1 Loewner Equations

1.1 Chordal Loewner equation

Let $T \in(0, \infty]$ and $\lambda \in C([0, T))$, the set of real valued continuous functions on $[0, T)$. The chordal Loewner equation driven by λ is

$$
\begin{equation*}
\partial_{t} g_{t}(z)=\frac{2}{g_{t}(z)-\lambda(t)}, \quad 0 \leq t<T, \quad g_{0}(z)=z . \tag{1.1}
\end{equation*}
$$

For every $z \in \mathbb{C}$, let $\tau(z) \geq 0$ be such that $[0, \tau(z))$ is the maximal interval of the solution $t \mapsto g_{t}(z)$. So g_{t} is defined on $\{z \in \mathbb{C}: \tau(z)>t\}$. We have the following facts.

1. If $z \in \mathbb{R}$, then $g_{t}(z) \in \mathbb{R}$ for $0 \leq t<\tau(z)$.
2. If $z \in \mathbb{H}=\{\operatorname{Im} z>0\}$, then $g_{t}(z)$ stays inside \mathbb{H} because it can not reach \mathbb{R}; and $t \mapsto \operatorname{Im} g_{t}(z)$ is decreasing because $\operatorname{Im} \frac{2}{g_{t}(z)-\lambda(t)}<0$ if $g_{t}(z) \in \mathbb{H}$.
3. Each g_{t} commutes with the conjugate map $z \mapsto \bar{z}$ because $\overline{g_{t}(z)}$ satisfies the same ODE.
4. If $\tau(z)<T$, then $\lim _{t \rightarrow \tau(z)} g_{t}(z)-\lambda(t)=0$. In fact, there are only two cases for the solution $t \mapsto g_{t}(z)$ to blow up before T : either $\lim _{t \rightarrow \tau(z)} g_{t}(z)-\lambda(t)=0$ or $\lim _{t \rightarrow \tau(z)}\left|g_{t}(z)\right|=\infty$. If the second case happens, then $\left|\partial_{t} g_{t}(z)\right|=\left|\frac{2}{g_{t}(z)-\lambda(t)}\right|$ is bounded on $[0, \tau(z))$. Since $\tau(z)<\infty$, we get a contradiction.
5. For each $t,\{z \in \mathbb{C}: \tau(z)>t\}$ is open, and g_{t} is analytic on $\{z \in \mathbb{C}: \tau(z)>t\}$. The proof uses some standard arguments in the theory of ordinary differential equations, which says that the solution of the ODE has differentiable dependence on the parameter. Here to prove that g_{t} is complex differentiable at z_{0}, we define

$$
A_{t}(z)=\frac{g_{t}(z)-g_{t}\left(z_{0}\right)}{z-z_{0}}-h_{t}\left(z_{0}\right),
$$

where $h_{t}(z)$ is the solution of $\partial_{t} h_{t}(z)=\frac{-2 h_{t}(z)}{\left(g_{t}(z)-\lambda(t)\right)^{2}}, h_{0}\left(z_{0}\right)=1$. Here $h_{t}(z)$ is expected to be equal to $g_{t}^{\prime}(z)$, and the ODE for h_{t} is obtained by differentiating (1.1) w.r.t. z. Then $A_{0}(z)=0$ and $A_{t}(z)$ satisfies an equation like $\partial_{t} A_{t}(z)=F\left(t, z, z_{0}\right) A_{t}(z)+G\left(t, z, z_{0}\right)$. When $z \rightarrow z_{0}, F$ and G both tend to 0 . Then Gronwall's inequality can be applied to show that $A_{t}(z) \rightarrow 0$. This shows that g_{t} is complex differentiable at z_{0}, and $g_{t}^{\prime}\left(z_{0}\right)=h_{t}\left(z_{0}\right)$. This argument also shows that the complex derivative of g_{t} commutes with the partial derivative ∂_{t}, and we have

$$
\partial_{t} g_{t}^{\prime}(z)=-\frac{2 g_{t}^{\prime}(z)}{\left(g_{t}(z)-\lambda(t)\right)^{2}}, \quad g_{0}^{\prime}(z)=1
$$

6. Each g_{t} is conformal (i.e., univalent analytic) on $\{z \in \mathbb{C}: \tau(z)>t\}$. This follows from the uniqueness of the solution of ODE.
7. Each g_{t} maps $\{z \in \mathbb{H}: \tau(z)>t\}$ onto \mathbb{H}. Let $t_{0} \in[0, T)$. First, we know that $g_{t_{0}}(\{z \in$ $\left.\left.\mathbb{H}: \tau(z)>t_{0}\right\}\right) \subset \mathbb{H}$. Second, fix any $z_{0} \in \mathbb{H}$, consider the ODE

$$
h^{\prime}(t)=\frac{2}{h(t)-\lambda(t)}, \quad 0 \leq t \leq t_{0}, \quad h\left(t_{0}\right)=z_{0} .
$$

As t decreases from t_{0} to $0, \operatorname{Im} h(t)$ increases, so the solution will not hit the singularity, which implies that it does not blow up on $\left[0, t_{0}\right]$. Then we have $h(0) \in \mathbb{H}$ and $g_{t_{0}}(h(0))=$ $h\left(t_{0}\right)=z_{0}$.

Lemma 1.1 Let $t_{0} \in[0, T)$. Suppose that $|\lambda(t)| \leq M$ on $\left[0, t_{0}\right]$. Then
(i) $\left\{\tau(z) \leq t_{0}\right\} \subset\left\{|z| \leq M+2 \sqrt{2 t_{0}}\right\}$.
(ii) If $|z|>M+2 \sqrt{2 t_{0}}$, then $\left|g_{t_{0}}(z)\right| \geq|z|-M-\sqrt{2 t_{0}}$.

Proof. Let $|z|>M+2 \sqrt{2 t_{0}}$. Then $\left|g_{0}(z)-\lambda(0)\right| \geq|z|-M>2 \sqrt{2 t_{0}}$. Let s_{0} be the maximal number on $\left[0, t_{0}\right]$ such that the solution $g_{t}(z)$ exists on $\left[0, s_{0}\right)$ and $\left|g_{t}(z)-\lambda(t)\right| \geq \sqrt{2 t_{0}}$ on $\left[0, s_{0}\right)$. Then we get $\left|\partial_{t} g_{t}(z)\right| \leq \sqrt{2 / t_{0}}$ for $0 \leq t<s_{0}$, which implies that $\left|g_{t}(z)\right| \geq|z|-\sqrt{2 t_{0}}$ for $0 \leq t<s_{0}$. So we have $\left|g_{t}(z)-\lambda(t)\right| \geq\left|g_{t}(z)\right|-M>|z|-\sqrt{2 t_{0}}-M>\sqrt{2 t_{0}}$ for $0 \leq t<s_{0}$. First, this means that $g_{t}(z)$ does not blow up at s_{0}. Second, we have $s_{0}=t_{0}$ because if $s_{0}<t_{0}$ then $\lim _{t \rightarrow s_{0}}\left|g_{t}(z)-\lambda(t)\right|=\sqrt{2 t_{0}}$, which is a contradiction. So we conclude that, if $|z|>M+2 \sqrt{2 t_{0}}$, then $\tau(z)>t_{0}$. This finishes the proof of (i). Since $\left|g_{t}(z)-\lambda(t)\right| \geq|z|-\sqrt{2 t_{0}}$ for $0 \leq t<s_{0}=t_{0}$, we get $\left|g_{t_{0}}(z)-\lambda\left(t_{0}\right)\right| \geq|z|-\sqrt{2 t_{0}}$. The proof of (ii) is finished since $\left|\lambda\left(t_{0}\right)\right| \leq M$.

This lemma implies that g_{t} has a pole at ∞. The pole has order 1 because g_{t} is conformal near ∞. We write the power series expansion of g_{t} at ∞ as

$$
g_{t}(z)=a_{1}(t) z+a_{0}(t)+{\frac{a_{-1}(t)^{-1}}{z}}^{-1}+O\left(z^{-2}\right) .
$$

We have

$$
\partial_{t} g_{t}(z)=\frac{2}{g_{t}(z)-\lambda(t)}=\frac{2}{a_{1} z+O(1)}=\frac{2}{a_{1} z} \cdot \frac{1}{1+O\left(z^{-1}\right)}=\frac{2}{a_{1}} z^{-1}+O\left(z^{-2}\right), \quad z \rightarrow \infty .
$$

Thus, $a_{1}^{\prime}(t)=a_{0}^{\prime}(t)=0$ and $a_{2}^{\prime}(t)=\frac{2}{a_{1}(t)}$. Since $g_{0}(z)=z, a_{1} \equiv 1, a_{0} \equiv 0$, and $a_{2}(t)=2 t$.
Let $K_{t}=\{z \in \mathbb{H}: \tau(z) \leq t\}, 0 \leq t<T$. Then $K_{0}=\emptyset ; K_{t_{1}} \subset K_{t_{2}}$ if $t_{1}<t_{2}$; each K_{t} is a relatively closed bounded subset of $\mathbb{H}, g_{t}:\left(\mathbb{H} \backslash K_{t} ; \infty\right) \xrightarrow{\text { Conf }}(\mathbb{H} ; \infty)$, and satisfies

$$
\begin{equation*}
g_{t}(z)=z+\frac{2 t}{z}+O\left(z^{-2}\right), \quad z \rightarrow \infty . \tag{1.2}
\end{equation*}
$$

The g_{t} is uniquely determined by K_{t}. If $t_{1}<t_{2}$, then $g_{t_{1}} \neq g_{t_{2}}$, so $K_{t_{1}} \varsubsetneqq K_{t_{2}}$.
Definition 1.1 We call g_{t} and K_{t} the chordal Loewner maps and hulls driven by λ.

Lemma 1.2 (Linearity) Suppose g_{t} and K_{t} are chordal Loewner maps and hulls driven by $\lambda(t)$. Let $a>0$ and $b \in \mathbb{R}$. Then $a g_{t / a^{2}}((\cdot-b) / a)+b$ and $a K_{t / a^{2}}+b$ are chordal Loewner maps and hulls driven by $a \lambda\left(t / a^{2}\right)+b$.

Proof. The proof is straightforward. We leave it as an exercise.
Exercise. Let $\lambda(t)=c \sqrt{t}, t \geq 0$. Let g_{t} be the chordal Loewner maps driven by λ. Since $a \lambda\left(t / a^{2}\right)=\lambda(t)$ for any $a>0$, we have $a g_{t / a^{2}}(z / a)=g_{t}(z)$. Letting $a=\sqrt{t}$, we get $g_{t}(z)=$ $\sqrt{t} g_{1}(z / \sqrt{t})$. We may derive an ODE for g_{1} using the chordal Loewner equation. We can solve this ODE to get g_{1}.

Corollary 1.1 If K_{t} are chordal Loewner maps driven by $\lambda(t)$, then $\bigcap_{t \in(0, T)} \overline{K_{t}}=\{\lambda(0)\}$.
Proof. For $t \in(0, T), \overline{K_{t}}$ is a nonempty compact set because K_{t} is a nonempty and bounded. Since $\overline{K_{t}}$ is increasing in t, we conclude that $\bigcap_{t \in(0, T)} \overline{K_{t}}$ is nonempty. Let z_{0} lie in the intersection. From Lemma $1.2, K_{t}-\lambda(0)$ are chordal Loewner hulls driven by $\lambda(t)-\lambda(0)$. Let $M_{t}=\sup _{s \in[0, t]}|\lambda(s)-\lambda(0)|$. Then $\lim _{t \rightarrow 0} M_{t}=0$. From Lemma 1.1, we get $K_{t}-\lambda(0) \subset\{|z| \leq$ $\left.M_{t}+2 \sqrt{2 t}\right\}$. Thus, $\left|z_{0}-\lambda(0)\right| \leq M_{t}+2 \sqrt{2 t}$ for any $t \in(0, T)$. So z_{0} must be $\lambda(0)$.

Lemma 1.3 Suppose g_{t} and K_{t} are chordal Loewner maps and hulls driven by $\lambda \in C([0, T))$. Let $t_{0} \in[0, T)$. Then $g_{t_{0}+t} \circ g_{t_{0}}^{-1}$ and $g_{t_{0}}\left(K_{t_{0}+t} \backslash K_{t_{0}}\right), 0 \leq t<T-t_{0}$, are chordal Loewner maps and hulls driven by $\lambda\left(t_{0}+t\right)$.

Proof. The proof is straightforward. We leave it as an exercise.
Lemma 1.4 Suppose g_{t} and K_{t} are chordal Loewner maps and hulls driven by $\lambda \in C([0, T))$. Then for any $t \in[0, T)$,

$$
\begin{equation*}
\{\lambda(t)\}=\bigcap_{\varepsilon \in(0, T-t)} \overline{g_{t}\left(K_{t+\varepsilon} \backslash K_{t}\right)} \tag{1.3}
\end{equation*}
$$

Proof. This follows from Corollary 1.1 and Lemma 1.3.
Remark. This corollary says that we may recover the driving function using the maps and hulls. Since the maps are also determined by the hulls, the driving function is completely determined by the hulls.

Definition 1.2 We say that λ generates a chordal Loewner trace β if for every t,

$$
\beta(t):=\lim _{\mathbb{H} \ni z \rightarrow \lambda(t)} g_{t}^{-1}(z)
$$

exists, and β is a continuous curve. Such β lies on $\mathbb{H} \cup \mathbb{R}$ with $\beta(0)=\lambda(0) \in \mathbb{R}$. We call the trace β simple if it has no self intersection and intersects \mathbb{R} only at $\beta(0)$.

Example. If $\lambda(t)=0,0 \leq t<\infty$, then $\partial_{t} g_{t}(z)=2 / g_{t}(z)$. So $g_{t}(z)=\sqrt{z^{2}+4 t}$. If $g_{t}(z)$ blows up at some finite time t_{0}, then $\sqrt{z^{2}+4 t_{0}}=0$, which implies that $z= \pm 2 i \sqrt{t_{0}}$. So $\{\tau(z) \leq t\}=\left[-2 i \sqrt{t_{0}}, 2 i \sqrt{t}\right]$ and $K_{t}=(0, i \sqrt{4 t}], 0 \leq t<\infty$. We have $g_{t}^{-1}(z)=\sqrt{z^{2}-4 t}$. We have $\beta(t):=\lim _{\mathbb{H} \ni z \rightarrow 0} g_{t}^{-1}(z)=i \sqrt{4 t}, 0 \leq t<\infty$, is continuous, has no self-intersection, and stays in \mathbb{H} for $t>0$. So λ generates a simple trace. Note that $K_{t}=\beta((0, t])$ for each t.

Proposition 1.1 If λ generates a chordal Loewner trace β, then for each t, $\mathbb{H} \backslash K_{t}$ is the unbounded connected component of $\mathbb{H} \backslash \beta((0, t])$. In particular, if β is simple, then $K_{t}=\beta((0, t])$. Moreover, for each t, g_{t}^{-1} extends continuously to $\mathbb{H} \cup \mathbb{R}$.

Remark. This proposition says that if the trace exists, then it determines the hulls, which in turn determine the driving function. The proof will be given later.

Lemma 1.5 Let $a>0$ and $b \in \mathbb{R}$. If $\lambda(t)$ generates a chordal Loewner trace $\beta(t)$, then $a \lambda\left(t / a^{2}\right)+b$ generates the chordal Loewner trace $a \beta\left(\cdot / a^{2}\right)+b$.

Proof. This follows from Lemma 1.2 and some straightforward argument.
Lemma 1.6 Let $\lambda \in C([0, T))$, $t_{0} \in[0, T)$, and $\lambda_{t_{0}}(t)=\lambda\left(t_{0}+t\right), 0 \leq t<T-t_{0}$. Let g_{t} be the chordal Loewner maps driven by λ. Suppose λ generates a chordal Loewner trace β and $\lambda_{t_{0}}$ generates a chordal Loewner trace $\beta_{t_{0}}$. Extend $g_{t_{0}}^{-1}$ continuously from \mathbb{H} to $\mathbb{H} \cup \mathbb{R}$. Then $\beta\left(t_{0}+t\right)=g_{t_{0}}^{-1}\left(\beta_{t_{0}}(t)+\lambda\left(t_{0}\right)\right)$ for $0 \leq t<T-t_{0}$.

Proof. Let $g_{t_{0}, t}$ be the chordal Loewner maps driven by $\lambda_{t_{0}}$. From Lemma 1.2 and Lemma 1.3 we get $g_{t_{0}, t}(z)=g_{t_{0}+t} \circ g_{t_{0}}^{-1}\left(z+\lambda\left(t_{0}\right)\right)-\lambda\left(t_{0}\right)$. So we get

$$
g_{t_{0}+t}^{-1}(z)=g_{t_{0}}^{-1}\left(g_{t_{0}, t}^{-1}\left(z-\lambda\left(t_{0}\right)\right)+\lambda\left(t_{0}\right)\right), \quad z \in \mathbb{H} .
$$

This equality still holds for $z \in \mathbb{H} \cup \mathbb{R}$ if $g_{t_{0}+t}^{-1}, g_{t_{0}}^{-1}$, and $g_{t_{0}, t}^{-1}$ extend continuously to $\mathbb{H} \cup \mathbb{R}$. Letting $z=\lambda\left(t_{0}+t\right)$, we get the desired result.

Odes Schramm introduced SLE (shorthand for stochastic Loewner evolution or SchrammLoewner evolution) by combining Loewner equation with stochastic processes.

Definition 1.3 For $\kappa>0$, a standard chordal $\operatorname{SLE}(\kappa)$ is defined to be the chordal Loewner process driven by $\lambda(t)=\sqrt{\kappa} B(t), 0 \leq t<\infty$, where $B(t)$ is a standard Brownian motion.

Note that the maps from the space of $\lambda(t)$ to space of $\left(g_{t}\right)$ and the space of $\left(K_{t}\right)$ are continuous or measurable if these spaces are assigned some suitable topology or σ-algebra. Here is one example. We consider the case $T=\infty$. Let the topology on the linear space $C([0, \infty))$ be generated by semi-norms: $\|\lambda\|_{a}=\sup _{0 \leq t \leq a}|\lambda(t)|$. Let the topology on the space of $\left(g_{t}\right)$ be generated by $\left\{\left(g_{t}\right): g_{t_{0}}^{-1}\left(z_{0}\right) \in U_{0}\right\}$ for $t_{0} \in[0, \infty), z_{0} \in \mathbb{H}$, and open set $U_{0} \subset \mathbb{H}$. Let the topology on the space of $\left(K_{t}\right)$ be generated by $\left\{\left(K_{t}\right): z_{0} \neq K_{t_{0}}\right\}$ for $t_{0} \in[0, \infty)$ and $z_{0} \in \mathbb{H}$. Then the chordal Loewner maps are continuous.

This means that the distribution of SLE is a pushforward measures of the Wiener measure (the distribution of Brownian motion) under the chordal Loewner map.

Theorem 1.1 (Rohde-Schramm, Lawler-Schramm-Werner) For any $\kappa>0$, with probability 1 a standard chordal SLE (κ) trace exists; the trace tends to ∞ as $t \rightarrow \infty$; is simple iff $\kappa \in(0,4]$; visits every point on $\mathbb{H} \cup \mathbb{R}$ iff $\kappa \geq 8$.

Remark. Rohde and Schramm proved the case $\kappa \neq 8$ using Stochastic Analysis and Conformal Geometry. Lawler, Schramm and Werner proved the case $\kappa=8$ using a different method. They showed that $\operatorname{SLE}(8)$ is the scaling limit of the uniform spanning tree Peano curve. We will prove Rohde and Schramm's result later.

Lemma 1.7 Let $\beta(t)$ be a standard chordal SLE(κ) trace. Let $a>0$. Then $a \beta\left(t / a^{2}\right)$ has the same distribution as $\beta(t)$.

Proof. This follows from Lemma 1.5 with $b=0$ and the fact that $a B\left(t / a^{2}\right)$ has the same distribution as $B(t)$.

Remark. The lemma states that if we dilate a standard chordal SLE (κ) trace β by a factor a, then the new curve has the same distribution as β up to a linear time-change. If we do not care about the parametrization, then $a \beta$ has the same distribution as β.

Since a standard chordal $\operatorname{SLE}(\kappa)$ trace lies on $\overline{\bar{H}}$, starts from $\lambda(0)=0$, and ends at ∞, we also view it as a chordal $\operatorname{SLE}(\kappa)$ trace in \mathbb{H} from 0 to ∞.

We now define chordal SLE in a general simply connected domain. A domain in this lecture will always be a connected open subset of the extended Complex plane $\widehat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$ with spherical metric. A simply connected domain is a domain whose complement in $\widehat{\mathbb{C}}$ is a (nondegenerate) continuum, which is a connected compact subset with more than one point. For example, half-planes and discs are simply connected domains, but \mathbb{C} and $\widehat{\mathbb{C}}$ are not. When we talk about the closure or boundary of a simply connected domain, we mean its closure or boundary in $\widehat{\mathbb{C}}$. For example, ∞ is a boundary point of \mathbb{H}. Riemann's mapping theorem says that any two simply connected domains are conformally equivalent.

Definition 1.4 Let β be a standard chordal SLE (κ) trace. Let $W: \mathbb{H} \xrightarrow{\text { Conf }} D$. Then we call $W \circ \beta$ a chordal SLE (κ) trace in D from $W(0)$ to $W(\infty)$.

Remarks.

1. Initially W is not defined at 0 and ∞. The values of W on $\partial \mathbb{H}=\widehat{\mathbb{R}}=\mathbb{R} \cup\{\infty\}$ should be understood as prime ends of D. If V is another conformal map from \mathbb{H} onto D, then $W \circ V^{-1}$ is a Möbius transformation, which extends continuously to $\overline{\mathbb{H}}$. For $x \in \partial \mathbb{H}$, we say $W(x)=V(x)$ if the extension of $W \circ V^{-1}$ fixes x.
2. If D is bounded by a Jordan curve, then W extends continuously to $\overline{\mathbb{H}}=\mathbb{H} \cup \mathbb{R} \cup\{\infty\}$ and induces a homeomorphism between $\widehat{\mathbb{R}}=\mathbb{R} \cup\{\infty\}$ and J. In this case, we may view $W(0)$ and $W(\infty)$ as two points on J.
3. In general we do not view $W(x)$ for $x \in \partial \mathbb{H}$ as boundary points of D even if W extends continuously to $\overline{\mathbb{H}}$. For example, $W(z)=z^{2}$ maps \mathbb{H} onto $\mathbb{C} \backslash[0, \infty)$, and its continuation maps 1 and -1 to the same point 1 . But we want to distinguish $W(1)$ from $W(-1)$.
4. If there is another $V: \mathbb{H} \xrightarrow{\text { Conf }} D$ such that $V(0)=W(0)$ and $V(\infty)=W(\infty)$. Then $V \circ W^{-1}:(\mathbb{H} ; 0, \infty) \xrightarrow{\text { Conf }}(\mathbb{H} ; 0, \infty)$, which implies that $V \circ W^{-1}(z)=a z$ for some $a>0$. So $V(z)=W(a z)$. Thus, $V(\beta(t))=W(a \beta(t))$. From Lemma 1.7 we see that $V\left(\beta\left(t / a^{2}\right)\right)$ has the same distribution as $W(\beta(t))$. Thus, up to a linear time-change, the distribution of a chordal SLE (κ) trace does not depend on the choice of W.

Proposition 1.2 (Domain Markov Property for Chordal SLE) Let K_{t} and $\beta(t), 0 \leq$ $t<\infty$, be the chordal Loewner hulls and trace driven by $\lambda(t)=\sqrt{\kappa} B(t)$. Let T_{0} be a finite stopping time w.r.t. the filtration \mathcal{F}_{t} generated by $B(t)$. Then conditioned on $\mathcal{F}_{T_{0}}, \beta\left(T_{0}+t\right)$, $0 \leq t<\infty$, is a chordal SLE (κ) trace in $\mathbb{H} \backslash K_{T_{0}}$ from $\beta\left(T_{0}\right)$ to ∞.

Proof. Let g_{t} be the chordal Loewner maps driven by λ. Let $\lambda_{T_{0}}(t)=\lambda\left(T_{0}+t\right)-\lambda\left(T_{0}\right)$. From the properties of Brownian motion, we know that $\lambda_{T_{0}}(t)$ has the same distribution as $\lambda(t)$, and is independent of $\mathcal{F}_{T_{0}}$. So $\lambda_{T_{0}}$ generates a standard chordal $\operatorname{SLE}(\kappa)$ trace, say $\beta_{T_{0}}$, which is independent of $\mathcal{F}_{T_{0}}$. From Lemma 1.6, we see that $\beta\left(T_{0}+t\right)=g_{T_{0}}^{-1}\left(\beta_{T_{0}}(t)+\lambda\left(T_{0}\right)\right)$. The conclusion follows because $z \mapsto g_{T_{0}}^{-1}\left(z+\lambda\left(T_{0}\right)\right)$ is adapted to $\mathcal{F}_{T_{0}}$, and maps $(\mathbb{H} ; 0, \infty)$ conformally onto ($\mathbb{H} \backslash K_{T_{0}} ; \beta\left(T_{0}\right), \infty$).

1.2 Radial Loewner equation

The radial Loewner equation driven by $\lambda \in C([0, T))$ is

$$
\begin{equation*}
\partial_{t} g_{t}(z)=g_{t}(z) \frac{e^{i \lambda(t)}+g_{t}(z)}{e^{i \lambda(t)}-g_{t}(z)}, \quad 0 \leq t<T, \quad g_{0}(z)=z . \tag{1.4}
\end{equation*}
$$

For every $z \in \mathbb{C}$, let $\tau(z) \geq 0$ be such that $[0, \tau(z))$ is the maximal interval of the solution $t \mapsto g_{t}(z)$. So g_{t} is defined on $\{z \in \mathbb{C}: \tau(z)>t\}$. We have the following facts.

1. $g_{t}(0)=0$ for all $t \in[0, T)$.
2. Each g_{t} commutes with the map $z \mapsto \frac{1}{\bar{z}}$, which is the reflection about $\mathbb{T}=\{|z|=1\}$. This is because $1 / \overline{g_{t}(z)}$ satisfies the same ODE as in (1.4).
3. Each g_{t} is conformal on $\{z \in \mathbb{C}: \tau(z)>t\}$.
4.

$$
\partial_{t} \log \left(g_{t}(z) / z\right)=\frac{e^{i \lambda(t)}+g_{t}(z)}{e^{i \lambda(t)}-g_{t}(z)}, \quad z \neq 0 .
$$

Letting $z \rightarrow 0$, we get $\partial_{t} \log \left(g_{t}^{\prime}(0)\right)=1$. So $g_{t}^{\prime}(0)=e^{t}$.
5. If $z \in \mathbb{T}$ then $g_{t}(z)$ stays on \mathbb{T} before $\tau(z)$. This is because the real part of $\frac{e^{i \lambda(t)}+g_{t}(z)}{e^{i \lambda(t)}-g_{t}(z)}$ is 0 if $g_{t}(z) \in \mathbb{T}$.
6. If $z \in \mathbb{D}=\{|z|<1\}$ then $g_{t}(z)$ stays inside \mathbb{D} before $\tau(z)$, and $t \mapsto\left|g_{t}(z)\right|$ is increasing. This is because the real part of $\frac{e^{i \lambda(t)}+g_{t}(z)}{e^{i \lambda(t)}-g_{t}(z)}$ is positive if $g_{t}(z) \in \mathbb{D}$.
7. If $\tau(z)<T$, then $\lim _{t \rightarrow \tau(z)} g_{t}(z)-e^{i \lambda(t)}=0$. If $z \in \mathbb{D} \cup \mathbb{T}$, then $g_{t}(z)$ stays inside the bounded set $\mathbb{D} \cup \mathbb{T}$. If the solution blows up before T, it must hit the singularity. If $z \in\{|z|>1\}$, then the result follows from the mirror symmetry about \mathbb{T}.
8. Each g_{t} maps $\{z \in \mathbb{D}: \tau(z)>t\}$ onto \mathbb{D}. Let $t_{0} \in[0, T)$. First, we know that $g_{t_{0}}(\{z \in \mathbb{D}$: $\left.\left.\tau(z)>t_{0}\right\}\right) \subset \mathbb{H}$. Second, fix any $z_{0} \in \mathbb{H}$, consider the ODE

$$
h^{\prime}(t)=h(t) \frac{e^{i \lambda(t)}+h(t)}{e^{i \lambda(t)}-h(t)}, \quad 0 \leq t \leq t_{0}, \quad h\left(t_{0}\right)=z_{0} .
$$

As t decreases from t_{0} to $0,|h(t)|$ decreases, so the solution will not hit the singularity $e^{i \lambda(t)}$, which implies that it does not blow up on $\left[0, t_{0}\right]$. Then we have $h(0) \in \mathbb{D}$ and $g_{t_{0}}(h(0))=h\left(t_{0}\right)=z_{0}$.

Remark. The radial Loewner equation is the original Loewner equation introduced by Charles Loewner. The chordal Loewner equation is in fact introduced by Oded Schramm.

Let $K_{t}=\{z \in \mathbb{D}: \tau(z) \leq t\}, 0 \leq t<T$. Then $K_{0}=\emptyset ; K_{t_{1}} \subset K_{t_{2}}$ if $t_{1}<t_{2}$; each K_{t} is a relatively closed subset of $\mathbb{H}, g_{t}:\left(\mathbb{D} \backslash K_{t} ; 0\right) \xrightarrow{\text { Conf }}(\mathbb{D} ; 0)$, and satisfies $g_{t}^{\prime}(0)=e^{t}$. The g_{t} is uniquely determined by K_{t}. If $t_{1}<t_{2}$, then $g_{t_{1}}^{\prime}(0) \neq g_{t_{2}}^{\prime}(0)$, so $K_{t_{1}} \varsubsetneqq K_{t_{2}}$.

Definition 1.5 We call g_{t} and K_{t} the radial Loewner maps and hulls driven by λ.
Lemma 1.8 Suppose g_{t} and K_{t} are radial Loewner maps and hulls driven by $\lambda(t)$. Let $b \in \mathbb{R}$. Then $e^{i b} g_{t}\left(\cdot / e^{i b}\right)$ and $e^{i b} K_{t}$ are radial Loewner maps and hulls driven by $\lambda(t)+b$.

Note that for any $n \in \mathbb{Z}, \lambda+2 n \pi$ generate the same radial Loewner maps and hulls as λ.
Lemma 1.9 Suppose g_{t} and K_{t} are radial Loewner maps and hulls driven by $\lambda \in C([0, T))$. Let $t_{0} \in[0, T)$. Then $g_{t_{0}+t} \circ g_{t_{0}}^{-1}$ and $g_{t_{0}}\left(K_{t_{0}+t} \backslash K_{t_{0}}\right), 0 \leq t<T-t_{0}$, are radial Loewner maps and hulls driven by $\lambda\left(t_{0}+t\right)$.

Lemma 1.10 Suppose g_{t} and K_{t} are radial Loewner maps and hulls driven by $\lambda \in C([0, T))$. Then for any $t \in[0, T)$,

$$
\begin{equation*}
\left\{e^{i \lambda(t)}\right\}=\bigcap_{\varepsilon \in(0, T-t)} \overline{g_{t}\left(K_{t+\varepsilon} \backslash K_{t}\right)} . \tag{1.5}
\end{equation*}
$$

This lemma asserts that the radial Loewner hulls determine the driving function up to an integer multiple of 2π.

Definition 1.6 We say that λ generates a radial Loewner trace β if

$$
\beta(t)=\lim _{\mathbb{D} \ni z \rightarrow e^{i \lambda(t)}} g_{t}^{-1}(z)
$$

exists for $0 \leq t<T$ and is a continuous curve. Such β lies on $\mathbb{D} \cup \mathbb{T}$ and $\beta(0)=e^{i \lambda(0)} \in \mathbb{T}$. We call the trace β simple if it has no self intersection and intersects \mathbb{T} only at $\beta(0)$.

Proposition 1.3 If λ generates a radial Loewner trace β, then for each $t, \mathbb{D} \backslash K_{t}$ is the connected component of $\mathbb{D} \backslash \beta((0, t])$ that contains 0 . In particular, if β is simple, then $K_{t}=\beta((0, t])$. Moreover, for each t, g_{t}^{-1} extends continuously to $\mathbb{D} \cup \mathbb{T}$.

Definition 1.7 For $\kappa>0$, a standard radial $\operatorname{SLE}(\kappa)$ is defined to be the radial Loewner process driven by $\lambda(t)=\sqrt{\kappa} B(t), 0 \leq t<\infty$.

The distribution of radial SLE is the pushforward measures of the Wiener measure under the radial Loewner maps.

Theorem 1.2 For any $\kappa>0$, with probability 1 a standard radial $S L E(\kappa)$ trace exists; tends to 0 as $t \rightarrow \infty$; is simple iff $\kappa \in(0,4]$; visits every point on $\mathbb{D} \cup \mathbb{T} \backslash\{0\}$ iff $\kappa \geq 8$.

Remark. This theorem follows Theorem 1.1 and the weak equivalence between chordal SLE and radial SLE.

Since a standard radial $\operatorname{SLE}(\kappa)$ trace lies on $\overline{\mathbb{D}}$, starts from $e^{i \lambda(0)}=1$, and ends at 0 , we also view it as a radial $\operatorname{SLE}(\kappa)$ trace in \mathbb{D} from 1 to 0 .

Definition 1.8 Let β be a standard radial SLE (κ) trace. Let $W: \mathbb{D} \xrightarrow{\text { Conf }} D$. Then we call $W \circ \beta$ a radial SLE (κ) trace in D from $W(1)$ to $W(0)$.

Remark. Since W is defined on $\mathbb{D}, W(0)$ is well defined; while $W(1)$ should be understood as a prime end of D as in the definition of chordal SLE in a general simply connected domain.

Lemma 1.11 (Domain Markov Property of radial SLE) Let K_{t} and $\beta(t), 0 \leq t<\infty$, be the radial Loewner hulls and trace driven by $\lambda(t)=\sqrt{\kappa} B(t)$. Let T be a finite stopping time w.r.t. the filtration \mathcal{F}_{t} generated by $B(t)$. Then conditioned on $\mathcal{F}_{T}, \beta(T+t), 0 \leq t<\infty$, is a radial $S L E(\kappa)$ trace in $\mathbb{D} \backslash K_{t}$ from $\beta(T)$ to 0 .

2 Conformal Mappings

2.1 Koebe's $1 / 4$ theorem and distortion theorem

Let \mathcal{S} denote the set of maps f that maps \mathbb{D} conformally into \mathbb{C} with $f(0)=0$ and $f^{\prime}(0)=1$. Any $f \in \mathcal{S}$ has expansion

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$

Given $f \in \mathcal{S}$, let $F(z)=1 / f(1 / z)$. Then F maps $\widehat{\mathbb{C}} \backslash(\mathbb{D} \cup \mathbb{T})$ conformally into $\widehat{\mathbb{C}} \backslash\{0\}$ with $F(\infty)=\infty$. The Laurent expansion of F at ∞ is

$$
F(z)=z+\sum_{n=0}^{\infty} b_{n} z^{-n} .
$$

We have $b_{0}=-a_{2}$ and $b_{1}=a_{2}^{2}-a_{3}$. Let $K=\widehat{\mathbb{C}} \backslash F(\widehat{\mathbb{C}})$. Then K is a compact subset of \mathbb{C}.

Proposition 2.1 (Area Theorem)

$$
\operatorname{area}(K)=\pi\left(1-\sum_{n=1}^{\infty} n\left|b_{n}\right|^{2}\right) .
$$

In particular, we have $\sum_{n=1}^{\infty} n\left|b_{n}\right|^{2} \leq 1$.
Proof. For $r>1$, let K_{r} denote the region bounded by $\gamma_{r}:=F_{K}(\{|z|=r\})$. Then area $(K)=$ $\lim _{r \rightarrow 1^{+}} \operatorname{area}\left(K_{r}\right)$. We may calculate area $\left(K_{r}\right)$ using Green's Theorem. We have

$$
\begin{gathered}
2 i \text { area }\left(K_{r}\right)=\int_{\gamma_{r}} \bar{z} d z=\int_{|z|=r} \overline{F_{K}(z)} F_{K}^{\prime}(z) d z=\int_{0}^{2 \pi} \overline{F_{K}\left(r e^{i \theta}\right)} F_{K}^{\prime}\left(r e^{i \theta}\right) i r e^{i \theta} d \theta \\
=\int_{0}^{2 \pi}\left(r e^{-i \theta}+\overline{b_{0}}+\sum_{n=1}^{\infty} \overline{b_{n}} r^{-n} e^{i n \theta}\right)\left(1-\sum_{n=1}^{\infty} n b_{n} r^{-n-1} e^{-i(n+1) \theta}\right) i r e^{i \theta} d \theta \\
=2 \pi i\left(r^{2}-\sum_{n=1}^{\infty} r^{-2 n}\left|b_{n}\right|^{2}\right) .
\end{gathered}
$$

Thus, area $\left(K_{r}\right)=\pi\left(r^{2}-\sum_{n=1}^{\infty} r^{-2 n}\left|b_{n}\right|^{2}\right)$. The conclusion follows by letting $r \rightarrow 1$.
Lemma 2.1 If $f \in \mathcal{S}$, then there exists $h \in \mathcal{S}$ such that $h(z)^{2}=f\left(z^{2}\right)$ for $z \in \mathbb{D}$.
Proof. First, $f(z) / z$ extends to a non-zero analytic function on \mathbb{D}. Second, there is an analytic function g on \mathbb{D} such that $g(z)^{2}=f(z) / z$. Let $h(z)=z g\left(z^{2}\right)$. Then h is analytic, $h(0)=0$, $h^{\prime}(0)=g(0)=1$, and $h(z)^{2}=f\left(z^{2}\right)$. If $h\left(z_{1}\right)=h\left(z_{2}\right)$, then $f\left(z_{1}^{2}\right)=f\left(z_{2}^{2}\right)$, which implies that $z_{1}=z_{2}$ or $z_{2}=-z_{2}$. If $z_{1}=-z_{2}$, then $g\left(z_{1}^{2}\right)=-g\left(z_{2}^{2}\right)$, which is a contradiction. So h is conformal. Thus, $h \in \mathcal{S}$.

Proposition 2.2 If $f \in \mathcal{S}$, then $\left|a_{2}\right| \leq 2$.
Proof. Suppose $f(z)=z+a_{2} z^{2}+\cdots \in \mathcal{S}$ and let h be as in the previous lemma. Then $h(z)=z+\frac{a_{2}}{2} z^{3}+\cdots$. Let $g(z)=1 / h(1 / z)$. The g has an expansion at $\infty: g(z)=z-\frac{a_{2} / 2}{z}+\cdots$. The Area Theorem implies that $\left|a_{2}\right| \leq 2$.

Remark. Charles Loewner introduced (radial) Loewner equation to prove $\left|a_{3}\right| \leq 3$. Now it is known that $\left|a_{n}\right| \leq n$ for all $n \in \mathbb{N}$.

Theorem 2.1 (Koebe's $1 / 4$ Theorem) 1. If $f \in \mathcal{S}$, then $\operatorname{dist}(0, \partial f(\mathbb{D})) \geq 1 / 4$.
2. If $f:\left(D_{1} ; z_{1}\right) \xrightarrow{\text { Conf }}\left(D_{2} ; z_{2}\right)$, then

$$
\frac{\left|f^{\prime}\left(z_{1}\right)\right|}{4} \leq \frac{\operatorname{dist}\left(z_{2}, \partial D_{2}\right)}{\operatorname{dist}\left(z_{1}, \partial D_{1}\right)} \leq 4\left|f^{\prime}\left(z_{1}\right)\right|
$$

Proof. 1. Let $r=\operatorname{dist}(0, \partial f(\mathbb{D}))$. Suppose $z_{0} \in \mathbb{C} \backslash f(\mathbb{D})$. Define $h(z)=\frac{f(z)}{1-f(z) / z_{0}}$. Then $h \in \mathcal{S}$ and has expansion

$$
h(z)=z+\left(a_{2}+\frac{1}{z_{0}}\right) z^{2}+\cdots .
$$

From Proposition 2.2, we have $\left|a_{2}\right| \leq 2$ and $\left|a_{2}+1 / z_{0}\right| \leq 2$. This implies $\left|z_{0}\right| \geq 1 / 4$. Since this is true for all $z_{0} \in \mathbb{C} \backslash f(\mathbb{D})$, we get $r \geq 1 / 4$.
2. Let $r_{j}=\operatorname{dist}\left(z_{j}, \partial D_{j}\right), j=1,2$. Define $h(z)=\frac{f\left(r_{1}\left(z_{1}+z\right)\right)-z_{2}}{r_{1} f^{\prime}\left(z_{1}\right)}$. Then $h \in \mathcal{S}$ and $\operatorname{dist}(0, \partial h(\mathbb{D})) \leq \frac{r_{2}}{r_{1}\left|f^{\prime}\left(z_{1}\right)\right|}$. From Part 1, we get $\frac{r_{2}}{r_{1}} \geq \frac{\left|f^{\prime}\left(z_{1}\right)\right|}{4}$. Let $g=f^{-1}$. Then $g:\left(D_{2} ; z_{2}\right) \xrightarrow{\text { Conf }}$ $\left(D_{1} ; z_{1}\right)$. So $\frac{r_{1}}{r_{2}} \geq \frac{\left|g^{\prime}\left(z_{2}\right)\right|}{4}=\frac{1}{4\left|f^{\prime}\left(z_{1}\right)\right|}$.

Examples.

1. $1 / 4$ is the best possible number. The Koebe's function is $f(z)=\frac{z}{(1-z)^{2}}=\sum_{n=1}^{\infty} n z^{n}$. We have

$$
f(z)=\frac{1}{4}\left(\frac{1+z}{1-z}\right)^{2}-\frac{1}{4}
$$

Since $z \mapsto \frac{1+z}{1-z}$ maps \mathbb{D} conformally onto $\{\operatorname{Re} z>0\}$ and $z \mapsto z^{2} \operatorname{maps}\{\operatorname{Re} z>0\}$ conformally onto $\mathbb{C} \backslash(-\infty, 0]$, we see that f maps \mathbb{D} conformally onto $\mathbb{C} \backslash(-\infty,-1 / 4]$. Thus, $f \in \mathcal{S}$ and $\operatorname{dist}(0, \partial f(\mathbb{D}))=1 / 4$.
2. Suppose g_{t} and $K_{t}, 0 \leq t<\infty$, are radial Loewner maps and hulls driven by $\lambda \in$ $C([0, \infty))$. Since $g_{t}:\left(\mathbb{D} \backslash K_{t} ; 0\right) \xrightarrow{\text { Conf }}(\mathbb{D} ; 0)$ and $g_{t}^{\prime}(0)=e^{t}$, from Koebe's $1 / 4$ theorem, $\operatorname{dist}\left(0, K_{t}\right) \leq 4 e^{-t} \rightarrow 0$ as $t \rightarrow \infty$.
3. Suppose g_{t} and $K_{t}, 0 \leq t<\infty$, are chordal Loewner maps and hulls driven by λ. Since $g_{t}: \mathbb{H} \backslash K_{t} \xrightarrow{\text { Conf }} \mathbb{H}$, we have $\min \left\{\operatorname{Im} z_{0}, \operatorname{dist}\left(z_{0}, K_{t}\right)\right\} \asymp \operatorname{Im} g_{t}\left(z_{0}\right) /\left|g_{t}^{\prime}\left(z_{0}\right)\right|$ for any $z_{0} \in \mathbb{H} \backslash K_{t}$.

