — V_(¢,0)|. From the assumption Vel0.0-15(0.0) _ ve-vo o (0,1). Let 7 be

' Vo(0,0)-V_(0,0) — wo—v—
the first ¢ such that % = 1; if such time does not exist, then set 7 = T.. Then 7 is an

(f,i)t+zo—stopping time, and from |W} we know that, for any 0 <t < 7, |V (¢,0) = V_(¢,0)| <
elvy —v_|, which implies by that diam(n+([0,¢])) < e|vy —v_|. From we know that
M; = G1(W; V). Here and below, we write W and V for (W, W_) and (V, V_), respectively.
From Lemma we know that for any L € (0,00), (Mi(t A 7,0))i>0 is a Doob-martingale,
where M;(t,0) = 0 if t > T.. Taking L = (e + 1)[vs — v_|, we find that 7, > 7. In fact, if
n+([0,¢]) intersects {|z| > L}, then diam(n4([0,¢])) > L — |wy| > L — |vy —v_| > e|lvy —v_]|,
which then implies that |V (¢,0) — V_(£,0)| > e|vy — v_| by (3.14), and so t > 7 because
diam(n4([0,7])) < e|vy — v_|. So by Proposition [2.31]

Fixing t— = 0. The displayed formula means that is increasing with a rate faster

E1(; 1 yGi(W; V)70 = E[Mi(7,0)] = M1(0,0) = G1(w; v). (6.8)

Using the same argument as in the proof of (6.3) with (7,0) in place of u(tp) and gx ;) in
place of gt , we get

p((w;z)|(7,0);L+) < P[% N {’Z| = L} # @,O’ € {+7 _}|f:_77- < T+} < p((E;Z)’(T,O);L*)a
(6.9)
where L,LL =L+p- |V+(7-7 0) - V*(Ta 0)|7 IUS {+a _}'

If 7 < T4, from the definition of 7 we know that Vy(7,0) = (V4.(7,0) + V_(7,0))/2. Since
Wy > Vo > W_, we have (Vi(7,0) + V_(7,0))/2 € [W_(7,0), W,(7,0)]. Also note that
V_(1,0) <wv_ <0 and Vi(7,0) > vy > 0. So we may apply the result in the particular case to
get

|\Vi(T, O)L—iV_ (1,0)] > ﬂl/(2+51)) )

=CoG1(W;V)l(r0) - L™ (1 + O((mzv_‘)ﬁl/(2+ﬁl)>>. (6.10)

Here in the last step we used |V4.(7,0) —V_(7,0)| < e|vy —v_| and Ly = L(1+O(|vy —v_|/L)).
Plugging (6.10)) into , taking expectation on both sides of , and using the fact that

PUW: V)| ir0y3 L) =CoGr (W V) iy - L5 (14 0((
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7 < Ty when ny N{|z| = L} # 0, we get
pw; v; L) =CoE[1y ey G1 (W3 V) r )] - L7 (14 O((fog — 0| /L)M/ 00
—~CoGi(ws ) - L7 (1+ O(([os — v-|/ L)/ ),
where in the last step we used . The proof is now complete. ]

Theorem 6.3. Let k € (4,8). Then Theorem holds with the same aq, 81, G1 but a different
positive constant C under either of the following two modifications:

(i) the set {|z| > L} is replaced by (L, 0), (—oo,—L), or (L,00) U (—o0,—L);
(ii) the event that n, N{|z| > L} # 0, o € {+,—}, is replaced by ny Nn_N{|z| > L} # 0.

Proof. The same argument in the proof of Theorem [6.2] works here, where the assumption that
k € (4,8) is used to guarantee that the probability of the event is positive for all L > 0. O

Theorem 6.4. Let k € (0,4] and p > =2, or k € (4,8) and p > § —2. Let w_ < wy € R,
vy € {wl} U (wy,00) and v— € {w-} U (—oco,w_) be such that 0 € [v_,vi]. Let 7 be an
iSLE.(p) curve in H from wy to w_ with force points at vy and v_. Let ag = ﬂﬁ(p— (5—4)),
B2 =2p+6, and

8_ p(2p+4—k) 2p vy —wy)(w_ —v_)\ 1
GQ(M;Q):hUJr*w*“ 1|U+7’U*| 2" H |wofvfo'|'an,p<( hs +)( )) .
oe{+.—} (W —v-)(v4 —w-)

Then there is a constant C > 0 depending only on x,p such that, as L — oo,

N By
PN {|z| > L} # 0] = CL™2 Gy (w; y)(1 + o('”*L”') 52“),
where the implicit constant depends only on k,p. Moreover, if k € (0,4] and p € (-2,5 — 2),
then the above statement holds (with a different positive constant C') if the set {|z| > L} is
replaced by (L, 0), (—oo,—L), or (L,00) U (—o0,—L).

Proof. Let p(w;v; L) denote the probability that 7 intersects {|z| > L}, and let p(r;L) =
p(ry,—r_;1,—1;L) for r = (ro,r_) € [0,1]2\ {(0,0)}. Let 7y = 7 and 7j_ be the time-
reversal of 7. Construct the random commuting pair of chordal Loewner curves (n4,n—;Da2)
from 74 and 77— as in Section where D is defined by (5.7). Then for L > max{|v|, [v_|},
nNn{lz| > L} # 0 if and only if n, N{|z| > L} #0, o € {+,—}.