This property could be used to study the phase change of SLE. Using Stochastic Analysis we can prove that for any fixed $z_{0} \in \mathbb{H}$, almost surely 1) $\tau\left(z_{0}\right)=\infty$ for $\kappa \leq 4$ and $\tau\left(z_{0}\right)<$ ∞ for $\kappa>4$; 2) $\lim _{t \rightarrow \tau\left(z_{0}\right)} \operatorname{Im} g_{t}\left(z_{0}\right) /\left|g_{t}^{\prime}\left(z_{0}\right)\right|=0$ for $\kappa \geq 8$, and >0 for $\kappa<8$. Assume that we have proved the existence of the chordal $\operatorname{SLE}(\kappa)$ trace β. Suppose $\kappa \in(4,8)$. The above result implies that a.s. $\lim _{t \rightarrow \tau\left(z_{0}\right)^{-}} \operatorname{dist}\left(z_{0}, \beta((0, t])\right)=\lim _{t \rightarrow \tau\left(z_{0}\right)^{-}} \operatorname{dist}\left(z_{0}, K_{t}\right)=0$. Thus, $z_{0} \neq \beta\left(\left(0, \tau\left(z_{0}\right)\right]\right)$ but $z_{0} \in K_{\tau\left(z_{0}\right)}$, which means that z_{0} lies in the interior of $K_{\tau\left(z_{0}\right)}$. After $\tau\left(z_{0}\right), \beta$ grows in $\overline{\mathbb{H}} \backslash K_{\tau\left(z_{0}\right)}$. So z_{0} is almost surely not visited by the trace β. Suppose $\kappa \geq 8$, then we have a.s. $\lim _{t \rightarrow \tau\left(z_{0}\right)^{-}} \operatorname{dist}\left(z_{0}, \beta((0, t])\right)=0$, which implies that $z_{0}=\beta\left(\tau\left(z_{0}\right)\right)$. This can be used to show that β visits every point on \mathbb{H}.

Suppose $f \in \mathcal{S}$ and $w \in \mathbb{D}$. Let $T_{w}(z)=\frac{w+z}{1+\bar{w} z}$. Then $T_{w}:(\mathbb{D} ; 0) \xrightarrow{\text { Conf }}(\mathbb{D} ; w), T_{w}^{\prime}(0)=1-|w|^{2}$ and $T_{w}^{\prime \prime}(0)=-2 \bar{w}\left(1-|w|^{2}\right)$. We may construct another function $h \in \mathcal{S}$ by

$$
h(z)=\frac{f\left(T_{w}(z)\right)-f(w)}{f^{\prime}(w) T_{w}^{\prime}(0)}=\frac{f\left(T_{w}(z)\right)-f(w)}{f^{\prime}(w)\left(1-|w|^{2}\right)} .
$$

Then

$$
h^{\prime \prime}(z)=\frac{f^{\prime}\left(T_{w}(z)\right) T_{w}^{\prime \prime}(z)+f^{\prime \prime}\left(T_{w}(z)\right) T_{w}^{\prime}(z)^{2}}{f^{\prime}(w)\left(1-|w|^{2}\right)}
$$

In particular, we get

$$
\begin{gathered}
h^{\prime \prime}(0)=\frac{f^{\prime}(w) T_{w}^{\prime \prime}(0)+f^{\prime \prime}(w) T_{w}^{\prime}(0)^{2}}{f^{\prime}(w)\left(1-|w|^{2}\right)}=\frac{f^{\prime}(w)\left(-2 \bar{w}\left(1-|w|^{2}\right)+f^{\prime \prime}(w)\left(1-|w|^{2}\right)^{2}\right.}{f^{\prime}(w)\left(1-|w|^{2}\right)} \\
=-2 \bar{w}+\frac{f^{\prime \prime}(w)}{f^{\prime}(w)}\left(1-|w|^{2}\right)
\end{gathered}
$$

From Proposition 2.2 we get $\left|h^{\prime \prime}(0)\right| \leq 4$. So

$$
\begin{equation*}
\left|\frac{w}{|w|} \frac{f^{\prime \prime}(w)}{f^{\prime}(w)}-\frac{2|w|}{1-|w|^{2}}\right| \leq \frac{4}{1-|w|^{2}} . \tag{2.1}
\end{equation*}
$$

Theorem 2.2 (Distortion Theorem) If $f \in \mathcal{S}$ and $z \in \mathbb{D}$, then

$$
\frac{1-|z|}{(1+|z|)^{3}} \leq\left|f^{\prime}(z)\right| \leq \frac{1+|z|}{(1-|z|)^{3}} .
$$

Proof. Let $h(z)=\log \left(f^{\prime}(z)\right)$. Then h is analytic on \mathbb{D} with $h(0)=0$, and $h^{\prime}=f^{\prime \prime} / f^{\prime}$. Suppose $z=r e^{i \theta}, 0 \leq r<1$ and $\theta \in \mathbb{R}$. Then

$$
\log \left(f^{\prime}(z)\right)=h(z)=\int_{[0, z]} h^{\prime}(z) d z=\int_{0}^{r} h^{\prime}\left(s e^{i \theta}\right) e^{i \theta} d s=\int_{0}^{r} \frac{f^{\prime \prime}\left(s e^{i \theta}\right)}{f^{\prime}\left(s e^{i \theta}\right)} e^{i \theta} d s
$$

From (2.1) we get

$$
\left|\log \left(f^{\prime}(z)\right)-\int_{0}^{r} \frac{2 s}{1-s^{2}} d s\right| \leq \int_{0}^{r} \frac{4}{1-s^{2}} d s
$$

which is $\left|\log \left(f^{\prime}(z)\right)+\log \left(1-r^{2}\right)\right| \leq 2 \log (1+r)-2 \log (1-r)$. Taking real part, we get

$$
-3 \log (1+r)+\log (1-r) \leq \log \left|f^{\prime}(z)\right| \leq \log (1+r)-3 \log (1-r) .
$$

The proof is complete by exponentiating this inequality.
Remark. Integrating the estimation for $\left|f^{\prime}(z)\right|$ along a radial line, we can show

$$
\frac{|z|}{(1+|z|)^{2}} \leq|f(z)| \leq \frac{|z|}{(1-|z|)^{2}}
$$

Corollary 2.1 There is a constant $C>1$ such that the following is true. Suppose D is a domain, f is conformal on D, and $z_{0}, w_{0} \in D$. Suppose there is a piecewise C^{1} curve γ connecting z and w. Let l be the length of γ and $r=\operatorname{dist}(\gamma, \partial D)$. Then $\left|f^{\prime}\left(w_{0}\right)\right| \leq\left|f^{\prime}\left(z_{0}\right)\right| C^{l / r}$.

Proof. Let $n=\lceil 2 l / r\rceil$. We may find $z_{1}, z_{2}, \ldots, z_{n}$ on γ such that $z_{n}=w_{0}$ and $\left|z_{j}-z_{j-1}\right| \leq r / 2$, $1 \leq j \leq n$. Construct $f_{j} \in \mathcal{S}$ by $f_{j}(z)=f\left(z_{j-1}+r z\right) /\left(r f^{\prime}\left(z_{j-1}\right)\right)$. Then $f_{j}^{\prime}(z)=f^{\prime}\left(z_{j-1}+\right.$ $r z) / f^{\prime}\left(z_{j-1}\right)$. Letting $z=\left(z_{j}-z_{j-1}\right) / r$ and applying Distortion Theorem, we get

$$
\frac{\left|f^{\prime}\left(z_{j}\right)\right|}{\left|f^{\prime}\left(z_{j-1}\right)\right|} \leq \frac{1+|z|}{(1-|z|)^{3}} \leq \frac{1+1 / 2}{(1-1 / 2)^{3}}=12 .
$$

Thus, $\left|f^{\prime}\left(w_{0}\right)\right|=\left|f^{\prime}\left(z_{n}\right)\right| \leq 12^{n}\left|f^{\prime}\left(z_{0}\right)\right| \leq 12^{2 l / r+1}\left|f^{\prime}\left(z_{0}\right)\right|$. If $l \geq r / 2$, then $2 l / r+1 \leq 4 l / r$, so $\left|f^{\prime}\left(w_{0}\right)\right| \leq\left(12^{4}\right)^{l / r}\left|f^{\prime}\left(z_{0}\right)\right|$. Now suppose $l \leq r / 2$. Then $n=1$ and $\left|z_{0}-w_{0}\right| \leq l \leq r / 2$. The above computation gives

$$
\frac{\left|f^{\prime}\left(w_{0}\right)\right|}{\left|f^{\prime}\left(z_{0}\right)\right|} \leq \frac{1+l / r}{(1-l / r)^{3}} \leq C_{0}^{l / r},
$$

where $C_{0}=e^{7}$. Then $C:=\max \left\{12^{4}, C_{0}\right\}$ is the constant we want.

2.2 Extremal length

Extremal length is about some measurement of a family of curves. The value is a nonnegative real number. It is important for this course because it is conformally invariant. Let D be a domain. Let ρ be a nonnegative Borel function on D. The ρ-area of D is

$$
A_{\rho}(D)=\int_{D} \rho(z)^{2} d A(z) .
$$

Let γ be a piecewise C^{1} curve in D, the ρ-length of γ is

$$
L_{\rho}(\gamma)=\int_{\gamma} \rho(z) d s(z)
$$

Let Γ be a family of piecewise C^{1} curves in D, the ρ-length of Γ is

$$
L_{\rho}(\Gamma)=\inf _{\gamma \in \Gamma} L_{\rho}(\gamma)
$$

The extremal length of Γ in D is

$$
L(\Gamma ; D)=\sup _{\rho} \frac{L_{\rho}(\Gamma)^{2}}{A_{\rho}(D)} .
$$

For two sets A and B, we say a curve γ connects A and B if one end of γ approaches to a point on A and the other end of γ approaches to a point on B. We say a curve γ separates A and B in D if γ lies in D and any curve in D connecting A and B must intersects γ. Let $\Gamma_{D}(A, B)$ denote the set of piecewise C^{1} curves in D connecting A and B. Let $\Gamma_{D}^{*}(A, B)$ denote the set of piecewise C^{1} curves in D separating A and B. Then the extremal length of $\Gamma_{D}(A, B)$ is called the extremal distance between A and B in D, and is denoted by $d_{D}(A, B)$; and the extremal length of $\Gamma_{D}^{*}(A, B)$ is called the conjugate extremal distance between A and B in D, and is denoted by $d_{D}^{*}(A, B)$

Remark The D in $L(\Gamma ; D)$ is unnecessary. In fact, if $D^{\prime} \supset D$, then $L\left(\Gamma ; D^{\prime}\right)=L(\Gamma ; D)$. Since Γ lie in D, to maximize $L_{\rho}(\Gamma)$ while keeping $A_{\rho}\left(D^{\prime}\right)$ unchanged, ρ must concentrate on D.

Examples.

1. Let D be a rectangle $\{0<x<a, 0<y<b\}$. Let Γ be the set of piecewise C^{1} curves in D connecting the two vertical sides (of length b). Let $\rho=1$. Then $A_{\rho}(D)=a b$ and $L_{\rho}(\Gamma)=a$. So $L(\Gamma ; D) \geq \frac{a}{b}$. Now suppose ρ is any nonnegative Borel function on D. From Hölder's inequality, we have

$$
\begin{gathered}
A_{\rho}(D)=\int_{0}^{b} \int_{0}^{a} \rho(x, y)^{2} d x d y \geq \int_{0}^{b} \frac{1}{a}\left(\int_{0}^{a} \rho(x, y) d x\right)^{2} d y \\
\geq \int_{0}^{b} \frac{1}{a}\left(L_{\rho}(\Gamma)\right)^{2} d y=\frac{b}{a} L_{\rho}(\Gamma)^{2}
\end{gathered}
$$

which gives $\frac{L_{\rho}(\Gamma)^{2}}{A_{\rho}(D)} \leq \frac{a}{b}$. Thus, $d_{D}([0, i b],[a, a+i b])=\frac{a}{b}$. Similarly, $d_{D}([0, a],[a, a+i b])=\frac{b}{a}$. We also have $d_{D}^{*}([0, i b],[a, a+i b])=\frac{b}{a}$. Similarly, $d_{D}^{*}([0, a],[a, a+i b])=\frac{a}{b}$.
2. Let D be an annulus $\left\{r_{1}<|z|<r_{2}\right\}$. Let $C_{j}=\left\{|z|=r_{j}\right\}, j=1,2$, be its two boundary circles. Let Γ be the set of piecewise C^{1} curves in D connecting the two boundary circles. Let $\rho(z)=\frac{1}{|z|}$. Then $A_{\rho}(D)=2 \pi \log \left(r_{2} / r_{1}\right)$ and $L_{\rho}(\Gamma)=\log \left(r_{2} / r_{1}\right)$. Thus, $L(\Gamma ; D) \geq \frac{\log \left(r_{2} / r_{1}\right)}{2 \pi}$. Using Hölder's inequality, we can show that $L(\Gamma)=\frac{\log \left(r_{2} / r_{1}\right)}{2 \pi}$. Thus, $d_{D}\left(C_{1}, C_{2}\right)=\frac{\log \left(r_{2} / r_{1}\right)}{2 \pi}$. Similarly, $d_{D}^{*}\left(C_{1}, C_{2}\right)=\frac{2 \pi}{\log \left(r_{2} / r_{1}\right)}$.

Theorem 2.3 Let Γ_{1} be a family of piecewise C^{1} curves in D_{1}. Suppose $f: D_{1} \xrightarrow{\text { Conf }} D_{2}$. Let $\Gamma_{2}=f\left(\Gamma_{1}\right):=\left\{f \circ \gamma: \gamma \in \Gamma_{1}\right\}$. Then $L\left(\Gamma_{1} ; D_{1}\right)=L\left(\Gamma_{2} ; D_{2}\right)$.

Proof. This is because there is a one-to-one correspondence between the set of nonnegative Borel functions on D_{1} and the set of nonnegative Borel functions on $D_{2}: \rho_{1} \leftrightarrow \rho_{2}$ such that $A_{\rho_{1}}\left(D_{1}\right)=A_{\rho_{2}}\left(D_{2}\right)$ and $L_{\rho_{1}}(\gamma)=L_{\rho_{2}}(f \circ \gamma)$ for each $\gamma \in \Gamma_{1}$. In fact, given ρ_{2}, the corresponding ρ_{1} is defined by $\rho_{1}(z)=\left|f^{\prime}(z)\right| \rho_{2}(f(z))$. Then

$$
\begin{aligned}
& A_{\rho_{1}}\left(D_{1}\right)=\int_{D_{1}}\left|f^{\prime}(z)\right|^{2} \rho_{2}(f(z))^{2} d A(z)=\int_{D_{2}} \rho_{2}(w)^{2} d A(w)=A_{\rho_{2}}\left(D_{2}\right) ; \\
& L_{\rho_{1}}(\gamma)=\int_{\gamma}\left|f^{\prime}(z)\right| \rho_{2}(f(z)) d s(z)=\int_{f \circ \gamma} \rho_{2}(w) d s(w)=L_{\rho_{2}}(f \circ \gamma) .
\end{aligned}
$$

Remark. Two rectangles or two annuli are conformally equivalent iff they have similar shapes.
Lemma 2.2 (Comparison Principle) Let Γ_{1} and Γ_{2} be two families of piecewise C^{1} curves. If every curve in Γ_{2} contains a subcurve in Γ_{1}, then $L\left(\Gamma_{2}\right) \geq L\left(\Gamma_{2}\right)$.

Proof. This is because $L_{\rho}\left(\Gamma_{2}\right) \geq L_{\rho}\left(\Gamma_{1}\right)$ for every ρ.
Example. Suppose $\operatorname{diam}(A)=r<R=\operatorname{dist}(A, B)$. Let Ω be the annulus $\left\{r<\left|z-z_{0}\right|<R\right\}$, and C_{R} and C_{r} be its boundary circles. Any curve connecting A and B must cross the annulus, so it contains a subcurve in Ω connecting C_{R} and C_{r}. Thus, for any domain $D, d_{D}(A, B) \geq$ $d_{\Omega}\left(C_{R}, C_{r}\right)=\log (R / r) /(2 \pi)$.

2.3 Boundary behaviors of conformal maps

Definition 2.1 A topological space X is called locally connected if for every $x \in X$ and open set $U \ni x$, there exists a connected neighborhood N of x that is contained in U. A subset of a topological space X is a locally connected set if it is a locally connected space when viewed as a subspace of X.

Remark. If X is a metric space, then X is locally connected iff for every $x \in X$ and $\varepsilon>0$, there is $\delta>0$ such that if $\operatorname{dist}(x, y)<\delta$ then x and y lie in a connected subset of X with diameter less than ε. In addition, if X is compact, the δ can be chosen to be independent of x.

Examples.

1. Any convex set in \mathbb{C} is locally connected.
2. An relatively open subset of a locally connected set is locally connected.
3. $\{x+i \sin (1 / x): x>0\} \cup[-i, i]$ is connected but not locally connected.

Lemma 2.3 If $f: X \rightarrow Y$ is continuous and X is compact and locally connected and Y is Hausdorff, then $f(X)$ is locally connected.

Proof. We may assume that $Y=f(X)$. Let $y \in Y$ and V be an open subset of Y with $y \in V$. Let S be a connected component of V that contains y. Let $w \in f^{-1}(S) \subset f^{-1}(V)$. Since X is locally connected and $f^{-1}(V)$ is open, there is a connected neighborhood N of w which is contained in $f^{-1}(V)$. Then $f(N)$ is a connected subset of V which contains $f(w) \in S$. Since S is a connected component and $f(N) \cap S \neq \emptyset$, we have $f(N) \subset S$, which implies that $N \subset f^{-1}(S)$. Now for every $w \in f^{-1}(S)$, we find a neighborhood N of w which is contained in $f^{-1}(S)$. So $f^{-1}(S)$ is open. Since X is compact and Y is Hausdorff, we conclude that S is an open subset of Y. So S is a connected neighborhood of y in Y that is contained in V.

Theorem 2.4 Let D be a simply connected set. The followings are equivalent.
(i) Any conformal map from \mathbb{D} onto D extends continuously to $\overline{\mathbb{D}}$.
(ii) ∂D is locally connected.
(iii) There is a locally connected set K in $\widehat{\mathbb{C}}$ such that D is a connected component of $\widehat{\mathbb{C}} \backslash K$.

Proof. (i) implies (ii). Riemann's mapping theorem assures the existence of a conformal map from \mathbb{D} onto $\overline{\mathbb{D}}$. Since it extends continuously to $\overline{\mathbb{D}}$, we get a continuous map from \mathbb{T} onto ∂D. Since \mathbb{T} is locally connected, from Lemma $2.3, \partial D$ is locally connected.
(ii) implies (iii). We may simply let $K=\partial D$.
(iii) implies (i). We use extremal length in the argument. We also use the fact that if the diameter of a closed set $S \subset \widehat{\mathbb{C}}$ has diameter $d<\pi / 4$, then at most one component of $\widehat{\mathbb{C}} \backslash E$ has diameter greater than $2 d$. Suppose $W: \mathbb{D} \xrightarrow{\text { Conf }} D$. Let $z_{0} \in \mathbb{T}$. For $r>0$, let $S_{r}=\left\{z \in \mathbb{D}:\left|z-z_{0}\right|<r\right\}$. We suffice to show that the diameter of $W\left(S_{r}\right)$ tends to 0 as $r \rightarrow 0$. Let E be a continuum in \mathbb{D} and $R=\operatorname{dist}\left(z_{0}, E\right)>0$. For $r \in(0, R)$, let Γ_{r} denote the family of curves in \mathbb{D} that disconnect E from S_{r}. Note that any curve in the annulus $\left\{r<\left|z-z_{0}\right|<R\right\}$ that disconnects the two boundary circle contains a subcurve which belongs to Γ_{r}. Thus, $L\left(\Gamma_{r}\right) \leq 2 \pi / \log (R / r)$, which tends to 0 as $r \rightarrow 0$. From the conformal invariance of extremal length, $L\left(W\left(\Gamma_{r}\right)\right) \rightarrow 0$ as $r \rightarrow 0$. Note that $W\left(\Gamma_{r}\right)$ is the family of curves that separate $W\left(S_{r}\right)$ from $W(E)$. Let $\rho(z)=\frac{2}{1+|z|^{2}}$. Then we get the spherical metric. So $A_{\rho}(D) \leq A_{\rho}(\widehat{\mathbb{C}})=4 \pi$. Thus, $L_{\rho}\left(W\left(\Gamma_{r}\right)\right) \rightarrow 0$ as $r \rightarrow 0$. In particular, this means that we may choose $\gamma_{r} \in W\left(\Gamma_{r}\right)$ such that the spherical length of γ_{r} tends to 0 as $r \rightarrow 0$. Since γ_{r} has finite spherical length, its closure has at most two points more than itself. There are three cases. Case 1. $\overline{\gamma_{r}}$ intersects ∂D at no more than one point. Then $W(E)$ and $W\left(S_{r}\right)$ lie in two components of $\widehat{\mathbb{C}} \backslash \overline{\gamma_{r}}$. Since the diameter of $\overline{\gamma_{r}}$ tends to 0 and the diameter of $W(E)$ is positive, the diameter of $W\left(S_{r}\right)$ should also tends to 0 . Case 2. $\overline{\gamma_{r}}$ intersects ∂D at two points, say a_{r} and b_{r}. Then $a_{r}, b_{r} \in K$ and $\operatorname{dist}(a, b) \leq \operatorname{diam}\left(\gamma_{r}\right)$. Since K is locally connected and $\operatorname{diam}\left(\gamma_{r}\right) \rightarrow 0$ as $r \rightarrow 0, K$ contains a connected subset $L_{r} \ni a_{r}, b_{r}$ with diameter tends to 0 as $r \rightarrow 0$. Now $\gamma_{r} \cup L_{r}$ has diameter
tends to 0 as $r \rightarrow 0$, and separates $W(E)$ from $W\left(S_{r}\right)$. Again we conclude that the diameter of $W\left(S_{r}\right)$ tends to 0 .

Remarks.

1. The lemma is still true if \mathbb{D} is replaced by a Jordan domain. This implies that a conformal map from \mathbb{D} onto a Jordan domain extends to a homeomorphism between the closures.
2. Suppose J is a Jordan curve. There is a conformal map W_{1} from \mathbb{D} onto its interior, and a conformal map W_{2} from $\{|z|>1\}$ to the exterior of J. Then we get two homeomorphism induced by W_{1} and W_{2} from \mathbb{T} onto J. Then $W_{1}^{-1} \circ W_{2}$ is an orientation preserving automorphism of \mathbb{T}. The conformal welding problem is: given the homeomorphism of \mathbb{T}, determine wether it is induced by the above conformal maps, and find the cuve J.
3. Suppose that λ generates a chordal Loewner trace β, and we have proved that $\mathbb{H} \backslash K_{t}$ is the unbounded component of $\mathbb{H} \backslash \beta([0, t])$. From Lemma 2.3 we see that $\widehat{\mathbb{R}} \cup \beta([0, t])$ is locally connected. Since $\mathbb{H} \backslash K_{t}$ is one connected component of $\widehat{\mathbb{C}} \backslash(\widehat{\mathbb{R}} \cup \beta([0, t]))$, from Theorem 2.4 the conformal map g_{t}^{-1} from \mathbb{H} onto $\mathbb{H} \backslash K_{t}$ extends continuously to $\overline{\mathbb{H}}$. The same argument works for the radial Loewner trace.

Theorem 2.5 Suppose $W: D \xrightarrow{\text { Conf }} \mathbb{D}$. Let $\gamma(t), 0 \leq t \leq 1$, be a curve with $\gamma(0) \in \partial D$ and $\gamma((0,1]) \subset D$. Then $\lim _{t \rightarrow 0} W(\gamma(t))$ exits. Moreover, if β has the same property as γ, and $\beta(0) \neq \gamma(0)$, then $\lim _{t \rightarrow 0} W(\gamma(t)) \neq \lim _{t \rightarrow 0} W(\beta(t))$.

Proof. Let $z_{0}=\gamma(0), E$ be a continuum in \mathbb{D}, and $R=\operatorname{dist}\left(z_{0}, E\right)>0$. For any $r \in(0, R)$, there is $\delta>0$ such that $\gamma([0, \delta]) \subset\left\{\left|z-z_{0}\right|<r\right\}$. Let ρ be a curve in $\left\{r<\left|z-z_{0}\right|<R\right.$ that separates the two boundary circle. Let t_{0} be the biggest number such that $\gamma(t) \in \rho$. Then ρ contains a subcurve ρ_{0} which contains $\gamma\left(t_{0}\right)$ and whose two ends approach two boundary points. Then ρ_{0} disconnects E from $\gamma((0, \delta])$ in D. Thus, $d_{D}^{*}(E, \gamma((0, \delta]) \leq 2 \pi / \log (R / r)$. From conformal invariance, $d_{\mathbb{D}}^{*}(W(E), W \circ \gamma((0, \delta])) \leq 2 \pi / \log (R / r)$. Let $\rho=1$ on \mathbb{D}. Then we get the Euclidean metric. Since $A_{\rho}(\mathbb{D})=\operatorname{area}(\mathbb{D})=\pi$, this implies that there is a curve α_{r} with length less than $2 \pi \sqrt{\log (R / r)}$ that separates $W(E)$ from $W \circ \gamma((0, \delta])$ in \mathbb{D}. If r is close to 0 , the length of α_{r} is also close to 0 . If r is small enough, the length of α_{r} is less than the diameter of $W(E)$ and the distance between $W(E)$ and \mathbb{T}. Then α_{r} must touches \mathbb{T} and does not intersect $W(E)$. Since $W(\gamma((0, \delta]))$ is disconnected from $W(E)$ in \mathbb{D} by α_{r}, we see that the diameter of $W(\gamma((0, \delta]))$ is no more than the length of α_{r}. Thus, the the diameter of $W(\gamma((0, \delta]))$ tends to 0 as $\delta \rightarrow 0$, which implies that $\lim _{t \rightarrow 0} W(\gamma(t))$ exists. Suppose β has the same property as γ, and $\beta(0) \neq \gamma(0)$. Then $\lim _{t \rightarrow 0} W(\beta(t))$ also exists. Since $\alpha(0) \neq \beta(0)$, we may choose $\delta>0$ such that $d_{D}(\alpha((0, \delta]), \beta((0, \delta]))>0$. Thus, $d_{\mathbb{D}}(W(\alpha((0, \delta])), W(\beta((0, \delta])))>0$. If $\lim _{t \rightarrow 0} W(\gamma(t))=\lim _{t \rightarrow 0} W(\beta(t)):=w_{0}$, then the extremal distance is 0 because there is $r>0$ such that any curve in $\left\{0<\left|z-w_{0}\right|<r\right\}$ that surrounds 0 contains a subcurve in \mathbb{D} that connects $W(\alpha((0, \delta]))$ and $W(\beta((0, \delta]))$.

Remark.

1. If $\beta(0)=\gamma(0)$, we can not conclude that $\lim _{t \rightarrow 0} W(\gamma(t))=\lim _{t \rightarrow 0} W(\beta(t))$.
2. From Theorem 2.4 , if \mathbb{D} is replaced by a simply connected domain with locally connected boundary, the first statement is still true, but we may not have $\lim _{t \rightarrow 0} W(\gamma(t)) \neq$ $\lim _{t \rightarrow 0} W(\beta(t))$. The theorem still holds if \mathbb{D} is replaced by a Jordan domain

2.4 Carathéodory convergence

Definition 2.2 Suppose D_{n} is a sequence of domains and D is a plane domain. We say that $\left(D_{n}\right)$ converges to D, denoted by $D_{n} \xrightarrow{\text { Cara }} D$, if for every $z \in D$, $\operatorname{dist}\left(z, \partial D_{n}\right) \rightarrow \operatorname{dist}(z, \partial D)$. This is equivalent to the followings:
(i) every compact subset of D is contained in all but finitely many D_{n} 's; and
(ii) for every point $z_{0} \in \partial D$, $\operatorname{dist}\left(z_{0}, \partial D_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.

Remarks.

1. The distance and boundary in the definition both refer to the spherical metric. If D_{n} and D are all contained in \mathbb{C}, then the Euclidean metric gives the same definition.
2. A sequence of domains may converge to two different domains. For example, let $D_{n}=$ $\mathbb{C} \backslash((-\infty, n])$. Then $D_{n} \xrightarrow{\text { Cara }} \mathbb{H}$, and $D_{n} \xrightarrow{\text { Cara }}-\mathbb{H}$ as well. But two different limit domains of the same domain sequence must be disjoint from each other, because if they have nonempty intersection, then one contains some boundary point of the other, which implies a contradiction.

Definition 2.3 Suppose $D_{n} \xrightarrow{\text { Cara }} D, f_{n}: D_{n} \rightarrow \widehat{\mathbb{C}}, n \in \mathbb{N}$, and $f: D \rightarrow \widehat{\mathbb{C}}$. We say that f_{n} converges to f locally uniformly in D, or $f_{n} \xrightarrow{\text { l.u. }} f$ in D, if for each compact subset F of D, f_{n} converges to f uniformly on F in the spherical metric.

Lemma 2.4 Suppose $D_{n} \xrightarrow{\text { Cara }} D, f_{n}: D_{n} \xrightarrow{\text { Conf }} E_{n}, n \in \mathbb{N}$, and $f_{n} \xrightarrow{\text { l.u. }} f$ in D. Then either f is constant on D, or f is a conformal map on D. In the latter case, let $E=f(D)$. Then $E_{n} \xrightarrow{\text { Cara }} E$ and $f_{n}^{-1} \xrightarrow{\text { l.u. }} f^{-1}$ in E.

Proof. We first prove the case that D_{n} an D do not contain ∞, and f_{n} and f do not take value ∞. It is clear that f is analytic. Suppose that f is not constant.

Let $z_{1} \neq z_{2} \in D$ and $w_{j}=f\left(z_{j}\right), j=1,2$. Since f is not constant, we may choose two Jordan curves J_{1} and J_{2} surrounding z_{1} and z_{2}, respectively, such that the two curves together with their interior, say Ω_{j}, lie in $D,\left(J_{1} \cup \Omega_{1}\right) \cap\left(J_{2} \cup \Omega_{2}\right)=\emptyset$, and $f(z)=w_{j}$ has no solution on $J_{j}, j=1,2$. Since $D_{n} \xrightarrow{\text { Cara }} D$ and $f_{n} \xrightarrow{\text { l.u. }} f$ in D, there is $n_{0} \in \mathbb{N}$ such that $J_{j} \cup \Omega_{j} \subset D_{n_{0}}$ and $\max _{z \in J_{j}}\left|f_{n_{0}}(z)-f(z)\right|<\min _{z \in J_{j}}\left|f(z)-w_{j}\right|$. From Rouché's theorem, there is $z_{j}^{\prime} \in \Omega_{j}$ such that $f_{n_{0}}\left(z_{j}^{\prime}\right)=w_{j}$. Since $f_{n_{0}}$ is conformal and $\Omega_{1} \cap \Omega_{2}=\emptyset$, we have $w_{1} \neq w_{2}$. Thus, f is conformal.

We now prove that condition (i) in Definition 2.2 holds for E_{n} and E. Suppose a compact ball $B_{0}=\left\{\left|z-z_{0}\right| \leq r_{0}\right\}$ is contained in E. We may choose $r_{1}>r_{0}$ such that $B_{1}=\left\{\left|z-z_{0}\right| \leq r_{1}\right\}$ is also contained in E. Let $J=f^{-1}\left(\left\{\left|z-z_{0}\right|=r_{1}\right\}\right)$ and $\Omega=f^{-1}\left(\left\{\left|z-z_{0}\right|<r_{1}\right\}\right)$. For any $z \in J$ and $w \in B_{0}$, we have $|f(z)-w| \geq r_{1}-r_{0}>0$. There is $n_{0} \in \mathbb{N}$ such that for $n \geq n_{0}$, $\Omega \cup J \subset D_{n}$ and $\left|f_{n}-f\right|<r_{1}-r_{0}$ on J. Rouché's theorem implies that $B_{0} \subset f_{n}(\Omega)$ if $n \geq n_{0}$. Thus, $B_{0} \subset E_{n}$ if n is big enough. This implies that for any compact set $K \subset E$, there is $n_{K} \in \mathbb{N}$ such that $K \subset E_{n}$ if $n \geq n_{k}$.

Now we prove that $f_{n}^{-1} \xrightarrow{\text { l.u. }} f^{-1}$ in E. If this is not true, then there is a compact set $K \subset E$ such that f_{n} does not converge uniformly on K. By passing to a subsequence, we may assume that there is $a>0$ such that $\sup _{w \in K}\left|f_{n}^{-1}(w)-f^{-1}(w)\right|>a$ for all $n \in \mathbb{N}$. So there is a sequence $\left(w_{n}\right)$ in K such that $\left|f_{n}^{-1}\left(w_{n}\right)-f^{-1}\left(w_{n}\right)\right|>a$ for all $n \in \mathbb{N}$. By passing to a subsequence again, we may assume that $w_{n} \rightarrow w_{0} \in K$. Since $f^{-1}\left(w_{n}\right) \rightarrow f^{-1}\left(w_{0}\right)$, by removing finitely many terms we may assume that $\left|f_{n}^{-1}\left(w_{n}\right)-f^{-1}\left(w_{0}\right)\right|>a$ for all $n \in \mathbb{N}$. Let $z_{0}=f^{-1}\left(w_{0}\right)$. We may choose $a>0$ small enough such that $J:=\left\{\left|z-z_{0}\right|=a\right\}$ and $\Omega:=\left\{\left|z-z_{0}\right|<a\right\}$ are all contained in D. Since $f\left(z_{0}\right)=w_{0} \in \Omega$ and f is one-to-one, $f(z)-w_{0}$ has no root on J. Let $b=\inf _{z \in J}\left|f(z)-w_{0}\right|>0$. There is $n_{0} \in \mathbb{N}$ such that $\Omega \cup J \subset D_{n_{0}}$ and $\sup _{z \in J}\left|f_{n_{0}}(z)-f(z)\right|<b / 2$ and $\left|w_{n_{0}}-w_{0}\right|<b / 2$. Rouché's theorem implies that there is $z_{n_{0}} \in \Omega$ such that $f_{n_{0}}\left(z_{n_{0}}\right)=w_{n_{0}}$, which is a contradiction.

Now we prove that condition (ii) in Definition 2.2 holds for E_{n} and E. If this is not true, there is $w_{0} \in \partial E$ such that $\operatorname{dist}\left(w_{0}, \partial E_{n}\right) \nrightarrow 0$. By passing to a subsequence, we may assume that there is $a>0$ such that $\operatorname{dist}\left(w_{0}, E_{n}\right)>a$ for all $n \in \mathbb{N}$. Since $w_{0} \in \partial E$, there is $w_{1} \in E$ with $\left|w_{1}-w_{0}\right| \leq a / 6$. Then $\operatorname{dist}\left(w_{1}, \partial E_{n}\right)>5 / 6 a \geq 5 \operatorname{dist}\left(w_{1}, \partial E\right)$. Since $f_{n}^{-1} \xrightarrow{\text { l.u. }} f^{-1}$ in $E,\left(f_{n}^{-1}\right)^{\prime}\left(w_{1}\right) \xrightarrow{\text { l.u. }}\left(f^{-1}\right)^{\prime}\left(w_{1}\right)$. From Koebe $1 / 4$ theorem, $\operatorname{dist}\left(f_{n}^{-1}\left(w_{1}\right), \partial D_{n}\right)>$ $\frac{5}{4} \operatorname{dist}\left(f^{-1}\left(w_{1}\right), \partial D\right)$ when n is big enough. Let $z_{1}=f^{-1}\left(w_{1}\right) \in D$. Since $f_{n}^{-1}\left(w_{1}\right) \rightarrow f^{-1}\left(w_{1}\right)=$ z_{1}, we have $\operatorname{dist}\left(z_{1}, \partial D_{n}\right)>\frac{5}{4} \operatorname{dist}\left(z_{1}, \partial D\right)$ when n is big enough, which contradicts that $D_{n} \xrightarrow{\text { Cara }} D$. So we conclude that $E_{n} \xrightarrow{\text { Cara }} E$.

For the general case we may use conformal charts for the Riemann sphere $\widehat{\mathbb{C}}$. We leave this as an exercise.

Remarks.

1. The theorem holds if the underlying space $\widehat{\mathbb{C}}$ is replaced by other Riemann surfaces.
2. To apply the theorem, we often use another theorem, which says that if $D_{n} \xrightarrow{\text { Cara }} D$, if $f_{n}: D_{n} \rightarrow \mathbb{C}$ is analytic in $D_{n}, n \in \mathbb{N}$, and if the family $\left\{f_{n}\right\}$ are uniformly bounded, then $\left(f_{n}\right)$ contains a subsequence which converges locally uniformly in D. Using Möbius transformation, we see that this is still true if $f_{n}: D_{n} \rightarrow \widehat{\mathbb{C}}$ and the images of f_{n} all avoid an open subset of $\widehat{\mathbb{D}}$.
3. Let K_{t} and g_{t} be chordal Loewner hulls and maps driven by $\lambda \in C([0, T))$. Let $f_{t}=g_{t}^{-1}$. Then $f_{t}: \mathbb{H} \xrightarrow{\text { Conf }} \mathbb{H} \backslash K_{t}$. Let $\left(t_{n}\right)$ be a sequence in $[0, T)$ that converges to $t_{0} \in[0, T)$.

Then $f_{t_{n}} \xrightarrow{\text { l.u. }} f_{t_{0}}$ in \mathbb{H}. Applying the above lemma, we get $\mathbb{H} \backslash K_{t_{n}} \xrightarrow{\text { Cara }} \mathbb{H} \backslash K_{t_{0}}$. For the radial case, we get $\mathbb{D} \backslash K_{t_{n}} \xrightarrow{\text { Cara }} \mathbb{D} \backslash K_{t_{0}}$.
4. For example, if $\beta(t), 0 \leq t \leq a$, is a simple curve with $\beta((0, a)) \subset \mathbb{H}$ and $\beta(0) \neq \beta(a) \in \mathbb{R}$, and if the chordal Loewner hulls $K_{t}=\beta((0, t])$ for $0 \leq t<a$, then K_{a} equals the union of $\beta((0, a))$ with the region bounded by β and $[\beta(0), \beta(a)]$. From the view of Carathéodory topology, there is no jump from $K_{t}, t<a$, to K_{a}.
5. If $\lambda_{n} \rightarrow \lambda$ in the semi-norm $\|\cdot\|_{a}$, then $g_{n, t}^{-1} \xrightarrow{\text { l.u. }} g_{t}^{-1}$ for $0 \leq t \leq a$. We then conclude that $\mathbb{H} \backslash K_{n, t} \xrightarrow{\text { Cara }} \mathbb{H} \backslash K_{t}$ or $\mathbb{D} \backslash K_{n, t} \xrightarrow{\text { Cara }} \mathbb{D} \backslash K_{t}$ for $0 \leq t \leq a$.

3 Hulls and Loewner Chains

3.1 Hulls

Definition 3.1 A hull K in \mathbb{C} is a continuum in \mathbb{C} such that $\widehat{\mathbb{C}} \backslash K$ is connected. Then $\widehat{\mathbb{C}} \backslash K$ is a simply connected domain. There is a unique $f_{K}:(\widehat{\mathbb{C}} \backslash \overline{\mathbb{D}} ; \infty) \xrightarrow{\text { Conf }}(\widehat{\mathbb{C}} \backslash K ; \infty)$, which satisfies

$$
f_{K}(z)=a_{1} z+a_{0}+\sum_{n=-\infty}^{-1} a_{n} z^{n}, \quad z \rightarrow \infty
$$

with $a_{1}>0$. The number a_{1} is called the capacity of K, and is denoted by $\operatorname{cap}(K)$.
We have the following results.

1. $\operatorname{cap}(\mathbb{D})=1$.
2. $\operatorname{cap}(a K+b)=|a| \operatorname{cap}(K)$ if $a, b \in \mathbb{C}$ and $a \neq 0$.
3. The capacity of any closed disc is its radius.
4. $\operatorname{cap}([-2,2])=1$, where $f_{K}(z)=z+\frac{1}{z}$.
5. The capacity of a line segment equals to one quarter of its length.
6. If $K_{1} \subset K_{2}$, then $\operatorname{cap}\left(K_{1}\right) \leq \operatorname{cap}\left(K_{2}\right)$. The equality holds only if $K_{1}=K_{2}$. The proof uses Schwarz lemma.
7. $\operatorname{cap}(K) \leq \operatorname{diam}(K) \leq 4 \operatorname{cap}(K)$. The second inequality follows from Koebe's $1 / 4$ theorem, and the equality holds for line segments.

Definition 3.2 A hull K in a simply connected domain D is a relatively closed subset of D such that $D \backslash K$ is also simply connected.

Definition 3.3 A \mathbb{D}-hull is a hull in \mathbb{D} that does not contain 0 . If K is a \mathbb{D}-hull, there is a unique $g_{K}:(\mathbb{D} \backslash K ; 0) \xrightarrow{\text { Conf }}(\mathbb{D} ; 0)$ which satisfies $g_{K}^{\prime}(0)>0$. Then $\log \left(g_{K}^{\prime}(0)\right)$ is called the \mathbb{D}-capacity of K, and is denoted by $\operatorname{dcap}(K)$.

We have the following results.

1. The empty set is a \mathbb{D}-hull, $g_{\emptyset}=\mathrm{id}$, and $\operatorname{dcap}(\emptyset)=0$.
2. If $K_{1} \varsubsetneqq K_{2}$, then $\operatorname{cap}\left(K_{1}\right)<\operatorname{cap}\left(K_{2}\right)$. The proof uses Schwarz lemma.
3. $\frac{1}{4} e^{-\operatorname{dcap}(K)} \leq \operatorname{dist}(0, \mathbb{T} \cup K) \leq e^{-\operatorname{dcap}(K)}$. The two inequalities follow from Schwarz lemma and Koebe's $1 / 4$ theorem.
4. Let K be a \mathbb{D}-hull. Let $K^{*}=\overline{\mathbb{D}} \cup\{z \in \mathbb{C}: 1 / \bar{z} \in K\}$. Then K^{*} is a hull in \mathbb{C}, and $\operatorname{cap}(\widehat{K})=\exp (\operatorname{dcap}(K))$.
5. If K_{t} are radial Loewner hulls, then each K_{t} is a \mathbb{D}-hull, and $\operatorname{dcap}\left(K_{t}\right)=t$.

Definition 3.4 An \mathbb{H}-hull is a bounded (from ∞) hull in \mathbb{H}.
We will use $I_{\mathbb{R}}$ to denote the complex conjugate map $z \mapsto \bar{z}$. If K is a nonempty \mathbb{H}-hull, then $\bar{K} \cap \mathbb{R}$ is a nonempty compact set. Let a_{K} and b_{K} be the minimum and maximum of this set. Define

$$
\widehat{K}=K \cup[a, b] \cup I_{\mathbb{R}}(K)
$$

Then \widehat{K} is a hull in \mathbb{C} with $I_{\mathbb{R}}(\widehat{K})=\widehat{K}$. Thus, there is a unique $f_{\widehat{K}}:(\widehat{\mathbb{C}} \backslash \overline{\mathbb{D}} ; \infty) \xrightarrow{\text { Conf }}(\widehat{\mathbb{C}} \backslash \widehat{K} ; \infty)$ such that in the power series expansion of $f_{\widehat{K}}$ at ∞, say $f_{\widehat{K}}(z)=a_{1} z+a_{0}+O(1 / z)$ as $z \rightarrow \infty$, the first coefficient a_{1} is positive. Let $f=I_{\mathbb{R}} \circ f_{\widehat{K}} \circ I_{\mathbb{R}}$. Since $I_{\mathbb{R}}(\widehat{K})=\widehat{K}$ is symmetric about \mathbb{R} and $a_{1}>0$, we have $f:(\widehat{\mathbb{C}} \backslash \overline{\mathbb{D}} ; \infty) \xrightarrow{\text { Conf }}(\widehat{\mathbb{C}} \backslash \widehat{K} ; \infty)$ and $f(z)=a_{1} z+\overline{a_{0}}+O(1 / z)$ as $z \rightarrow \infty$. The uniqueness of $f_{\widehat{K}}$ implies that $f=f_{\widehat{K}}$. Thus, $a_{0} \in \mathbb{R}$ and $f_{\widehat{K}}$ commutes with $I_{\mathbb{R}}$. Let $g=W \circ f_{\widehat{K}}^{-1}$, where $W(z)=z+\frac{1}{z}$. Then $g:(\widehat{\mathbb{C}} \backslash \widehat{K} ; \infty) \xrightarrow{\text { Conf }}(\widehat{\mathbb{C}} \backslash[-2,2] ; \infty)$, and the power series expansion of g at ∞ is $g(z)=\frac{z}{a_{1}}-\frac{a_{0}}{a_{1}}+O(1 / z)$. Since both $f_{\widehat{K}}$ and W commute with $I_{\mathbb{R}}$, the same is true for g. Let $g_{K}(z)=a_{1} g(z)+a_{0}$. Set $c_{K}=a_{0}-2 a_{1}$ and $d_{K}=a_{0}+2 a_{1}$. Then $g_{K}:(\widehat{\mathbb{C}} \backslash \widehat{K} ; \infty) \xrightarrow{\text { Conf }}\left(\widehat{\mathbb{C}} \backslash\left[c_{K}, d_{K}\right] ; \infty\right)$ and satisfies $g_{K}(z)=z+O(1 / z)$ as $z \rightarrow \infty$. Since $a_{0}, a_{1} \in \mathbb{R}, g_{K}$ also commutes with $I_{\mathbb{R}}$. Thus, $g_{K} \operatorname{maps} \widehat{\mathbb{R}} \backslash \widehat{K}=\widehat{\mathbb{R}} \backslash\left[a_{K}, b_{K}\right]$ onto $\widehat{\mathbb{R}} \backslash\left[c_{K}, d_{K}\right]$. Since $\widehat{\mathbb{R}} \backslash\left[a_{K}, b_{K}\right]$ divides $\widehat{\mathbb{C}} \backslash \widehat{K}$ into two components: $\mathbb{H} \backslash K$ and $I_{\mathbb{R}}(\mathbb{H} \backslash K)$, and $\widehat{\mathbb{R}} \backslash\left[c_{K}, d_{K}\right]$ divides $\mathbb{C} \backslash\left[c_{K}, d_{K}\right]$ into two components: \mathbb{H} and $I_{\mathbb{R}}(\mathbb{H})$, we conclude that g_{K} maps $\mathbb{H} \backslash K$ onto \mathbb{H} or $I_{\mathbb{R}}(\mathbb{H})$. Since $g_{K}(z)=z+O\left(z^{-1}\right)$ as $z \rightarrow \infty$. The second case does not happen. So $g_{K}:(\mathbb{H} \backslash K ; \infty) \xrightarrow{\text { Conf }}(\mathbb{H} ; \infty)$. If $K=\emptyset$, we let $g_{K}=$ id. Then $g_{K}:(\mathbb{H} \backslash K ; \infty) \xrightarrow{\text { Conf }}(\mathbb{H} ; \infty)$ and $g_{K}(z)=z+O(1 / z)$ as $z \rightarrow \infty$ still hold. Note that such g_{K} is unique because if h_{K} also satisfies the properties of g_{K}, then $h_{K} \circ g_{K}^{-1}: \mathbb{H} \xrightarrow{\text { Conf }} \mathbb{H}$, and $h_{K} \circ g_{K}^{-1}(z)=z+O\left(z^{-1}\right)$ as $z \rightarrow \infty$, which forces $h_{K} \circ g_{K}^{-1}=\mathrm{id}$.

Definition 3.5 If K is an \mathbb{H}-hull, let g_{K} denote the unique conformal map from ($\mathbb{H} \backslash K ; \infty$) onto $(\mathbb{H} ; \infty)$ that satisfies $g_{K}(z)=z+O(1 / z)$ as $z \rightarrow \infty$. If the expansion of g_{K} at ∞ is $g_{K}(z)=z+\sum_{n=-\infty}^{-1} b_{-n} z^{n}$, we call the number b_{-1} the \mathbb{H}-capacity of K, and let it be denoted by hcap (K). In case $K \neq \emptyset$, we define $\widehat{K}, a_{K}, b_{K}, c_{K}, d_{K}$ to be as in the above argument, and g_{K} will also be understood as a conformal map from $\widehat{\mathbb{C}} \backslash \widehat{K}$ onto $\widehat{\mathbb{C}} \backslash\left[c_{K}, d_{K}\right]$.

Examples.

1. If $K=\emptyset$, then $g_{K}(z)=z$, and $\operatorname{hcap}(K)=0$.
2. If $K=\left\{z \in \mathbb{H}:\left|z-x_{0}\right| \leq r\right\}$ for some $x_{0} \in \mathbb{R}$ and $r>0$, then $a_{K}=x_{0}-r, b_{K}=x_{0}+r$; $g_{K}(z)=z+\frac{r^{2}}{z-x_{0}} ; c_{K}=x_{0}-2 r, d_{K}=x_{0}+2 r ; \operatorname{and} \operatorname{hcap}(K)=r^{2}$.
3. If $K=(0, i]$, then $a_{K}=b_{K}=0 ; g_{K}(z)=\sqrt{z^{2}+1}=z \sqrt{1+z^{-2}}$, where the branch of the square root is chosen such that $\sqrt{1+z^{-2}} \rightarrow 1$ as $z \rightarrow \infty ; c_{K}=-1, d_{K}=1$. Since $g_{K}(z)=z\left(1+\frac{1}{2} z^{-2}+\cdots\right)$ as $z \rightarrow \infty, \operatorname{hcap}(K)=1 / 2$.
4. If K_{t} and $g_{t}, 0 \leq t<T$, are chordal Loewner hulls and maps driven by $\lambda \in C([0, T))$, then each K_{t} is an \mathbb{H}-hull, $g_{t}=g_{K_{t}}$, and hcap $\left(K_{t}\right)=2 t$. Recall that $g_{t}: \mathbb{H} \backslash K_{t} \xrightarrow{\text { Conf }} \mathbb{H}$ and satisfies $g_{t}(z)=z+\frac{2 t}{z}+O\left(z^{-2}\right)$ as $z \rightarrow \infty$.

Lemma 3.1 If K is an \mathbb{H}-hull, and $a>0, b \in \mathbb{R}$, then $a K+b$ is also an \mathbb{H}-hull, $g_{a K+b}(z)=$ $a g_{K}((z-b) / a)+b$, and hcap $(a K+b)=a^{2} \operatorname{hcap}(K)$.

Proof. The proof is straightforward. We leave it as an exercise.
Let K be a nonempty \mathbb{H}-hull. Let $h(z)=g_{K}^{-1}(z)-z$. Then h is a \mathbb{C}-valued analytic function defined on $\widehat{\mathbb{C}} \backslash \widehat{K}$. In fact, $h(z)=\frac{-h \operatorname{cap}(K)}{z}+O\left(1 / z^{2}\right)$ near ∞, so $h(\infty)=0$. Then $\operatorname{Im} h$ is a real valued harmonic function on $\widehat{\mathbb{C}} \backslash \widehat{K}$. Let $\delta>0$ be small. Since g_{K}^{-1} maps $i \delta+\mathbb{R}$ into \mathbb{H}, we have $\operatorname{Im} h(z)>-\operatorname{Im} z=-\delta$ on $i \delta+\mathbb{R}$. Since $\operatorname{Im} h(\infty)=0>-\delta$, from the Maximum principle, we have $\operatorname{Im} h(z)>-\delta$ for any $z \in \mathbb{H}$ with $\operatorname{Im} z>\delta$. Since this holds for any δ, we have $\operatorname{Im} h(z) \geq 0$ for any $z \in \mathbb{H}$. If there is $z_{0} \in \mathbb{H}$ with $\operatorname{Im} h\left(z_{0}\right)=0$, then $\operatorname{Im} h \equiv 0$ on \mathbb{H}, which implies that h is a real valued constant, say C. This implies that $g_{K}^{-1}(z)=z+C$, which contradicts that $g_{K}^{-1}: \mathbb{H} \xrightarrow{\text { Conf }} \mathbb{H} \backslash K$ and $K \neq \emptyset$. Thus, $\operatorname{Im} h>0$ on \mathbb{H}. This means that $\operatorname{Im} g_{K}^{-1}(z)-\operatorname{Im} z>0$ for $z \in \mathbb{H}$, and $\operatorname{Im} g_{K}(z)<\operatorname{Im} z$ for $z \in \mathbb{H} \backslash K$. Since $h(z)=\frac{-\operatorname{hcap}(K)}{z}+O\left(1 / z^{2}\right)$ near ∞ and $\pm \operatorname{Im} h(z)>0$ if $\pm \operatorname{Im} z>0$, we get hcap $(K)>0$. So we conclude the following lemma.

Lemma 3.2 For any nonempty \mathbb{H}-hull $K, \operatorname{Im} g_{K}^{-1}(z)>\operatorname{Im} z$ for $z \in \mathbb{H}$, and hcap $(K)>0$.
Definition 3.6 Let K_{1}, K_{2} be two \mathbb{H}-hulls. If $K_{1} \subset K_{2}$, we say that K_{1} is a sub-hull of K_{2}. In this case, let $K_{2} / K_{1}=g_{K_{1}}\left(K_{2} \backslash K_{1}\right)$. We say K_{2} / K_{1} is a quotient-hull of K_{2}.

Lemma 3.3 If $K_{1} \subset K_{2}$ are two \mathbb{H}-hulls, then K_{2} / K_{1} is also an \mathbb{H}-hull, and we have

$$
\begin{gather*}
g_{K_{2}}=g_{K_{2} / K_{1}} \circ g_{K_{1}} \quad \text { on } \quad \mathbb{H} \backslash K_{2} . \tag{3.1}\\
\operatorname{hcap}\left(K_{2}\right)=\operatorname{hcap}\left(K_{1}\right)+\operatorname{hcap}\left(K_{2} / K_{1}\right) . \tag{3.2}
\end{gather*}
$$

In particular, if L is a sub-hull or quotient-hull of K, then $\operatorname{hcap}(L) \leq \operatorname{hcap}(K)$, and the equality holds iff $L=K$.

Proof. Since $g_{K_{1}}$ maps $\mathbb{H} \backslash K_{1}$ onto \mathbb{H}, we get $K_{2} / K_{1} \subset \mathbb{H}$. Since $K_{2} \backslash K_{1}$ is bounded and the conformal map $g_{K_{1}}$ fixes ∞, we see that K_{2} / K_{1} is bounded. Since $g_{K_{1}}: \mathbb{H} \backslash K_{2} \xrightarrow{\text { Conf }} \mathbb{H} \backslash K_{2} / K_{1}$ we see that $\mathbb{H} \backslash K_{2} / K_{1}$ is simply connected. Thus, K_{2} / K_{1} is an \mathbb{H}-hull. We have $g_{K_{2} / K_{1}} \circ g_{K_{1}}$: $\mathbb{H} \backslash K_{2} \xrightarrow{\text { Conf }} \mathbb{H}$, and $g_{K_{2} / K_{1}} \circ g_{K_{1}}(z)=z+\frac{\operatorname{hcap}\left(K_{2} / K_{1}\right)}{z}+\frac{\operatorname{hcap}\left(K_{1}\right)}{z}+O\left(1 / z^{2}\right)$ near ∞. So we get (3.1) and (3.2). Note that $K / L=K$ implies that $L=\emptyset$, and $K / L=\emptyset$ implies that $L=K$. Using Lemma 3.2 we obtain the remaining results.

Remark. Using the notation of quotient hulls we may rewrite (1.3) as

$$
\begin{equation*}
\{\lambda(t)\}=\bigcap_{\varepsilon \in(0, T-t)} \overline{K_{t+\varepsilon} / K_{t}} . \tag{3.3}
\end{equation*}
$$

Definition 3.7 A simple curve γ in \mathbb{H} is called a crosscut if its two ends approach to two different points on \mathbb{R}. The closure of the bounded component of $\mathbb{H} \backslash \gamma$ in \mathbb{H} is called the bubble bounded by γ.

Remarks.

1. If K is the bubble bounded by a crosscut γ, then $\mathbb{H} \backslash K$ is a Jordan domain. Thus, g_{K} extends to a homeomorphism from $\overline{\mathbb{H}} \backslash K$ to $\overline{\mathbb{H}}$. Moreover, the continuation of g_{K} maps γ onto $\left(c_{K}, d_{K}\right)$.
2. For any \mathbb{H}-hull K, there is a family of bubbles K_{n} such that $K_{n+1} \subset K_{n}$ for all $n \in \mathbb{N}$, and $K=\bigcap_{n \in \mathbb{N}} K_{n}$. We say that K is approximated by the sequence $\left(K_{n}\right)$.

Lemma 3.4 Let K be a nonempty \mathbb{H}-hull. Then there is a (positive) measure μ_{K} supported by $\left[c_{K}, d_{K}\right]$ with $\left|\mu_{K}\right|=\operatorname{hcap}(K)$ such that

$$
\begin{equation*}
g_{K}^{-1}(z)-z=\int_{c_{K}}^{d_{K}} \frac{-1}{z-x} d \mu_{K}(x), \quad z \in \widehat{\mathbb{C}} \backslash\left[c_{K}, d_{K}\right] . \tag{3.4}
\end{equation*}
$$

If K is a bubble, then $d \mu_{K}=\frac{1}{\pi} \operatorname{Im} g_{K}^{-1}(x) d x$, where $d x$ is the Lebesgue measure.

Proof. We know that $h(z):=\operatorname{Im}\left(g_{K}^{-1}(z)-z\right)$ is a positive harmonic function in \mathbb{H} and vanishes on $\widehat{\mathbb{R}} \backslash\left[c_{K}, d_{K}\right]$. In the case that K is a bubble, h is continuous on $\overline{\mathbb{H}}$ and $h(x)=\operatorname{Im} g_{K}^{-1}(x)$ on \mathbb{R}. Using the fact that $\frac{1}{\pi} \operatorname{Im} \frac{-1}{z-x}$ is the Poisson kernel in \mathbb{H} with the pole at x, we conclude that there is a (positive) measure μ_{K} supported by $\left[c_{K}, d_{K}\right]$ such that

$$
\begin{equation*}
h(z)=\int_{c_{K}}^{d_{K}} \operatorname{Im} \frac{-1}{z-x} d \mu_{K}(x), \quad z \in \widehat{\mathbb{C}} \backslash\left[c_{K}, d_{K}\right], \tag{3.5}
\end{equation*}
$$

and $d \mu_{K}=\frac{1}{\pi} \operatorname{Im} g_{K}^{-1}(x) d x$ if K is a bubble.
Then we conclude that the LHS of (3.4) equals to the RHS of (3.4) plus a constant $C \in \mathbb{R}$. When z is near ∞, the RHS of (3.4) equals to $-\frac{\operatorname{hcap}(K)}{z}+O\left(z^{-2}\right)$, and the RHS of 3.4) equals to $-\frac{|\mu(K)|}{z}+O\left(z^{-2}\right)$. Thus, $C=0$ and $\left|\mu_{K}\right|=\operatorname{hcap}(K)$. So 3.4 holds.

Remarks.

1. (3.4) says that $g_{K}^{-1}(z)-z$ is the Stieltjes transform of μ_{K}.
2. If K is a \mathbb{D}-hull, then there is a measure μ_{K} supported by \mathbb{T} with $\left|\mu_{K}\right|=\operatorname{dcap}(K)$ such that

$$
\log \left(g_{K}^{-1}(z) / z\right)=\int_{\mathbb{T}} \frac{z+w}{z-w} d \mu_{K}(w) .
$$

Lemma 3.5 Let γ be a crosscut in \mathbb{H}. Let $h=\sup \operatorname{Im} \gamma$. If K is the bubble bounded by γ, then

$$
\operatorname{hcap}(K) \leq \frac{h}{\pi}\left(d_{K}-c_{K}\right) .
$$

Proof. This follows from Lemma 3.4 immediately.
Lemma 3.6 For any nonempty \mathbb{H}-hull $K,\left[a_{K}, b_{K}\right] \subset\left[c_{K}, d_{K}\right]$. If $K_{1} \varsubsetneqq K_{2}$ are two nonempty \mathbb{H}-hulls, then $\left[c_{K_{1}}, d_{K_{1}}\right] \subset\left[c_{K_{2}}, d_{K_{2}}\right]$ and $\left[c_{K_{2} / K_{1}}, d_{K_{2} / K_{1}}\right] \subset\left[c_{K_{2}}, d_{K_{2}}\right]$.

Proof. Let K be a nonempty \mathbb{H}-hull. From (3.4) we conclude that

$$
\begin{equation*}
g_{K}^{-1}(x)<x, \quad x \in\left(d_{K}, \infty\right) ; \quad g_{K}^{-1}(x)>x, \quad x \in\left(-\infty, c_{K}\right) . \tag{3.6}
\end{equation*}
$$

Since g_{K}^{-1} maps $\left(-\infty, c_{K}\right)$ onto $\left(-\infty, a_{K}\right)$, we have $c_{K} \leq a_{K}$. Similarly, $d_{K} \geq b_{K}$. Hence $\left[a_{K}, b_{K}\right] \subset\left[c_{K}, d_{K}\right]$.

Let $K_{1} \subseteq K_{2}$ be two nonempty \mathbb{H}-hulls. Let $b \in\left(b_{K_{2}}, \infty\right)$. Then $\operatorname{dist}\left(K_{2} \backslash K_{1},[b, \infty]\right)>0$ So $K_{2} / K_{1}=g_{K_{1}}\left(K_{2} \backslash K_{1}\right)$ is bounded away from $\left[g_{K_{1}}(b), \infty\right)$, which implies $b_{K_{2} / K_{1}}<g_{K_{1}}(b)$. Since this holds for any $b>b_{K_{2}}$, we have $\left(b_{K_{2} / K_{1}}, \infty\right) \supset g_{K_{1}}\left(\left(b_{K_{2}}, \infty\right)\right)$. Thus,

$$
d_{K_{2} / K_{1}}=\inf g_{K_{2} / K_{1}}\left(\left(b_{K_{2} / K_{1}}, \infty\right)\right) \leq \inf g_{K_{2} / K_{1}} \circ g_{K_{1}}\left(\left(b_{K_{2}}, \infty\right)\right)=g_{K_{2}}\left(\left(b_{K_{2}}, \infty\right)\right)=d_{K_{2}} .
$$

Similarly, $c_{K_{2} / K_{1}} \geq c_{K_{2}}$. So $\left[c_{K_{2} / K_{1}}, d_{K_{2} / K_{1}}\right] \subset\left[c_{K_{2}}, d_{K_{2}}\right]$.

If $x \in\left(-\infty, a_{K_{2}}\right)$, then $g_{K_{2}}(x) \in\left(-\infty, c_{K_{2}}\right) \subset\left(-\infty, c_{K_{2} / K_{1}}\right)$. Using 3.6 we get $g_{K_{1}}(x)=$ $g_{K_{2} / K_{1}}^{-1} \circ g_{K_{2}}(x)>g_{K_{2}}(x)$. Thus,

$$
c_{K_{1}}=\sup g_{K_{1}}\left(\left(-\infty, a_{K_{1}}\right)\right) \geq \sup g_{K_{1}}\left(\left(-\infty, a_{K_{2}}\right)\right) \geq \sup g_{K_{2}}\left(\left(-\infty, a_{K_{2}}\right)\right)=c_{K_{2}}
$$

Similarly, we have $d_{K_{1}} \leq d_{K_{2}}$. Hence $\left[c_{K_{1}}, d_{K_{1}}\right] \subset\left[c_{K_{2}}, d_{K_{2}}\right]$.
Lemma 3.7 Let $x_{0} \in \mathbb{R}$, $r>0$. If a nonempty \mathbb{H}-hull K is contained in $\left\{\left|z-x_{0}\right| \leq r\right\}$, then $\left|g_{K}^{-1}(z)-z\right| \leq 15 r$ for any $z \in \mathbb{C} \backslash\left[c_{K}, d_{K}\right]$, and $\left|g_{K}(z)-z\right| \leq 15 r$ for any $z \in \mathbb{C} \backslash \widehat{K}$.

Proof. Let $K_{r}=\left\{z \in \mathbb{H}:\left|z-x_{0}\right| \leq r\right\}$. Then $\left|\mu_{K}\right|=\operatorname{hcap}(K) \leq \operatorname{hcap}\left(K_{r}\right)=r^{2}$ and $\left[c_{K}, d_{K}\right] \subset\left[c_{K_{r}}, d_{K_{r}}\right]=\left[x_{0}-2 r, x_{0}+2 r\right]$. Let $\alpha=\left\{z \in \mathbb{C}:\left|z-x_{0}\right| \leq 3 r\right\}$. Then α is a Jordan curve that encloses $\left[c_{K}, d_{K}\right]$, and $\operatorname{dist}\left(\alpha,\left[c_{K}, d_{K}\right]\right) \geq r$. If z lies on or outside α, from equation (3.4), we get $\left|g_{K}^{-1}(z)-z\right| \leq\left|\mu_{K}\right| / r \leq r$. Since $\operatorname{diam}(\alpha)=6 r$, we have $\operatorname{diam}\left(g_{K}^{-1}(\alpha)\right) \leq 8 r$. If $z \in \mathbb{C} \backslash\left[c_{K}, d_{K}\right]$ lies inside α, then $g_{K}^{-1}(z)$ lies inside $g_{K}^{-1}(\alpha)$. Choose $w \in \alpha$, then

$$
\begin{aligned}
& \mid g_{K}^{-1}(z)- z\left|\leq|z-w|+\left|w-g_{K}^{-1}(w)\right|+\left|g_{K}^{-1}(w)-g_{K}^{-1}(z)\right|\right. \\
& \leq \operatorname{diam}(\alpha)+r+\operatorname{diam}\left(g_{K}^{-1}(\alpha)\right) \leq 15 r
\end{aligned}
$$

Since $g_{K}: \mathbb{C} \backslash \widehat{K} \xrightarrow{\text { Conf }} \mathbb{C} \backslash\left[c_{K}, d_{K}\right]$, we see that $\left|g_{K}(z)-z\right| \leq 15 r$ for any $z \in \mathbb{C} \backslash \widehat{K}$.
Lemma 3.8 Let K_{n}, $n \in \mathbb{N}$, be a sequence of \mathbb{H}-hulls with $K_{n+1} \subset K_{n}$ for all n. Suppose $\bigcap_{n=1}^{\infty} K_{n}=K$ is an \mathbb{H}-hull. Then $\operatorname{hcap}(K)=\lim _{n \rightarrow \infty} \operatorname{hcap}\left(K_{n}\right)$.

Proof. Let $L_{n}=K_{n} / K$. Then $\bigcap_{n=1}^{\infty} L_{n}=\emptyset$. From Lemma 3.3, hcap $\left(L_{n}\right)=\operatorname{hcap}\left(K_{n}\right)-$ $\operatorname{hcap}(K)$. We suffice to show that $\operatorname{hcap}\left(L_{n}\right) \rightarrow 0$. The sequence of L_{n} is decreasing. If any L_{n} is empty, the result is immediate. We now suppose all L_{n} are nonempty. Let h_{n} denote the height of L_{n}. Then $h_{n} \rightarrow 0$. If L_{n} are all bubbles, then we have

$$
\operatorname{hcap}\left(L_{n}\right) \leq \frac{h_{n}}{\pi}\left(d_{L_{n}}-c_{L_{n}}\right) \leq \frac{h_{n}}{\pi}\left(d_{L_{1}}-c_{L_{1}}\right) \rightarrow 0
$$

In the general case, we may find a decreasing sequence of bubbles $\left(L_{n}^{\prime}\right)$ such that $L_{n} \subset L_{n}^{\prime}$ and $\bigcap L_{n}^{\prime}=\emptyset$. For example, we may choose $L_{n}^{\prime}=\left\{|x| \leq R, 0<y \leq h_{n}\right\}$, where $R=\sup \left|\operatorname{Re} L_{1}\right|$.

Remarks.

1. For any nonempty \mathbb{H}-hull K, we have $\operatorname{hcap}(K) \leq \operatorname{diam}(K)^{2}$. Proof. Let $R=\operatorname{diam}(K)$ and $x_{0} \in \bar{K} \cap \mathbb{R}$. Then $K \subset\left\{z \in \mathbb{H}:\left|z-x_{0}\right| \leq R\right\}=$: K_{R}, which implies that $\operatorname{hcap}(K) \leq \operatorname{hcap}\left(K_{R}\right)=R^{2}$.
2. For any $M, \varepsilon>0$, there is an \mathbb{H}-hull K with $\operatorname{diam}(K)>M$ and $\operatorname{hcap}(K)<\varepsilon$. Proof. For $n \in \mathbb{N}$, let K_{n} be the rectangle: $[0, M] \times\left(0, \frac{1}{n}\right]$. Then each K_{n} is an \mathbb{H}-hull with $\operatorname{diam}\left(K_{n}\right)>M$. Since $\left(K_{n}\right)$ is decreasing and $\bigcap_{n=1}^{\infty} K_{n}=\emptyset$, we have hcap $\left(K_{n}\right) \rightarrow 0$. So there is n_{0} such that $\operatorname{hcap}\left(K_{n_{0}}\right)<\varepsilon$.

Let $\mathcal{H}_{*}(\mathbb{H})$ denote the set of all nonempty \mathbb{H}-hulls. Let $\mathcal{H}_{b}(\mathbb{H})$ denote the set of all bubbles.
Proposition 3.1 Suppose $x_{0} \in \mathbb{R}, I$ is an open real interval, Ω is a domain, and $x_{0} \subset I \subset \Omega$. Suppose that W is a conformal map on Ω such that $W(I) \subset \mathbb{R}$ and $W^{\prime}\left(x_{0}\right)>0$. Then

$$
\begin{equation*}
\lim _{\mathcal{H}_{*}(\mathbb{H}) \ni K \rightarrow x_{0}} \frac{\operatorname{hcap}(W(K))}{\operatorname{hcap}(K)}=W^{\prime}\left(x_{0}\right)^{2}, \tag{3.7}
\end{equation*}
$$

where $K \rightarrow x_{0}$ means that $\operatorname{diam}\left(K \cup\left\{x_{0}\right\}\right) \rightarrow 0$.
Proof. Suppose $\operatorname{diam}\left(K \cup\left\{x_{0}\right\}\right)$ is small enough such that $\widehat{K} \subset \Omega$ and $\widehat{K} \cap \mathbb{R} \subset I$. Let $\Omega_{K}=g_{K}(\Omega \backslash \widehat{K})$ and $W_{K}=g_{W(K)} \circ W \circ g_{K}^{-1}$. Then $\Omega_{K} \cap\left[c_{K}, d_{K}\right]=\emptyset, \Omega_{K} \cup\left[c_{K}, d_{K}\right]$ is open, and W_{K} is a conformal map on Ω_{K}. As $z \rightarrow\left[c_{K}, d_{K}\right]$ in $\Omega_{K}, g_{K}^{-1}(z) \rightarrow \widehat{K}$ in $\Omega \backslash K$, $W \circ g_{K}^{-1}(z) \rightarrow W(\widehat{K})=\widehat{W(K)}$, hence $W_{K}(z) \rightarrow\left[c_{W(K)}, d_{W(K)}\right]$. Thus, W_{K} extends to a conformal map defined on $\Omega_{K} \cup\left[c_{K}, d_{K}\right]$, and maps $\left[c_{K}, d_{K}\right]$ onto $\left[c_{W(K)}, d_{W(K)}\right]$.

Since every \mathbb{H}-hull can be approximated by a decreasing sequence of bubbles, from Lemma 3.8 we suffice to prove the proposition with $\mathcal{H}_{*}(\mathbb{H})$ replaced by $\mathcal{H}_{b}(\mathbb{H})$. Let $K \in \mathcal{H}_{*}(\mathbb{H})$. Then $W(K) \in \mathcal{H}_{*}(\mathbb{H})$. From Lemma 3.4 we have

$$
\begin{gathered}
\operatorname{hcap}(K)=\frac{1}{\pi} \int_{c_{K}}^{d_{K}} \operatorname{Im} g_{K}^{-1}(x) d x . \\
\operatorname{hcap}(W(K))=\frac{1}{\pi} \int_{c_{W(K)}}^{d_{W(K)}} \operatorname{Im} g_{W(K)}^{-1}(x) d x . \\
=\frac{1}{\pi} \int_{c_{K}}^{d_{K}} W_{K}^{\prime}(x) \operatorname{Im} g_{W(K)}^{-1} \circ W_{K}(x) d x=\frac{1}{\pi} \int_{c_{K}}^{d_{K}} W_{K}^{\prime}(x) \operatorname{Im} W \circ g_{K}^{-1}(x) d x .
\end{gathered}
$$

We suffice to show that, as $K \rightarrow x_{0}$, the following are true.
(L1) $\frac{\operatorname{Im} W(z)}{\operatorname{Im} z} \rightarrow W^{\prime}\left(x_{0}\right)$ uniformly on $z \in \partial K \cap \mathbb{H}$;
(L2) $W_{K}^{\prime}(x) \rightarrow W^{\prime}\left(x_{0}\right)$ uniformly on $x \in\left[c_{K}, d_{K}\right]$.
Since W is analytic and takes real value on the open interval $I \ni x_{0},(\mathrm{~L} 1)$ is clearly true. Now we prove (L2). If $K \subset K_{r}:=\left\{z \in \mathbb{H}:\left|z-x_{0}\right| \leq r\right\}$, then $\left|\mu_{K}\right|=\operatorname{hcap}(K) \leq \operatorname{hcap}\left(K_{r}\right)=r^{2}$ and $\left[c_{K}, d_{K}\right] \subset\left[c_{K_{r}}, d_{K_{r}}\right]=\left[x_{0}-2 r, x_{0}+2 r\right]$. Let $K \rightarrow x_{0}$. Then $\Omega \backslash \widehat{K} \xrightarrow{\text { Cara }} \Omega \backslash\left\{x_{0}\right\}$ and $\inf \left\{r>0: K \subset K_{r}\right\} \rightarrow 0$, which implies that $\left|\mu_{K}\right| \rightarrow 0$ and $\left[c_{K}, d_{K}\right] \rightarrow x_{0}$. From (3.4) we have $g_{K}^{-1} \xrightarrow{\text { l.u. }}$ id in $\mathbb{C} \backslash\left\{x_{0}\right\}$, which implies that $\Omega_{K} \xrightarrow{\text { Cara }} \Omega \backslash\left\{x_{0}\right\}$ by Lemma 2.4 . Similarly, since $W(K) \rightarrow W\left(x_{0}\right)$, we have $g_{W(K)}^{-1} \xrightarrow{\text { l.u. }}$ id in $W\left(\Omega \backslash\left\{x_{0}\right\}\right)$, which implies that $g_{W(K)} \xrightarrow{\text { l.u. }}$ id in $W\left(\Omega \backslash\left\{x_{0}\right\}\right)$. Since $W_{K}=g_{W(K)} \circ W \circ g_{K}^{-1}$, we have $W_{K} \xrightarrow{\text { l.u. }} W$ in $\Omega \backslash\left\{x_{0}\right\}$. From $\Omega_{K} \xrightarrow{\text { Cara }} \Omega \backslash\left\{x_{0}\right\}$ we have $\Omega_{K} \cup\left[c_{K}, d_{K}\right] \xrightarrow{\text { Cara }} \Omega$. Since W_{k} and W are analytic on Ω_{K} and Ω, respectively, using the Maximum principle, we conclude that $W_{K} \xrightarrow{\text { l.u. }} W$ in Ω. Thus, $W_{K}^{\prime} \xrightarrow{\text { l.u. }} W^{\prime}$ in Ω. Since $\left[c_{K}, d_{K}\right] \rightarrow x_{0}$, we conclude that (L2) is true.

Proposition 3.2 Suppose $x_{0} \in \mathbb{R}, I$ is an open real interval, Ω is a domain, and $x_{0} \subset I \subset \Omega$. Suppose that W is a conformal map on Ω such that $W(I) \subset \mathbb{T}$ and $W(\Omega \cap \mathbb{H}) \subset \mathbb{D}$. Then

$$
\lim _{\mathcal{H}_{*}(\mathbb{H}) \ni K \rightarrow x_{0}} \frac{\operatorname{dcap}(W(K))}{\operatorname{hcap}(K)}=\frac{1}{2}\left|W^{\prime}\left(x_{0}\right)\right|^{2} .
$$

Proposition 3.3 Suppose $z_{0} \in \mathbb{T}$, I is an open arc on \mathbb{T}, Ω is a domain, and $z_{0} \subset I \subset \Omega$. Suppose that W is a conformal map on Ω such that $W(I) \subset \mathbb{T}$ and $W(\Omega \cap \mathbb{H}) \subset \mathbb{D}$. Then

$$
\lim _{\mathcal{H}_{*}(\mathbb{D}) \ni K \rightarrow z_{0}} \frac{\operatorname{dcap}(W(K))}{\operatorname{dcap}(K)}=\left|W^{\prime}\left(z_{0}\right)\right|^{2},
$$

where $\mathcal{H}_{*}(\mathbb{D})$ denotes the space of nonempty \mathbb{D}-hulls.
We leave the proofs of these two propositions as exercise. Hint: First prove Proposition 3.2 in the case that W is a Möbius transform, then prove Proposition 3.2 in the general case using Proposition 3.1, and finally use Proposition 3.2 to prove Proposition 3.3.

Remarks. The factor $\frac{1}{2}$ in Proposition 3.2 somehow explains the the enumerator 2 in the chordal Loewner equations. This will be explained in more details later.

3.2 Deterministic Loewner Evolution

Definition 3.8 Let D be a simply connected domain and $T \in(0, \infty]$. A Loewner chain in D is a family of hulls $K_{t}, 0 \leq t<T$, in D that satisfy the following conditions.

1. $K_{0}=\emptyset$; and $K_{t_{1}} \varsubsetneqq K_{t_{2}}$ if $t_{1}<t_{2}$.
2. for any $t_{0} \in[0, T)$ and any continuum $F \subset D \backslash K_{t_{0}}, \lim _{s \rightarrow 0^{+}} d_{D \backslash K_{t}}^{*}\left(F, K_{t+s} \backslash K_{t}\right)=0$ uniformly in $t \in\left[0, t_{0}\right]$. In other words, for any $\varepsilon>0$, there is $\delta>0$ such that if $s \in(0, \delta)$, then for any $t \in\left[0, t_{0}\right]$, the conjugate extremal distance between F and $K_{t+s} \backslash K_{t}$ in $D \backslash K_{t}$ is less than ε.

Remarks. Suppose $K_{t}, 0 \leq t<T$, is a Loewner chain in D. Then we have the followings.

1. If W is a conformal map on D, then $W\left(K_{t}\right), 0 \leq t<T$, is a Loewner chain in $W(D)$.
2. If u is a continuous and (strictly) increasing function on $[0, T)$ with $u(0)=0$, then $K_{u^{-1}(t)}$, $0 \leq t<u(T)$, is also a Loewner chain in D, and is called a time-changes of $K_{t}, 0 \leq t<T$.

Examples.

1. Suppose $\beta(t), 0 \leq t<T$, is a simple curve with $\beta(0) \in \mathbb{R}$ and $\beta((0, T)) \subset \mathbb{H}$, then $K_{t}:=\beta((0, t]), 0 \leq t<T$, is a Loewner chain in \mathbb{H}. We leave this as an exercise.
2. Suppose $\beta(t), 0 \leq t<T$, is a simple curve with $\beta(0), \beta(a) \in \mathbb{R}$ and $\beta((0, a)), \beta((a, T)) \subset$ \mathbb{H}. Let Ω be the bounded component of $\mathbb{H} \backslash \beta((0, a))$. Let $K_{t}=\beta((0, t]), 0 \leq t<a$; $K_{t}=\beta((0, a)) \cup \Omega \cup \beta((a, t]), a \leq t<T$. Then $K_{t}, 0 \leq t<T$, is a Loewner chain in \mathbb{H}.

Proposition 3.4 [Lawler-Schramm-Werner]

(i) If $K_{t}, 0 \leq t<T$, are chordal Loewner hulls driven by some $\lambda \in C([0, T))$, then the family is a Loewner chain in \mathbb{H} such that each K_{t} is an \mathbb{H}-hull and hcap $\left(K_{t}\right)=2 t$.
(ii) If $K_{t}, 0 \leq t<T$, is a Loewner chain such that each K_{t} is an \mathbb{H}-hull, then $u(t):=$ hcap $\left(K_{t}\right)$ is a continuous and increasing function on $[0, T)$ with $u(0)=0$. Moreover, if hcap $\left(K_{t}\right)=2 t$ for each t, then $K_{t}, 0 \leq t<T$, are chordal Loewner hulls driven by some $\lambda \in C([0, u(T)))$, which is given by 3.3).

Proof. (i) We already know that each K_{t} is an \mathbb{H}-hull and $\operatorname{hcap}\left(K_{t}\right)=2 t$. Now we show that $K_{t}, 0 \leq t<T$, is a Loewner chain in \mathbb{H}. Fix $t_{0} \in(0, T)$ and a continuum $F \subset \mathbb{H} \backslash K_{t_{0}}$. Let g_{t} 's be the chordal Loewner maps driven by λ. Then for $0 \leq t \leq t_{0}, g_{t}$ is well defined on F. Let $h=\inf \operatorname{Im} g_{t_{0}}(F)$. Then $h>0$ because $g_{t_{0}}(F)$ is a compact subset of \mathbb{H}. Since $t \mapsto \operatorname{Im} g_{t}(z)$ is decreasing, we have $\operatorname{Im} g_{t}(z) \geq h$ for any $z \in F$ and $t \in\left[0, t_{0}\right]$. Fix $t \in\left[0, t_{0}\right]$. Then $g_{t}\left(K_{t+s} \backslash K_{t}\right)-\lambda(t), 0 \leq s<T-t$, are chordal Loewner hulls driven by $s \mapsto \lambda(t+s)-\lambda(t)$. Let $M_{s}=\sqrt{8 s}+\sup _{0 \leq t \leq t_{0} ; 0 \leq r \leq s}|\lambda(t+r)-\lambda(t)|$. From Lemma 1.1, we have $g_{t}\left(K_{t+s} \backslash K_{t}\right) \subset$ $\left\{z \in \mathbb{H}:\left|z-\lambda\left(t_{0}\right)\right| \leq M_{s}\right\}$. Since λ is continuous, we have $M_{s} \rightarrow 0$ as $s \rightarrow 0^{+}$. If M_{s} is smaller than h, then $g_{t}\left(K_{t+s} \backslash K_{t}\right)$ can be separated from $g_{t}(F)$ by the annulus $\left\{M_{s}<\left|z-\lambda\left(x_{0}\right)\right|<h\right\}$, which implies that $d_{\mathbb{H}}^{*}\left(g_{t}(F), g_{t}\left(K_{t+s} \backslash K_{t}\right)\right) \leq 2 \pi / \log \left(h / M_{s}\right)$. Since $g_{t}: \mathbb{H} \backslash K_{t} \xrightarrow{\text { Conf }} \mathbb{H}$, we have $d_{\mathbb{H} \backslash K_{t}}^{*}\left(F, K_{t+s} \backslash K_{t}\right) \leq 2 \pi / \log \left(h / M_{s}\right)$. Since M_{s} does not depend on t and $\lim _{s \rightarrow 0^{+}} M_{s}=0$, we finish the proof of (i).
(ii) Fix $t_{0} \in(0, T)$ and a continuum F in $\mathbb{H} \backslash K_{t_{0}}$. Let $d(s)=\sup _{0 \leq t \leq t_{0}} d_{D \backslash K_{t}}^{*}\left(F, K_{t+s} \backslash K_{t}\right)$ for $0<s<T-t_{0}$. From the definition we have $\lim _{s \rightarrow 0^{+}} d(s)=0$. From now on, t always ranges in $\left[0, t_{0}\right]$, and s ranges in $\left(0, T-t_{0}\right)$ or some smaller interval $(0, c)$. Since $g_{K_{t}}: \mathbb{H} \backslash K_{t} \xrightarrow{\text { Conf }} \mathbb{H}$, from the conformal invariance of extremal length, we get $d_{\mathbb{H}}^{*}\left(g_{t}(F), K_{t+s} / K_{t}\right) \leq d(s)$. Choose ρ to be the spherical metric $\frac{2}{1+|z|^{2}}$. Then $A_{\rho}(\mathbb{H})=2 \pi$. Thus, there is a curve $\gamma_{t, s}$ in \mathbb{H} disconnecting $g_{t}(F)$ from K_{t+s} / K_{t} with spherical length less than $\sqrt{7 d(s)}$. We may then conclude that the Euclidean length of $\gamma_{t, s}$ tends to 0 as $s \rightarrow 0^{+}$, uniformly in $t \in\left[0, t_{0}\right]$. If s is small enough, $\gamma_{t, s}$ generates a bubble with diameter tends to 0 as $s \rightarrow 0^{+}$, which contains $g_{t}\left(K_{t+s} \backslash K_{t}\right)$. Thus, $u(t+s)-u(t)=\operatorname{hcap}\left(K_{t+s}\right)-\operatorname{hcap}\left(K_{t}\right)=\operatorname{hcap}\left(K_{t+s} / K_{t}\right) \rightarrow 0^{+}$as $s \rightarrow 0^{+}$, uniformly in $t \in\left[0, t_{0}\right]$. This shows that u is continuous on $\left[0, t_{0}\right]$. Since the family K_{t} increases strictly an $K_{0}=\emptyset, u(t)$ is strictly increasing with $u(0)=0$. So we finish the proof of the first statement.

Now suppose that $\operatorname{hcap}\left(K_{t}\right)=2 t, 0 \leq t<T$. Let $t \in\left[0, t_{0}\right]$. Since $\operatorname{diam}\left(K_{t+s} / K_{t}\right) \leq r(s)$ for $s \in\left(0, \delta_{2}\right)$, and $\lim _{s \rightarrow 0^{+}} r(s)=0$, we see that $\bigcap_{s \in(0, T-t)} \overline{K_{t+s} / K_{t}}$ contains only one point. Let it be denoted by $\lambda(t)$. Suppose $t_{1}<t_{2}<t_{3} \in\left[0, t_{0}\right]$ satisfy that $t_{3}-t_{1}<\delta_{2}$. Then $\lambda\left(t_{1}\right) \in$ $\overline{K_{t_{3}} / K_{t_{1}}}$ and $\lambda\left(t_{2}\right) \in \overline{K_{t_{3}} / K_{t_{2}}}$. Choose any $z_{1} \in K_{t_{3}} / K_{t_{2}}$. Then $\left|z_{1}-\lambda\left(t_{2}\right)\right| \leq r\left(t_{3}-t_{2}\right)$. Let
$z_{2}=g_{K_{t_{2}} / K_{t_{1}}}^{-1}\left(z_{1}\right)$. From Lemma 3.7 we have $\left|z_{2}-z_{1}\right| \leq 15 r\left(t_{2}-t_{1}\right)$. Since $g_{K_{t_{2}}}=g_{K_{t_{2}} / K_{t_{1}}} \circ g_{K_{t_{1}}}$, we have

$$
z_{2}=g_{K_{t_{1}}} \circ g_{K_{t_{2}}}^{-1}\left(z_{1}\right) \in g_{K_{t_{1}}}\left(K_{t_{3}} \backslash K_{t_{2}}\right) \subset g_{K_{t_{1}}}\left(K_{t_{3}} \backslash K_{t_{1}}\right)=K_{t_{3}} / K_{t_{1}}
$$

Thus, $\left|z_{2}-\lambda\left(t_{1}\right)\right| \leq r\left(t_{3}-t_{1}\right)$. Thus, $\left|\lambda\left(t_{2}\right)-\lambda\left(t_{1}\right)\right| \leq r\left(t_{3}-t_{2}\right)+15 r\left(t_{2}-t_{1}\right)+r\left(t_{3}-t_{1}\right)$. Let $r_{3} \rightarrow r_{2}^{+}$, we conclude that $\left|\lambda\left(t_{2}\right)-\lambda\left(t_{1}\right)\right| \leq 16 r\left(t_{2}-t_{1}\right)$ if $t_{1}, t_{2} \in\left[0, t_{0}\right]$ and $\left|t_{2}-t_{1}\right|<\delta_{2}$. Since $\lim _{s \rightarrow 0^{+}} r(s)=0$, we have the continuity of λ on $\left[0, t_{0}\right]$. Since $t_{0} \in(0, T)$ is arbitrary, λ is continuous on $[0, T)$.