The rest of the proof follows the same line as that of Theorem [6.2] except that we now apply
Lemma [5.21] with j = 2 and use Lemma [5.§ and Theorem [5.13] in place of Lemma [5.2] and

Proposition respectively. More specifically, to obtain the counterpart of (6.3), we apply
Theorem to 7 =u(ty) and S = S = (S%,S"), pe {+,—}, where

SE = inf{t : [,(t) — Vi (t)| > L+ p - 2e}, o€ {+,—}.
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By convention, if gi or S* is not well defined, then we set SM = 0. To obtain the counterpart

of , we apply Theoremto 7=(r,0)and S = o (gﬁ‘r, S™), p € {+,—}, where
SH = inf{t : |[7,(t)] > L+ pu- |Vi(r,0) = V_(1,0)]}, o€ {+ -}

In either case S is a Stopplng time w.r. t the rlght continuous augmentation of the filtration
(}—t)tERQ where F( t) and ]-"(+) We also use the fact that
GQ(r+a ) GQ(T—H -r—;1,— 1)'

Finally, the statement about the case x € (0,4] and p € (=2, § — 2) follows from the same
argument as above, where the conditions on x and p guarantees that the probability that 7
intersects (L, c0) or (—oo, —L) is positive for any L > 0. O

Corollary 6.5. Let k € (0,8). Let v < w— < wy < vy € R be such that 0 € [v_,vy]. Let
(Nw, Mv) be a 2-SLE, in H with link pattern (wy <> w_;v4 <> v_). Let ag = 2(% —1), B2 = 10,
and Ga(w;v) be as in . Then there is a constant C' > 0 depending only on k such that, as

L — oo,
B2
B2+2)
)

Bl 0 {121 > L} # 0,u € {w,0}] = CL~ o) (1+ 02— 4)

where the implicit constant depends only on k.

Proof. This follows from Theorem [6.4] and the facts that 7),, is an hSLE,, i.e., iSLE.(2) curve in
H from w4 to w_ with force points at vy, v_, and that when L > max{|vy|, |[v_|}, 7w N {|z| >
L} # 0 implies that 7, N {|z| > L} # 0 as well. O

Theorem 6.6. Let k€ (0,4] and p > =2, or k € (4,8) and p> § — 2. Let w_ <wy € R and
vy € {w} U (wg,00) be such that 0 € [w_,vy]. Let i be an iSLE.(p) curve in H from w4 to
w_ with force points at vy and co. Let az = 2(p — (5 —4)), B3 = p+6, and

Vy — 'UJ+) 1

Ga(wivy) = huy —w-[F oy —w_| ¥ Fep (=
Vy —W-

Then there is a constant C > 0 depending only on k,p such that, as L — oo,

P[0 {|2] > L} # 0] = CL™ Ga(w;vy) (1+ o(’“’*;“')ﬁfﬁ),

where the implicit constant depends only on k,p. Moreover, if k € (0,4] and p € (-2,5 — 2),
then the statement holds (with a different positive constant C') if the set {|z| > L} is replaced by
(L,00) or (L,00)U(—o00,—=L); if k € (4,8) and p > § —2, then the statement holds if {|z| > L}
is replaced by (—oo, —L) or (L,00) U (—o0,—L).

Proof. The proof follows the same line as that of Theorems and except that we now
introduce vy := (w4 +w_)/2 and v_ := 2vp —v4 asin Section Then we can define the time
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curve u as in Section without an additional assumption. We now apply Lemma with
j = 3 and use Theorem in place of Proposition Note that the G3(ry,r—) in
agrees with the G3(ry, —r_; 1, —1) here. The last sentence follows from the same argument and
the fact that the events are positive for any L > 0 in each case. O

Corollary 6.7. Let k € (0,8). Let w— < wy < vy € R be such that 0 € [w_,vy]. Let (N, M)
be a 2-SLE,; in H with link pattern (wy <> w_;vy > 00). Let az = % —1, B3 = 8, and
Gs(w;vy) be as in . Then there is a constant C > 0 depending only on k such that, as
L — oo,

B3

Pliu N {|2| > L} # 0,u € {w,v}] = CL™**Gs(w;vy) (1 + o(‘wg“—\) ﬂ3+2>’

where the implicit constant depends only on k.

Proof. This follows from Theorem and the facts that 7,, is an hSLE,, i.e., iSLE(2) curve
in H from w, to w_ with force points at v, 0o, and that 7, N {|z| > L} # 0 for any L > 0. [

Proof of Theorem [1.1l This follows from Theorem [6.2 Corollary and Corollary O

Proof of Theorem [1.3. By symmetry, we may assume that 2o = 0 and w > v > 0. Let J(z) =
—1/z, which is a Mdbius automorphism of H, and swaps 0 and co. Now J(n) is an SLE,(p) curve
in H from J(w) to 0 with the force point at J(v), its reversal is an iSLE,(p) curve in H from 0
to J(w) with force points at 0" and J(v). Note that dist(n,0) < r iff J(n) N {|z| > 1/r} # 0.

So (i) follows from Theorem by setting wy =0, w_ = -1, vy =0% and v_ = —1; and (ii)
follows from Theorem by setting wy =0, w_ = —%, and vy =07, O
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