Let $g_{t}=g_{K_{t}}, 0 \leq t<T$. Then $g_{t}: \mathbb{H} \backslash K_{t} \xrightarrow{\text { Conf }} \mathbb{H}$. We suffice to show that 1.1 holds. Let $t \in\left[0, t_{0}\right]$ and $s \in\left(0, \delta_{2}\right)$ such that $t-s \geq 0$. From (3.4), we have

$$
z-g_{K_{t} / K_{t-s}}^{-1}(z)=\int_{c_{K_{t} / K_{t-s}}}^{d_{K_{t} / K_{t-s}}} \frac{1}{z-x} d \mu_{K_{t} / K_{t-s}}(x), \quad z \in \mathbb{H} .
$$

Letting $w=g_{t}^{-1}(z)$, we get

$$
\frac{g_{t}(w)-g_{t-s}(w)}{s}=\frac{1}{s} \int_{c_{K_{t} / K_{t-s}}}^{d_{K_{t} / K_{t-s}}} \frac{1}{g_{t}(w)-x} d \mu_{K_{t} / K_{t-s}}(x), \quad w \in \mathbb{H} \backslash K_{t} .
$$

We have $\left|\mu_{K_{t} / K_{t-s}}\right|=\operatorname{hcap}\left(K_{t}\right)-\operatorname{hcap}\left(K_{t-s}\right)=2 s$. As $s \rightarrow 0^{+}$, the interval $\left[c_{K_{t} / K_{t-s}}, d_{K_{t} / K_{t-s}}\right]$ converges to a single point $\lambda(t)$. So we conclude that $\partial_{t}^{-} g_{t}(w)=\frac{2}{g_{t}(w)-\lambda(t)}, w \in \mathbb{H} \backslash K_{t}$. Since λ is continuous, we see that (1.1) holds for $t \in\left[0, t_{0}\right)$. Since $t_{0} \in(0, T)$ is arbitrary, (1.1) holds for all $t \in[0, T)$.

Remark. Part (ii) of the proposition says that if $K_{t}, 0 \leq t<T$, is a Loewner chain in \mathbb{H} composed of \mathbb{H}-hulls, then it is a time-change of a family of chordal Loewner hulls. The proposition mimics Pommerenke's theorem below for radial Loewner hulls.

Proposition 3.5 [Pommerenke]

(i) If $K_{t}, 0 \leq t<T$, are radial Loewner hulls driven by some $\lambda \in C([0, T))$, then the family is a Loewner chain in \mathbb{D} such that each K_{t} is a \mathbb{D}-hull and $\operatorname{dcap}\left(K_{t}\right)=t$.
(ii) If $K_{t}, 0 \leq t<T$, is a Loewner chain such that each K_{t} is a \mathbb{D}-hull, then $u(t):=\operatorname{dcap}\left(K_{t}\right)$ is a continuous and increasing function on $[0, T)$ with $u(0)=0$. Moreover, if $\operatorname{dcap}\left(K_{t}\right)=t$ for each t, then $K_{t}, 0 \leq t<T$, are radial Loewner hulls driven by some $\lambda \in C([0, u(T)))$, which is given by (1.5) with $g_{t}=g_{K_{t}}$.

4 Stochastic Analysis

4.1 Stochastic processes

Let (Ω, \mathcal{F}) be a measurable space and S be an interval of the kind $[0, \infty),[0, a)$ or $[0, a]$. A filtration in (Ω, \mathcal{F}) is a family of σ-algebras $\left(\mathcal{F}_{t}\right)_{t \in S}$ with $\mathcal{F}_{t} \subset \mathcal{F}$ for each t and $\mathcal{F}_{t_{1}} \subset \mathcal{F}_{t_{2}}$ when
$t_{1} \leq t_{2}$. The filtration is called right-continuous if for each $t \in S, \mathcal{F}_{t}=\bigcap_{s>t} \mathcal{F}_{s}$. For example, $\mathcal{F}_{t^{+}}=\wedge_{s>t} \mathcal{F}_{s}, t \in S$, is a right-continuous filtration. If \mathbb{P} is a probability measure on (Ω, \mathcal{F}), the filtration is called complete w.r.t. \mathbb{P} if \mathcal{F}_{0} contains all \mathbb{P}-negligible sets. $\left(\Omega, \mathcal{F}, \mathbb{P},\left\{\mathcal{F}_{t}\right\}_{t \in S}\right)$ is called a filtered probability space. From now on, we assume that the filtration is rightcontinuous and complete.

A family of measurable functions $\left(X_{t}\right)_{t \in S}$ on (Ω, \mathcal{F}) is called adapted to $\left(\mathcal{F}_{t}\right)$ if X_{t} is \mathcal{F}_{t}-measurable for each t. If we are given a family of measurable functions $\left(X_{t}\right)_{t \in S}$ and let $\mathcal{F}_{=}^{X} \sigma\left(X_{s}, s \leq t\right)$, then $\left(\mathcal{F}_{t}^{X}\right)_{t \in S}$ is a filtration, and $\left(X_{t}\right)$ is $\left(\mathcal{F}_{t}^{X}\right)$-adapted. The $\left(\mathcal{F}_{t}^{X}\right)$ is called the natural filtration generated by $\left(X_{t}\right)$. It is easy to expand $\left(\mathcal{F}_{t}^{X}\right)$ so that it is right-continuous and complete.

Definition 4.1 A function $T: \Omega \rightarrow S \cup\{\infty\}$ is called an $\left(\mathcal{F}_{t}\right)$-stopping time if for any $t \in S$,

$$
\{\omega \in \Omega: T(\omega) \leq t\} \in \mathcal{F}_{t} .
$$

Given a stopping time T, the σ-algebra \mathcal{F}_{T} is defined by

$$
\mathcal{F}_{T}=\left\{A \in \mathcal{F}: A \cap\{T \leq t\} \in \mathcal{F}_{t}, \quad \forall t \in S\right\} .
$$

Remarks. A constant function $T \equiv t_{0}, t_{0} \in S$, is a stopping time. In that case, \mathcal{F}_{T} agrees with $\mathcal{F}_{t_{0}}$. Let T_{1} and T_{2} be two stopping times. Then $T_{1} \vee T_{2}$ and $T_{1} \wedge T_{2}$ are stopping times. This is also true for $\vee_{n=1}^{\infty} T_{n}$ and $\wedge_{n=1}^{\infty} T_{n}$. If $T_{1} \leq T_{2}$, then $\mathcal{F}_{T_{1}} \subset \mathcal{F}_{T_{2}}$. If T is a finite stopping time, then we get a new filtration $\mathcal{F}_{T+t}, t \geq 0$. Let $\left(X_{t}\right)$ be a right-continuous or left-continuous $\left(\mathcal{F}_{t}\right)$-adapted process. Then for any finite $\left(\mathcal{F}_{t}\right)$-stopping time T, X_{T} is \mathcal{F}_{T}-measurable. If T is any $\left(\mathcal{F}_{t}\right)$-stopping time, then we get another $\left(\mathcal{F}_{t}\right)$-adapted process: $X_{t}^{T}:=X_{T \wedge t}, t \in S$, the process (X) stopped at time T.

Example. Let $\left(X_{t}\right)$ is a right-continuous or left-continuous adapted process, and A be an open or closed subset of \mathbb{R}. Let $T=\inf \left\{t: X_{t} \in A\right\}(\inf \emptyset=\infty)$. Then T is a stopping time.

Definition 4.2 Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space with a filtration $\left(\mathcal{F}_{t}\right)_{t \in S}$. Let $\left(X_{t}\right)_{t \in S}$ be an $\left(\mathcal{F}_{t}\right)$-adapted process. If $\mathbb{E}\left[\left|X_{t}\right|\right]<\infty$ for each $t \in S$, and $\mathbb{E}\left[X_{t_{2}} \mid \mathcal{F}_{t_{1}}\right]=X_{t_{1}}$ a.s. for each $t_{1} \leq t_{2} \in S$, we say that $\left(X_{t}\right)$ is an $\left(\mathcal{F}_{t}\right)$-martingale.

If $\mathcal{F}_{1} \subset \mathcal{F}_{2}$ are two sub- σ-algebras of (Ω, \mathcal{F}, P), and if $X \in L^{1}\left(\Omega, \mathcal{F}_{2}, \mathbb{P}\right)$, then there is $Y \in L^{1}\left(\Omega, \mathcal{F}_{1}, P\right)$ such that $\mathbb{E}\left[1_{A} Y\right]=\mathbb{E}\left[1_{A} X\right]$ for any $A \in \mathcal{F}_{1}$. Such Y is \mathbb{P}-a.s. unique, and is denoted by $\mathbb{E}\left[X \mid \mathcal{F}_{1}\right]$. If $\mathcal{F}_{0} \subset \mathcal{F}_{1} \subset F_{2}$, then $\mathbb{E}\left[\mathbb{E}\left[X \mid \mathcal{F}_{1}\right] \mid \mathcal{F}_{0}\right]=\mathbb{E}\left[X \mid \mathcal{F}_{0}\right]$.

Theorem 4.1 [Optional Stopping Theorem] If $\left(X_{t}\right)$ is a right-continuous $\left(\mathcal{F}_{t}\right)$-martingale, and T_{1}, T_{2} are two bounded $\left(\mathcal{F}_{t}\right)$-stopping times, then $\mathbb{E}\left[X_{T_{2}} \mid \mathcal{F}_{T_{1}}\right]=X_{T_{1}}$.

If $\left(X_{t}\right)$ is an $\left(\mathcal{F}_{t}\right)$-martingale and T is an $\left(\mathcal{F}_{t}\right)$-stopping time, using Optional Stopping Theorem we can show that $\left(X_{t}^{T}\right)$ is also an $\left(\mathcal{F}_{t}\right)$-martingale.

4.2 Brownian motion

Definition 4.3 A standard Brownian motion is a continuous random processes $B_{t}, 0 \leq t<\infty$, such that

1. $B_{0}=0$ and $t \mapsto B_{t}(\omega)$ is continuous for all ω;
2. for any sequence $0=t_{0}<t_{1}<\cdots<t_{n}$, the random variables $B_{t_{i}}-B_{t_{i-1}}, i=1,2, \ldots, n$ are independent, and $B_{t_{i}}-B_{t_{i-1}} \sim N\left(0, t_{i}-t_{i-1}\right)$, where $N\left(0, t_{i}-t_{i-1}\right)$ is the normal distribution with means 0 and variance $t_{i}-t_{i-1}$.

If $\left(B_{t}\right)$ is a standard Brownian motion, we call $x_{0}+c B_{t}$, where $x_{0} \in \mathbb{R}$ and $c>0$, a Brownian motion started from x_{0} (rescaled by a factor c).

A standard Brownian motion grows slower than the linear function near 0 and faster than the linear function near ∞. In fact, we have

$$
\begin{gathered}
\limsup _{t \rightarrow 0^{+}} \frac{B_{t}}{(2 t \log \log (1 / t))^{1 / 2}}=1, \quad \liminf _{t \rightarrow 0^{+}} \frac{B_{t}}{(2 t \log \log (1 / t))^{1 / 2}}=-1 \\
\limsup _{t \rightarrow \infty} \frac{B_{t}}{(2 t \log \log (t))^{1 / 2}}=1, \quad \liminf _{t \rightarrow \infty} \frac{B_{t}}{(2 t \log \log (t))^{1 / 2}}=-1
\end{gathered}
$$

The second formula implies that B_{t} is recurrent.
If $B_{t}^{1}, B_{t}^{2}, \ldots, B_{t}^{d}$ are d independent Brownian motions, then $\left(B_{t}^{1}, \ldots, B_{t}^{d}\right)$ is called a Brownian motion in \mathbb{R}^{d}. We are mostly interested in the case $d=2$. In this case $\left(B_{t}^{1}, B_{t}^{2}\right)$ is called a planar Brownian motion or complex Brownian motion.

Definition 4.4 Given a filtration $\left(\mathcal{F}_{t}\right)$, an $\left(\mathcal{F}_{t}\right)$-adapted process $\left(B_{t}\right)_{t \geq 0}$ is called an $\left(\mathcal{F}_{t}\right)$ Brownian motion if it is a Brownian motion, and for any $t_{0} \geq 0$, the process $B_{t_{0}+t}-B_{t_{0}}$, $t \geq 0$, is (a Brownian motion) independent of $\mathcal{F}_{t_{0}}$.

Remarks.

1. Let $\left(B_{t}\right)$ be a Brownian motion. Let $\left(\mathcal{F}_{t}^{B}\right)$ be the filtration generated by $\left(B_{t}\right)$. Then $\left(B_{t}\right)$ is an $\left(\mathcal{F}_{t}^{B}\right)$-Brownian motion. Such $\left(\mathcal{F}_{t}^{B}\right)$ is called a Brownian filtration.
2. Let $\left(B_{t}^{(k)}\right), 1 \leq k \leq n$, be n independent Brownian motions. Let \mathcal{F}_{t} be the filtration generated by $B_{s}^{(k)}, 1 \leq k \leq n, 0 \leq s \leq t$. Then every $B_{t}^{(k)}$ is an $\left(\mathcal{F}_{t}\right)$-Brownian motion.
3. An $\left(\mathcal{F}_{t}\right)$-Brownian motion is a continuous $\left(\mathcal{F}_{t}\right)$-martingale.
4. If $\left(B_{t}\right)$ is an $\left(\mathcal{F}_{t}\right)$-Brownian motion and T is a finite $\left(\mathcal{F}_{t}\right)$-stopping time, then $B_{T+t}-B_{T}$, $t \geq 0$, is an $\left(\mathcal{F}_{T+t}\right)$ Brownian motion (independent of $\left.\mathcal{F}_{T}\right)$.

4.3 Itô's integration

Let $\left(B_{t}\right)$ be an $\left(\mathcal{F}_{t}\right)$-Brownian motion. Let $\left(X_{t}\right)$ be a left-continuous $\left(\mathcal{F}_{t}\right)$-adapted process. Let $a>0$. We will define $\int_{0}^{a} X_{t} d B_{t}$. First assume that X_{t} is a step process on $[0, a]$, which means that there are random variables $Z_{1}, Z_{2}, \ldots, Z_{n}$, and a partition $0=t_{0}<t_{1}<\cdots t_{n}=a$ such that $Z_{k} \in \mathcal{F}_{t_{k}}$ and $X_{t}=Z_{k}$ when $t_{k}<t \leq t_{k+1}, 0 \leq k \leq n-1$. Then we define

$$
\int_{0}^{a} X_{t} d B_{t}=\sum_{k=0}^{n-1} Z_{k}\left(B_{t_{k+1}}-B_{t_{k}}\right)
$$

The value of the integration is an \mathcal{F}_{a}-measurable random variable. If $\mathbb{E}\left|Z_{k}\right|^{2}<\infty$ for all k. then we have

$$
\mathbb{E}\left[\left(\int_{0}^{a} X_{t} d B_{t}\right)^{2}\right]=\sum_{k=0}^{n-1}\left(t_{k+1}-t_{k}\right) \mathbb{E}\left[\left|Z_{k}\right|^{2}\right]=\int_{0}^{a} \mathbb{E}\left[X_{t}^{2}\right] d t=:\|X\|_{L^{2}[0, a]}^{2}
$$

Now we do not assume that X_{t} is a step function but assume that it is uniformly bounded on $[0, a]$. Then X_{t} can be a.s. approximated by bounded step processes $\left(X_{t}^{n}\right)$. For example, $X_{t}^{n}=X_{\frac{k}{n} a}$ when $\frac{k}{n} a<t \leq \frac{k+1}{n} a, 0 \leq k \leq n-1$. Then $\left(X_{t}^{n}\right)$ converges to $\left(X_{t}\right)$ in $\|\cdot\|_{L^{2}[0, a]}$. For each n, we have an \mathcal{F}_{a} measurable r.v. $\int_{0}^{a} X_{t}^{n} d B_{t}$. Then we get a Cauchy sequence in $L^{2}\left(\mathcal{F}_{a}\right)$. We define the limit to be $\int_{0}^{a} X_{t} d B_{t}$, which is an element in $L^{2}\left(\mathcal{F}_{a}\right)$.

Now suppose that X_{t} is bounded on $[0, \infty)$. For each $a \in[0, \infty)$, we have an \mathcal{F}_{a}-measurable random variable $Y_{a}=\int_{0}^{a} X_{t} d B_{t}$, which is unique up to a negligible event. If $a<b$ then $Y_{b}-Y_{a}$ is independent of $\mathcal{F}_{a}, \mathbb{E}\left[Y_{b}-Y_{a}\right]=0$ and $\mathbb{E}\left[\left|Y_{b}-Y_{a}\right|\right]=\int_{a}^{b} \mathbb{E}\left[X_{t}^{2}\right]$. So $\left(Y_{t}\right)$ is an $\left(\mathcal{F}_{t}\right)$-martingale. It is known that we may choose $Y_{t}, t \geq 0$, such that $\left(Y_{t}\right)$ is a continuous. (The proof uses Doob's Martingale Inequality and Borel Cantelli lemma) From now on, we always assume that $t \mapsto \int_{0}^{t} X_{s} d B_{s}$ is a continuous martingale.

To extend the definition, we need the following fact. If X is a bounded left-continuous adapted process, $Y_{t}=\int_{0}^{t} X_{s} d B_{s}$, and T is a stopping time, then

$$
\int_{0}^{t} 1_{[0, T]} X_{s} d B_{S}=Y_{t \wedge T}=Y_{t}^{T}
$$

Using this fact, we may now define $\int_{0}^{t} X_{s} d B_{s}$ for a continuous adapted process X_{t} which may not be bounded. Let $T_{n}=\inf \left\{t: X_{t} \geq n\right\}$. Then $1_{\left[0, T_{n}\right]} X_{t}$ is bounded. We have $Y_{t}^{(n)}:=$ $\int_{0}^{t} 1_{\left[0, T_{n}\right]} X_{s} d B_{s}$ and have the facts that $Y_{t \wedge T_{n}}^{(n+1)}=Y_{t}^{(n)}$. Then we define $Y_{t}=\int_{0}^{t} X_{s} d B_{s}$ to be the process such that $Y_{t}=Y_{t}^{(n)}$ on $\left[0, T_{n}\right]$. We find that Y_{t} is well defined and $Y_{t}^{T_{n}}=Y_{t}^{(n)}$ for each n. The process Y_{t} is in general not a martingale. Instead, it is a continuous local martingale. The idea in the definition is called localization.

Definition 4.5 A process $\left(X_{t}\right)$ is called a local martingale if there exists an increasing family of finite stopping times $T_{n}, n \in \mathbb{N}$, with $\sup T_{n}=\infty$ such that for each $n, X_{t}^{T_{n}}$ is a martingale.

Remarks.

1. If $\left(X_{t}\right)$ is a local martingale, and T is a stopping time, then $\left(X_{t}^{T}\right)$ is also a local martingale.
2. The above $\left(X_{t}\right)$ may not be a martingale even if X_{t} is integrable for each t. A theorem states that if a local martingale is uniformly bounded, then it is a martingale.
3. If $M_{t}, 0 \leq t<\infty$, is a continuous martingale, Doob's inequality implies that a.s. $\lim _{t \rightarrow \infty} M_{t}$ exists, which could be $\pm \infty$. We use M_{∞} to denote the limit. If in addition there is a deterministic $R>0$ such that $\left|M_{t}\right| \leq R$ for all t, then $\left|M_{\infty}\right| \leq R$, and from DCT we have $M_{t}=\mathbb{E}\left[M_{\infty} \mid \mathcal{F}_{t}\right]$ for all t. If $\left(X_{t}\right)$ is a local martingale, and if T is a stopping time such that X_{t} is uniformly bounded on $[0, T)$, then $\left(X_{t}^{T}\right)$ is a uniformly bounded martingale. So $\lim _{t \rightarrow \infty} X_{t}^{T}$ exists and is bounded. In case $T<\infty$, the limit is simply X_{T}. If $T=\infty$, we also use X_{T} to denote the limit. So X_{T} has a well defined meaning no matter $T<\infty$ or $T=\infty$. And we have $\mathbb{E}\left[X_{T} \mid \mathcal{F}_{t}\right]=X_{t}^{T}=X_{T \wedge t}$ for any t.
4. Using the idea of localization, we may also define $\int_{0}^{t} X_{s} d B_{s}$ if X. is a continuous adapted process defined for $0 \leq t<T$, where T is a stopping time, and there exists an increasing family of stopping times $T_{n}, n \in \mathbb{N}$, with $T_{n}<T$ and $\sup T_{n}=T$. The resulting process $Y_{t}=\int_{0}^{t} X_{s} d B_{s}$ is a local martingale defined on $[0, T)$.

Definition 4.6 A continuous semimartingale is a continuous adapted process which can be written $X=M+A$ where M is a continuous local martingale and A a continuous adapted process of finite variation.

Example Suppose $\left(B_{t}\right)$ is an $\left(\mathcal{F}_{t}\right)$-Brownian motion, a_{t} and b_{t} are continuous adapted processes, and $X_{0} \in \mathcal{F}_{0}$. Then

$$
X_{t}:=X_{0}+\int_{0}^{t} a_{s} d B_{s}+\int_{0}^{t} b_{s} d s
$$

is an $\left(\mathcal{F}_{t}\right)$-continuous semimartingale. We often write

$$
d X_{t}=a_{t} d B_{t}+b_{t} d t
$$

We may integrate along a semimartingale. Suppose that $d X_{t}=a_{t} d B_{t}+b_{t} d t$, and $\left(Y_{t}\right)$ is a continuous adapted process. Then

$$
\int_{0}^{t} Y_{t} d X_{t}=\int_{0}^{t} Y_{s} a_{s} d B_{s}+\int_{0}^{t} Y_{s} b_{s} d s
$$

4.4 Quadratic Variation

For a $\left(\mathcal{F}_{t}\right)$-local martingale M_{t}, there is a unique adapted continuous non-decreasing process $\langle M, M\rangle_{t}$ with $\langle M, M\rangle_{0}=0$ such that $\left(M_{t}-M_{0}\right)^{2}-\langle M, M\rangle_{t}$ is a local martingale. Such $\langle M, M\rangle_{t}$ is called the quadratic variation of M. If a semimartingale X has decomposition $M+A$, then
$\langle X, X\rangle:=\langle M, M\rangle$. For two semimartingale X and Y, the bracket between X and Y is defined by

$$
\langle X, Y\rangle=\frac{1}{4}\langle X+Y, X+Y\rangle-\frac{1}{4}\langle X-Y, X-Y\rangle .
$$

We have the following facts.

1. For a Brownian motion $B_{t},\langle B, B\rangle_{t}=t$.
2. If X and Y are independent, then $\langle X, Y\rangle \equiv 0$.
3. Levy's characterization Theorem states that, if a local martingale $M_{t}, 0 \leq t<\infty$, satisfies $\langle M, M\rangle_{t}=t$, then M_{t} is a Brownian motion started from some $x \in \mathbb{R}$, and if two Brownian motions B_{t} and B_{t}^{\prime} satisfy $\left\langle B, B^{\prime}\right\rangle=0$, then they are independent.
4. For any stopping time $T,\left\langle X^{T}, Y^{T}\right\rangle_{t}=\langle X, Y\rangle_{t}^{T}$.
5. If $d X_{t}=a_{t} d B_{t}+b_{t} d t$ and $d Y_{t}=c_{t} d B_{t}+d_{t} d t$, then $d\langle X, Y\rangle_{t}=a_{t} c_{t} d t$.
6. If $B_{t}^{(k)}, 1 \leq k \leq n$, are independent Brownian motions, and

$$
d X_{t}=\sum_{k=1}^{n} a_{t}^{(k)} d B_{t}^{(k)}+b_{t} d t ; \quad d Y_{t}=\sum_{k=1}^{n} c_{t}^{(k)} d B_{t}^{(k)}+d_{t} d t
$$

then $d\langle X, Y\rangle_{t}=\sum_{k=1}^{n} a_{t}^{(k)} c_{t}^{(k)} d t$.
Let $\left(\mathcal{F}_{t}\right)$ be a filtration and T be a stopping time. An $\left(\mathcal{F}_{t}\right)$-adapted process $X_{t}, 0 \leq t<T$, is called a partial $\left(\mathcal{F}_{t}\right)$-Brownian motion if there is another filtration $\left(\widetilde{\mathcal{F}}_{t}\right)$ and an $\left(\widetilde{F}_{t}\right)$-Brownian motion B_{t} such that $\mathcal{F}_{t} \subset \widetilde{F}_{t}$ for each t and $X_{t}=B_{t}$ for $0 \leq t<T$. An adapted process X_{t}, $0 \leq t<T$ is a partial Brownian motion iff it is a local martingale and $\langle X, X\rangle_{t}=t$ for $0 \leq t<T$. The chordal or radial Loewner hulls driven by $\sqrt{\kappa}$ times a partial Brownian motion are called partial chordal or radial SLE $_{\kappa}$ hulls.

4.5 Itô's formula

Theorem 4.2 [Itô's formula, one-dimensional] Suppose X_{t} is an $\left(\mathcal{F}_{t}\right)$-semimartingale with $d X_{t}=a_{t} d B_{t}+b_{t} d t$. Let $f(t, x)$ be a a $C^{1,2}$ differentiable function such that $f(t, \cdot)$ is $\mathcal{F}_{t^{-}}$ measurable for each t. Let $Y_{t}=f\left(t, X_{t}\right)$. Then Y_{t} is also an $\left(\mathcal{F}_{t}\right)$-semimartingale, and satisfies

$$
d Y_{t}=\frac{\partial}{\partial t} f\left(t, X_{t}\right) d t+\frac{\partial}{\partial x} f\left(t, X_{t}\right) d X_{t}+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} f\left(t, X_{t}\right) d\langle X, X\rangle_{t} .
$$

Theorem 4.3 [Itô's formula, multiple-dimensional] Let $\left(B_{t}^{(k)}\right), 1 \leq k \leq n$, be n independent $\left(\mathcal{F}_{t}\right)$-Brownian motions. Let $\left(X_{t}^{(j)}\right), 1 \leq j \leq m$, be m semimartingales which satisfies

$$
d X_{t}^{(j)}=\sum_{k=1}^{n} a_{t}^{(j, k)} d B_{t}^{(k)}+b_{t}^{(j)} d t, \quad 1 \leq j \leq m
$$

Let $f\left(t, x_{1}, \ldots, m\right)$ be a a $C^{1,2, \ldots, 2}$ differentiable function such that $f(t, \cdot)$ is \mathcal{F}_{t}-measurable for each t. Let $Y_{t}=f\left(t, X_{t}^{(1)}, \ldots, X_{t}^{(m)}\right)$. Then Y_{t} is also an $\left(\mathcal{F}_{t}\right)$-semimartingale, and satisfies

$$
d Y_{t}=\frac{\partial}{\partial t} f\left(t, X_{t}\right) d t+\sum_{j=1}^{m} \frac{\partial}{\partial x_{j}} f\left(t, X_{t}\right) d X_{t}^{(j)}+\frac{1}{2} \sum_{j_{1}, j_{2}=1}^{m} \frac{\partial^{2}}{\partial x_{j_{1}} \partial x_{j_{2}}} f\left(t, X_{t}\right) d\left\langle X^{\left(j_{1}\right)}, X^{\left(j_{2}\right)}\right\rangle_{t} .
$$

Corollary 4.1 [Product formula] Let X_{t} and Y_{t} be two semimartingales. Let $Z_{t}=X_{t} Y_{t}$. Then Z_{t} is a semimartingale that satisfies

$$
d Z_{t}=X_{t} d Y_{t}+Y_{t} d X_{t}+d\langle X, Y\rangle_{t} .
$$

4.6 Time-change

Let $X_{t}, 0 \leq t<T$, be a continuous $\left(\mathcal{F}_{t}\right)$-adapted process, where T is an $\left(\mathcal{F}_{t}\right)$-stopping time. Suppose $u(t)=u(t, \omega), 0 \leq t<T$, is a continuous (strictly) increasing $\left(\mathcal{F}_{t}\right)$-adapted function, which satisfies $u(0)=0$. Define $v(t)=v(t, \omega)$ for $0 \leq t<\infty$ such that $v(t)=u^{-1}(t)$ if $t<\sup u[0, T) ; v(t)=T$ if $t \geq \sup u[0, T)$. Then for each $t \geq 0, v(t)$ is an $\left(\mathcal{F}_{t}\right)$-stopping time. In fact,

$$
\{v(t) \leq a\}=\{T \leq a\} \cup(\{T>a\} \cap\{u(a) \geq t\}) \in \mathcal{F}_{a}, \quad 0 \leq a<\infty .
$$

Moreover, we have $v\left(t_{1}\right) \leq v\left(t_{2}\right)$ if $t_{1} \leq t_{2}$. So we get a new filtration $\left(\mathcal{F}_{v(t)}\right)_{t \geq 0}$.
Let $S=\sup u[0, T)$. Then S is an $\left(\mathcal{F}_{v(t)}\right)$-stopping time because

$$
\{S \leq a\} \cap\{v(a) \leq b\}=\{S \leq a\} \cap\{T \leq b\}=\{T \leq b\} \cap \bigcap_{q \in[0, b] \cap \mathbb{Q}}(\{T>q\} \cap\{u(q) \leq a\}) \in \mathcal{F}_{b} .
$$

We call the process $X_{v(t)}, 0 \leq t<S$, a time-change of $X_{t}, 0 \leq t<T$. Since (X) is continuous, $\left(X_{v(t)}\right)$ is a continuous $\left(\mathcal{F}_{v(t)}\right)$-adapted process.

We have the following facts.

1. If $\left(X_{t}\right)$ is an $\left(\mathcal{F}_{t}\right)$-local martingale (resp. semimartingale), then $\left(X_{v(t)}\right)$ is an $\left(\mathcal{F}_{v(t)}\right)$-local martingale (resp. semimartingale), and $\left\langle X_{v(\cdot)}, X_{v(\cdot)}\right\rangle_{t}=\langle X, X\rangle_{v(t)}$.
2. If $Y_{t}=a_{t} d X_{t}$, then $Y_{v(t)}=a_{v(t)} d X_{v(t)}$.
3. Suppose X is a local martingale, and $\langle X, X\rangle_{t}$ is strictly increasing. Let $u(t)=\langle X, X\rangle_{t}$, then $\left\langle X_{v(\cdot)}, X_{v(\cdot)}\right\rangle_{t}=t$ for $0 \leq t<S$. This means that $X_{v(t)}, 0 \leq t<S$, is a Brownian motion stopped at time S, or X_{t} is a time-change of a partial Brownian motion. This Brownian motion is called the DDS Brownian motion for X.
4. Suppose that X is a semimartingale that satisfies $d X_{t}=a_{t} d B_{t}+b_{t} d t$. Suppose c_{t} is a positive continuous adapted process, and $u(t)=\int_{0}^{t} c_{s}^{2} d s$. Let $M_{t}=\int_{0}^{t} c_{s} d B_{s}$. Then M is a local martingale, $\langle M, M\rangle_{t}=u(t)$, and $d X_{t}=a_{t} / c_{t} d M_{t}+b_{t} d t$. Let $\widetilde{B}_{t}=M_{v(t)}$. Then \widetilde{B}_{t} is an $\left(\mathcal{F}_{v(t)}\right)$-Brownian motion. From $d X_{t}=a_{t} d B_{t}+b_{t} d t$, we have $d X_{t}=\frac{a_{t}}{c_{t}} d M_{t}+b_{t} d t$. Thus,

$$
d X_{v(t)}=\frac{a_{v(t)}}{c_{v(t)}} d M_{v(t)}+b_{v(t)} d v(t)=\frac{a_{v(t)}}{c_{v(t)}} d \widetilde{B}_{t}+\frac{b_{v(t)}}{c_{v(t)}^{2}} d t
$$

4.7 Bessel process

Let $\left(B_{t}^{(1)}, \ldots, B_{t}^{(n)}\right)$ be an n-dimensional Brownian motion. Let $X_{t}=\sqrt{\sum_{j=1}^{n}\left(B_{t}^{(j)}\right)^{2}}$. Then we find that X_{t} satisfies the SDE

$$
d X_{t}=\frac{\sum_{j=1}^{n} B_{t}^{(j)} d B_{t}^{(j)}}{X_{t}}+\frac{(n-1) / 2}{X_{t}} d t
$$

Let $B_{t}=\int_{0}^{t} \frac{\sum_{j=1}^{n} B_{s}^{(j)} d B_{s}^{(j)}}{X_{s}}$. Then \widehat{B}_{t} is a local martingale with $\langle B, B\rangle_{t}=t$. Thus, B_{t} is a (partial) Brownian motion. And we have

$$
\begin{equation*}
d X_{t}=d B_{t}+\frac{(n-1) / 2}{X_{t}} d t \tag{4.1}
\end{equation*}
$$

We may allow n to be any real number. The solution of the above SDE is called an n-dimensional Bessel process. The Bessel process starts from some positive number, and continues forever or stops when it hits 0 .

Let $f(x)=x^{2-n}$ for $n \neq 2$ and $f(x)=\log (x)$ for $n=2$. Itô's formula implies that $f\left(X_{t}\right)$ is a local martingale, i.e., a time-change of a partial Brownian motion. For $n<2, X_{t} \rightarrow 0$ iff $f\left(X_{t}\right) \rightarrow 0$ and $X_{t} \rightarrow \infty$ iff $f\left(X_{t}\right) \rightarrow \infty$. For $n=2, X_{t} \rightarrow 0$ iff $f\left(X_{t}\right) \rightarrow-\infty$ and $X_{t} \rightarrow \infty$ iff $f\left(X_{t}\right) \rightarrow \infty$. For $n>2, X_{t} \rightarrow 0$ iff $f\left(X_{t}\right) \rightarrow \infty$ and $X_{t} \rightarrow \infty$ iff $f\left(X_{t}\right) \rightarrow 0$. From the properties of Brownian motion, we find that, for $n<2, X_{t}$ hits 0 in a finite time; for $n>2$, $X_{t} \rightarrow \infty$ as $t \rightarrow \infty$; for $n=2$, liminf $X_{t}=0$ and $\limsup X_{t}=\infty$. For $n>2$, an n-dimensional Bessel process can be started from 0^{+}. This is a process X_{t} with $X_{0}=0, X_{t}>0$ for $t>0$, and satisfies 4.1) for $t>0$.

4.8 Complex valued Itô's formula

Let D be a plane domain, and $f: D \xrightarrow{\text { Conf }} D^{\prime}$. Let $B_{t}^{\mathbb{C}}=B_{t}^{(1)}+i B_{t}^{(2)}$ be a planar Brownian motion started from $z_{0} \in D$. Let τ be the first time that $B_{t}^{\mathbb{C}}$ leaves D. We consider the image $f\left(B_{t}^{\mathbb{C}}\right), 0 \leq t<\tau$. Let $f=u+i v$. From Itô's formula and the fact that $u_{x x}+u_{y y}=v_{x x}+v_{y y}=0$, we get

$$
d u\left(B_{t}^{\mathbb{C}}\right)=u_{x}\left(B_{t}^{\mathbb{C}}\right) d B_{t}^{(1)}+u_{y}\left(B_{t}^{\mathbb{C}}\right) d B_{t}^{(2)}, \quad d v\left(B_{t}^{\mathbb{C}}\right)=v_{x}\left(B_{t}^{\mathbb{C}}\right) d B_{t}^{(1)}+v_{y}\left(B_{t}^{\mathbb{C}}\right) d B_{t}^{(2)}
$$

Thus, $\langle u(B), u(B)\rangle_{t}=\langle v(B), v(B)\rangle_{t}=\int_{0}^{t}\left|f^{\prime}\left(B_{s}^{\mathbb{C}}\right)\right|^{2} d s$, and $\langle u(B), v(B)\rangle_{t} \equiv 0$. Construct a time-change using $a(t)=\int_{0}^{t}\left|f^{\prime}\left(B_{s}^{\mathbb{C}}\right)\right|^{2} d s$. Let $b(t)=a^{-1}(t)$. Then we see that $u\left(B_{b(t)}^{\mathbb{C}}\right)$ and $v\left(B_{b(t)}^{\mathbb{C}}\right)$ are two independent Brownian motions. Thus, $f\left(B_{t}^{\mathbb{C}}\right)$ is a time-change of a planar Brownian motion started from $f\left(z_{0}\right)$ stopped on leaving D^{\prime}. This phenomena is called the conformal invariance of planar Brownian motion.

Let Z_{t} be a complex valued semimartingale which satisfies

$$
d Z_{t}=a_{t} d B_{t}+b_{t} d t
$$

Here B_{t} is a standard real valued Brownian motion, a_{t} and b_{t} are complex valued adapted continuous process. Thus, if $Z_{t}=X_{t}+i Y_{t}$, then $d X_{t}=\operatorname{Re} a_{t} d B_{t}+\operatorname{Re} b_{t} d t$ and $d Y_{t}=\operatorname{Im} a_{t} d B_{t}+$ $\operatorname{Im} b_{t} d t$. Suppose $f=u+i v$ is an analytic function defined in a domain which contains the range of Z_{t}. Let $f\left(Z_{t}\right)=U_{t}+i V_{t}$. Then

$$
\begin{aligned}
& d U_{t}=u_{x}\left(Z_{t}\right) d X_{t}+u_{y}\left(Z_{t}\right) d Y_{t}+\frac{1}{2} u_{x x}\left(Z_{t}\right) d\langle X, X\rangle_{t}+\frac{1}{2} u_{y y}\left(Z_{t}\right) d\langle Y, Y\rangle_{t}+u_{x y}\left(Z_{t}\right)\langle X, Y\rangle_{t} \\
& =\operatorname{Re} f^{\prime}\left(Z_{t}\right) \operatorname{Re} d Z_{t}-\operatorname{Im} f^{\prime}\left(Z_{t}\right) \operatorname{Im} d Z_{t}+\frac{1}{2} \operatorname{Re} f^{\prime \prime}\left(Z_{t}\right)\left(\operatorname{Re} a_{t}\right)^{2} d t-\frac{1}{2} \operatorname{Re} f^{\prime \prime}\left(Z_{t}\right)\left(\operatorname{Im} a_{t}\right)^{2} d t \\
& -\operatorname{Im} f^{\prime \prime}\left(Z_{t}\right) \operatorname{Re} a_{t} \operatorname{Im} a_{t} d t=\operatorname{Re}\left[f^{\prime}\left(Z_{t}\right) d Z_{t}\right]+\operatorname{Re}\left[f^{\prime \prime}\left(Z_{t}\right) \frac{1}{2} a_{t}^{2}\right] d t . \\
& d V_{t}=v_{x}\left(Z_{t}\right) d X_{t}+v_{y}\left(Z_{t}\right) d Y_{t}+\frac{1}{2} v_{x x}\left(Z_{t}\right) d\langle X, X\rangle_{t}+\frac{1}{2} v_{y y}\left(Z_{t}\right) d\langle Y, Y\rangle_{t}+v_{x y}\left(Z_{t}\right)\langle X, Y\rangle_{t} \\
& =\operatorname{Im} f^{\prime}\left(Z_{t}\right) \operatorname{Re} d Z_{t}+\operatorname{Re} f^{\prime}\left(Z_{t}\right) \operatorname{Im} d Z_{t}+\frac{1}{2} \operatorname{Im} f^{\prime \prime}\left(Z_{t}\right)\left(\operatorname{Re} a_{t}\right)^{2} d t-\frac{1}{2} \operatorname{Im} f^{\prime \prime}\left(Z_{t}\right)\left(\operatorname{Im} a_{t}\right)^{2} d t \\
& +\operatorname{Re} f^{\prime \prime}\left(Z_{t}\right) \operatorname{Re} a_{t} \operatorname{Im} a_{t} d t=\operatorname{Im}\left[f^{\prime}\left(Z_{t}\right) d Z_{t}\right]+\operatorname{Im}\left[f^{\prime \prime}\left(Z_{t}\right) \frac{1}{2} a_{t}^{2}\right] d t .
\end{aligned}
$$

So we have

$$
d f\left(Z_{t}\right)=f^{\prime}\left(Z_{t}\right) d Z_{t}+\frac{1}{2} f^{\prime \prime}\left(Z_{t}\right) a_{t}^{2} d t=f^{\prime}\left(Z_{t}\right) a_{t} d B_{t}+f^{\prime}\left(Z_{t}\right) b_{t} d t+\frac{1}{2} f^{\prime \prime}\left(Z_{t}\right) a_{t}^{2} d t
$$

4.9 Girsanov Theorem

In this subsection, we will change the underlying probability measure. Let the current probability distribution be denoted by \mathbb{P}. Suppose that another probability distribution \mathbb{P}_{1} satisfies $\mathbb{P}_{1} \ll \mathbb{P}$ on each \mathcal{F}_{t}. It is known that the quadratic variation of a semimartingale does not change if the probability measure is changed from \mathbb{P} to \mathbb{P}_{1}. Let $D_{t}=\frac{d \mathbb{P}_{1} \mid \mathcal{F}_{t}}{\left.d \mathbb{P}\right|_{\mathcal{F}_{t}}}$. Then D_{t} is a martingale. An $\left(\mathcal{F}_{t}\right)$-adapted process X_{t} is a martingale (resp. local martingale) under \mathbb{P}_{1} if and only if $X_{t} D_{t}$ is a martingale (resp. local martingale) under \mathbb{P}. We now consider the case that D_{t} has an expression $d D_{t}=a_{t} D_{t} d B_{t}$ for an $\left(\mathcal{F}_{t}\right)$-Brownian motion B_{t}. Let $X_{t}=B_{t}-\int_{0}^{t} a_{s} d s$. Then $\langle X, X\rangle_{t}=t$. From the product formula,
$d X_{t} D_{t}=X_{t} d D_{t}+D_{t} d X_{t}+\langle X, D\rangle_{t}=X_{t} d D_{t}+D_{t} d B_{t}-D_{t} a_{t} d t+a_{t} D_{t} d t=\left(X_{t} a_{t} D_{t}+D_{t}\right) d B_{t}$.
Thus, under \mathbb{P}_{1}, X_{t} is a local martingale with $\langle X, X\rangle_{t}=t$. So $B_{t}-\int_{0}^{t} a_{s} d s$ is a Brownian motion under \mathbb{P}_{1}.

On the other hand, given a continuous adapted process a_{t}, we may construct a local martingale D_{t} with $d D_{t}=a_{t} D_{t} d B_{t}$. It is defined by

$$
D_{t}=\exp \left(\int_{0}^{t} a_{s} d B_{s}-\frac{1}{2} \int_{0}^{t} a_{s}^{2} d s\right) .
$$

Suppose T is a stopping time such that $D_{t}, 0 \leq t \leq T$, are uniformly bounded. Then D_{t}^{T} is a bounded martingale, and $D_{t}^{T}=\mathbb{E}\left[D_{T} \mid \mathcal{F}_{t}\right]$ for any t. Define \mathbb{P}_{1} such that $d \mathbb{P}_{1}=D_{T} d \mathbb{P}$. Then $\left.d \mathbb{P}_{1}\right|_{\mathcal{F}_{t}} /\left.d \mathbb{P}\right|_{\mathcal{F}_{t}}=D_{t}^{T}$ for each t. We then can conclude that $B_{t}-\int_{0}^{t} a_{s} d s, 0 \leq t<T$, is a partial Brownian motion up to T under \mathbb{P}_{1}.

4.10 Some applications

Let g_{t} be chordal Loewner maps driven by $\lambda_{t}=\sqrt{\kappa} B_{t}$. Fix $x_{0}>0$. Let $Z_{t}=g_{t}\left(x_{0}\right)-\lambda_{t}$, $0 \leq t<\tau=\tau_{x_{0}}$. Recall that $\tau<\infty$ implies that $Z_{t} \rightarrow 0$ as $t \rightarrow \tau$. Then Z_{t} stays positive and satisfies

$$
\begin{equation*}
d Z_{t}=-\sqrt{\kappa} d B_{t}+\frac{2}{Z_{t}} d t \tag{4.2}
\end{equation*}
$$

We see that $Z_{t} / \sqrt{\kappa}$ is a Bessel process of dimension $1+\frac{4}{\kappa}$. Thus, if $\kappa>4$, then $\tau<\infty$ and $Z_{t} \rightarrow 0$ as $t \rightarrow \tau$; if $\kappa<4$, then $\tau=\infty$ and $Z_{t} \rightarrow \infty$ as $t \rightarrow \infty$; if $\kappa=4$, then $\tau=\infty$, $\liminf _{t \rightarrow \infty} Z_{t}=0$ and $\limsup \sin _{t \rightarrow \infty} Z_{t}=\infty$. We have a similar result for $x_{0}<0$.

Now suppose $z_{0} \in \mathbb{H}$. Let $Z_{t}=g_{t}\left(z_{0}\right)-\lambda_{t}$. Then the complex valued process Z_{t} also satisfies (4.2). Let $f(z)=z^{1-4 / \kappa}$ for $\kappa \neq 4$ and $f(z)=\ln (z)$ for $\kappa=4$. Since f is analytic, we find that

$$
d f\left(Z_{t}\right)=f^{\prime}\left(Z_{t}\right) d Z_{t}+\frac{\kappa}{2} f^{\prime \prime}\left(Z_{t}\right) d t=-f^{\prime}\left(Z_{t}\right) \sqrt{\kappa} d B_{t} .
$$

This means that $f\left(Z_{t}\right)$ is a local martingale. In other words, both $\operatorname{Re} f\left(Z_{t}\right)$ and $\operatorname{Im} f\left(Z_{t}\right)$ are local martingales.

Note that Z_{t} stays in \mathbb{H}. If $\kappa=4, f$ maps \mathbb{H} conformally onto $\{0<\operatorname{Im} z<\pi\}$. So $\operatorname{Im} f\left(Z_{t}\right)$ is uniformly bounded, which implies that $\operatorname{Im} f\left(Z_{t}\right)=\operatorname{Im} \ln \left(Z_{t}\right)=\arg \left(Z_{t}\right)$ is a martingale. In fact, $\operatorname{Im} f\left(Z_{t}\right) / \pi$ is the probability that a planar Brownian motion started from $g_{t}\left(z_{0}\right)$ hits $\left(-\infty, \lambda_{t}\right)$ when exiting \mathbb{H}. From conformal invariance of planar Brownian motion, this is equal to the probability that a planar Brownian motion started from z_{0} hits $(-\infty, 0$] unions the "left side" of the SLE_{4} trace β up to time t when it exits $\mathbb{H} \backslash \beta(0, t]$.

If $\kappa=2, f(z)=1 / z$. We see that $-\frac{1}{\pi} \operatorname{Im} f\left(Z_{t}\right)=-\frac{1}{\pi} \operatorname{Im} \frac{1}{g_{t}\left(z_{0}\right)-\lambda_{t}}$ is a Poisson kernel function in \mathbb{H} with pole at λ_{t} valued at $g_{t}\left(z_{0}\right)$. Since g_{t} maps the $\beta(t)$ to λ_{t}, this is also equal to a Poisson kernel function in $\mathbb{H} \backslash \beta(0, t]$ with pole at $\beta(t)$ valued at z_{0}. Here a Poisson kernel function in a simply connected domain D is a positive harmonic function in D, whose continuation vanishes on ∂D except for one point (or prime end), which is called the pole. When the domain D and the pole is given, the Poisson kernel function exists and is unique up to a positive factor.

We may also apply Itô's formula to radial Loewner equations. Recall that the radial Loewner equation driven by λ is

$$
\partial_{t} g_{t}(z)=g_{t}(z) \frac{e^{i \lambda_{t}}+g_{t}(z)}{e^{i \lambda_{t}}-g_{t}(z)}, \quad g_{0}(z)=z
$$

Let $\cot _{2}(z)=\cot (z / 2)$. We now introduce the covering radial Loewner equation:

$$
\partial_{t} \widetilde{g}_{t}(z)=\cot _{2}\left(\widetilde{g}_{t}(z)-\lambda_{t}\right), \quad g_{0}(z)=z .
$$

Note that

$$
i \cot _{2}(z-w)=i \frac{\cos _{2}(z-w)}{\sin _{2}(z-w)}=-\frac{e^{i(z-w) / 2}+e^{-i(z-w) / 2}}{e^{i(z-w) / 2}-e^{-i(z-w) / 2}}=\frac{e^{i w}+e^{i z}}{e^{i w}-e^{i z}}
$$

So we have

$$
\partial_{t} e^{i{\widetilde{g_{t}}}_{t}(z)}=i e^{i{\widetilde{\tilde{g}_{t}}(z)}^{c^{2}}} \cot _{2}\left(\widetilde{g}_{t}(z)-\lambda_{t}\right)=e^{i \widetilde{g}_{t}(z)} \frac{e^{i \lambda_{t}}+e^{i \widetilde{g}_{t}(z)}}{e^{i \lambda_{t}}-e^{i \widetilde{g}_{t}(z)}}
$$

Thus, $e^{i \tilde{g}_{t}(z)}$ satisfies the same ODE and initial value as $g_{t}\left(e^{i z}\right)$. Let e^{i} denote the map $z \mapsto e^{i z}$. We then have $e^{i} \circ \widetilde{g}_{t}=g_{t} \circ e^{i}$. Let \widetilde{K}_{t} denote the set of $z \in \mathbb{H}$ such that $\widetilde{g}_{s}(z)$ blows up before or at time t. Then we have $\widetilde{K}_{t}=\left(e^{i}\right)^{-1}\left(K_{t}\right)$, and $\widetilde{g}_{t}: \mathbb{H} \backslash \widetilde{K}_{t} \xrightarrow{\text { Conf }} \mathbb{H}$. We call \widetilde{g}_{t} and \widetilde{K}_{t} the covering radial Loewner maps and hulls driven by λ.

For every $z \in \mathbb{R}, \widetilde{g}_{t}(z)$ stays on \mathbb{R} before blowing up. If $z \in \mathbb{H}$, then $\widetilde{g}_{t}(z)$ stays in \mathbb{H}, and $\operatorname{Im} \widetilde{g}_{t}(z)$ decreases in t. If $\tau(z)<\infty$, then $\widetilde{g}_{t}(z)-\lambda_{t}$ hits a pole of $\cot _{2}$ as $t \rightarrow \tau(z)$, which means that there is some $n \in \mathbb{Z}$ such that $\widetilde{g}_{t}(z)-\lambda_{t} \rightarrow 2 n \pi$ as $t \rightarrow \tau(z)^{-}$.

Now suppose $\lambda_{t}=\sqrt{\kappa} B_{t}$. Fix $x_{0} \in(0,2 \pi)$. Let $Z_{t}=\widetilde{g}_{t}\left(x_{0}\right)-\lambda_{t}, 0 \leq t<\tau=\tau\left(x_{0}\right)$. Then Z_{t} stays in $(0,2 \pi)$ and satisfies

$$
\begin{equation*}
d Z_{t}=-\sqrt{\kappa} B_{t}+\cot _{2}\left(Z_{t}\right) d t . \tag{4.3}
\end{equation*}
$$

We may find f such that $f\left(Z_{t}\right)$ is a local martingale. We need that f satisfies $f^{\prime}(x) \cot _{2}(x)+$ $\frac{\kappa}{2} f^{\prime \prime}(x)=0$, which implies that $f^{\prime}(x)=C \sin _{2}(x)^{-4 / \kappa}$. Let $W_{t}=f\left(Z_{t}\right)$. Then $d W_{t}=$ $-f^{\prime}\left(Z_{t}\right) \sqrt{\kappa} d B_{t}$. Let $u(t)=\int_{0}^{t}\left|f^{\prime}\left(Z_{s}\right)\right| d s$. Suppose u maps $[0, \tau)$ onto $[0, T)$. Let $v(t), 0 \leq t<T$, be the inverse of u. Then $W_{v(t)}, 0 \leq t<T$, is a Brownian motion. If $\kappa>4$, then f maps $(0,2 \pi)$ onto a bounded interval. So we have a.s. $T<\infty$. Since $T=\int_{0}^{\tau} C^{2}\left|\sin _{2}\left(Z_{s}\right)\right|^{-8 / \kappa} d s \geq C^{2} \tau$, we get $\tau<\infty$ and $\lim _{t \rightarrow \tau} Z_{t}=0$ or 2π. Since $W_{v(t)}, 0 \leq t<T$, is bounded, it is a bounded martingale, and we have

$$
f\left(x_{0}\right)=W_{0}=\mathbb{E}\left[W_{\tau}\right]=f(0) \mathbb{P}\left[\lim _{t \rightarrow \tau} Z_{t}=0\right]+f(2 \pi) \mathbb{P}\left[\lim _{t \rightarrow \tau} Z_{t}=2 \pi\right] .
$$

If f has a simple formula, we may calculate the probability that $Z_{t} \rightarrow 0$ as $t \rightarrow \tau$. Now suppose $\kappa \leq 4$. Then f maps $(0,2 \pi)$ onto \mathbb{R}. As a Brownian motion, $W_{v(t)}$ does not tend to $+\infty$ or $-\infty$ as $t \rightarrow T$ no matter $T=\infty$ or $T<\infty$. So Z_{t} does not tend to 0 or 2π as $t \rightarrow \tau$. This implies that $\tau=\infty$. Since $T \geq C^{2} \tau$, we have $T=\infty$. Thus, $\liminf _{t \rightarrow \infty} W_{v(t)}=-\infty$ and $\lim \sup _{t \rightarrow \infty} W_{v(t)}=+\infty$, which implies that $\liminf _{t \rightarrow \infty} Z_{t}=0$ and $\limsup _{t \rightarrow \infty} Z_{t}=2 \pi$.

Fix $z_{0} \in \mathbb{H}$. Let $Z_{t}=\widetilde{g}_{t}\left(z_{0}\right)-\lambda_{t}$. Then the complex valued process Z_{t} also satisfies (4.3). Thus, if f is an antiderivative of $C \sin _{2}(x)^{-4 / \kappa}$, then $f\left(Z_{t}\right)$ is a local martingale. If $\kappa=2$, we may choose $f(z)=\cot _{2}(z)$. This means that

$$
\cot _{2}\left(\widetilde{g}_{t}\left(z_{0}\right)-\lambda_{t}\right)=-i \frac{e^{i \lambda_{t}}+g_{t}\left(e^{i z_{0}}\right)}{e^{i \lambda_{t}}-g_{t}\left(e^{i z_{0}}\right)}
$$

is a local martingale. Thus, for any $w_{0} \in \mathbb{D}$, $\operatorname{Re} \frac{e^{i \lambda_{t}}+g_{t}\left(w_{0}\right)}{e^{i \lambda_{t}}-g_{t}\left(w_{0}\right)}$ is a local martingale. Let $f_{t}(z)=$ $\operatorname{Re} \frac{e^{i \lambda_{t}}+g_{t}(z)}{e^{i \lambda_{t}}-g_{t}(z)}$. Then f_{t} is a Poisson kernel function in $\mathbb{D} \backslash \beta(0, t]$ with pole at $\beta(t)$, normalized by $f_{t}(0)=1$. Then for any $z \in \mathbb{D}, t \mapsto f_{t}(z)$ is a local martingale.

4.11 Phase transition

Theorem 4.4 Let K_{t} be chordal Loewner hulls driven by $\lambda_{t}=\sqrt{\kappa} B_{t}$. Fix $z_{0} \in \mathbb{H}$. Let $\tau=\tau\left(z_{0}\right)$. Then

1. If $\kappa \leq 4$, a.s. $\tau=\infty$. If $\kappa>4$, a.s. $\tau<\infty$.
2. If $\kappa<8$, a.s. $\lim _{t \rightarrow \infty} \operatorname{dist}\left(z_{0}, K_{t}\right)>0$. If $\kappa \geq 8$, a.s. $\lim _{t \rightarrow \infty} \operatorname{dist}\left(z_{0}, K_{t}\right)=0$.

Proof. Let g_{t} be the chordal Loewner maps. Let $Z_{t}=g_{t}\left(z_{0}\right)-\lambda_{t}, 0 \leq t<\tau$. Let $X_{t}=\operatorname{Re} Z_{t}$ and $Y_{t}=\operatorname{Im} Z_{t}$. Then X_{t} and Y_{t} satisfy

$$
d X_{t}=-\sqrt{\kappa} d B_{t}+\frac{2 X_{t}}{X_{t}^{2}+Y_{t}^{2}}, \quad d Y_{t}=\frac{-2 Y_{t}}{X_{t}^{2}+Y_{t}^{2}} d t
$$

Let $W_{t}=X_{t} / Y_{t}$. Then W_{t} satisfies

$$
d W_{t}=\frac{-\sqrt{\kappa}}{Y_{t}} d B_{t}+\frac{4 X_{t} / Y_{t}}{X_{t}^{2}+Y_{t}^{2}} d t .
$$

Let $u(t)=\frac{1}{2}\left(\ln \left(Y_{0}\right)-\ln \left(Y_{t}\right)\right)$. Then $u(0)=0$ and $u^{\prime}(t)=\frac{1}{X_{t}^{2}+Y_{t}^{2}}$. Let $T=\sup u[0, \tau)$, and let $v(t), 0 \leq t<T$, be the inverse of u. Then there is another Brownian motion \widetilde{B}_{t} such that

$$
d W_{v(t)}=\sqrt{1+W_{v(t)}^{2}} \sqrt{\kappa} d \widetilde{B}_{t}+4 W_{v(t)} d t, \quad 0 \leq t<T
$$

Let $U_{t}=\sinh ^{-1}\left(W_{v(t)}\right)$. Since $\left(\sinh ^{-1}\right)^{\prime}(x)=\frac{1}{\sqrt{1+x^{2}}}$ and $\left(\sinh ^{-1}\right)^{\prime \prime}(x)=-\frac{x}{\left(1+x^{2}\right)^{3 / 2}}$, we have

$$
\begin{equation*}
d U_{t}=\sqrt{\kappa} d \widetilde{B}_{t}+\left(4-\frac{\kappa}{2}\right) \tanh \left(U_{t}\right) d t, \quad 0 \leq t<T . \tag{4.4}
\end{equation*}
$$

Choose f on \mathbb{R} such that $f^{\prime}(x)=\cosh (x)^{1-8 / \kappa}$. Let $V_{t}=f\left(U_{t}\right)$. Then

$$
d V_{t}=\cosh \left(U_{t}\right)^{1-8 / \kappa} \sqrt{\kappa} d \widetilde{B}_{t}, \quad 0 \leq t<T .
$$

So V_{t} is a time-change of a partial Brownian motion.
First, suppose $\kappa<8$. Then f maps \mathbb{R} onto a finite interval, which implies that $\lim _{t \rightarrow T} V_{t}$ a.s. exists. Thus, $\lim _{t \rightarrow T} U_{t}$ a.s. exists. So $\lim _{t \rightarrow \tau} W_{t}$ a.s. exits. We first show that a.s. $T=\infty$. If $T<\infty$, then $\lim _{t \rightarrow \tau} Y_{t}>0$, and from (4.4) we see that $\lim _{t \rightarrow T} U_{t}$ is finite, which implies that $\lim _{t \rightarrow \tau} W_{t}$ is finite. Thus, $\lim _{t \rightarrow \tau} X_{t}$ also exists and if finite. Since $T=\int_{0}^{\tau} \frac{d s}{X_{s}^{2}+Y_{s}^{2}}$, from $T<\infty$, we have $\tau<\infty$, which implies that $\lim _{t \rightarrow \tau} Z_{t}=0$ and $\lim _{t \rightarrow \tau} Y_{t}=0$, so we get a contradiction. Thus, a.s. $T=\infty$. From (4.4) we see that $\lim _{t \rightarrow \infty} U_{t}$ can not be a finite number. Thus, a.s. $\lim _{t \rightarrow \infty} U_{t}=+\infty$ or $-\infty$.

From symmetry, we only need to consider the case that $\lim _{t \rightarrow \infty} U_{t}=+\infty$. Then $\tanh \left(U_{t}\right) \rightarrow$ 1. From 4.4 we have $\lim _{t \rightarrow \infty} U_{t} / t=4-\kappa / 2$. From $T=\int_{0}^{\tau} \frac{1}{X_{s}^{2}+Y_{s}^{2}} d s$ we get

$$
\begin{equation*}
\tau=\int_{0}^{T}\left(X_{v(s)}^{2}+Y_{v(s)}^{2}\right) d s=\int_{0}^{\infty} Y_{v(s)}^{2}\left(1+W_{v(s)}^{2}\right) d s=Y_{0}^{2} \int_{0}^{\infty} e^{-4 s} \cosh ^{2}\left(U_{s}\right) d s \tag{4.5}
\end{equation*}
$$

Suppose $\kappa \in(4,8)$. Choose $\kappa^{\prime} \in(4, \kappa)$. There is some (random) $N>0$ such that $0<U_{t}<$ $\left(4-\kappa^{\prime} / 2\right) t$ for $t \geq N$. So

$$
\int_{N}^{\infty} e^{-4 s} \cosh ^{2}\left(U_{s}\right) d s \leq \int_{N}^{\infty} e^{-4 s} e^{2 U_{s}} d s \leq \int_{N}^{\infty} e^{\left(4-\kappa^{\prime}\right) s} d s<\infty
$$

which implies that $\tau<\infty$. Suppose $\kappa \in(0,4]$. Then

$$
\int_{0}^{\infty} e^{-4 s} \cosh ^{2}\left(U_{s}\right) d s \geq \frac{1}{4} \int_{0}^{\infty} e^{2 U_{s}-4 s} d s
$$

From $\lim _{t \rightarrow \infty} U_{t} / t=4-\kappa / 2$ and (4.4) we see that there is some (random) $C>0$ such that $U_{t}>\sqrt{\kappa} \widetilde{B}_{t}+(4-\kappa / 2) t-C$ for all t, which implies that

$$
\int_{0}^{\infty} e^{2 U_{s}-4 s} d s \geq \int_{0}^{\infty} e^{2 \sqrt{\kappa} \widetilde{B}_{s}+(4-\kappa) s-C} d s \geq e^{-C} \int_{0}^{\infty} e^{2 \sqrt{\kappa} \widetilde{B}_{s}} d s
$$

Since \widetilde{B}_{s} is recurrent, we have a.s. $\int_{0}^{\infty} e^{2 \sqrt{\kappa} \widetilde{B}_{s}} d s=\infty$. Thus, a.s. $\tau=\infty$ if $\kappa \in(4,8)$.
Next, suppose $\kappa \geq 8$. Then f maps \mathbb{R} onto \mathbb{R}. If V_{t} is a time-change of an incomplete Brownian motion, then we must have (i) $\int_{0}^{T} \kappa \cosh \left(U_{t}\right)^{1-8 / \kappa} d t<\infty$; and (ii) $\lim _{t \rightarrow T} V_{t}$ exists and is finite, which implies that $\lim _{t \rightarrow T} U_{t}$ and $\lim _{t \rightarrow \tau} W_{t}$ exist and are finite. Then we must have $T<\infty$. We already see that a contradiction can be obtained from $T<\infty$ and $\lim _{t \rightarrow \tau} W_{t} \in \mathbb{R}$. Thus, V_{t} is a time-change of a complete Brownian motion. So we have $\liminf _{t \rightarrow T} U_{t}=-\infty$ and $\limsup p_{t \rightarrow T} U_{t}=\infty$. From (4.4) we conclude that a.s. $T=\infty$.

We will prove that a.s. $\lim \sup _{t \rightarrow \infty} U_{t} / t \leq 0$. If this is not true, then there is $\delta>0$ such that $\limsup _{t \rightarrow \infty} U_{t} / t>\delta$. Since $\lim _{t \rightarrow \infty} \widetilde{B}_{t} / t=0$, there is some (random) $N>0$ such that for $t \geq N,\left|\sqrt{\kappa} \widetilde{B}_{t}\right|<\frac{\delta}{2} t$. Since U_{t} is recurrent and $\lim \sup _{t \rightarrow \infty} U_{t} / t>\delta$, there exist $t_{2}>t_{1}>N$ such that $U_{t_{1}}=0, U_{t_{2}}=\delta t_{2}$ and $U_{t}>0$ for $t \in\left(t_{1}, t_{2}\right)$. From (4.4) we have

$$
\begin{gathered}
\delta t_{2}=U_{t_{2}}-U_{t_{1}}=\sqrt{\kappa} \widetilde{B}_{t_{2}}-\sqrt{\kappa} \widetilde{B}_{t_{1}}+\left(4-\frac{\kappa}{2}\right) \int_{t_{1}}^{t_{2}} \tanh _{2}\left(U_{s}\right) d s \\
\leq \sqrt{\kappa} \widetilde{B}_{t_{2}}-\sqrt{\kappa} \widetilde{B}_{t_{1}} \leq \frac{\delta}{2} t_{2}+\frac{\delta}{2} t_{1}<\delta t_{2},
\end{gathered}
$$

which is a contradiction. So a.s. $\lim \sup _{t \rightarrow \infty} U_{t} / t \leq 0$. Similarly, a.s. $\liminf _{t \rightarrow \infty} U_{t} / t \geq 0$. Thus, $\lim _{t \rightarrow \infty} U_{t} / t=0$. Thus, a.s. $\int_{0}^{\infty} e^{-4 s} e^{ \pm 2 U_{s}} d s<\infty$, which implies that $\int_{0}^{\infty} e^{-4 s} \cosh ^{2}\left(U_{s}\right) d s<$ ∞. From (4.5) we get a.s. $\tau<\infty$. This finishes the proof of (i).

Since $g_{t}: \mathbb{H} \backslash K_{t} \xrightarrow{\operatorname{Conf}} \mathbb{H}, \operatorname{dist}\left(z_{0}, \partial\left(\mathbb{H} \backslash K_{t}\right)\right)=\min \left\{\operatorname{Im} z_{0}, \operatorname{dist}\left(z_{0}, K_{t}\right)\right\}$ and $\operatorname{dist}\left(g_{t}\left(z_{0}\right), \partial \mathbb{H}\right)=$ $\operatorname{Im} g_{t}\left(z_{0}\right)$, from Koebe's $1 / 4$ theorem, we suffice to show that $\lim _{t \rightarrow \tau}\left|g_{t}^{\prime}\left(z_{0}\right)\right| / Y_{t} \rightarrow \infty$ when $\kappa \geq 8$ and $\lim _{t \rightarrow \tau}\left|g_{t}^{\prime}\left(z_{0}\right)\right| / Y_{t}<\infty$ when $\kappa<8$. From chordal Loewner equation, we get $\partial_{t} g_{t}^{\prime}\left(z_{0}\right)=\frac{-2 g_{t}^{\prime}\left(z_{0}\right)}{Z_{t}^{2}}$, which implies that $\partial_{t} \log \left|g_{t}^{\prime}\left(z_{0}\right)\right|=\operatorname{Re} \frac{-2}{Z_{t}^{2}}=\frac{-2\left(X_{t}^{2}-Y_{t}^{2}\right)}{\left(X_{t}^{2}+Y_{t}^{2}\right)}$. Since $d Y_{t}=\frac{-2 Y_{t}}{X_{t}^{2}+Y_{t}^{2}}$, we get $\partial_{t} \log \left(\left|g_{t}^{\prime}\left(z_{0}\right)\right| / Y_{t}\right)=\frac{4 Y_{t}^{2}}{X_{t}^{2}+Y_{t}^{2}}$. Let $S=\int_{0}^{\tau} \frac{Y_{s}^{2}}{\left(X_{s}^{2}+Y_{s}^{2}\right)^{2}} d s$. We suffice to show that a.s. $S=\infty$ when $\kappa \geq 8$ and $S<\infty$ when $\kappa<8$.

By changing variable we get

$$
S=\int_{0}^{\infty} \frac{Y_{v(s)}^{2}}{X_{v(s)}^{2}+Y_{v(s)}^{2}} d s=\int_{0}^{\infty} \frac{d s}{1+W_{v(s)}^{2}}=\int_{0}^{\infty} \cosh ^{-2}\left(U_{s}\right) d s
$$

If $\kappa<8$, then a.s. $\lim _{t \rightarrow \infty} U_{t} / t=4-\frac{\kappa}{2}$ or $\lim _{t \rightarrow \infty} U_{t} / t=-(4-\kappa / 2)$. In either case we get $S<\infty$. If $\kappa \geq 8$, then U_{t} is a recurrent process, which implies that $S=\infty$.

5 Locality and Restriction

5.1 Locality property

In this section, we will prove that SLE_{6} satisfies locality property, and other SLE $_{\kappa}$ satisfies weak locality property. The locality of SLE_{6} means that the growth of SLE_{6} does not feel the boundary before it hits it. We have the following theorem.

Theorem 5.1 Suppose $K_{t}, 0 \leq t<\infty$, are standard chordal $S L E_{6}$ hulls. Let A be an \mathbb{H}-hull such that $\operatorname{dist}(0, A)>0$. Let T be the biggest time such that $K_{t} \cap A \neq \emptyset$ for $0 \leq t<T$. Then after a time-change, $K_{t}, 0 \leq t<T$, has the same distribution as the chordal $S L E_{6}$ hulls in $\mathbb{H} \backslash A$ from 0 to ∞, stopped when touches A.
Proof. Let $\lambda_{t}=\sqrt{\kappa} B_{t}$ be the driving function, and g_{t} be the chordal Loewner maps. We know that $K_{t}, 0 \leq t<\infty$, is a Loewner chain in \mathbb{H}. Then we easily see that $K_{t}, 0 \leq t<\infty$, is a Loewner chain in $\mathbb{H} \backslash A$. Let $W=g_{A}$ and $L_{t}=W\left(K_{t}\right), 0 \leq t<T$. Then $L_{t}, 0 \leq t<T$, is a Loewner chain in \mathbb{H}, and each L_{t} is an \mathbb{H}-hull. Let $u(t)=\operatorname{hcap}\left(L_{t}\right) / 2,0 \leq t<T$. Then u is continuous and increasing with $u(0)=0$. Let $S=\sup u[0, T)$. Let $v=u^{-1}$. Then $L_{v(t)}$, $0 \leq t<S$, is a Loewner chain in \mathbb{H} with hcap $\left(L_{v(t)}\right)=2 t$ for $0 \leq t<S$. Thus, $L_{v(t)}, 0 \leq t<S$, are chordal Loewner hulls driven by some $\eta \in C[0, S)$. We suffice to show that $\eta_{t}, 0 \leq t<S$, has the distribution as $W(0)+\sqrt{\kappa} B_{t}$ stopped at S. Let h_{t} be the chordal Loewner maps driven by η. Then $h_{u(t)}: \mathbb{H} \backslash L_{t} \xrightarrow{\text { Conf }} \mathbb{H}$.

For $0 \leq t<T$, let $A_{t}=g_{t}(A)$ and

$$
W_{t}=h_{u(t)} \circ W \circ g_{t}^{-1} .
$$

Then $W_{t}: \mathbb{H} \backslash A_{t} \xrightarrow{\text { Conf }} \mathbb{H}$, and λ_{t} is bounded away from A_{t}. In fact, from the power series expansion of W_{t} at ∞, we see that $W_{t}=g_{A_{t}}$. From Schwarz reflection principle, we may extend W_{t} analytically across $\mathbb{R} \backslash \overline{A_{t}}$, and maps $\mathbb{R} \backslash \overline{A_{t}}$ into \mathbb{R}. We have $(t, z) \mapsto W_{t}(z)$ is continuous. Fix $t \in[0, T)$ and $s \in(0, T-t)$. we have

$$
L_{t+s} / L_{t}=h_{u(t)}\left(L_{t+s} \backslash L_{t}\right)=W_{t}\left(g_{t}\left(K_{t+s} \backslash K_{t}\right)\right)=W_{t}\left(K_{t+s} / K_{t}\right)
$$

Since $\operatorname{hcap}\left(L_{t+s} / L_{t}\right)=2 u(t+s)-2 u(t)$ and hcap $\left(K_{t+s} / K_{t}\right)=2 s, \bigcap_{s>0} \overline{K_{t+s} / K_{t}}=\left\{\lambda_{t}\right\}$, and W_{t} is analytic at λ_{t}, we get $u_{+}^{\prime}(t)=W_{t}^{\prime}\left(\lambda_{t}\right)^{2}, 0 \leq t<T$. Since $W_{t}^{\prime}\left(\lambda_{t}\right)$ is continuous in t, we have

$$
\begin{equation*}
u^{\prime}(t)=W_{t}^{\prime}\left(\lambda_{t}\right)^{2}, \quad 0 \leq t<T . \tag{5.1}
\end{equation*}
$$

Since

$$
\left\{\lambda_{t}\right\}=\bigcap_{s>0} \overline{K_{t+s} / K_{t}}, \quad\left\{\eta_{u(t)}\right\}=\bigcap_{s>0} \overline{L_{t+s} / L_{t}},
$$

we have

$$
\begin{equation*}
\eta_{u(t)}=W_{t}\left(\lambda_{t}\right), \quad 0 \leq t<T \tag{5.2}
\end{equation*}
$$

From the definition of W_{t}, we get

$$
W_{t} \circ g_{t}(z)=h_{u(t)} \circ W(z), \quad z \in \mathbb{H} \backslash\left(A \cup K_{t}\right) .
$$

Differentiate this equality w.r.t. t, and using (5.1) and (5.2) we get

$$
\partial_{t} W_{t}\left(g_{t}(z)\right)+W_{t}^{\prime}\left(g_{t}(z)\right) \frac{2}{g_{t}(z)-\lambda_{t}}=\frac{2 W_{t}^{\prime}\left(\lambda_{t}\right)^{2}}{h_{u(t)}(W(z))-\eta_{u(t)}}=\frac{2 W_{t}^{\prime}\left(\lambda_{t}\right)^{2}}{W_{t}\left(g_{t}(z)\right)-W_{t}\left(\lambda_{t}\right)} .
$$

Since g_{t} maps $\mathbb{H} \backslash\left(A \cup K_{t}\right)$ onto $\mathbb{H} \backslash A_{t}$, we conclude that

$$
\partial_{t} W_{t}(w)=\frac{2 W_{t}^{\prime}\left(\lambda_{t}\right)^{2}}{W_{t}(w)-W_{t}\left(\lambda_{t}\right)}-\frac{2 W_{t}^{\prime}(w)}{w-\lambda_{t}} .
$$

Let $a_{j}=W_{t}^{(j)}\left(\lambda_{t}\right), j \in \mathbb{N}$. Let $\delta=w-\lambda_{t}$. Then as $\delta \rightarrow 0$,

$$
\begin{gathered}
\frac{2 W_{t}^{\prime}\left(\lambda_{t}\right)^{2}}{W_{t}(w)-W_{t}\left(\lambda_{t}\right)}-\frac{2 W_{t}^{\prime}(w)}{w-\lambda_{t}}=\frac{2 a_{1}^{2}}{a_{1} \delta+\frac{a_{2}}{2} \delta^{2}+O\left(\delta^{3}\right)}-\frac{2\left(a_{1}+a_{2} \delta+O\left(\delta^{2}\right)\right)}{\delta} \\
=\frac{2 a_{1}}{\delta}\left(1+\frac{a_{2}}{2 a_{1}} \delta+O\left(\delta^{2}\right)\right)^{-1}-\frac{2 a_{1}}{\delta}-2 a_{2}+O(\delta) . \\
=\frac{2 a_{1}}{\delta}\left(1-\frac{a_{2}}{2 a_{1}} \delta+O\left(\delta^{2}\right)\right)-\frac{2 a_{1}}{\delta}-2 a_{2}+O(\delta)=-3 a_{2}+O(\delta) .
\end{gathered}
$$

So we have

$$
\begin{equation*}
\partial_{t} W_{t}\left(\lambda_{t}\right)=-3 W_{t}^{\prime \prime}\left(\lambda_{t}\right), \quad 0 \leq t<T \tag{5.3}
\end{equation*}
$$

Since $\lambda_{t}=\sqrt{\kappa} B_{t}(\kappa=6)$, applying Itô's formula to 5.2 we get

$$
\begin{equation*}
d \eta_{u(t)}=W_{t}^{\prime}\left(\lambda_{t}\right) d \lambda_{t}+\left(\frac{\kappa}{2}-3\right) W_{t}^{\prime \prime}\left(\lambda_{t}\right) d t, \quad 0 \leq t<T . \tag{5.4}
\end{equation*}
$$

From (5.1) we see that there is another Brownian motion \widetilde{B}_{t} such that

$$
d \eta_{t}=\sqrt{\kappa} d \widetilde{B}_{t}+\left(\frac{\kappa}{2}-3\right) \frac{W_{v(t)}^{\prime \prime}\left(\lambda_{v(t)}\right)}{W_{v(t)}^{\prime}\left(\lambda_{v(t)}\right)^{2}} d t, \quad 0 \leq t<S
$$

If $\kappa=6$, then $\eta_{t}, 0 \leq t<S$, has the same distribution as $\sqrt{\kappa} B_{t}$ stopped at S. So the proof is finished.

Remarks.

1. The locality property explains why the scaling limit of critical percolation is SLE_{6}.
2. Lawler, Schramm and Werner uses the locality of SLE_{6} to compute the intersection exponent of planar Brownian motion.
3. In case $\kappa \neq 6$, from Girsanov theorem, we may find an increasing sequence stopping times $\left(T_{n}\right)$ such that $T=\vee T_{n}$, and for each n, the distribution of $K_{t}, 0 \leq t \leq T_{n}$, is equivalent to the distribution of a time-change of a chordal SLE_{κ} hulls in $\mathbb{H} \backslash A$ from 0 to ∞ stopped at some stopping time. We say that chordal SLE $_{\kappa}$ satisfies weak locality for $\kappa \neq 6$.
4. The locality property for $\kappa=6$ and weak locality property for $\kappa \neq 6$ are also satisfied by radial SLE. We leave this as an exercise.

5.2 Restriction property

In this subsection we will show that $\mathrm{SLE}_{8 / 3}$ satisfies restriction property. We have the following theorem.

Theorem 5.2 Suppose $K_{t}, 0 \leq t<\infty$, are standard chordal $S L E_{8 / 3}$ hulls. Let A be an \mathbb{H}-hull such that $\operatorname{dist}(0, A)>0$. Then conditioned on the event that $K_{\infty}:=\bigcup K_{t}$ is disjoint from A, $K_{t}, 0 \leq t<\infty$, has the same distribution as the chordal $S L E_{8 / 3}$ hulls in $\mathbb{H} \backslash A$ from 0 to ∞.

Proof. The initial part of the proof is the same as the proof of Theorem 5.1. Now we have derived

$$
\partial_{t} W_{t}(w)=\frac{2 W_{t}^{\prime}\left(\lambda_{t}\right)^{2}}{W_{t}(w)-W_{t}\left(\lambda_{t}\right)}-\frac{2 W_{t}^{\prime}(w)}{w-\lambda_{t}}, \quad w \in \mathbb{H} \backslash A_{t} .
$$

Differentiating this equality w.r.t. w, we get

$$
\partial_{t} W_{t}^{\prime}(w)=-\frac{2 W_{t}^{\prime}\left(\lambda_{t}\right)^{2} W_{t}^{\prime}(w)}{\left(W_{t}(w)-W_{t}\left(\lambda_{t}\right)\right)^{2}}-\frac{2 W_{t}^{\prime \prime}(w)}{w-\lambda_{t}}+\frac{2 W_{t}^{\prime}(w)}{\left(w-\lambda_{t}\right)^{2}} .
$$

If $\delta=w-\lambda_{t} \rightarrow 0$, we have

$$
\begin{gathered}
-\frac{2 W_{t}^{\prime}\left(\lambda_{t}\right)^{2} W_{t}^{\prime}(w)}{\left(W_{t}(w)-W_{t}\left(\lambda_{t}\right)\right)^{2}}-\frac{2 W_{t}^{\prime \prime}(w)}{w-\lambda_{t}}+\frac{2 W_{t}^{\prime}(w)}{\left(w-\lambda_{t}\right)^{2}} \\
=-\frac{2 a_{1}^{2}\left(a_{1}+a_{2} \delta+\frac{a_{3}}{2} \delta^{2}+O\left(\delta^{3}\right)\right)^{2}}{\left(a_{1} \delta+\frac{a_{2}}{2} \delta^{2}+\frac{a_{3}}{6} \delta^{3}+O\left(\delta^{4}\right)\right)^{2}}-\frac{2\left(a_{2}+a_{3} \delta+O\left(\delta^{2}\right)\right)}{\delta}+\frac{2\left(a_{1}+a_{2} \delta+\frac{a_{3}}{2} \delta^{2}+O\left(\delta^{3}\right)\right)}{\delta^{2}} \\
=-\frac{2 a_{1}}{\delta^{2}} \frac{1+\frac{a_{2}}{a_{1}} \delta+\frac{1}{2} \frac{a_{3}}{\left(1+\frac{1}{2} \frac{a_{2}}{a_{1}} \delta+\frac{1}{6} \frac{a}{6} \delta^{2}+O\left(\delta^{3}\right)\right.}}{\left.\alpha_{1}+O\left(\delta^{3}\right)\right)^{2}}+\frac{2 a_{1}}{\delta^{2}}-a_{3}+O(\delta) \\
=-\frac{2 a_{1}}{\delta^{2}} \frac{1+\frac{a_{2}}{a_{1}} \delta+\frac{1}{2} \frac{a_{3}}{a_{1}} \delta^{2}+O\left(\delta^{3}\right)}{1+\frac{a_{2}}{a_{1}} \delta+\left(\frac{1}{4} \frac{a_{2}^{2}}{a_{1}}+\frac{1}{3} \frac{a_{3}}{a_{1}}\right) \delta^{2}+O\left(\delta^{3}\right)}+\frac{2 a_{1}}{\delta^{2}}-a_{3}+O(\delta)
\end{gathered}
$$

$$
=-\frac{2 a_{1}}{\delta^{2}}\left(1+\left(\frac{1}{6} \frac{a_{3}}{a_{1}}-\frac{1}{4} \frac{a_{2}^{2}}{a_{1}^{2}}\right) \delta^{2}+O\left(\delta^{3}\right)\right)+\frac{2 a_{1}}{\delta^{2}}-a_{3}+O(\delta)=\frac{1}{2} \frac{a_{2}^{2}}{a_{1}}-\frac{4}{3} a_{3}+O(\delta) .
$$

Thus, we have

$$
\begin{equation*}
\frac{\partial_{t} W_{t}^{\prime}\left(\lambda_{t}\right)}{W_{t}^{\prime}\left(\lambda_{t}\right)}=\frac{1}{2}\left(\frac{W_{t}^{\prime \prime}\left(\lambda_{t}\right)}{W_{t}^{\prime}\left(\lambda_{t}\right)}\right)^{2}-\frac{4}{3} \frac{W_{t}^{\prime \prime \prime}\left(\lambda_{t}\right)}{W_{t}^{\prime}\left(\lambda_{t}\right)} \tag{5.5}
\end{equation*}
$$

Since $\lambda_{t}=\sqrt{\kappa} B_{t}$, we find that $W_{t}^{\prime}\left(\lambda_{t}\right)$ satisfies the SDE:

$$
\begin{equation*}
\frac{d W_{t}^{\prime}\left(\lambda_{t}\right)}{W_{t}^{\prime}\left(\lambda_{t}\right)}=\frac{W_{t}^{\prime \prime}\left(\lambda_{t}\right)}{W_{t}^{\prime}\left(\lambda_{t}\right)} d \lambda_{t}+\frac{1}{2}\left(\frac{W_{t}^{\prime \prime}\left(\lambda_{t}\right)}{W_{t}^{\prime}\left(\lambda_{t}\right)}\right)^{2} d t+\left(\frac{\kappa}{2}-\frac{4}{3}\right) \frac{W_{t}^{\prime \prime \prime}\left(\lambda_{t}\right)}{W_{t}^{\prime}\left(\lambda_{t}\right)} d t . \tag{5.6}
\end{equation*}
$$

Let $\alpha=\frac{6-\kappa}{2 \kappa}$ and $\mathrm{c}=\frac{(6-\kappa)(3 \kappa-8)}{2 \kappa}$. When $\kappa=\frac{8}{3}, \alpha=\frac{5}{8}$ and $\mathrm{c}=0$. The c is known as the central charge of SLE $_{\kappa}$. Then

$$
\begin{align*}
& \frac{d W_{t}^{\prime}\left(\lambda_{t}\right)^{\alpha}}{W_{t}^{\prime}\left(\lambda_{t}\right)^{\alpha}}=\alpha \frac{d W_{t}^{\prime}\left(\lambda_{t}\right)}{W_{t}^{\prime}\left(\lambda_{t}\right)}+\frac{\kappa}{2} \alpha(\alpha-1)\left(\frac{W_{t}^{\prime \prime}\left(\lambda_{t}\right)}{W_{t}^{\prime}\left(\lambda_{t}\right)}\right)^{2} d t \\
& =\alpha \frac{W_{t}^{\prime \prime}\left(\lambda_{t}\right)}{W_{t}^{\prime}\left(\lambda_{t}\right)} d \lambda_{t}+\frac{\mathrm{c}}{6} \frac{W_{t}^{\prime \prime \prime}\left(\lambda_{t}\right)}{W_{t}^{\prime}\left(\lambda_{t}\right)} d t-\frac{\mathrm{c}}{4}\left(\frac{W_{t}^{\prime \prime}\left(\lambda_{t}\right)}{W_{t}^{\prime}\left(\lambda_{t}\right)}\right)^{2} d t \tag{5.7}
\end{align*}
$$

If $\kappa=\frac{8}{3}$, then $W_{t}^{\prime}\left(\lambda_{t}\right)^{\alpha}$ is a local martingale. Recall that $W_{t}=g_{A_{t}}$. Since

$$
g_{A_{t}}^{-1}(z)-z=\int \frac{1}{x-z} d \mu_{A_{t}}(x),
$$

we get

$$
\left(g_{A_{t}}^{-1}\right)^{\prime}(z)=1+\int \frac{1}{(x-z)^{2}} d \mu_{A_{t}}(x) .
$$

Thus, for any $z \in \mathbb{R} \backslash\left[c_{A_{t}}, d_{A_{t}}\right]$, we have $\left(g_{A_{t}}^{-1}\right)^{\prime}(z)>1$, which implies that $0<W_{t}^{\prime}\left(\lambda_{t}\right)<1$. Thus, $W_{t}^{\prime}\left(\lambda_{t}\right)^{\alpha}$ is a bounded martingale. Then $X:=\lim _{t \rightarrow \infty} W_{t}^{\prime}\left(\lambda_{t}\right)^{\alpha}$ exists a.s. and lies between 0 and 1. And we have $\mathbb{E}[X]=W_{0}^{\prime}\left(\lambda_{0}\right)^{\alpha}=g_{A}^{\prime}(0)^{\alpha}$. Now we define a new probability measure \mathbb{P}_{1} such that $d \mathbb{P}_{1} / d \mathbb{P}=X / g_{A}^{\prime}(0)^{\alpha}$. Let $D_{t}=\mathbb{E}\left[d \mathbb{P}_{1} / d \mathbb{P} \mid \mathcal{F}_{t}\right]=W_{t}^{\prime}\left(\lambda_{t}\right)^{\alpha} / g_{A}^{\prime}(0)^{\alpha}$. From 5.7) we see that, under $\mathbb{P}_{1}, \widetilde{B}_{t}=B_{t}-\alpha \sqrt{\kappa} \int_{0}^{t} \frac{W_{s}^{\prime \prime}\left(\lambda_{s}\right)}{W_{s}^{\prime}\left(\lambda_{s}\right)}$ is a Brownian motion. We have

$$
d \lambda_{t}=\sqrt{\kappa} d B_{t}=\sqrt{\kappa} d \widetilde{B}_{t}+\alpha \kappa \frac{W_{t}^{\prime \prime}\left(\lambda_{t}\right)}{W_{t}^{\prime}\left(\lambda_{t}\right)} d t
$$

Formula (5.4) still holds here. So we get

$$
d \eta_{u(t)}=W_{t}^{\prime}\left(\lambda_{t}\right) \sqrt{\kappa} d \widetilde{B}_{t} .
$$

From 5.1 we see that, under \mathbb{P}_{1}, there is a Brownian motion \widehat{B}_{t} such that $d \eta_{t}=\sqrt{\kappa} d \widehat{B}_{t}$, $0 \leq t<S$. This shows that, under \mathbb{P}_{1}, a time-change of $L_{t}=W\left(K_{t}\right), 0 \leq t<T$, are partial chordal $\mathrm{SLE}_{8 / 3}$ hulls in \mathbb{H} from $\eta_{0}=W\left(\lambda_{0}\right)$ to ∞. Thus, under \mathbb{P}_{1}, after a time-change, K_{t}, $0 \leq t<T$, are partial chordal $\mathrm{SLE}_{8 / 3}$ hulls in $\mathbb{H} \backslash A$ from 0 to ∞.

We now use the existence and properties of the chordal SLE $_{\kappa}$ trace. We have a simple curve $\beta(t)$ such that $K_{t}=\beta(0, t]$ for $0 \leq t<T$. Under \mathbb{P}_{1}, a time-change of $\beta(t), 0 \leq t<T$, is a partial chordal $\mathrm{SLE}_{8 / 3}$ trace in $\mathbb{H} \backslash A$ from 0 to ∞. If such trace does not finish its journey, then it ends at some interior point of $\mathbb{H} \backslash A$. From the definition of T, this is a \mathbb{P}-null event. So it is also a \mathbb{P}_{1}-null event. So the word "partial" can be removed.

Thus, modulo a time-change, the distribution of chordal $\mathrm{SLE}_{8 / 3}$ process in $\mathbb{H} \backslash A$ from 0 to ∞ is absolutely continuous w.r.t. that of chordal $\mathrm{SLE}_{8 / 3}$ process in \mathbb{H} from 0 to ∞, and the Radon-Nikodym derivative is $X / \mathbb{E}[X]$. Since the trace in $\mathbb{H} \backslash A$ does not hit A, we have $\mathbb{P}_{1}[T<\infty]=0$. Thus, $X=0$ on $\{T<\infty\}$. We claim that $X=1$ on $\{T=\infty\}$. If this is true, then $\mathbb{P}_{1}=\mathbb{P}[\cdot \mid T=\infty]=\mathbb{P}\left[\cdot \mid K_{\infty} \cap A=\emptyset\right]$, and we are done.

Now we prove the claim in the case that $\bar{A} \cap \mathbb{R}$ lies to the right of 0 . Suppose $T=\infty$, i.e., the whole trace β avoids A. As $t \rightarrow \infty, \beta(t) \rightarrow \infty$, so the extremal distance between $A \cup\left[a_{A}, b_{A}\right]$ and $(-\infty, 0]$ unions the "left side" of $\beta(0, t]$ in $\mathbb{H} \backslash \beta(0, t]$ tends to ∞, which implies that the extremal distance between $A_{t} \cup\left[a_{A_{t}}, b_{A_{t}}\right]$ and $\left(-\infty, \lambda_{t}\right]$ in \mathbb{H} tends to ∞. This then implies that the extremal distance between $\left[c_{A_{t}}, d_{A_{t}}\right]$ and $\left(-\infty, g_{A_{t}}\left(\lambda_{t}\right)\right]$ in \mathbb{H} tends to ∞ as $t \rightarrow \infty$. So we have $\frac{d_{A_{t}-c_{A_{t}}}}{\left.c_{A_{t}}-g_{A_{t}} \lambda_{t}\right)} \rightarrow 0$ as $t \rightarrow \infty$.

Recall that for any nonempty \mathbb{H}-hull $K, g_{K}:(\widehat{\mathbb{C}} \backslash \widehat{K} ; \infty) \xrightarrow{\text { Conf }}\left(\mathbb{C} \backslash\left[c_{K}, d_{K}\right] ; \infty\right)$ and $g_{K}^{\prime}(\infty)=$ 1. So $\cap(\widehat{K})=\cap\left(\left[c_{K}, d_{K}\right]\right)=\left(d_{K}-c_{K}\right) / 4$. Let $h(K)$ denote the height of K, then $2 h(K) \leq$ $\operatorname{diam}(\widehat{K}) \leq 4 \cap(\widehat{K})=d_{K}-c_{K}$. So $h(K) \leq\left(d_{K}-c_{K}\right) / 2$. If K is a bubble, then hcap $(K) \leq$ $\frac{h(K)}{\pi}\left(d_{K}-c_{K}\right) \leq \frac{\left(d_{K}-c_{K}\right)^{2}}{2 \pi}$. By approximation, this is true for any nonempty \mathbb{H}-hull.

Recall that $W_{t}=g_{A_{t}}$ and

$$
\left(g_{A_{t}}^{-1}\right)^{\prime}(z)=1+\int_{c_{A_{t}}}^{d_{A_{t}}} \frac{1}{(z-x)^{2}} d \mu_{A_{t}}(x) .
$$

Let $z=g_{A_{t}}\left(\lambda_{t}\right)$. Since $\left|\mu_{A_{t}}\right|=\operatorname{hcap}\left(A_{t}\right) \leq \frac{\left(d_{A_{t}}-c_{A_{t}}\right)^{2}}{2 \pi}$ and $g_{A_{t}}\left(\lambda_{t}\right)<c_{A_{t}}<d_{A_{t}}$, we have

$$
1 \leq\left(g_{A_{t}}^{-1}\right)^{\prime}\left(g_{A_{t}}\left(\lambda_{t}\right)\right) \leq 1+\frac{1}{2 \pi} \frac{\left(d_{A_{t}}-c_{A_{t}}\right)^{2}}{\left(c_{A_{t}}-g_{A_{t}}\left(\lambda_{t}\right)\right)^{2}} .
$$

Since $\frac{d_{A_{t}-c_{A_{t}}}}{c_{A_{t}}-g_{A_{t}}\left(\lambda_{t}\right)} \rightarrow 0$, we get $W_{t}^{\prime}\left(\lambda_{t}\right) \rightarrow 1$ as $t \rightarrow \infty$. So $X=1$ on $\{T=\infty\}$.
So far, we prove the theorem in the case that $\inf (\bar{A} \cap \mathbb{R})>0$. Similarly, the result is true if $\sup (\bar{A} \cap \mathbb{R})<0$. If $\inf (\bar{A} \cap \mathbb{R})<0<\sup (\bar{A} \cap \mathbb{R})$, we may divide A into the disjoint union of two \mathbb{H}-hulls A_{+}and A_{-}such that $\sup \left(\overline{A_{-}} \cap \mathbb{R}\right)<0$ and $\inf \left(\overline{A_{+}} \cap \mathbb{R}\right)>0$. The result we obtained says that, if we condition a chordal $\mathrm{SLE}_{8 / 3}$ trace in \mathbb{H} from 0 to ∞ to avoid A_{+}, then we get a chordal $\mathrm{SLE}_{8 / 3}$ trace in $\mathbb{H} \backslash A_{+}$from 0 to ∞. If we further condition this trace to avoid A_{-}, then we get a chordal SLE $_{8 / 3}$ trace in $\mathbb{H} \backslash\left(A_{+} \cup A_{-}\right)=\mathbb{H} \backslash A$ from 0 to ∞. Note that the combined effect of the two conditionings is a single conditioning: to avoid $A=A_{+} \cup A_{-}$. So the proof is finished.

Remarks.

1. The restriction property is also satisfied by radial $\mathrm{SLE}_{8 / 3}$. In fact, if A is a \mathbb{D}-hull with $1 \notin \bar{A}$, then the probability that A is disjoint from a complete radial SLE $_{8 / 3}$ trace is equal to $\left|g_{A}^{\prime}(1)\right|^{5 / 8}\left|g_{A}^{\prime}(0)\right|^{5 / 48}$. We leave this as an exercise.
2. For $\kappa \neq 8 / 3$, from (5.7) we may construct a local martingale M_{t} by

$$
M_{t}=W_{t}^{\prime}\left(\lambda_{t}\right)^{\alpha} \exp \left(-\frac{\mathrm{c}}{6} \int_{0}^{t} S W_{s}\left(\lambda_{s}\right) d s\right),
$$

where $S W_{s}=W_{s}^{\prime \prime \prime} / W_{s}^{\prime}-\frac{3}{2}\left(W_{s}^{\prime \prime} / W_{s}^{\prime}\right)^{2}$ is the Schwarzian derivative of W_{s}. Such M_{t} satisfies the SDE

$$
\begin{equation*}
\frac{d M_{t}}{M_{t}}=\alpha \frac{W_{t}^{\prime \prime}\left(\lambda_{t}\right)}{W_{t}^{\prime}\left(\lambda_{t}\right)} d \lambda_{t} . \tag{5.8}
\end{equation*}
$$

Recall that $W_{s}=g_{A_{s}}$. From the following lemma, we see that $S W_{s}\left(\lambda_{s}\right) \leq 0$ for all s.
Lemma 5.1 Let K be an \mathbb{H}-hull and $x \in \mathbb{R} \backslash\left[a_{K}, b_{K}\right]$. Then $S g_{K}(x) \leq 0$.
Proof. We may assume that K is a bubble. We may find chordal Loewner hulls $K_{t}, 0 \leq t<T$, such that $K=K_{t_{0}}$ for some $t_{0} \in[0, T)$. Let λ_{t} be the driving function. Let $x \in \mathbb{R} \backslash\left[a_{K}, b_{K}\right]$. Then $g_{t}(x)$ is well defined for $0 \leq t \leq t_{0}$. We have $\partial_{t} g_{t}(x)=\frac{2}{g_{t}(x)-\lambda_{t}}$, which implies that $\partial_{t} g_{t}^{\prime}(x)=-\frac{2 g_{t}^{\prime}(x)}{\left(g_{t}(x)-\lambda_{t}\right)^{2}}$. Thus, $\partial_{t} \log g_{t}^{\prime}(x)=-\frac{2}{\left(g_{t}(x)-\lambda_{t}\right)^{2}}$. This then implies that

$$
\begin{equation*}
\partial_{t} \frac{g_{t}^{\prime \prime}(x)}{g_{t}^{\prime}(x)}=\partial_{t} \partial_{x} \log g_{t}^{\prime}(x)=\partial_{x} \partial_{t} \log g_{t}^{\prime}(x)=\frac{4 g_{t}^{\prime}(x)}{\left(g_{t}(x)-\lambda_{t}\right)^{3}} . \tag{5.9}
\end{equation*}
$$

Thus,

$$
\partial_{t} \frac{1}{2}\left(\frac{g_{t}^{\prime \prime}(x)}{g_{t}^{\prime}(x)}\right)^{2}=\frac{4 g_{t}^{\prime \prime}(x)}{\left(g_{t}(x)-\lambda_{t}\right)^{3}} .
$$

Differentiating (5.9) w.r.t. x, we get

$$
\partial_{t}\left(\frac{g_{t}^{\prime \prime \prime}(x)}{g_{t}^{\prime}(x)}-\left(\frac{g_{t}^{\prime \prime}(x)}{g_{t}^{\prime}(x)}\right)^{2}\right)=\frac{4 g_{t}^{\prime \prime}(x)}{\left(g_{t}(x)-\lambda_{t}\right)^{3}}-\frac{12 g_{t}^{\prime}(x)^{2}}{\left(g_{t}(x)-\lambda_{t}\right)^{4}} .
$$

Combining the above two displayed formulas, we get

$$
\partial_{t} S g_{t}(x)=-\frac{12 g_{t}^{\prime}(x)^{2}}{\left(g_{t}(x)-\lambda_{t}\right)^{4}} \leq 0
$$

Since $g_{0}=\mathrm{id}, S g_{0}(x)=0$. So we get $S g_{t_{0}}(x) \leq 0$.
Remark. If $\kappa<8 / 3$, then $\mathrm{c}<0$. So $-\frac{\mathrm{c}}{6} \int_{0}^{t} S W_{s}\left(\lambda_{s}\right) d s \leq 0$. This means that $0 \leq M_{t} \leq 1$ and a.s. $X:=\lim _{t \rightarrow \infty} M_{t}$ exists and $0 \leq X \leq 1$. If we define a new probability distribution \mathbb{P}_{1} by $d \mathbb{P}_{1} / d \mathbb{P}=X / \mathbb{E}[X]$, then from (5.8) and Girsanov theorem, we see that, under \mathbb{P}_{1}, after a
time-change, K_{t} are chordal SLE $_{\kappa}$ hulls in $\mathbb{H} \backslash A$ from 0 to ∞. Thus, for $\kappa<8 / 3$, modulo a timechange, the distribution of chordal SLE_{κ} hulls in $\mathbb{H} \backslash A$ from 0 to ∞ is absolutely continuous w.r.t. that of chordal SLE_{κ} hulls in \mathbb{H} from 0 to ∞, and the Radon-Nikodym derivative is $X / \mathbb{E}[X]$. A similar argument as before shows that

$$
X=\mathbf{1}_{\left\{K_{\infty} \cap A=\emptyset\right\}} \exp \left(-\frac{\mathrm{c}}{6} \int_{0}^{\infty} S W_{s}\left(\lambda_{s}\right) d s\right) .
$$

Lawler and Werner proved that the quantity $-\frac{1}{6} \int_{0}^{\infty} S W_{s}\left(\lambda_{s}\right) d s$ can be characterized by the Brownian loop measure of the set of loops in \mathbb{H} that intersect both K_{∞} and A, and the quantity $\exp \left(-\frac{\mathrm{c}}{6} \int_{0}^{\infty} S W_{s}\left(\lambda_{s}\right) d s\right)$ can be described by the probability that, in a Brownian loop soup of density - c in \mathbb{H} (a Poisson point process of Brownian loop measure), there exist no loops that intersect both K_{∞} and A. If we attach all loops in a Brownian loops soup of density - c in \mathbb{H} that intersect K_{∞} to K_{∞}, we get a fat set, say F. If we condition that F avoids A, then K_{t}, $0 \leq t<\infty$, has the distribution of chordal SLE $_{\kappa}$ hulls in $\mathbb{H} \backslash A$ from 0 to ∞, after a time-change.

5.3 Equivalence between chordal SLE and radial SLE

Theorem 5.3 Let $K_{t}, 0 \leq t<\infty$, be standard radial SLE E_{6} hulls. Let $w_{0} \in \mathbb{T} \backslash\{1\}$. Let T be the biggest number such that $w_{0} \notin \overline{K_{t}}$ for $0 \leq t<T$. After a time-change, $K_{t}, 0 \leq t<T$, has the same distribution as chordal $S L E_{\kappa}$ hulls in \mathbb{D} from 1 to w_{0}, stopped at some stopping time.

Proof. Let $\kappa=6$. Let $\lambda_{t}=\sqrt{\kappa} B_{t}$ be the driving function for K_{t}, let Let g_{t} and \widetilde{g}_{t} be the radial Loewner maps and covering radial Loewner maps. Let $W:\left(\mathbb{D} ; 1, w_{0}\right) \xrightarrow{\text { Conf }}(\mathbb{H} ; 0, \infty)$. Let $L_{t}=W\left(K_{t}\right)$. Then $L_{t}, 0 \leq t<T$, is a Leowner chain in \mathbb{H} such that each L_{t} is an \mathbb{H}-hull. Let $u(t)=\operatorname{hcap}\left(L_{t}\right) / 2,0 \leq t<T$. Then u is continuous and increasing with $u(0)=0$. Let $S=\sup u[0, T)$. Let $v=u^{-1}$. Then $L_{v(t)}, 0 \leq t<S$, is a Loewner chain in \mathbb{H} with $\operatorname{hcap}\left(L_{v(t)}\right)=2 t$ for $0 \leq t<S$. Thus, $L_{v(t)}, 0 \leq t<S$, are chordal Loewner hulls driven by some $\eta \in C[0, S)$. We suffice to show that $\eta_{t}, 0 \leq t<S$, has the distribution as $W(1)+\sqrt{\kappa} B_{t}$ stopped at S. Let h_{t} be the chordal Loewner maps driven by η. Then $h_{u(t)}: \mathbb{H} \backslash L_{t} \xrightarrow{\text { Conf }} \mathbb{H}$.

For $0 \leq t<T$, let $W_{t}=h_{u(t)} \circ W \circ g_{t}^{-1}$. Then $W_{t}: \mathbb{D} \xrightarrow{\text { Conf }} \mathbb{H}$. Fix $t \in[0, T)$ and $s \in(0, T-t)$. we have $L_{t+s} / L_{t}=W_{t}\left(K_{t+s} / K_{t}\right)$. Since hcap $\left(L_{t+s} / L_{t}\right)=2 u(t+s)-2 u(t)$ and $\operatorname{dcap}\left(K_{t+s} / K_{t}\right)=s, \bigcap_{s>0} \overline{K_{t+s} / K_{t}}=\left\{e^{i \lambda_{t}}\right\}$, and W_{t} is analytic at λ_{t}, we get $u^{\prime}(t)=\left|W_{t}^{\prime}\left(e^{i \lambda_{t}}\right)\right|^{2}$. Let $\widetilde{W}=W \circ e^{i}$ and $\widetilde{W}_{t}=W_{t} \circ e^{i}=h_{u(t)} \circ \widetilde{W} \circ \widetilde{g}_{t}^{-1}$. So we have

$$
\begin{equation*}
u^{\prime}(t)=\widetilde{W}_{t}^{\prime}\left(\lambda_{t}\right)^{2} . \tag{5.10}
\end{equation*}
$$

From $\bigcap_{s>0} \overline{K_{t+s} / K_{t}}=\left\{e^{i \lambda_{t}}\right\}$ and $\bigcap_{s>0} \overline{L_{t+s} / L_{t}}=\left\{\eta_{u(t)}\right\}$ we get

$$
\begin{equation*}
\eta_{u(t)}=\widetilde{W}_{t}\left(\lambda_{t}\right) . \tag{5.11}
\end{equation*}
$$

We have

$$
\widetilde{W}_{t} \circ \widetilde{g}_{t}(z)=h_{u(t)} \circ \widetilde{W}(z), \quad z \in \mathbb{H} \backslash\left(e^{i}\right)^{-1}\left(K_{t}\right) .
$$

Differentiate this equality w.r.t. t, and using (5.10) and (5.11) we get

$$
\partial_{t} \widetilde{W}_{t}\left(\widetilde{g}_{t}(z)\right)+\widetilde{W}_{t}^{\prime}\left(\widetilde{g}_{t}(z)\right) \cot _{2}\left(\widetilde{g}_{t}(z)-\lambda_{t}\right)=\frac{2 \widetilde{W}_{t}^{\prime}\left(\lambda_{t}\right)^{2}}{h_{u(t)}(\widetilde{W}(z))-\eta_{u(t)}}=\frac{2 \widetilde{W}_{t}^{\prime}\left(\lambda_{t}\right)^{2}}{\widetilde{W}_{t}\left(\widetilde{g}_{t}(z)\right)-\widetilde{W}_{t}\left(\lambda_{t}\right)} .
$$

We conclude that

$$
\partial_{t} \widetilde{W}_{t}(w)=\frac{2 \widetilde{W}_{t}^{\prime}\left(\lambda_{t}\right)^{2}}{\widetilde{W}_{t}(w)-\widetilde{W}_{t}\left(\lambda_{t}\right)}-\widetilde{W}_{t}^{\prime}(w) \cot _{2}\left(w-\lambda_{t}\right)
$$

Letting $w \rightarrow \lambda_{t}$, we find that

$$
\begin{equation*}
\partial_{t} \widetilde{W}_{t}\left(\lambda_{t}\right)=-3 \widetilde{W}_{t}^{\prime \prime}\left(\lambda_{t}\right), \quad 0 \leq t<T . \tag{5.12}
\end{equation*}
$$

Since $\lambda_{t}=\sqrt{\kappa} B_{t}$, applying Itô's formula to (5.11) we get

$$
\begin{equation*}
d \eta_{u(t)}=\widetilde{W}_{t}^{\prime}\left(\lambda_{t}\right) d \lambda_{t}+\left(\frac{\kappa}{2}-3\right) \widetilde{W}_{t}^{\prime \prime}\left(\lambda_{t}\right) d t, \quad 0 \leq t<T . \tag{5.13}
\end{equation*}
$$

From (5.1) we see that there is another Brownian motion \widetilde{B}_{t} such that

$$
d \eta_{t}=\sqrt{\kappa} d \widetilde{B}_{t}+\left(\frac{\kappa}{2}-3\right) \frac{\widetilde{W}_{v(t)}^{\prime \prime}\left(\lambda_{v(t)}\right)}{\widetilde{W}_{v(t)}^{\prime}\left(\lambda_{v(t)}\right)^{2}} d t, \quad 0 \leq t<S
$$

If $\kappa=6$, then $\eta_{t}, 0 \leq t<S$, has the same distribution as $\sqrt{\kappa} B_{t}$ stopped at S. So the proof is finished.

5.4 Critical percolation and Cardy's formula

Smirnov proved that the critical site percolation on a triangular lattice contains an explorer curve which converges to SLE_{6}. The critical site percolation on a triangular lattice is equivalent to the critical face percolation on a hexagonal lattice. We consider a simply connected domain D. Use a hexagon lattice with small mesh to approximate D. Color all hexagon faces contained in D independently yellow or green with equal probability. Mark two points a, b on ∂D, which divide ∂D into two arcs. We assign a boundary condition to this percolation by adding a coat of hexagon faces to the above percolation, and coloring these faces such that the faces on one arc are all green and the faces on the other arc are all yellow. Then we can observe an interface curve connecting the two marked points.

Before Smirnov's work, statistical physicists observed that the explorer curve has a scaling limit when the mesh of the lattice tends to 0 ; and the scaling limit is invariant under conformal maps. Moreover, from the construction, the explorer curve satisfies the Domain Markov Property at the discrete level. So the scaling limit, if exists, has to be SLE with some parameter. Also note that the explorer curve does not feel the boundary before hitting it, its scaling limit must satisfies the locality property. This implies that the scaling limit should be SLE_{6}.

Note that the time-reversal of the explorer curve is still an explorer curve. Thus, the convergence implies that chordal SLE_{6} satisfies reversibility, which means that, if $\beta(t), 0 \leq t \leq$ ∞, is a chordal SLE_{6} trace in D from a to b, then there is a continuously decreasing function u, which maps $[0, \infty]$ onto $[0, \infty]$, such that $\beta(u(t)), 0 \leq t \leq \infty$, is a chordal SLE $_{6}$ trace in D from b to a.

Smirnov proved the convergence of the explorer curve by showing that Cardy's formula holds true. Cardy's formula says that, if D is a simply connected domain with four boundary points a, b, c, d lie in the ccw direction. Then the probability that there is a yellow path connecting the arc $a b$ and the arc $c d$ in the critical percolation on a hexagonal lattice that approximates D has a limit as the mesh tends to 0 , and the limit probability depends only on the conformal type of $(D ; a, b, c, d)$. It has a simple expression when D is an equilateral triangle with three vertices a, b, c. In that case, the limit probability is $|c d| /|a c|$.

We now explain the Cardy's formula by showing that chordal SLE_{6} satisfies Cardy's formula. We color the faces on the arc $a b c$ yellow, and color the faces on the arc $c d a$ green. Then we study the explorer curve from a to c. If there is a yellow crossing connecting $a b$ with $c d$, then the explorer curve visits $c d$ before $b c$. If there is a green crossing connecting $d a$ with $b c$, then the explorer curve visits $b c$ before $c d$. Since the explorer curve converges to chordal SLE_{6} in D from a to c, the limit probability of the existence of a yellow crossing connecting $a b$ with $c d$ is equal to the probability that a $\mathrm{SLE}_{6}(D ; a \rightarrow c)$ trace visits $c d$ before $b c$. From conformal invariance, we may assume that $D=\mathbb{H}, a=0, c=\infty, b>0$, and $d<0$. The time that the trace visits $b c=(b, \infty)$ is the time that $g_{t}(b)$ blows up. The time that the trace visits $c d=(-\infty, d)$ is the time that $g_{t}(d)$ blows up. All we need is to compute $\mathbb{P}\left[\tau_{d}<\tau_{b}\right]$.

Let $\kappa=6$ and $\lambda_{t}=\sqrt{\kappa} B_{t}$ be the driving function, and g_{t} be the chordal Loewner maps. Since $\kappa>4, \tau_{b}, \tau_{d}<\infty$. Let $U_{t}=g_{t}(b)-\lambda_{t}, 0 \leq t<\tau_{b}$; and $V_{t}=g_{t}(d)-\lambda_{t}, 0 \leq t<\tau_{d}$. Then U_{t} stays positive and tends to 0^{+}as $t \rightarrow \tau_{b}$, and V_{t} stays negative and tends to 0^{-}as $t \rightarrow \tau_{d}$. Since

$$
\partial_{t}\left(U_{t}-V_{t}\right)=\partial_{t} g_{t}(b)-\partial_{t} g_{t}(d)=\frac{2}{U_{t}}-\frac{2}{V_{t}}>0
$$

we have $U_{t}-V_{t} \geq U_{0}-V_{0}=b-d>0$ for $0 \leq t<\tau$. Thus, it is not possible that $\tau_{b}=\tau_{d}$. Let $\tau=\tau_{b} \wedge \tau_{d}$ and $W_{t}=V_{t} / U_{t}, 0 \leq t<\tau$. Then W_{t} stays negative. If $\tau_{b}<\tau_{d}$, then $\lim _{t \rightarrow \tau} W_{t}=-\infty$. If $\tau_{d}<\tau_{b}$, then $\lim _{t \rightarrow \tau} W_{t}=0$. Since U_{t} and V_{t} satisfy $d U_{t}=-\sqrt{\kappa} d B_{t}+\frac{2}{U_{t}} d t$ and $d V_{t}=-\sqrt{\kappa} d B_{t}+\frac{2}{V_{t}} d t$. We find that W_{t} satisfies

$$
d W_{t}=\frac{V_{t} \sqrt{\kappa}}{U_{t}^{2}} d B_{t}-\frac{\sqrt{\kappa}}{U_{t}} d B_{t}+\frac{2}{V_{t} U_{t}} d t+\frac{(\kappa-2) V_{t}}{U_{t}^{3}} d t-\frac{\kappa}{U_{t}^{2}} d t, \quad 0 \leq t<\tau
$$

Let $u(t)=\int_{0}^{t}\left(\frac{1}{U_{s}}\right)^{2} d s$ and $T=\sup u[0, \tau)$. Let $v(t), 0 \leq t<T$, be the inverse of $u(t), 0 \leq t<T$. Then $Z_{t}:=W_{v(t)}$ satisfies the SDE

$$
d Z_{t}=\left(Z_{t}-1\right) \sqrt{\kappa} d \widetilde{B}_{t}+\left(2 / Z_{t}+(\kappa-2) Z_{t}-\kappa\right) d t, \quad 0 \leq t<T
$$

We now find f defined on $(-\infty, 0)$ such that $f\left(Z_{t}\right)$ is a local martingale. We need that

$$
\frac{\kappa}{2} f^{\prime \prime}(x)(x-1)^{2}+f^{\prime}(x)\left(\frac{2}{x}+(\kappa-2) x-\kappa\right)=0
$$

We find $\frac{f^{\prime \prime}(x)}{f^{\prime}(x)}=\frac{8 / \kappa-2}{x-1}+\frac{-4 / \kappa}{x}$. So $f^{\prime}(x)=C|x|^{-4 / \kappa}(1-x)^{8 / \kappa-2}$. Note that when x is close to $0^{-}, f^{\prime}(x) \sim|x|^{-4 / \kappa}$ and $-4 / \kappa>-1$; when x is close to $-\infty, f^{\prime}(x) \sim|x|^{4 / \kappa-2}$ and $4 / \kappa-2<-1$. Thus, f maps $(-\infty, 0)$ onto a bounded interval. So $f\left(Z_{t}\right)$ is a bounded martingale.

We may choose f such that f is increasing and $f((-\infty, 0))=(0,1)$. If $\tau_{b}<\tau_{d}$, then $\lim _{t \rightarrow \tau} W_{t}=-\infty$, which implies that $\lim _{t \rightarrow T} f\left(Z_{t}\right)=0$; if $\tau_{d}<\tau_{b}$, then $\lim _{t \rightarrow \tau} W_{t}=0$, which implies that $\lim _{t \rightarrow T} f\left(Z_{t}\right)=1$. Thus,

$$
f(d / b)=f\left(Z_{0}\right)=\mathbb{E}\left[\lim _{t \rightarrow T} f\left(Z_{t}\right)\right]=\mathbb{P}\left[\tau_{d}<\tau_{b}\right] .
$$

So we have

$$
\mathbb{P}\left[\tau_{d}<\tau_{b}\right]=\frac{\int_{-\infty}^{d / b}|x|^{-4 / \kappa}(1-x)^{8 / \kappa-2} d x}{\int_{-\infty}^{0}|x|^{-4 / \kappa}(1-x)^{8 / \kappa-2} d x}
$$

Now we give an geometric explanation. Recall that $\frac{f^{\prime \prime}(x)}{f^{\prime}(x)}=\frac{8 / \kappa-2}{x-1}+\frac{-4 / \kappa}{x}$. Let $g(x)=f(x / b)$. Then g maps $(-\infty, 0)$ onto $(0,1)$, and satisfies $\frac{g^{\prime \prime}(x)}{g^{\prime}(x)}=\frac{8 / \kappa-2}{x-b}+\frac{-4 / \kappa}{x}$. Moreover, we have $\mathbb{P}\left[\tau_{d}<\tau_{b}\right]=g(d)$. Now suppose h maps \mathbb{H} conformally onto the interior of $\Delta A B C$ with angles $p_{A} \pi, p_{B} \pi, p_{C} \pi$ such that $h(a)=h(0)=A, h(b)=B$, and $h(c)=h(\infty)=C$. From the SchwarzChristoffel mapping theorem, h satisfies $\frac{h^{\prime \prime}(z)}{h^{\prime}(z)}=\frac{p_{A}-1}{z}+\frac{p_{B}-1}{z-b}$. If $p_{A}=1-4 / \kappa$ and $p_{B}=8 / \kappa-1\left(p_{C}=1-4 / \kappa=p_{A}\right)$, then $\frac{h^{\prime \prime}}{h^{\prime}}=\frac{g^{\prime \prime}}{g^{\prime}}$ on $(-\infty, 0)$. Thus, there are $\alpha, \beta \in \mathbb{C}$ such that $h=\alpha g+\beta$. Let $D=h(d) \in[A, C]$. Then

$$
\frac{|D C|}{|A C|}=\frac{D-C}{A-C}=\frac{h(d)-h(c)}{h(a)-h(c)}=\frac{g(d)-g(c)}{g(a)-g(c)}=g(d)=\mathbb{P}\left[\tau_{d}<\tau_{b}\right] .
$$

Finally, note that when $\kappa=6, \triangle A B C$ is an equilateral triangle.
Another percolation model that is expected to converge to SLE $_{6}$ is the critical bond percolation on square lattices. Let D be a simply connected domain. We use a subgraph G of $\delta \mathbb{Z}^{2}$ to approximate D, where $\delta>0$ is small. We also look at the dual graph G^{\dagger}, which is a subgraph of $\delta(\mathbb{Z}+1 / 2)^{2}$. Every edge of G intersects an edge of G^{\dagger}, and vice versa. Let P denote a random subgraph of G such that P contains all vertices of G and every edge of G is contained in P with probability $1 / 2$ independent of each other. We may then construct a dual graph P^{\dagger} such that an edge of G is contained in P if and only if its dual edge is not contained in P^{\dagger}. Now we mark two points a, b on ∂D, which divide ∂D into two arcs, say I_{1} and I_{2}. Assign boundary conditions by adding all edges in $\delta \mathbb{Z}^{2}$ near I_{1} to P, and adding all edges in $\delta(\mathbb{Z}+1 / 2)^{2}$ near I_{2} to P^{\dagger}. Then there is an explorer curve connecting a and b. This curve is conjectured to converge to SLE_{6}. The conjecture is based on Computer simulation, the Domain Markov Property and the locality property. Smirnov's work can not be easily extended to this model because his proof essentially depends on the structure of the triangle lattice.

5.5 Self-avoiding walk and reversibility of $\mathrm{SLE}_{8 / 3}$

In this subsection we talk about the scaling limits of self-avoiding walk (SAW). Most of the statements here are still conjectures. There are two meanings of SAW. The first meaning of

SAW is a simple lattice path $\left(X_{0}, \ldots, X_{n}\right)$. We will focus on square lattice \mathbb{Z}^{2} or $\delta \mathbb{Z}^{2}$. The points X_{k} are vertices. We have $X_{k-1} \sim X_{k}, 1 \leq k \leq n$; and $X_{j} \neq X_{k}$ if $j \neq k$. The number n is called the length of this path. The second meaning of SAW is a positive measure on the space of simple lattice paths.

We first consider SAW started from 0 . Let C_{n} denote the number of SAW on \mathbb{Z}^{2} of length n started from 0 . For example, we have $C_{0}=1, C_{1}=4, C_{2}=12, C_{3}=36, C_{4}=100$. One may easily see that $C_{n+m} \leq C_{n} C_{m}$. This implies that $\lim _{n \rightarrow \infty} \frac{1}{n} \log \left(C_{n}\right)$ exists. The limit β is estimated to be $2.628 \ldots$, which depends on the lattice. It is conjectured that

$$
C_{n} \sim c n^{\gamma-1} \beta^{n}
$$

where γ is a critical exponent independent of the lattice. It is predicted by Nienhuis that $\gamma=43 / 32$.

Now we define $\nu_{\text {SAW }}$ to be a measure on the space of simple lattice paths on $\delta \mathbb{Z}^{2}$ such that each path is assigned a measure β^{-n}, where n is the length of the path. Suppose D is a simply connected domain with two boundary points z_{0} and w_{0}. Let D^{δ} be an approximation of D by a subgraph of $\delta \mathbb{Z}^{2}$. Let z_{0}^{δ} and w_{0}^{δ} be two vertices closest to z_{0} and w_{0}, respectively. Consider the set of all SAW connecting z_{0} with w_{0}, which stay inside D. Let $\Gamma\left(D, z_{0}, w_{0}, \delta\right)$ denote the set of these SAW. It is conjectured that for some constant $b>0$,

$$
\mu_{\mathrm{SAW}}\left[\Gamma\left(D, z_{0}, w_{0}, \delta\right)\right] \sim \delta^{-2 b},
$$

as $\delta \rightarrow 0$. Define the probability measure $\mu_{\mathrm{SAW}, \delta}^{\#}$ to be the restriction of μ_{SAW} to $\Gamma\left(D, z_{0}, w_{0}, \delta\right)$ divided by the mass. It is conjectured that $\mu_{\text {SAW }}^{\#}$ has a conformal invariant scaling limit. Note that SAW satisfies Domain Markov Property and restriction property, so the limit should be chordal $\mathrm{SLE}_{8 / 3}$. There is a similar conjecture about the convergence of SAW to radial $\mathrm{SLE}_{8 / 3}$, where z_{0} is an interior point, w_{0} is still a boundary point, and $\mu_{\mathrm{SAW}}\left[\Gamma\left(D, z_{0}, w_{0}, \delta\right)\right] \sim \delta^{-(a+b)}$, for some positive constants $a, b>0$.

If the convergence of SAW to $\mathrm{SLE}_{8 / 3}$ is true, then we immediately have the reversibility of $\mathrm{SLE}_{8 / 3}$. In fact, we may prove the reversibility using the restriction property. We only need to show that, if β is a chordal SLE $_{8 / 3}$ trace in \mathbb{H} from 0 to ∞, and if $W(z)=-1 / z$, then the image of β has the same distribution as the image of $W(\beta)$. Let \mathbb{P}_{1} and \mathbb{P}_{2} denote the distributions of the image of β and $W(\beta)$, respectively. Let S denote the set of all simple curves, which connect 0 and ∞, and stay inside \mathbb{H} except for the two endpoints. Let \mathcal{F}_{S} denote the σ-algebra on S generated by the sets $\{\beta \in S: \beta \cap F=\emptyset\}$, where F could be any relatively closed subset of \mathbb{H}. We need to show that $\mathbb{P}_{1}=\mathbb{P}_{2}$ on \mathcal{F}_{S}.

Let \mathcal{A}^{\prime} denote the family $\{\beta \in S: \beta \cap A=\emptyset\}$, where A is any \mathbb{H}-hull bounded away from 0 . Let $\mathcal{A}=\mathcal{A}^{\prime} \cup\{\emptyset\}$. First, we show that \mathcal{A} is a π-system, which means that it is closed under intersection. Suppose A_{1} and A_{2} are two \mathbb{H}-hulls bounded away from 0 such that $\left\{\beta \in S: \beta \cap A_{1}=\emptyset\right\} \cap\left\{\beta \in S: \beta \cap A_{2}=\emptyset\right\} \neq \emptyset$. Then there is $\beta \in S$ disjoint from A_{1} and A_{2}, which implies that the unbounded component of $\mathbb{H} \backslash\left(A_{1} \cup A_{2}\right)$, say H, contains a neighborhood of 0 . Let $A=\mathbb{H} \backslash H$. Then A is an \mathbb{H}-hull bounded away from 0 , and

$$
\left\{\beta \in S: \beta \cap A_{1}=\emptyset\right\} \cap\left\{\beta \in S: \beta \cap A_{2}=\emptyset\right\}=\{\beta \in S: \beta \cap A=\emptyset\}
$$

So \mathcal{A} is a π-system.
Second, we show that \mathcal{F}_{S} is the σ-algebra generated by \mathcal{A}. First, it is clear that $\mathcal{A} \subset \mathcal{F}_{S}$. We suffice to show that, for every relatively closed subset F of $\mathbb{H},\{\beta \in S: \beta \cap F=\emptyset\}$ can be expressed as a union of countably many elements in \mathcal{A}. Let \mathcal{A}_{+}^{*} (resp. \mathcal{A}_{-}^{*}) denote the family of bubbles bounded by polygonal crosscuts in \mathbb{H} with the following properties: (i) every line segment is parallel to either x or y axis; (ii) every vertex has rational coordinates; (iii) the two points on \mathbb{R} are positive. (resp. negative). Let \mathcal{A}^{*} denote the family of sets $A_{+} \cup A_{-}$, where $A_{ \pm} \in \mathcal{A}_{ \pm}^{*}$ and $A_{+} \cap A_{-}=\emptyset$. Then \mathcal{A}^{*} is a countable set. Let F be a relatively closed subset of \mathbb{H}. Let \mathcal{A}_{F}^{*} denote the set of all $A \in \mathcal{A}^{*}$ which contain F. We claim that

$$
\begin{equation*}
\{\beta \in S: \beta \cap F=\emptyset\}=\bigcup_{A \in \mathcal{A}_{F}^{*}}\{\beta \in S: \beta \cap A=\emptyset\} . \tag{5.14}
\end{equation*}
$$

It is clear that the set on the right is contained in the set on the left. Now suppose β is contained in the set on the left. We may easily find $A \in \mathcal{A}^{*}$ such that $F \subset A$ and $A \cap \beta=\emptyset$. This means that $A \in \mathcal{A}_{F}^{*}$ and $\beta \in\{\beta \in S: \beta \cap A=\emptyset\}$. So we proved (5.14).

From Dynkin's $\pi-\lambda$ theorem, if $\mathbb{P}_{1}=\mathbb{P}_{2}$ on \mathcal{A}, then $\mathbb{P}_{1}=\mathbb{P}_{2}$ on \mathcal{F}_{S}. Let $A \in \mathcal{A}$. Then $\mathbb{P}_{1}[\beta \cap A=\emptyset]=g_{A}^{\prime}(0)^{5 / 8}$ and $\mathbb{P}_{2}[\beta \cap A=\emptyset]=\mathbb{P}_{1}[\beta \cap W(A)=\emptyset]=g_{W(A)}^{\prime}(0)^{5 / 8}$. Note that $W(A) \in \mathcal{A}$ and $g_{W(A)}(z)=-\frac{g_{A}^{\prime}(0)}{g_{A}(W(z))-g_{A}(0)}+C$ for some $C \in \mathbb{R}$. Then we have $g_{W(A)}^{\prime}(0)=g_{A}^{\prime}(0)$. Thus, $\mathbb{P}_{1}[\beta \cap A=\emptyset]=\mathbb{P}_{2}[\beta \cap A=\emptyset]$, which finishes the proof.

6 Loop-erased Random Walk and Uniform Spanning Tree

6.1 Simple random walk

Let $G=(V, E)$ be a finite connected graph without self-loops and multiple edges. For a function $f: V \rightarrow \mathbb{R}$ and any $v_{0} \in V$, the discrete Laplacian of f at v_{0} is defined by

$$
\Delta f\left(v_{0}\right)=\sum_{v \sim v_{0}}\left(f(v)-f\left(v_{0}\right)\right) .
$$

If $\Delta f\left(v_{0}\right)=0$, we say that f is harmonic at v_{0}. Since

$$
0=\sum_{v \sim w}(f(v)-f(w))+(f(w)-f(v))=\sum_{v \in V} \sum_{w \in V: w \sim v}(f(w)-f(v)),
$$

we have $\sum_{v \in V} \Delta f(v)=0$. Thus, if f is harmonic on $A \subset V$, then $\sum_{v \in V \backslash A} \Delta f(v)=0$.
Let $v_{0} \in V$. A random walk on G started from v_{0} is a sequence of random vertices $\left(X_{n}\right)_{n=0}^{\infty}$ such that $X_{0}=0$ and

$$
\mathbb{P}\left[X_{n+1}=v \mid X_{0}, \ldots, X_{n}\right]=\frac{\mathbf{1}_{v \sim X_{n}}}{\operatorname{deg}\left(X_{n}\right)}
$$

We use $\mathbb{P}^{v_{0}}$ and $\mathbb{E}^{v_{0}}$ to denote the probability and expectation w.r.t. a random walk started from v_{0}. Let $A \subset V$ be nonempty. Let τ_{A} be the first n such that $X_{n} \in A$. Then τ is a stopping
time and for any $v \in V, \mathbb{P}^{v}$-a.s. $\tau_{A}<\infty$. We call the finite random path $X_{n}, 0 \leq n \leq \tau$, the random walk on G from v_{0} to A, and let it be denoted by $\operatorname{RW}\left(v_{0} \rightarrow A\right)$. We use $\mathbb{P}^{v_{0} \rightarrow A}$ and $\mathbb{E}^{v_{0} \rightarrow A}$ to denote the probability and expectation w.r.t. this stopped random walk.

If f is harmonic on $V \backslash A$, and $X_{n}, 0 \leq n \leq \tau_{A}$, is $\operatorname{RW}\left(v_{0} \rightarrow A\right)$, then $f\left(X_{n}\right), 0 \leq n \leq \tau_{A}$, is a (discrete) martingale. This means that, for any n,

$$
\mathbb{E}\left[\mathbf{1}_{\tau_{A}>n} f\left(X_{n+1}\right) \mid X_{0}, \ldots, X_{n}\right]=\mathbf{1}_{\tau_{A}>n} f\left(X_{n}\right) .
$$

This is true because $\tau_{A}>n$ implies that $X_{n} \in V \backslash A$ and $\Delta f\left(X_{n}\right)=0$. So

$$
\mathbb{E}\left[\mathbf{1}_{\tau_{A}>n} f\left(X_{n+1}\right) \mid X_{0}, \ldots, X_{n}\right]=\mathbf{1}_{\tau_{A}>n} \sum_{v \sim X_{n}} \frac{1}{\operatorname{deg}\left(X_{n}\right)} f(v)=\mathbf{1}_{\tau_{A}>n} f\left(X_{n}\right)
$$

Thus, for every $v \in V$,

$$
\begin{equation*}
f(v)=\mathbb{E}^{v}\left[f\left(X_{\tau_{A}}\right)\right]=\sum_{w \in V_{\partial}} f(w) \mathbb{P}^{v}\left[X_{\tau_{A}}=w\right] . \tag{6.1}
\end{equation*}
$$

This means that, given a function g on A, there exists a unique f on V, which agrees with g on A, and is harmonic on $V \backslash A$.

Let $A, B \subset V$ be such that $A \cap B=\emptyset$ and $A \cup B \neq \emptyset$. Let $h_{A \mid B}$ denote the unique function which equals 1 on A, equals 0 on B, and is harmonic on $V \backslash(A \cup B)$. This is called a discrete harmonic measure function. In fact, we have $\left.h_{A \mid B} v\right)=\mathbb{P}^{v}\left[X_{\tau_{A \cup B}}=A\right]$. So the values of $h_{A \mid B}$ lie between 0 and 1. Moreover, we have $h_{B \mid A}=1-h_{A \mid B}$. Let $G(A, B)=\sum_{v \in B} \Delta h_{A \mid B}(v)$. Since $h_{A \mid B}$ is harmonic on $V \backslash(A \cup B)$, we have $G(A, B)=-\sum_{v \in A} \Delta h_{A \mid B}(v)$. Since $h_{B \mid A}=1-h_{A \mid B}$, we have

$$
G(B, A)=\sum_{v \in A} \Delta h_{B \mid A}(x)=-\sum_{v \in A} \Delta h_{A \mid B}(x)=G(A, B) .
$$

Such $G(A, B)$ is called the electrical conductance between A and B. It is clear that $G(A, B)=0$ if either A or B is empty. On the other hand, if both A and B are nonempty, then $G(A, B)>0$. In fact, there is a path $\left(Z_{0}, \ldots, Z_{n}\right)$ with $Z_{0} \in A, Z_{n} \in B$, and $Z_{k} \in V \backslash(A \cup B)$ for $1 \leq k \leq n-1$. So $h_{A \mid B}\left(Z_{1}\right)=\mathbb{P}^{Z_{1}}\left[X_{\tau_{A \cup B}} \in A\right]>0$, which implies that $G(A, B) \geq \Delta h_{A \mid B}\left(Z_{0}\right) \geq Z_{1}-Z_{0}>0$.

Suppose $\mathbb{P}^{v_{0}}\left[X_{\tau_{A \cup B}} \in A\right]=h_{A \mid B}\left(v_{0}\right)>0$. The $\operatorname{RW}\left(v_{0} \rightarrow A \cup B\right)$ conditioned on the event $\left\{X_{\tau_{A \cup B}} \in A\right\}$ is called the random walk on G from v_{0} to $A \cup B$ conditioned to end at A, and is denoted by $\operatorname{RW}\left(v_{0} \rightarrow A \mid B\right)$. We use $\mathbb{P}^{v_{0} \rightarrow A \mid B}$ and $\mathbb{E}^{v_{0} \rightarrow A \mid B}$ to denote the probability and expectation w.r.t. this conditional stopped random walk.

6.2 Loop-erased random walk

Let $X=\left(X_{k}\right)_{k=0}^{\nu}$ be a finite lattice path. The loop-erasure of X is defied as follows. Let $j=0$ and $n_{0}=\max \left\{m: X_{m}=X_{0}\right\}$. Define the sequence $\left(n_{j}\right)$ inductively by $n_{j+1}=\max \left\{m: X_{m}=\right.$ $\left.X_{n_{j}+1}\right\}$ if n_{j} is defined and $n_{j}<\nu$. Let τ be the first j such that $n_{j}=n$. Let $Y_{j}=X_{n_{j}}$, $0 \leq j \leq \tau$. Then $Y=\left(Y_{j}\right)_{j=0}^{\tau}$ is a path because $Y_{j+1}=X_{n_{j+1}}=X_{n_{j}+1} \sim X_{n_{j}}=Y_{j}$. From the
definition of n_{j}, we see that $X_{n} \neq X_{n_{j}}$ if $n>n_{j}$. Thus, $\left\{X_{n}: n>n_{j}\right\} \cap\left\{Y_{0}, \ldots, Y_{j}\right\}=\emptyset$. Since $\left\{Y_{j+1}, \ldots, Y_{\tau}\right\} \subset\left\{X_{n}: n>n_{j}\right\}$, we have $\left\{Y_{0}, \ldots, Y_{j}\right\} \cap\left\{Y_{j+1}, \ldots, Y_{\tau}\right\}=\emptyset$. So Y is a simple path. We call Y the loop-erasure of X, or $Y=L E(X)$.

If two paths $X=\left(X_{0}, \ldots, X_{n}\right)$ and $Y=\left(Y_{0}, \ldots, Y_{m}\right)$ satisfy $X_{n}=Y_{0}$, then we define $Z=X Y$ to be a new path $Z=\left(X_{0}, \ldots, X_{n}=Y_{0}, \ldots, Y_{m}\right)$, and we write $X \prec Z$.

Lemma 6.1 Let $X=\left(X_{j}\right)_{j=0}^{\nu}$ and $Z=\left(Z_{j}\right)_{j=0}^{m}$ be two paths. Then $Z \prec L E(X)$ if and only if there are paths $X^{(1)}$ and $X^{(2)}$ such that $X=X^{(1)} X^{(2)}, Z=L E\left(X^{(1)}\right)$, and $X_{k}^{(2)} \notin\left\{Z_{0}, \ldots, Z_{m}\right\}$ for $k>0$. Moreover, such $X^{(1)}$ and $X^{(w)}$ are determined by these properties.

Proof. Let $n_{j}, 0 \leq j \leq \tau$, be defined as above. Since $Z \prec L E(X)$, we have $Z_{j}=X_{n_{j}}$, $0 \leq j \leq m$. Let $X^{(1)}=\left(X_{0}, \ldots, X_{n_{m}}\right)$ and $X^{(2)}=\left(X_{n_{m}}, \ldots, X_{\nu}\right)$. Then $X=X^{(1)} X^{(2)}$ and $X_{k}^{(2)} \notin\left\{Z_{0}, \ldots, Z_{m}\right\}$ for $k>0$, which implies that the path $X^{(2)}$ has no effect on the first $m+1$ vertices of $L E(X)$. Thus, $Z=L E\left(X^{(1)}\right)$. On the other hand, if $X=X^{(1)} X^{(2)}, Z=L E\left(X^{(1)}\right)$, and $X_{k}^{(2)} \notin\left\{Z_{0}, \ldots, Z_{m}\right\}$ for $k>0$, then the first $m+1$ vertices of $L E(X)$ agrees with those of $L E\left(X^{(1)}\right)$, i.e., $Z \prec L E(X)$.

Now we show the uniqueness of $X^{(1)}$ and $X^{(2)}$. Suppose $X^{(1)}=\left(X_{0}, \ldots, X_{r}\right)$ and $X^{(2)}=$ $\left(X_{r}, \ldots, X_{\nu}\right)$. Since $X_{k}^{(2)} \notin\left\{X_{n_{0}}, \ldots, X_{n_{m}}\right\}$ for $k>0$, we have $r \geq n_{m}$. Since $Z=L E\left(X^{(1)}\right)$, we have $X_{n_{m}}=Z_{m}=X_{r}$. From the definition of n_{m}, we have $r \leq n_{m}$. So $r=n_{m}$.

The loop-erasure of a (stopped) random walk or conditional random walk is called a looperased random walk or LERW. The loop-erasure of $\operatorname{RW}\left(v_{0} \rightarrow A\right)$ or $\operatorname{RW}\left(v_{0} \rightarrow A \mid B\right)$ is denoted by $\operatorname{LERW}\left(v_{0} \rightarrow A\right)$ or $\operatorname{LERW}\left(v_{0} \rightarrow A \mid B\right)$, respectively.

Greg Lawler introduced LERW as an alternative to study SAW. Now it turns out that the two models are different. Right now, LERW has been proved to converge to SLE_{2}; while SAW is conjectured to converge to $\mathrm{SLE}_{8 / 3}$.

For $S_{1}, S_{2}, S_{3} \subset V$, let $\Gamma_{S_{1}, S_{2}}^{S_{3}}$ denote the finite lattice path $\left(X_{0}, \ldots, X_{n}\right)$ such that $X_{0} \in S_{1}$, $X_{n} \in S_{2}$, and $S_{k} \in S_{3}$ for $1 \leq k \leq n-1$. For each finite lattice path $X=\left(X_{0}, \ldots, X_{n}\right)$, let

$$
P_{[\cdot]}(X)=\prod_{j=0}^{n} \frac{1}{\operatorname{deg}\left(X_{j}\right)}, \quad P_{[\cdot)}(X)=\prod_{j=0}^{n-1} \frac{1}{\operatorname{deg}\left(X_{j}\right)}, \quad P_{(\cdot)}(X)=\prod_{j=1}^{n-1} \frac{1}{\operatorname{deg}\left(X_{j}\right)} .
$$

If $Z=X Y$, then $P_{[\cdot)}(Z)=P_{[\cdot]}(X) P_{(\cdot)}(Y)$. The distribution of $\mathrm{RW}\left(v_{0} \rightarrow A\right)$ is supported by $\Gamma_{v_{0}, A}^{V \backslash A}$ and $\mathbb{P}^{v_{0} \rightarrow A}(X)=P_{[\cdot)}(X)$ for each $X \in \Gamma_{v_{0}, A}^{V \backslash A}$. If $A \cap B=\emptyset$, the distribution of RW $\left(v_{0} \rightarrow\right.$ $A \mid B)$ is supported by $\Gamma_{v_{0}, A}^{V \backslash(A \cup B)}$ and $\mathbb{P}^{v_{0} \rightarrow A \mid B}(X)=P_{[\cdot)}(X) / h_{A \mid B}\left(v_{0}\right)$ for each $X \in \Gamma_{v_{0}, A}^{V \backslash(A \cup B)}$.

Lemma 6.2 Let A and B be disjoint subsets of V. Suppose $h_{A \mid B}\left(v_{0}\right)>0$. Let $Y=\left(Y_{0}, \ldots, Y_{\tau}\right)$ be $L E R W\left(v_{0} \rightarrow A \mid B\right)$. Let $B_{n}=B \cup\left\{Y_{0}, \ldots, Y_{n}\right\}$ for $0 \leq n \leq \tau$. Then for any $n \geq 0$,

$$
\begin{equation*}
\mathbb{P}\left[Y_{n+1}=v \mid Y_{0}, \ldots, Y_{n}, n<\tau\right]=\frac{\mathbf{1}_{v \sim Y_{n}} h_{A \mid B_{n}}(v)}{\sum_{w \sim Y_{n}} h_{A \mid B_{n}}(w)} \tag{6.2}
\end{equation*}
$$

Proof. Let $W=\left(W_{0}, \ldots, W_{n}, W_{n+1}\right) \in \Gamma_{v_{0}, V \backslash B}^{V \backslash(A \cup B)}$ and $W^{\prime}=\left(W_{0}, \ldots, W_{n}\right)$. From the previous lemma, we have

$$
\begin{gathered}
\mathbb{P}\left[Y_{j}=W_{j}, 0 \leq j \leq n<\tau\right]=\frac{1}{h_{A \mid B}\left(v_{0}\right)} \sum_{U \in \Gamma_{V_{0}, A}^{V \backslash(A \cup B)}, W^{\prime} \prec L E(U)} P_{[\cdot)}(U) \\
=\frac{1}{h_{A \mid B}\left(v_{0}\right)} \sum_{U^{(1)} \in \Gamma_{v_{0}, W_{n}}^{V \backslash(A \cup B)}, W^{\prime}=L E\left(U^{(1)}\right)} P_{[\cdot]}\left(U^{(1)}\right) \cdot \sum_{U^{(2)} \in \Gamma_{W_{n}, A}^{V\left(A A \cup B \cup\left\{W_{j}\right\}_{j=0}^{n}\right)}} P_{(\cdot)}\left(U^{(2)}\right) ; \\
\mathbb{P}\left[Y_{j}=W_{j}, 0 \leq j \leq n+1\right]=\frac{1}{h_{A \mid B}\left(v_{0}\right)} \sum_{U^{(1)} \in \Gamma_{v_{0}, W_{n}}^{V \backslash A \cup B)}, W^{\prime}=L E\left(U^{(1)}\right)} P_{[\cdot]}\left(U^{(1)}\right) . \\
\cdot \\
\sum_{U_{(\cdot)}(2) \in \Gamma_{W_{n}, A}^{V \backslash\left(A \cup B \cup\left\{W_{j}\right\}_{j=0}^{n}\right)}\left(U^{(2)}\right) .}, U_{1}^{(2)}=W_{n+1}
\end{gathered}
$$

Thus,

$$
\begin{aligned}
\mathbb{P}\left[Y_{n+1}\right. & \left.=W_{n+1} \mid Y_{j}=W_{j}, 0 \leq j \leq n<\tau\right]=\frac{\sum\left\{P_{(\cdot)}(U): U \in \Gamma_{W_{n}, A}^{V \backslash\left(A \cup B \cup\left\{W_{j}\right\}_{j=0}^{n}\right)}, U_{1}=W_{n+1}\right\}}{\sum\left\{P_{(\cdot)}(U): U \in \Gamma_{W_{n}, A}^{V \backslash\left(A \cup B \cup\left\{W_{j}\right\}_{j=0}^{n}\right)}\right\}} \\
& =\frac{\sum\left\{P_{[\cdot)}\left(U^{\prime}\right): U^{\prime} \in \Gamma_{W_{n+1}, A}^{V \backslash\left(A \cup B \cup\left\{W_{j}\right\}_{j=0}^{n}\right)}\right\}}{\sum_{w \sim W_{n}} \sum\left\{P_{[\cdot)}\left(U^{\prime}\right): U^{\prime} \in \Gamma_{w, A}^{V \backslash\left(A \cup B \cup\left\{W_{j}\right\}_{j=0}^{n}\right)}\right\}}=\frac{h_{A \mid B \cup\left\{W_{j}\right\}_{j=0}^{n}}\left(W_{n+1}\right)}{\sum_{w \sim W_{n}} h_{A \mid B \cup\left\{W_{j}\right\}_{j=0}^{n}(w)}} .
\end{aligned}
$$

So we get the desired result.

Remarks.

1. The Laplacian random walk is defined using (6.2). So LERW is the same as the Laplacian random walk. For $p>0$, the p-Laplacian random walk is defined using 6 with $h_{A \mid B_{n}}$ replaced by $h_{A \mid B_{n}}^{p}$. The p-Laplacian random walk is much harder to analyze.
2. From the lemma, we see that the LERW satisfies Markov property. This means that, conditioned on $n<\tau$ and Y_{0}, \ldots, Y_{n}, the path $\left(Y_{n} \ldots, Y_{\tau}\right)$ has the distribution of $\operatorname{LERW}\left(Y_{n} \rightarrow\right.$ $A \mid B_{n-1}$), where $B_{n-1}=B \cup\left\{Y_{j}\right\}_{j=0}^{n-1}$.

6.3 Observables for LERW

Lemma 6.3 Let A and B be disjoint subsets of V such that $A \cup B \neq \emptyset$. Let $C=V \backslash(A \cup B)$ and $x \in C$. Then

$$
\sum_{v \in A} \Delta h_{x \mid A \cup B}(v)=G(x, A \cup B) h_{A \mid B}(x) .
$$

Proof. We have

$$
h_{A \mid B}(x)=\sum_{X \in \Gamma_{x, A}^{C}} P_{[\cdot)}(X)=\sum_{Y \in \Gamma_{x, x}^{C}} P_{[\cdot]}(Y) \cdot \sum_{Z \in \Gamma_{x, A}^{C \backslash\{x\}}} P_{(\cdot)}(Z)=\sum_{Y \in \Gamma_{x, x}^{C}} P_{[\cdot]}(Y) \cdot \sum_{v \in A} \Delta h_{x \mid A \cup B}(v),
$$

and

$$
1=\sum_{X \in \Gamma_{x, A \cup B}^{C}} P_{[\cdot)}(X)=\sum_{Y \in \Gamma_{x, x}^{C}} P_{[\cdot]}(Y) \cdot \sum_{Z \in \Gamma_{x, A \cup\{\backslash B}^{C,\{x\}}} P_{(\cdot)}(Z)=\sum_{Y \in \Gamma_{x, x}^{C}} P_{[\cdot]}(Y) \cdot G(x, A \cup B) .
$$

So we proved this lemma.
Lemma 6.4 Let A, B, C, x be as in the previous lemma. Suppose $h_{A \mid B}(x)>0$. Then the function f defined by

$$
f(v)=\frac{h_{x \mid A \cup B}(v)}{G(x, A \cup B) h_{A \mid B}(x)}, \quad v \in V,
$$

is the unique function on V that satisfies $f \equiv 0$ on $A \cup B, \Delta f \equiv 0$ on $C \backslash\{x\}$, and $\sum_{v \in A} \Delta f(v)=$ 1. Moreover, such f is nonnegative and satisfies $\Delta f(x)=-1 / h_{A \mid B}(x)$.

Proof. This follows immediately from the previous lemma.
Lemma 6.5 Let A, B, C, x be as in the previous lemma. Then the function f defined by

$$
f(v)=h_{A \mid B}(v)+\frac{G(A, B) h_{x \mid A \cup B}(v)}{G(x, A \cup B) h_{A \mid B}(x)}, \quad v \in V,
$$

is the unique function on V that satisfies $f \equiv 1$ on A, $f \equiv 0$ on $B, \Delta f \equiv 0$ on $C \backslash\{x\}$, and $\sum_{v \in A} \Delta f(v)=0$. Moreover, such f is nonnegative and $\Delta f(x)=-G(A, B) / h_{A \mid B}(x)$.

Proof. It is clear that $f \equiv 1$ on $A, f \equiv 0$ on B, and $\Delta f \equiv 0$ on $C \backslash\{x\}$. That $\sum_{v \in A} \Delta f(v)=0$ follows from the Lemma 6.3. Since $h_{A \mid B}$ and $h_{x \mid A \cup B}$ are nonnegative functions, $G(A, B) \geq 0$, and $G(x, A \cup B)>0, f$ is also nonnegative. And we compute

$$
\Delta f(x)=\Delta h_{A \mid B}(x)+\frac{G(A, B) \Delta h_{x \mid A \cup B}(x)}{G(x, A \cup B) h_{A \mid B}(x)}=-\frac{G(A, B)}{h_{A \mid B}(x)} .
$$

Now we prove the uniqueness. Suppose g satisfies the same properties as f. Let $I=g-h_{A \mid B}$. Then $I \equiv 0$ on $A \cup B$ and $\Delta I \equiv 0$ on $C \backslash\{x\}$. Thus, $I=I(x) h_{x \mid A \cup B}$. From Lemma 6.3 we have

$$
0=\sum_{v \in A} \Delta g(v)=\sum_{v \in A} \Delta I(v)+\sum_{v \in A} \Delta h_{A \mid B}(v)=I(x) h_{A \mid B}(x) G(x, A \cup B)-G(A, B) .
$$

Thus, $I(x)=G(A, B) /\left(h_{A \mid B}(x) G(x, A \cup B)\right)$. So $g=f$.

Proposition 6.1 Let A and B be disjoint subsets of V with $A \neq \emptyset$. Let $C=V \backslash(A \cup B)$ and $v_{0} \in C$ be such that $h_{A \mid B}\left(v_{0}\right)>0$. Let $Y=\left(Y_{0}, \ldots, Y_{\tau}\right)$ be LERW $\left(v_{0} \rightarrow A \mid B\right)$. Let $B_{-1}=B$ and $B_{n}=B \cup\left\{Y_{0}, \ldots, Y_{n}\right\}, 0 \leq n \leq \tau-1$. Then for each $0 \leq n \leq \tau, h_{A \mid B_{n-1}}\left(Y_{n}\right)>0$. For $n<\tau$, define M_{n} and N_{n} on V by

$$
\begin{gathered}
M_{n}^{(1)}(v)=\frac{h_{Y_{n} \mid A \cup B_{n-1}}(v)}{h_{A \mid B_{n-1}}\left(Y_{n}\right)}, \quad v \in V ; \\
M^{(2)}(v)=h_{A \mid B_{n-1}}(v)+\frac{G(A, B) h_{Y_{n} \mid A \cup B_{n-1}}(v)}{G\left(Y_{n}, A \cup B_{n-1}\right) h_{A \mid B_{n-1}}\left(Y_{n}\right)}, \quad v \in V .
\end{gathered}
$$

Let $\partial A=\{v \in V \backslash A: v \sim A\}$. Fix $z \in V$. Let T_{z} be the first n such that $Y_{n} \in \partial A$ or $h_{A \mid B_{n}}(z)=0$, which ever comes first. Then for every $z \in V, M_{n}^{(1)}(z)$ and $M_{n}^{(2)}(z)$ are martingales up to T_{z}.

Proof. Since for every $0 \leq n \leq \tau,\left(Y_{n}, \ldots, Y_{\tau}\right) \in \Gamma_{Y_{n}, A}^{V \backslash\left(A \cup B_{n-1}\right)}$, we have $h_{A \mid B_{n-1}}\left(Y_{n}\right)>0$. For the rest of the proof, we need to show that, for any $n \geq 0, \mathbb{E}\left[M_{n+1}^{(j)}(z) \mid Y_{0}, \ldots, Y_{n}, n<T_{z}\right]=$ $M_{n}^{(j)}(z), j=1,2$. Suppose $n<T_{z}$. Let $S_{n}=\left\{w \sim Y_{n}: h_{A \mid B_{n}}(w)>0\right\}$. For each $w \in S_{n}$, define

$$
g_{n, w}^{(1)}(v)=\frac{h_{w \mid A \cup B_{n}}(v)}{h_{A \mid B_{n}}(w)}, \quad g_{n, w}^{(2)}(v)=h_{A \mid B_{n}}(v)+\frac{G\left(A, B_{n}\right) h_{w \mid A \cup B_{n}}(v)}{G\left(w, A \cup B_{n}\right) h_{A \mid B_{n}}(w)} .
$$

From Lemma 6.2 we have

$$
\mathbb{E}\left[M_{n+1}^{(j)}(v) \mid Y_{0}, \ldots, Y_{n}, n<T_{z}\right]=\frac{\sum_{w \in S_{n}} h_{A \mid B_{n}}(v) g_{n, w}^{(j)}(v)}{\sum_{w \in S_{n}} h_{A \mid B_{n}}(w)}, \quad j=1,2 .
$$

Let $g_{n}^{(j)}(v)$ denote the righthand side of the above formula. From Lemma 6.4, for each $w \in S_{n}$, $g_{n, w}^{(1)} \equiv 0$ on $A \cup B_{n}, \Delta g_{n, w}^{(1)} \equiv 0$ on $V \backslash\left(A \cup B_{n} \cup\{w\}\right), \sum_{v \in A} \Delta g_{n, w}^{(1)}(v)=1$, and $\Delta g_{n, w}^{(1)}(w)=$ $-1 / h_{A \mid B_{n}}(w)$. Thus, $g_{n}^{(1)} \equiv 0$ on $A \cup B_{n}, \Delta g_{n}^{(1)} \equiv 0$ on $V \backslash\left(A \cup B_{n} \cup S_{n}\right), \sum_{v \in A} \Delta g_{n}^{(1)}(v)=1$, and $\Delta g_{n}^{(1)}(v)=-1 / \sum_{w \in S_{n}} h_{A \mid B_{n}}(w)$ for every $v \in S_{n}$.

If $S_{n}=\left\{w \sim Y_{n}: w \in V \backslash B_{n}\right\}$, we define $\widetilde{g}_{n}^{(1)}$ on V such that $\widetilde{g}_{n}^{(1)}\left(Y_{n}\right)=g^{(1)}\left(Y_{n}\right)+$ $1 / \sum_{w \in S_{n}} h_{A \mid B_{n}}(w)$, and $\widetilde{g}_{n}^{(1)}(v)=g_{n}^{(1)}(v)$ for $v \neq Y_{n}$. Since $Y_{n} \notin A, Y_{n} \nsim A$, and $B_{n} \backslash\left\{Y_{n}\right\}=$ B_{n-1}, from the previous paragraph, we have $\widetilde{g}_{n}^{(1)} \equiv 0$ on $A \cup B_{n-1}, \Delta \widetilde{g}_{n}^{(1)} \equiv 0$ on $V \backslash\left(A \cup B_{n}\right)$, and $\sum_{v \in A} \Delta \widetilde{g}_{n}^{(1)}(v)=1$. This shows that $\widetilde{g}_{n}^{(1)}=M_{n-1}^{(1)}$. Now since $h_{A \mid B_{n}}(z)>0$, we have $z \neq Y_{n}$, so $g_{n}^{(1)}(z)=\widetilde{g}_{n}^{(1)}(z)=M_{n-1}^{(1)}(z)$.

If $S_{n} \varsubsetneqq\left\{w \sim Y_{n}: w \in V \backslash B_{n}\right\}$, the situation is more complicated. We need to modify the values of $g_{n}^{(1)}$ at more than one point. Let V_{n} denote the set of vertices $v \in V \backslash B_{n-1}$ such that every $X \in \Gamma_{v, A}^{V \backslash B_{n-1}}$ must pass through Y_{n}. Here $Y_{n} \in V_{n}$ by definition. Then we define

$$
\widetilde{g}_{n}^{(1)}(v)=g_{n}^{(1)}(v)+\mathbf{1}_{v \in Y_{n}} h_{Y_{n}, B_{n-1}}(v) / \sum_{w \in S_{n}} h_{A \mid B_{n}}(w) .
$$

One may check that $\widetilde{g}_{n}^{(1)}=M_{n-1}^{(1)}$. Since $h_{A \mid B_{n}}(z)>0$, we have $z \notin V_{n}$, so $g_{n}^{(1)}(z)=\widetilde{g}_{n}^{(1)}(z)=$ $M_{n-1}^{(1)}(z)$. So the proof is done for $j=1$.

The proof for the case $j=2$ is similar. Define $g_{n}^{(2)}$ similarly. Then $g_{n}^{(2)} \equiv 1$ on $A ; g_{n}^{(2)} \equiv 0$ on $B_{n} ; \Delta g_{n}^{(2)} \equiv 0$ on $V \backslash\left(A \cup B_{n} \cup S_{n}\right)$; and $\sum_{v \in A} \Delta g_{n}^{(2)}(v)=0$. Moreover, we have $\Delta g_{n}^{(2)}(v)=$ $-G\left(A, B_{n}\right) / \sum_{w \in S_{n}} h_{A \mid B_{n}}(w)$ for every $v \in S_{n}$. Define V_{n} as before. By modifying the values of $g_{n}^{(2)}$ on V_{n}, we get a new function $\widetilde{g}_{n}^{(2)}$, which is equal to $M_{n}^{(2)}$. Since $h_{A \mid B_{n}}(z)>0$, we find that $M_{n}^{(2)}(z)=g_{n}^{(2)}(z)$.

Remark. Note that $h_{A \mid B_{n}}(z)=0$ means that the path X_{0}, \ldots, X_{n} disconnects z from A.

6.4 Observables for SLE_{2}

Recall the following two statements which were proved earlier.

1. Let g_{t} be the chordal Loewner maps driven by $\lambda_{t}=\sqrt{2} B_{t}$. Then for every fixed $z \in \mathbb{H}$, $M_{t}:=-\operatorname{Im} \frac{1}{g_{t}(z)-\lambda_{t}}, 0 \leq t<\tau_{z}$, is a local martingale.
2. Let g_{t} be the radial Loewner maps driven by $\lambda_{t}=\sqrt{2} B_{t}$. Then for every fixed $z \in \mathbb{D}$, $M_{t}:=\operatorname{Re} \frac{e^{i \lambda_{t}}+g_{t}(z)}{e^{i \lambda_{t}}-g_{(z)}}, 0 \leq t<\tau_{z}$, is a local martingale.

Suppose $\gamma(t), 0 \leq t<\infty$, is a radial SLE $_{2}$ trace in a domain D from $a \in \partial D$ to $b \in D$. Then there is $W:(\mathbb{D} ; 1,0) \xrightarrow{\mathrm{Conf}}(D ; a, b)$ and a standard radial SLE_{2} trace β such that $\gamma=W \circ \beta$. For each $t \geq 0$, there is a unique Poisson kernel function in $D \backslash \gamma(0, t]$ with the pole at $\gamma(t)$ which is normalized by $P_{t}(b)=1$. Then $Q_{t}:=P_{t} \circ W$ is a Poisson kernel in $\mathbb{D} \backslash \beta(0, t]$ with the pole at $\beta(t)$ which is normalized by $Q_{t}(0)=1$. So $Q_{t}(z)=\operatorname{Re} \frac{e^{i \lambda_{t}}+g_{t}(z)}{\left.e^{\lambda_{t}}-g_{(} z\right)}$. From the above result, for any $z \in D, P_{t}(z)$ is a local martingale up to the time that γ visits z.

Suppose $\gamma(t), 0 \leq t<\infty$, is a chordal SLE $_{2}$ trace in a domain D from $a \in \partial D$ to $b \in \partial D$. Then there is $W:(\mathbb{D} ; 0, \infty) \xrightarrow{\text { Conf }}(D ; a, b)$ and a standard chordal SLE $_{2}$ trace β such that $\gamma=W \circ \beta$. Suppose that ∂D is analytic near b. Then W may extends analytically to a neighborhood of b. Suppose $W(z)=b+\frac{c}{z}$ near ∞. Let \mathbf{n}_{b} denote the inward unit normal vector at b. Then $\mathbf{n}_{b}=-i \frac{c}{|c|}$. For each $t \geq 0$, there is a unique Poisson kernel function in $D \backslash \gamma(0, t]$ with the pole at $\gamma(t)$ which is normalized by $\frac{\partial}{\partial \mathbf{n}_{b}} P_{t}(b)=1$. Then $Q_{t}:=P_{t} \circ W$ is a Poisson kernel in $\mathbb{D} \backslash \beta(0, t]$ with the pole at $\beta(t)$. Moreover,

$$
1=\lim _{t \rightarrow 0} \frac{P_{t}\left(b+t \mathbf{n}_{b}\right)-P_{t}(b)}{t}=\lim _{t \rightarrow 0} \frac{Q_{t} \circ W^{-1}\left(b+t \mathbf{n}_{b}\right)}{t}=\lim _{t \rightarrow 0} \frac{Q_{t}\left(\frac{c}{t \mathbf{n}_{b}}\right)}{t}=\lim _{t \rightarrow 0} \frac{Q_{t}\left(\frac{i|c|}{t}\right)}{t} .
$$

On the other hand, suppose λ_{t} is the driving function for β, and g_{t} are chordal Loewner maps. Then $R_{t}:=-\operatorname{Im} \frac{1}{g_{t}(z)-\lambda_{t}}$ is a Poisson kernel in $\mathbb{H} \backslash \beta(0, t]$ with the pole at $\beta(t)$. Since $g_{t}(z)=z+O(1 / z)$ as $z \rightarrow \infty$, we have $\lim _{t \rightarrow 0} \frac{R_{t}\left(\frac{i|c|}{t}\right)}{t}=\frac{1}{|c|}$. Thus, $Q_{t}=|c| R_{t}$. From the above
comment we know that, for any $z \in \mathbb{H}, R_{t}(z), 0 \leq t<\tau_{z}$, is a local martingale. Thus, for any $z \in D, P_{t}(z)=|c| Q_{t}\left(W^{-1}(z)\right)$ is a local martingale up to the time when z is visited by γ.

6.5 Scaling limits

Now we study the convergence of LERW to SLE_{2}. Let D be a simply connected domain. For simplicity, suppose that D is a lattice domain in \mathbb{Z}^{2}, which means that ∂D is a union of some edges in \mathbb{Z}^{2}. Let $\delta=1 / n$ for some $n \in \mathbb{N}$. Then D is also a lattice domain in $\delta \mathbb{Z}^{2}$. Let D^{δ} denote the subgraph of $\delta \mathbb{Z}^{2}$ whose vertices and edges are those of $\delta \mathbb{Z}^{2}$ that lie on \bar{D}. The vertices of D^{δ} that lie on ∂D are called boundary vertices, other vertices of D^{δ} are called interior vertices. Let ∂D^{δ} and int D^{δ} denote the set of all boundary vertices and interior vertices, respectively, of D^{δ}.

We first construct LERW that converges to radial SLE $_{2}$. Let $a \in \partial \mathbb{D} \cap \mathbb{Z}^{2}$ and $b \in D \cap \mathbb{Z}^{2}$. Then for any $\delta \in\{1 / n: n \in \mathbb{N}\}, a$ is a boundary vertex of D^{δ}, and b is an interior vertex of D^{δ}. Suppose a is not a corner of D. Let $X^{\delta}=\left(X_{0}, \ldots, X_{\tau}\right)$ be LERW $\left(D^{\delta} ; a \rightarrow b \mid \partial D^{\delta} \backslash\{a\}\right)$. Extend X to be a function defined on $[0, \tau]$ by linear interpolation. So $X^{\delta}(t), 0 \leq t \leq \tau$, is a random simple curve with $X^{\delta}(0)=a, X^{\delta}(\tau)=b$, and $X^{\delta}(t) \in D$ for $0<t \leq \tau$.

Theorem 6.1 [Lawler-Schramm-Werner] For every $\varepsilon>0$, there is $\delta_{0}>0$ such that if $\delta<\delta_{0}$, there is a coupling of the LERW curve $X(t), 0 \leq t \leq \tau$, and the radial SLE 2 trace β in D from a to b, such that for some continuous increasing function $u:[0, \tau) \rightarrow[0, \infty)$,

$$
\mathbb{P}\left[\sup _{0 \leq t<\infty}\left|\beta(t)-X\left(u^{-1}(t)\right)\right| \geq \varepsilon\right]<\varepsilon .
$$

A coupling of two random processes X and Y is a pair of random processes X^{\prime} and Y^{\prime} which are defined in the same probability space such that X and X^{\prime} have the same distribution, and Y and Y^{\prime} have the same distribution. When we say that distributions of two random processes are close, we usually mean that there exists a coupling of the two processes such that the two random processes in the coupling are close. Since the two processes in the coupling are defined in the same probability space, we may compare them pointwise. In the statement of the above theorem, we also use a time-change function u. This is because the LERW curve is not parameterized by capacities.

One of the main idea in the proof of Theorem 6.1 is to compare an observable for LERW with an observable for radial SLE_{2}. For any $0 \leq n<\tau$, there is a positive function P_{n} defined on the vertices of D^{δ}, which satisfies the following

1. $P_{n} \equiv 0$ on $\partial D^{\delta} \cup\left\{X_{0}, \ldots, X_{n-1}\right\}$;
2. $\Delta P_{n} \equiv 0$ on int $D^{\delta} \backslash\left\{X_{0}, \ldots, X_{n}\right\} ;$
3. $P_{n}(b)=1$.

We have proved that, for any fixed $v_{0} \in \operatorname{int} D^{\delta}, P_{n}\left(v_{0}\right)$ is a discrete martingale up to the time that the LERW curve visits a neighbor of b or disconnects v_{0} from b.

Then we observe that, when δ is small, P_{n} is close to the Poisson kernel function Q_{n} in $D \backslash X[0, n]$ with the pole at X_{n}, normalized by $Q_{n}(b)=1$. In fact, the following lemma describes the closeness between P_{n} and Q_{n}. Let \mathcal{X}^{δ} be the family of paths on D^{δ} of the form $X=$ $\left(X_{0}, \ldots, X_{n}\right)$ such that $X_{0}=a$ and $\bigcup_{j=1}^{n}\left(X_{j-1}, X_{j}\right] \subset D$. For each $X=\left(X_{0}, \ldots, X_{n}\right) \in \mathcal{X}^{\delta}$, let $D_{X}=D \backslash \bigcup_{j=1}^{n}\left(X_{j-1}, X_{j}\right]$, which is still a simply connected domain. Let P_{X} denote the function on D^{δ}, which vanishes on $\partial D^{\delta} \cup\left\{X_{0}, \ldots, X_{n-1}\right\}$, is discrete harmonic on int $D \backslash\left\{X_{0}, \ldots, X_{n}\right\}$, and satisfies $P_{X}(b)=1$. Let Q_{X} denote the Poisson kernel function in D_{X} with the pole at X_{n}, normalized by $Q_{X}(b)=1$. For a Jordan curve J in \mathbb{C}, we will use Ω_{J} to denote the bounded component of $\mathbb{C} \backslash J$.

Lemma 6.6 Let J be a Jordan curve in $D \backslash\{b\}$ such that $b \in \Omega_{J}$. Let K be a compact subset of Ω_{J}. Let \mathcal{X}_{J}^{δ} be the family of $X \in \mathcal{X}^{\delta}$ such that $\Omega_{J} \subset D_{X}$. Then for every $\varepsilon>0$ there is $\delta_{0}>0$ (depending on D, J, K) such that if $\delta<\delta_{0}$, then for every $X \in \mathcal{X}_{J}^{\delta}$ and every $v \in \operatorname{int} D^{\delta} \cap K$, $\left|P_{X}(v)-Q_{X}(v)\right|<\varepsilon$.

The proof of the lemma is proceeded as follows.

1. First, assume that the conclusion is not true, then we get a sequence $\delta_{n} \rightarrow 0$, a sequence of paths $X^{(n)} \in \mathcal{X}_{J}^{\delta_{n}}$, and a sequence of points $v_{n} \in \operatorname{int} D^{\delta_{n}} \cap K$, such that $\mid P_{X_{n}}\left(v_{n}\right)-$ $Q_{X_{n}}\left(v_{n}\right) \mid \geq \varepsilon_{0}$ for some fixed $\varepsilon_{0}>0$.
2. By passing to a subsequence, we may assume that $D_{X_{n}}$ converges to some domain E in the Carathéodory topology. We must have $\Omega_{J} \subset E \subset D$.
3. Extend each $P_{X_{n}}$ to a Lipschitz continuous function on D whose constant in each square face is bounded by a factor times the slope of $P_{X_{n}}$ on the four corner vertices.
4. Some argument on discrete harmonic functions show that the Lipschitz constants of $P_{X_{n}}$ are uniformly bounded on each compact subset of E.
5. Applying the Ascoli-Arzela Theorem, we find that $P_{X_{n}}$ converges locally uniformly to a continuous function, say f, on E.
6. Since every $P_{X_{n}}$ is discrete harmonic, we may show that f is harmonic on E.
7. Some tedious argument shows that $Q_{X_{n}} \xrightarrow{\text { l.u. }} f$ in E, which gives a contradiction.

One intermediate step in the proof of the theorem is to show that the driving function for a time-change of the LERW curve (via radial Loewner equation) is close to the driving function for radial SLE $_{2}$. We may find W that maps D conformally onto \mathbb{D} such that a and b are mapped to 1 and 0 . Let $\gamma^{\delta}=W \circ X$. Let $u(t)=\operatorname{dcap} \gamma(0, t], 0 \leq t<\tau$. Then $\gamma^{\delta}\left(u^{-1}(t)\right), 0 \leq t<\infty$, is a radial Loewner trace driven by some η^{δ}. Let g_{t}^{δ} and $\widetilde{g}_{t}^{\delta}$ denote the radial and covering radial Loewner maps driven by η^{δ}. The discrete observable for LERW can then be used to show that
η^{δ} is close to $\sqrt{2} B_{t}$ on a finite time interval. Lawler-Schramm-Werner proved the following proposition.

Proposition 6.2 Let J be a Jordan curve in $D \backslash\{b\}$ such that $b \in \Omega_{J}$. Let T_{J} be the first n such that $\left[X_{n-1}, X_{n}\right]$ intersects J. For every $\varepsilon>0$, there is $\delta_{0}>0$ such that if $\delta<\delta_{0}$, then there is a coupling of η_{t}^{δ} and $\sqrt{2} B_{t}$ such that

$$
\mathbb{P}\left[\sup _{0 \leq t \leq u\left(T_{J}\right)}\left|\eta_{t}^{\delta}-B_{2 t}\right| \geq \varepsilon\right]<\varepsilon .
$$

To prove this proposition, we need the lemma below. Fix a small $d>0$. Let $T_{0}=0$. After T_{n} is defined, let T_{n+1} be the smallest integer $n \geq T_{n}$ such that either $\left|\eta_{u(n)}-\eta_{u\left(T_{n}\right)}\right| \geq d$, or $u(n)-u\left(T_{n}\right) \geq d^{2}$, or $n \geq T_{J}$, whichever comes first. Then $\left(T_{n}\right)$ is an increasing sequence of stopping times and are bounded above by T_{J}. Let $\Delta_{n}(\eta)=\eta_{u\left(T_{n+1}\right)}-\eta_{u\left(T_{n}\right)}$ and $\Delta_{n}(T)=$ $u\left(T_{n+1}\right)-u\left(T_{n}\right)$.

Lemma 6.7 There is an absolute constant $C>0$ and a constant $\delta(d)>0$ such that if $\delta<\delta(d)$, then for any n,

$$
\begin{gathered}
\left|\mathbb{E}\left[\Delta_{n}(\eta) \mid \mathcal{F}_{T_{n}}\right]\right| \leq C d^{3}, \\
\left|\mathbb{E}\left[\Delta_{n}(\eta)^{2}-2 \Delta_{n}(T) \mid \mathcal{F}_{T_{n}}\right]\right| \leq C d^{3} .
\end{gathered}
$$

The proof of the lemma is proceeded as follows.

1. Choose a Jordan curve $J^{\prime} \subset \Omega_{J} \backslash\{b\}$ such that $b \in \Omega_{J^{\prime}}$. Observe that if $\delta<\operatorname{dist}\left(J, J^{\prime}\right)$, then $X^{T_{J}} \in \mathcal{X}_{J^{\prime}}^{\delta}$, where $X^{T_{J}}$ is the LERW X stopped at T_{J}.
2. One can show that, if δ is small enough (depending on d), then $\Delta_{n}(T) \leq 2 d^{2}$ and $\left|\Delta_{n}(\eta)\right| \leq$ $2 d$. So $\Delta_{n}(T)=O\left(d^{2}\right)$ and $\Delta_{n}(\eta)=O(d)$.
3. Choose a compact subset K of $\Omega_{J^{\prime}}$ such that int $K \neq \emptyset$. The previous lemma shows that $P_{n}(v)-Q_{n}(v) \rightarrow 0$ as $\delta \rightarrow 0$ uniformly in $n \leq T_{J}$ and $v \in K \cap D^{\delta}$.
4. Note that $Q_{n}(z)=\operatorname{Re} \frac{1+g_{u(n)} \circ W(z) / e^{i \eta_{u(n)}}}{1-g_{u(n)} \circ W(z) / e^{i \eta_{u(n)}}}$. So $Q_{n} \circ W^{-1} \circ e^{i}(z)=-\operatorname{Im}_{\cot _{2}}\left(\widetilde{g}_{u(n)}(z)-\eta_{u(n)}\right)$.
5. Let K be a compact subset of $\Omega_{J^{\prime}}$. Let $L=\left(e^{i}\right)^{-1}(W(K))$. From the previous lemma, we find that, for any $z \in L$, $\left(\operatorname{Im}_{\cot _{2}}\left(\widetilde{g}_{u\left(T_{n}\right)}(z)-\eta_{u\left(T_{n}\right)}\right)\right)_{n=0}^{\infty}$, is close to a martingale. More specifically, we have

$$
\begin{equation*}
\mathbb{E}\left[\operatorname{Im} \cot _{2}\left(\widetilde{g}_{u\left(T_{n+1}\right)}(z)-\eta_{u\left(T_{n+1}\right)}\right)-\operatorname{Im} \cot _{2}\left(\widetilde{g}_{u\left(T_{n}\right)}(z)-\eta_{u\left(T_{n}\right)}\right) \mid \mathcal{F}_{T_{n}}\right]=o_{\delta}(1), \tag{6.3}
\end{equation*}
$$

where $o_{\delta}(1)$ is some quantity which tends to 0 uniformly as $\delta \rightarrow 0$.

Let $S_{n}=u\left(T_{n}\right), n \geq 0$. We will estimate the quantity

$$
I:=\cot _{2}\left(\widetilde{g}_{S_{n+1}}(z)-\eta_{S_{n+1}}\right)-\cot _{2}\left(\widetilde{g}_{S_{n}}(z)-\eta_{S_{n}}\right)
$$

We have $I=I_{1}+I_{2}+I_{3}$, where $S_{n}^{\prime} \in\left(S_{n}, S_{n+1}\right)$, and

$$
\begin{gathered}
I_{1}=\cot _{2}^{\prime}\left(\widetilde{g}_{S_{n}}(z)-\eta_{S_{n}}\right) \cdot\left[\left(\widetilde{g}_{S_{n+1}}(z)-\widetilde{g}_{S_{n}}(z)\right)-\left(\eta_{S_{n+1}}-\eta_{S_{n}}\right)\right] ; \\
I_{2}=\frac{1}{2} \cot _{2}^{\prime \prime}\left(\widetilde{g}_{S_{n}}(z)-\eta_{S_{n}}\right) \cdot\left[\left(\widetilde{g}_{S_{n+1}}(z)-\widetilde{g}_{S_{n}}(z)\right)-\left(\eta_{S_{n+1}}-\eta_{S_{n}}\right)\right]^{2} ; \\
I_{3}=\frac{1}{6} \cot _{2}^{\prime \prime \prime}\left(\widetilde{g}_{S_{n}^{\prime}}(z)-\eta_{S_{n}^{\prime}}\right) \cdot\left[\left(\widetilde{g}_{S_{n+1}}(z)-\widetilde{g}_{S_{n}}(z)\right)-\left(\eta_{S_{n+1}}-\eta_{S_{n}}\right)\right]^{3} .
\end{gathered}
$$

There is an uniform upper bound for $\left|\cot _{2}^{\prime \prime \prime}\left(\widetilde{g}_{S_{n}^{\prime}}(z)-\eta_{S_{n}^{\prime}}\right)\right|$. From the ODE for \widetilde{g}_{t}, there is $S_{n}^{\prime \prime} \in\left(S_{n}, S_{n+1}\right)$ such that

$$
\widetilde{g}_{S_{n+1}}(z)-\widetilde{g}_{S_{n}}(z)=\cot _{2}\left(\widetilde{g}_{S_{n}^{\prime \prime}}(z)-\eta_{S_{n}^{\prime \prime}}\right) \cdot \Delta_{n}(T) .
$$

There is an uniform upper bound for $\left|\cot _{2}\left(\widetilde{g}_{S_{n}^{\prime \prime}}(z)-\eta_{S_{n}^{\prime \prime}}\right)\right|$. Since $\Delta_{n}(T)=O\left(d^{2}\right)$ and $\Delta_{n}(\eta)=$ $O(d)$, we have $I_{3}=O\left(d^{3}\right)$. A similar argument gives

$$
\cot _{2}\left(\widetilde{g}_{S_{n}^{\prime \prime}}(z)-\eta_{S_{n}^{\prime \prime}}\right)=\cot _{2}\left(\widetilde{g}_{S_{n}}(z)-\eta_{S_{n}}\right)+O(d) .
$$

So we have

$$
\widetilde{g}_{S_{n+1}}(z)-\widetilde{g}_{S_{n}}(z)=\cot _{2}\left(\widetilde{g}_{S_{n}}(z)-\eta_{S_{n}}\right) \cdot \Delta_{n}(T)+O\left(d^{3}\right) .
$$

Thus,

$$
\begin{gathered}
I_{1}=\cot _{2}^{\prime}\left(\widetilde{g}_{S_{n}}(z)-\eta_{S_{n}}\right) \cdot\left[\cot _{2}\left(\widetilde{g}_{S_{n}}(z)-\eta_{S_{n}}\right) \cdot \Delta_{n}(T)-\Delta_{n}(\eta)\right]+O\left(d^{3}\right) \\
I_{2}=\frac{1}{2} \cot _{2}^{\prime \prime}\left(\widetilde{g}_{S_{n}}(z)-\eta_{S_{n}}\right) \cdot\left[\cot _{2}\left(\widetilde{g}_{S_{n}}(z)-\eta_{S_{n}}\right) \cdot \Delta_{n}(T)-\Delta_{n}(\eta)\right]^{2}+O\left(d^{3}\right) .
\end{gathered}
$$

Since $\cot _{2}^{\prime \prime}=-\cot _{2} \cot _{2}^{\prime}$, we get

$$
I=\cot _{2}^{\prime \prime}\left(\widetilde{g}_{S_{n}}(z)-\eta_{S_{n}}\right)\left[\frac{1}{2} \Delta_{n}(\eta)^{2}-\Delta_{n}(T)\right]-\cot _{2}^{\prime}\left(\widetilde{g}_{S_{n}}(z)-\eta_{S_{n}}\right) \cdot \Delta_{n}(\eta)+O\left(d^{3}\right) .
$$

From (6.3) we find that, for any $z \in L$, if δ is small enough (depending on d),

$$
\begin{aligned}
& \operatorname{Im} \cot _{2}^{\prime \prime}\left(\widetilde{g}_{S_{n}}(z)-\eta_{S_{n}}\right) \cdot \mathbb{E}\left[\left.\frac{1}{2} \Delta_{n}(\eta)^{2}-\Delta_{n}(T) \right\rvert\, \mathcal{F}_{T_{n}}\right] \\
& -\operatorname{Im} \cot _{2}^{\prime}\left(\widetilde{g}_{S_{n}}(z)-\eta_{S_{n}}\right) \cdot \mathbb{E}\left[\Delta_{n}(\eta) \mid \mathcal{F}_{T_{n}}\right]=O\left(d^{3}\right) .
\end{aligned}
$$

Since int $K \neq \emptyset$, we have int $L \neq \emptyset$, the above formula finishes the proof of Lemma 6.7. In fact, one may prove and use the following facts:

1. $\operatorname{Im} \cot _{2}^{\prime}\left(\widetilde{g}_{S_{n}}(z)-\eta_{S_{n}}\right)$ and $\operatorname{Im} \cot _{2}^{\prime \prime}\left(\widetilde{g}_{S_{n}}(z)-\eta_{S_{n}}\right)$ are bounded in absolute value by an absolute constant for any n and $z \in L$.
2. There is an absolute positive constant C such that for every n, we may find $z_{1}, z_{2} \in$ L, such that the absolute value of the determinant of the 2×2 matrix composed of $\operatorname{Im} \cot _{2}^{\prime}\left(\widetilde{g}_{S_{n}}\left(z_{j}\right)-\eta_{S_{n}}\right)$ and $\operatorname{Im} \cot _{2}^{\prime \prime}\left(\widetilde{g}_{S_{n}}\left(z_{j}\right)-\eta_{S_{n}}\right), j=1,2$, is at least C.

The next step is to apply Skorokhod's embedding theorem shown below.
Theorem 6.2 If $\left(M_{n}\right)$ is a martingale with $M_{0}=0$ and $\left|M_{n}-M_{n-1}\right| \leq d$, then there is a standard Brownian motion B_{t}, and an increasing sequence of stopping times $0=\tau_{0} \leq \tau_{1} \leq \tau_{2} \leq$ \ldots such that $\left(M_{0}, M_{1}, \ldots, M_{n}, \ldots\right)$ has the same joint distribution as $\left(B_{\tau_{0}}, B_{\tau_{1}}, \ldots, B_{\tau_{n}}, \ldots\right)$. Moreover, one can impose that

$$
\begin{gather*}
\mathbb{E}\left[\tau_{n}-\tau_{n-1} \mid B\left[0, \tau_{n-1}\right]\right]=\mathbb{E}\left[\left(B_{\tau_{n}}-B_{\tau_{n-1}}\right)^{2} \mid B\left[0, \tau_{n-1}\right]\right] \tag{6.4}\\
\tau_{n} \leq \inf \left\{t \geq \tau_{n-1}:\left|B_{t}-B_{\tau_{n-1}}\right| \geq d\right\} \tag{6.5}
\end{gather*}
$$

Proof of Proposition 6.2. Define a martingale $\left(M_{n}\right)$ by $M_{0}=0$ and

$$
M_{n}=M_{n-1}+\Delta_{n-1}(\eta)-\mathbb{E}\left[\Delta_{n-1}(\eta) \mid \mathcal{F}_{T_{n-1}}\right], \quad n \geq 1
$$

Recall that $\Delta_{n-1}(\eta)=\eta_{S_{n}}-\eta_{S_{n-1}}$. From Lemma 6.7, by choosing δ small enough, we can ensure that $\left|M_{n}-M_{n-1}\right| \leq 2 d$. Applying Skorokhod's embedding theorem, we find a standard Brownian motion B_{t} and an increasing sequence of stopping times $\left(\tau_{n}\right)_{n=0}^{\infty}$ for B_{t} such that $\left(M_{0}, M_{1}, \ldots, M_{n}, \ldots\right)$ has the same joint distribution as $\left(B_{\tau_{0}}, B_{\tau_{1}}, \ldots, B_{\tau_{n}}, \ldots\right)$. Moreover, we have $\left|B_{t}-B_{\tau_{n-1}}\right| \leq 2 d$ for $t \in\left[\tau_{n-1}, \tau_{n}\right]$.

Let $S_{J}=u\left(T_{J}\right)$ and $N=\left\lceil 10 S_{J} / d^{2}\right\rceil$. Then S_{J} is uniformly bounded above, and $S_{J} \asymp N d^{2}$. We first focus on $M_{n}, 0 \leq n \leq N$. From Lemma 6.7 we have $M_{n}-\eta_{S_{n}}=O\left(n d^{3}\right)=O\left(S_{J} d\right)=$ $O(d)$ for $0 \leq n \leq N$. Recall that $\left|\eta_{t}-\eta_{S_{n-1}}\right| \leq 2 d$ for $t \in\left[S_{n-1}, S_{n}\right]$. Using the continuity of Brownian motion, we suffice to show that when δ and d are small, with probability close to 1 , $\sup _{n \leq N}\left|\tau_{n}-2 S_{n}\right|$ is small and $T_{N}=T_{J}$.

Define another martingale $\left(N_{n}\right)$ by $N_{0}=0$ and

$$
N_{n}=N_{n-1}+\left(M_{n}-M_{n-1}\right)^{2}-\mathbb{E}\left[\left(M_{n}-M_{n-1}\right)^{2} \mid \mathcal{F}_{T_{n-1}}\right], \quad n \geq 1
$$

Since $M_{n}-M_{n-1}=\Delta_{n-1}(\eta)+O\left(d^{3}\right)$, and $\Delta_{n-1}(\eta)=O(d)$, we have $\left(M_{n}-M_{n-1}\right)^{2}=\Delta_{n-1}(\eta)^{2}+$ $O\left(d^{4}\right)$, which implies that

$$
\mathbb{E}\left[\left(M_{n}-M_{n-1}\right)^{2} \mid \mathcal{F}_{T_{n-1}}\right]=\mathbb{E}\left[2 \Delta_{n-1}(T) \mid \mathcal{F}_{T_{n-1}}\right]+O\left(d^{3}\right)
$$

Thus, $N_{n}-N_{n-1}=\Delta_{n-1}(\eta)^{2}-\mathbb{E}\left[2 \Delta_{n-1}(T) \mid \mathcal{F}_{T_{n-1}}\right]+O\left(d^{3}\right)$.
Define another martingale $\left(O_{n}\right)$ by $O_{0}=0$ and

$$
\begin{equation*}
O_{n}=O_{n-1}+2 \Delta_{n-1}(T)-\mathbb{E}\left[2 \Delta_{n-1}(T) \mid \mathcal{F}_{T_{n-1}}\right], \quad n \geq 1 \tag{6.6}
\end{equation*}
$$

Let $P_{n}=N_{n}-O_{n}$. Then $P_{n}-P_{n-1}=\Delta_{n-1}(\eta)^{2}-2 \Delta_{n-1}(T)+O\left(d^{3}\right)$. Define another martingale $\left(Q_{n}\right)$ by $Q_{0}=0$ and

$$
Q_{n}=Q_{n-1}+\left(B_{\tau_{n}}-B_{\tau_{n-1}}\right)^{2}-\left(\tau_{n}-\tau_{n-1}\right), \quad n \geq 1
$$

Let $R_{n}=P_{n}-Q_{n}$. Then $R_{n}-R_{n-1}=\left(\tau_{n}-\tau_{n-1}\right)-2 \Delta_{n-1}(T)+O\left(d^{3}\right)$. Thus, $R_{n}=$ $\tau_{n}-2 S_{n}+O\left(N d^{3}\right), n \leq N$. Since $\left|B_{\tau_{n}}-B_{\tau_{n-1}}\right| \leq 2 d$, we have $\mathbb{E}\left[\tau_{n}-\tau_{n-1} \mid B\left[0, \tau_{n-1}\right]\right]=O\left(d^{2}\right)$. Thus, $\mathbb{E}\left[\left(R_{n}-R_{n-1}\right)^{2} \mid B\left[0, \tau_{n-1}\right]\right]=O\left(d^{4}\right)$, which implies that,

$$
\mathbb{E}\left[R_{N}^{2}\right]=\sum_{n=1}^{N} \mathbb{E}\left[\mathbb{E}\left[\left(R_{n}-R_{n-1}\right)^{2} \mid B\left[0, \tau_{n-1}\right]\right]\right]=O\left(N d^{4}\right)
$$

Applying Doob's inequality to the martingale P_{n}, we get

$$
\mathbb{P}\left[\max _{n \leq N}\left|R_{n}\right|>d^{1 / 2}\right] \leq C \mathbb{P}\left[\left|R_{N}\right|^{2}>d\right]=O\left(N d^{3}\right)=O\left(S_{J} d\right)=O(d)
$$

This means that, with probability greater than $1-O(d),\left|\tau_{n}-2 S_{n}\right|=O\left(d^{1 / 2}\right)$ for $n \leq N$.
Suppose $T_{N}<T_{J}$. Then for $n \leq N$, either $\Delta_{n-1}(\eta)^{2} \geq d^{2}$ or $\Delta_{n-1}(T) \geq d^{2}$. Since $\mathbb{E}\left[\Delta_{n-1}(\eta)^{2}-2 \Delta_{n-1}(T) \mid \mathcal{F}_{T_{n-1}}\right]=O\left(d^{3}\right)$, we get $\mathbb{E}\left[2 \Delta_{n-1}(T) \mid \mathcal{F}_{T_{n-1}}\right]>d^{2} / 2$ for $n \leq N$ if d is small. From (6.6) we have $\left|O_{N}-2 S_{N}\right| \geq N d^{2} \geq 10 S_{J}$, which implies that $O_{N} \geq 9 S_{J}$. On the other hand, from (6.6) we have $O_{n}-O_{n-1}=O\left(d^{2}\right)$, which implies that

$$
\mathbb{E}\left[O_{N}^{2}\right]=\sum_{n=1}^{N} \mathbb{E}\left[\left(O_{n}-O_{n-1}\right)^{2}\right]=O\left(N d^{4}\right)=O\left(S_{J} d^{2}\right)=O\left(d^{2}\right)
$$

Thus, $\mathbb{P}\left[O_{N}>9 S_{J}\right]=O\left(d^{2}\right)$. So $\mathbb{P}\left[T_{N}=T_{J}\right]=1-O\left(d^{2}\right)$.
Proposition 6.2 implies that, when δ is small, for any $t \leq S_{J}:=u\left(T_{J}\right)$, under some suitable coupling, $\mathbb{D} \backslash \gamma^{\gamma}\left(u^{-1}(0, t]\right)$ is close to $\mathbb{D} \backslash \gamma(0, t]$ in the Carathéodory topology, where $\gamma(t)$ is a standard radial SLE $_{2}$ curve. To finish the proof of Theorem 6.1, one needs to use some more complicated properties of LERW. Roughly speaking, it says that LERW tends to not intersect itself uniformly in the mesh size δ. In more details, For $z \in D$ and $R>r>0$, an $\mathcal{L}(z ; r, R)$ loop on the LERW X^{δ} is a subcurve of X^{δ}, whose two end points stay within distance r from z, and which contains a point w which has distance $>R$ from z. The fact is that, for any $z \in D$ and $R>0$, the probability that X^{δ} contains an $\mathcal{L}(z ; r, R)$ loop tends to 0 as $r \rightarrow 0$, uniformly in δ. The proof uses relation between LERW and uniformly spanning tree, and this result can then be used to finish the proof of Theorem 6.1. Here we omit the details and refer the reader to the paper by Lawler, Schramm, and Werner.

At the end of this subsection, we briefly discuss the LERW that converges to chordal SLE 2 . Let the lattice domain D and $a \in \partial D \cap \mathbb{Z}^{2}$ be as before. Now let $b \in \partial D \cap \mathbb{Z}^{2}$ be such that $b \neq a$ and b is not a corner of ∂D. Consider the $\operatorname{LERW}\left(D^{\delta} ; a \rightarrow b \mid \partial D^{\delta} \backslash\{a, b\}\right): X^{\delta}=$ $\left(X_{0}, \ldots, X_{\tau}\right)$. The conclusion is that Theorem 6.1 still holds here if "radial" is replaced by "chordal". Let P_{n} denote the function on D^{δ}, which vanishes on $\partial D^{\delta} \cup\left\{X_{0}, \ldots, X_{n-1}\right\}$, is harmonic on int $D^{\delta} \backslash\left\{X_{0}, \ldots, X_{n}\right\}$, and is normalized by $\Delta P_{n}(b)=1$. Then for any $z \in \operatorname{int} D^{\delta}$, $\left(P_{n}(z)\right)$ is a martingale up to a stopping time. Let b^{\prime} be the unique neighbor of b in int D^{δ}. Then $\Delta P_{n}(b)=1$ means that $P_{n}\left(b^{\prime}\right)-P_{n}(b)=1$. One can show that, when δ is small, δP_{n} is close to the Poisson kernel Q_{n} in D_{n} with the pole at X_{n}, normalized by $\partial_{\mathbf{n}_{\mathbf{b}}} Q_{n}(b)=1$. The rest of the proof follows the argument for the convergence to radial SLE $_{2}$.

6.6 Uniform spanning tree and Wilson's algorithm

A tree is a connected graph without loops. For any two vertices on a tree, there is a unique simple path connecting them. Let $G=(V, E)$ be a finite connected graph. A subgraph H of G is called a spanning tree on G if H is a tree and contains all vertices of G. The total number of spanning trees on G is finite. A uniform spanning tree (UST for short) on G is a random spanning tree chosen among all the possible spanning trees on G with equal probability. UST is closely related with LERW via Wilson's algorithm.

Theorem 6.3 [Wilson's algorithm]

Let $G=(V, E)$ be a finite connected graph.
(i) Let T be a UST on G. For any $v, w \in V$, the only simple path from v to w on T has the distribution of $\operatorname{LERW}(G ; v \rightarrow w)$.
(ii) Suppose $V=\left\{v_{0}, \ldots, v_{n}\right\}$. Let $T_{0}=\left\{v_{0}\right\}$. When T_{k} is constructed for some $k<n$, we let T_{k+1} be the union of T_{k} and all vertices and edges on $\operatorname{LERW}\left(G ; v_{k+1} \rightarrow T_{k}\right)$. Then T_{n} has the distribution of a UST on G.

Note that Wilson's algorithm immediately implies that the time-reversal of LERW $(v \rightarrow w)$ has the same distribution as $\operatorname{LERW}(w \rightarrow v)$. In fact, the following proposition is true.

Corollary 6.1 Let $S \subset V$ and $a \neq b \in V \backslash S$. Then the time-reversal of $\operatorname{LERW}(a \rightarrow b \mid S)$ has the same distribution as $\operatorname{LERW}(b \rightarrow a \mid S)$.

Proof. First we define $\mathrm{RW}^{\prime}(G ; v \rightarrow A \mid B)$ to be obtained from $\operatorname{RW}(G ; v \rightarrow A \mid B)$ by removing the initial part of the path up to the last time the path visits v. So the distribution of $R W^{\prime}(G ; v \rightarrow A \mid B)$ is supported by $\Gamma_{v, A}^{V \backslash(A \cup B \cup\{v\})}$. It is clear that the loop-erasure of $\mathrm{RW}^{\prime}(G ; v \rightarrow A \mid B)$ is the same as $\operatorname{LERW}(G ; v \rightarrow A \mid B)$.

Divide S into the disjoint union of two subsets A^{\prime} and B^{\prime}. Let $A=A^{\prime} \cup\{a\}$ and $B=B^{\prime} \cup\{b\}$. Let $G_{A, B}$ be obtained from G by identifying all vertices in A as a single vertex, say v_{A}, and identifying all vertices in B as a single vertex, say v_{B}. Consider the UST on $G_{A, B}$. There is a unique simple curve, say Y, connecting v_{A} and v_{B}. We order this path such that it starts from v_{A} and ends at v_{B}. From Wilson's algorithm, Y is $\operatorname{LERW}\left(G_{A, B} ; v_{A} \rightarrow v_{B}\right)$. Thus, $Y=L E(X)$, where X is an $\operatorname{RW}^{\prime}\left(G_{A, B} ; v_{A} \rightarrow v_{B}\right)$. We may also view X as a random path on G, whose distribution is supported by $\Gamma_{A, B}^{V \backslash(A \cup B)}$. The probability that X follows any path $W \in \Gamma_{A, B}^{V \backslash(A \cup B)}$ is $C P_{(\cdot)}(W)$ for some constant $C>0$. If we condition on X such that its initial vertex is a and its end vertex is b, then the resulting random path, say $X_{a, b}$, is an RW' $(a \rightarrow b \mid S)$. Thus, $\operatorname{LERW}(a \rightarrow b \mid S)$ can be obtained by erasing loops on $X_{a, b}$. This shows that LERW $(a \rightarrow b \mid S)$ can be obtained by conditioning Y such that it starts from a and ends at b. Let Y^{R} denote the time-reversal of Y. Then Y^{R} is $\operatorname{LERW}\left(G_{A, B} ; v_{B} \rightarrow v_{A}\right)$. A similar argument shows that, $\operatorname{LERW}(b \rightarrow a \mid S)$ can be obtained by conditioning Y^{R} such that it starts from b and ends at a. This finishes the proof.

The above result may be applied to the LERW we studied before. Recall that the LERW that converges to chordal $\operatorname{SLE}_{2}(D ; a \rightarrow b)$ is LERW $\left(D^{\delta} ; a \rightarrow b \mid \partial D^{\delta} \backslash\{a, b\}\right.$, where $a \neq b \in$ $\partial D \cap \mathbb{Z}^{2}$. From the above proposition we immediately see that the time-reversal of this LERW is LERW $\left(D^{\delta} ; b \rightarrow a \mid \partial D^{\delta} \backslash\{a, b\}\right.$. From the convergence of LERW, we see that chordal SLE ${ }_{2}$ satisfies reversibility. Also recall that the LERW that converges to radial $\mathrm{SLE}_{2}(D ; a \rightarrow b)$ is $\operatorname{LERW}\left(D^{\delta} ; a \rightarrow b \mid \partial D^{\delta} \backslash\{a\}\right.$, where $a \in \partial D \cap \mathbb{Z}^{2}$ and $b \in D \cap \mathbb{Z}^{2}$. This LERW is the timereversal of LERW $\left(D^{\delta} ; b \rightarrow a \mid \partial D^{\delta} \backslash\{a\}\right.$, which can be obtained by conditioning LERW $\left(D^{\delta} ; b \rightarrow\right.$ ∂D^{δ}) on the event that the path ends at a. Note that the distribution of the end point of $\operatorname{LERW}\left(D^{\delta} ; b \rightarrow \partial D^{\delta}\right)$ is the discrete harmonic measure on ∂D^{δ} viewed from b. As $\delta \rightarrow 0$, this distribution tends to the continuous harmonic measure on ∂D viewed from b (the distribution of the first hitting point on ∂D of a planar Brownian motion started from b). Thus, we conclude that the time-reversal of $\operatorname{LERW}\left(D^{\delta} ; b \rightarrow \partial D^{\delta}\right)$ converges to radial $\operatorname{SLE}_{2}(D ; \widetilde{a} \rightarrow b)$ up to a time-change, where \widetilde{a} is a random point on ∂D, whose distribution is the harmonic measure on ∂D viewed from b. This is the exact statement in the paper by Lawler, Schramm, and Werner.

To prove Theorem6.3, we introduce another algorithm to generate a UST on G. Fix $v_{0} \in V$. Let $X=\left(X_{0}, X_{1}, \ldots, X_{n}, \ldots\right)$ be a simple random walk on G started from v_{0}. Construct a sequence of graphs $\left(T_{n}\right)$ as follows. Let $T_{0}=\left\{X_{0}\right\}$. Let T_{n+1} be the union of T_{n} and the vertex X_{n+1} and the edge $\left(X_{n}, X_{n+1}\right)$ if X_{n+1} has not been visited by X_{0}, \ldots, X_{n}; let $T_{n+1}=T_{n}$ if $X_{n+1} \in\left\{X_{0}, \ldots, X_{n}\right\}$. Note that each T_{n} is a tree. Let N be the covering time for X, i.e., the first n such that X visits all vertices on V. Note that a.s. N is finite. The following theorem was discovered by A. Broder and D. J. Aldous independently.

Theorem 6.4 T_{N} has the same distribution as the UST on G.
Proof of Wilson's Algorithm using Theorem6.4. (i) Let X be a random walk on G started from w. Let τ_{v} be the first time that X reaches v. Construct the family $\left(T_{n}\right)$ as before the above theorem. From Theorem6.4, $T_{\tau_{v}}$ is a subtree of the UST on G. Since $v, w \in T_{\tau_{v}}$, the only simple path on the UST connecting v and w is contained in $T_{\tau_{v}}$. Let $Y=\left(X_{\tau_{v}}, X_{\tau_{v}-1}, \ldots, X_{1}, X_{0}\right)$ be the reversal of the initial part of X up to τ_{v}. So Y starts from v and ends at w. Let Z be the only simple path on $T_{\tau_{v}}$ from v to w. We claim that $Z=L E(Y)$.

Write $Z=\left(Z_{0}, \ldots, Z_{\nu}\right)$. For $0 \leq m \leq \nu$, let τ_{m} denote the first n such that $X_{n}=Z_{m}$. Then $\tau_{0}>\tau_{1}>\cdots>\tau_{\nu}$. In fact, if $n<m \leq \nu$, since the tree $T_{\tau_{n}}$ contains $X_{0}=w=Z_{\nu}$ and $X_{\tau_{n}}=Z_{n}$, it contains the path $\left(Z_{n}, \ldots, Z_{\nu}\right)$, which implies that $Z_{m} \in T_{n}$, i.e., $\tau_{m}<\tau_{n}$. Let $u_{k}=\tau_{v}-\tau_{m}, 0 \leq k \leq \nu$. Then $u_{0}<u_{1}<\cdots<u_{\nu}$ and $Y_{u(k)}=Z_{k}, 0 \leq k \leq m$. To prove that $Z=L E(Y)$, we suffice to show that for any $j,\left\{Z_{0}, \ldots, Z_{j}\right\} \cap\left\{Y_{n}: n>u_{j}\right\}=\emptyset$. This is true because $\left\{Y_{n}: n>u_{j}\right\}=\left\{X_{n}: n<\tau_{j}\right\}$ and X does not visit $\left\{Z_{0}, \ldots, Z_{j}\right\}$ before τ_{j} thanks to the decreasing property of $\left(\tau_{j}\right)$.

It remains to show that $Z=L E(Y)$ has the distribution of $\operatorname{LERW}(v \rightarrow w)$. We suffice to show that Z is a Laplacian random walk. Note that the distribution of Y is supported by $\Gamma_{v, w}^{V \backslash v\}}$, and for every $W \in \Gamma_{v, w}^{V \backslash\{v\}}, \mathbb{P}[Y=W]=P_{(\cdot]}(W)$. Let $W=\left(W_{0}, \ldots, W_{n}, W_{n+1}\right) \in \Gamma_{v, V \backslash\{v\}}^{V \backslash\{v, w\}}$ and
$W^{\prime}=\left(W_{0}, \ldots, W_{n}\right)$. From Lemma 6.1, we have

$$
\begin{aligned}
& \mathbb{P}\left[Z_{j}=W_{j}, 0 \leq j \leq n+1\right]=\sum_{U \in \Gamma_{v, w}^{V\{v\}}, W \prec L E(U)} P_{(\cdot]}(U) \\
& =\sum_{U^{(1)} \in \Gamma_{v, W_{n}}^{V \backslash\{v, w\}}, W^{\prime}=L E\left(U^{(1)}\right)} P_{(\cdot \mathrm{J}}\left(U^{(1)}\right) . \sum_{U^{(2)} \in \Gamma_{W_{n}, w}^{V\left\{W_{j}\right\}_{j=0}^{n}, U_{1}^{(2)}=W_{n+1}}} P_{(\cdot \mathrm{j}}\left(U^{(2)}\right) \\
& =C_{n} \sum_{\substack{V\left\{W_{j}\right\}_{n}^{n} \\
U^{\left(2^{\prime}\right)} \in \Gamma_{W_{n+1}, w}^{V}}} P_{[\cdot]}\left(U^{\left(2^{\prime}\right)}\right) \\
& =C_{n} \sum_{\substack{V \in \Gamma_{W_{n+1}, w}^{V\left(\left\{W_{j}\right\}_{j=0}^{n} \cup\{w\}\right)}}} P_{[\cdot)}(A) \cdot \sum_{\substack{V \in\left\{W_{j}\right\}_{j=0}^{n} \\
B \in \Gamma_{w, w}}} P_{[\cdot]}(B) \\
& =C_{n} C \sum_{\substack{ \\
A \in \Gamma_{W_{n+1}, w}^{V \backslash\left(\left\{W_{j}\right\}_{j=0}^{n} \cup\{w\}\right)}}} P_{[\cdot)}(A)=C_{n} C h_{w \mid\left\{W_{0}, \ldots, W_{n}\right\}}\left(W_{n+1}\right),
\end{aligned}
$$

where $C_{n}=\sum\left\{P_{(\cdot .]}\left(U^{(1)}\right): U^{(1)} \in \Gamma_{v, W_{n}}^{V \backslash\{v\}}, W^{\prime}=L E\left(U^{(1)}\right)\right\}$ depends only on W_{0}, \ldots, W_{n}, and $C=\sum\left\{P_{[\cdot]}(B): B \in \Gamma_{w, w}^{\left.V \backslash\left\{W_{j}\right\}_{j=0}^{n}\right\}}\right.$ is a constant. Thus, $\mathbb{P}\left[Z_{j}=W_{j}, 1 \leq j \leq n\right]=$ $\sum_{a \sim W_{n}} C_{n} C h_{w \mid\left\{W_{0}, \ldots, W_{n}\right\}}(a)$, which implies that

$$
\mathbb{P}\left[Z_{n+1}=W_{n+1} \mid Z_{j}=W_{j}, 1 \leq j \leq n\right]=\frac{h_{w \mid\left\{W_{0}, \ldots, W_{n}\right\}}\left(W_{n+1}\right)}{\sum_{a \sim W_{n}} h_{w \mid\left\{W_{0}, \ldots, W_{n}\right\}}(a)}
$$

This shows that Z is a Laplacian random walk from v to w. So (i) is proved.
One may prove (ii) using the induction on the number of vertices. Recall that $T_{0}=\left\{v_{0}\right\}$ and T_{1} is $\operatorname{LERW}\left(v_{1} \rightarrow v_{0}\right)$. Let $G^{\prime}=G / T_{1}$, i.e., identifying all vertices on T_{1} as a single vertex. Then the number of vertices of G^{\prime} is less than that of G. Note that the UST on G conditioned to contain T_{1} agrees with the UST on G^{\prime}, and the LERW on G whose target is $S \supset T_{1}$ agrees with the LERW on G^{\prime} whose target is S / T_{1}. We leave the details to the interested readers.

Proof of Theorem 6.4. We introduce the notation of rooted spanning trees. A rooted spanning tree on G is a spanning tree on G with a marked vertex called the root. A uniform rooted spanning tree (URST) on G is a random rooted spanning tree chosen among all the possible rooted spanning trees on G with probability proportional to the degree of the root. By forgetting the root, we get a natural map from the set of rooted spanning trees to the set of spanning trees, which maps a URST on G to a UST on G.

Let \mathcal{P} denote the set of infinite paths $X=\left(X_{0}, X_{1}, \ldots\right)$ on G. Let \mathcal{P}^{*} denote the set of $X \in \mathcal{P}$ such that X visits all vertices on G. The construction before the statement of Theorem 6.4 gives a map F_{T} from \mathcal{P}^{*} to the set of spanning trees on G. In fact, the construction also gives a map $F_{R T}$ to the set of rooted spanning trees on G if we set the first vertex X_{0} to be
the root. Also note two facts: every rooted spanning tree can be constructed in this way; the construction depends only on $\left(X_{0}, \ldots, X_{N}\right)$ if N is the covering time.

Now we construct a directed graph $G_{R T}$ whose vertices are rooted spanning trees on G. For two rooted spanning trees $\left(T_{1}, v_{1}\right)$ and $\left(T_{2}, v_{2}\right)$ on G, we draw a directed edge from $\left(T_{1}, v_{1}\right)$ to $\left(T_{2}, v_{2}\right)$, and write $\left(T_{1}, v_{1}\right) \downarrow\left(T_{2}, v_{2}\right)$ or $\left(T_{2}, v_{2}\right) \uparrow\left(T_{1}, v_{1}\right)$, if $v_{1} \sim v_{2}$ and $T_{2}=T_{1} \cup\left(v_{1}, v_{2}\right) \backslash e$, where e is the first edge on the simple path on T_{1} from v_{1} to v_{2}. Every vertex (T, v) in $G_{R T}$ has exactly $\operatorname{deg}(v)$ downward neighbors and $\operatorname{deg}(v)$ upward neighbors. It is easy to see that if $T_{1}=F_{R T}(X)$ for $X=\left(X_{0}, X_{1}, \ldots\right) \in \mathcal{P}^{*}$, then $T_{2}=F_{R T}\left(X^{v_{2}}\right)$, where $X^{v_{2}}=\left(v_{2}, X_{0}, X_{1}, \ldots\right)$. This shows that we may travel from any rooted spanning tree on G to another rooted spanning tree on G along directed edges in $G_{R T}$.

A time-homogeneous random walk on G is a random walk on G started from a random vertex whose distribution is proportional to the degree of the vertex. Let X be such a random walk. We claim that $F_{R T}(X)$ is a URST on G. Let $Y=\left(v, X_{0}, X_{1}, \ldots\right)$, where v is chosen among neighbors of X_{0} with probability $1 / \operatorname{deg}\left(X_{0}\right)$ each. Then Y has the same distribution as X. So $F_{R T}(Y)$ has the same distribution as $F_{R T}(X)$. The above paragraph shows that $F_{R T}(X) \downarrow F_{R T}(Y)$ and $F_{R T}(Y)$ is chosen among all downward neighbors of $F_{R T}(X)$ in $G_{R T}$ with equal probability $1 / \operatorname{deg}\left(X_{0}\right)$.

For each rooted spanning tree (T, v) on G, let $p(T, v)=\mathbb{P}\left[F_{R T}(X)=(T, v)\right]$. Since $F_{R T}(X)$ has the same distribution as $F_{R T}(Y)$, we have

$$
p(T, v)=\sum_{(S, w):(S, w) \downarrow(T, v)} \frac{p(S, w)}{\operatorname{deg}(w)} .
$$

Let $q(T, v)=p(T, v) / \operatorname{deg}(v)$. Then $q(T, v)=\frac{1}{\operatorname{deg}(v)} \sum_{(S, w) \downarrow(T, v)} q(S, w)$. This means that the value of q at every vertex in $G_{R T}$ is equal to the average of its upward neighbors. So q is constant on $G_{R T}$, which shows that $p(T, v)$ is proportional to $\operatorname{deg}(v)$. Thus, $F_{R T}(X)$ is a URST on G as claimed.

Finally, note that a time-homogeneous random walk conditioned to start from $v \in V$ is just a regular random walk started from v. Thus, if X is a random walk on G started from v, then $F_{R T}(X)$ is URST on G conditioned to have root v. By forgetting the root, we find that $F_{T}(X)$ is just a UST on G.

6.7 UST Peano curve

Let D be a rectangle with corners at $(0,0),\left(m_{1}, 0\right),\left(m_{1}, m_{2}\right),\left(0, m_{2}\right)$, where $m_{1}, m_{2} \in \mathbb{N}$. Let $\delta \in\{1 / n: n \in \mathbb{N}\}$. Let D^{δ} as before. Let I^{δ} be the set of edges of D^{δ} on the left side and upper side. Define the dual D_{\dagger}^{δ} to be a subgraph of $(\delta / 2,-\delta / 2)+\delta \mathbb{Z}^{2}$ by shifting D^{δ} by $(\delta / 2,-\delta / 2)$. Let I_{\dagger}^{δ} be the set of edges of D_{\dagger}^{δ} on the right side and lower side. Note that every edge e of D^{δ} not in I^{δ} intersects exactly one edge, called the dual of e, of D_{\dagger}^{δ} not in I_{\dagger}^{δ}, and vice versa.

There is a one-to-one correspondence between the set of spanning trees on D^{δ} that contain all edges in I^{δ} and the set of spanning trees on D_{\dagger}^{δ} that contain all edges in I_{\dagger}^{δ}. If T is a
spanning tree on D^{δ} that contains all edges in I^{δ}, the corresponding tree, called the dual of T, is composed of all edges in I_{\dagger}^{δ} and all edges in D_{\dagger}^{δ} whose dual edge in D^{δ} does not lie on T.

Let T be a UST on D^{δ} conditioned to contain all edges in I^{δ}. Let T_{\dagger} be its dual. Then T_{\dagger} is a UST on D_{\dagger}^{δ} conditioned to contain all edges in I_{\dagger}^{δ}. Consider the graph $(\delta / 4,-\delta / 4)+D^{\delta / 2}$. Let $a=(\delta / 4,-\delta / 4)$ and $b=(n+\delta / 4, m-\delta / 4)$ be two vertices of $(\delta / 4,-\delta / 4)+D^{\delta / 2}$. There is a unique path, say $X=\left(X_{0}, \ldots, X_{k}\right)$, on $(\delta / 4,-\delta / 4)+D^{\delta / 2}$ from a to b, which is disjoint from all edges in T and T_{\dagger}. In fact, X visits every vertex of this graph. So $k=\left(2 m_{1}+1\right)\left(2 m_{2}+1\right)-1$. This path is called a UST Peano curve. As before, we extend this path to a continuous curve defined on $[0, k]$ by linear interpolation.

Theorem 6.5 [Lawler-Schramm-Werner]

For every $\varepsilon>0$, there is $\delta_{0}>0$ such that if $\delta<\delta_{0}$, there is a coupling of the UST Peano curve $X(t), 0 \leq t \leq k$, and the chordal $S L E_{8}$ trace β in D from a to b, such that for some continuous increasing function $u:[0, k) \rightarrow[0, \infty)$,

$$
\mathbb{P}\left[\sup _{0 \leq t<\infty}\left|\beta(t)-X\left(u^{-1}(t)\right)\right| \geq \varepsilon\right]<\varepsilon
$$

Remark. The theorem implies that chordal SLE_{8} satisfies reversibility. It together with Wilson's algorithm implies that the boundary of a chordal SLE $_{8}$ hull stopped at swallowing a given point is an SLE $_{2}$-type curve. This is one example of the duality property of SLE, which says that the boundary of an $\operatorname{SLE}_{\kappa}(\kappa>4)$ hull is an $\operatorname{SLE}_{16 / \kappa}$ curve.

Here we are not going to give details of the proof, but only introduce the observables that are used. Let T be the UST in the setup. Let X be the Peano curve. Fix a vertex z_{0} of D^{δ}. There is a unique simple path from z_{0} to I^{δ} on T. Let $\mathcal{E}_{z_{0}, u}$ denote the event that the only simple path on T joining z_{0} to I^{δ} has one end point that lies on the upper side of D. Then $M_{n}=\mathbb{E}\left[\boldsymbol{1}_{\mathcal{E}_{z_{0}}, u} \mid X_{0}, \ldots, X_{n}\right]$ is a bounded martingale.

We will interpret M_{n} using discrete harmonic functions. Let V_{u}^{δ} denote the set of vertices of D^{δ} that lie on the upper side of D. Let V_{l}^{δ} denote the set of vertices of I^{δ} minus V_{u}^{δ}. From Wilson's algorithm, the simple path on T joining z_{0} to I^{δ} is LERW $\left(D^{\delta} ; z_{0} \rightarrow I^{\delta}\right)$. Thus, the end point of this path is the same as the end point of $\operatorname{RW}\left(D^{\delta} ; z_{0} \rightarrow I^{\delta}\right)$. Thus, $M_{0}=\mathbb{P}\left[\mathcal{E}_{z_{0}, u}\right]=$ $h_{D^{\delta} ; V_{u}^{\delta} \mid V_{l}^{\delta}}\left(z_{0}\right)$. When δ is small, M_{0} is close to the bounded harmonic function h on D, which equals 1 on the upper side of D, equals to 0 on the left side of D, and whose normal derivative vanishes on the lower side and right side of D.

Suppose X_{0}, \ldots, X_{n} are given. Let E_{n} denote the set of edges of D^{δ} that are intersected by $\left[X_{j-1}, X_{j}\right], 1 \leq j \leq n$. Let E_{n}^{\dagger} denote the set of edges of D_{\dagger}^{δ} that are intersected by $\left[X_{j-1}, X_{j}\right]$, $1 \leq j \leq n$. Let E_{n}^{*} denote the set of edges of D^{δ} that are dual of the edges in E_{n}^{\dagger}. Then T must not contain any edge in E_{n}, and T_{\dagger} must not contain any edge in E_{n}^{\dagger}. So T must contain every edge in E_{n}^{*}. Let $G_{0}=D^{\delta}$ and $G_{n}=G_{0} \backslash E_{n}$. Let T_{n} denote the union of the edges in E_{n}^{*} together with those on the upper side and left side. Then T_{n} is a subtree of D^{δ}. Conditioned on X_{0}, \ldots, X_{n}, T is a UST on G_{n} conditioned to contain T_{n}. Thus, $M_{n}=h_{G_{n} ; V_{u}^{\delta} \mid T_{n} \backslash V_{u}^{\delta}}\left(z_{0}\right)$.

We may construct a continuous harmonic function f_{n} which is close to the discrete harmonic function $h_{G_{n} ; V_{u}^{\delta} \mid T_{n} \backslash V_{u}^{\delta}\left(z_{0}\right) \text { when } \delta \text { is small. First, let } R \text { be the open rectangle with vertices }}$ $(0,-\delta / 2),\left(m_{1}+\delta / 2,-\delta / 2\right),\left(m_{1}+\delta / 2, m_{2}\right),\left(0, m_{2}\right)$. Remove the closed triangle with vertices $(0,0),(0,-\delta / 2),(\delta / 2,-\delta / 2)$ and the closed rectangle with vertices $\left(m_{1}, m_{2}\right),\left(m_{1}+\delta / 2, m_{2}\right)$, $\left(m_{1}+\delta / 2, m_{2}-\delta / 2\right)$, from R. Now $X_{0}=a$ and b are two boundary points of D_{0}.

Note that for every vertex v in $(\delta / 4,-\delta / 4)+D^{\delta / 2}$, there is a unique pair $\left(v^{1}, v^{2}\right)$ such that v^{1} is a vertex in D^{δ}, v^{2} is a vertex in D_{\dagger}^{δ}, and $v=\left(v^{1}+v^{2}\right) / 2$. So the path $\left(X_{0}, \ldots, X_{k}\right)$ corresponds to a sequence of vertices $\left(X_{0}^{1}, \ldots, X_{k}^{1}\right)$ on D^{δ} and a sequence of vertices $\left(X_{0}^{2}, \ldots, X_{k}^{2}\right)$ on D_{\dagger}^{δ}. One may notice that for each $1 \leq s \leq k$, either $X_{s}^{1}=X_{s-1}^{1}$ or $X_{s}^{2}=X_{s-1}^{2}$. So there is a closed triangle with vertices $X_{s}^{1}, X_{s-1}^{1}, X_{s-1}^{2}, X_{s}^{2}$. Let $\Delta_{X, s}$ denote this triangle. Let $D_{n}=$ $D_{0} \backslash \bigcup_{s=1}^{n} \Delta_{X, s}$. Then for $n<k, D_{n}$ is a simply connected Jordan domain whose boundary contains X_{n} and b. Let I_{n}^{u} denote the boundary arc of D_{n} from X_{n} to b in the clockwise direction, and let I_{n}^{r} denote the other boundary arc of D_{n} between X_{n} and b.

Let $T_{z_{0}}$ denote the first n such that $z_{0} \in \Delta_{X, n}$. Let T_{u} denote the first n such that $\Delta_{X, n}$ intersects the upper side of D_{0}. Then for $n<T_{z_{0}} \wedge T_{u}, z_{0} \in D_{n}$ and I_{n}^{u} contains the boundary $\operatorname{arc} I^{u}$ of D_{0} from $\left(0, m_{2}\right)$ to b in the clockwise direction. Let h_{n} denote the bounded harmonic function in D_{n} which equals 1 on I^{u}, equals 0 on $I_{n}^{u} \backslash I^{u}$, and whose normal derivative vanishes on I_{n}^{r}. Then the value of $M_{n}=h_{G_{n} ; V_{u}^{\delta} \mid T_{n} \backslash V_{s}^{\delta}}\left(z_{0}\right)$ is close to $h_{n}\left(z_{0}\right)$ when δ is small.

We now compare the above result on UST with the following result on chordal SLE 8 .
Proposition 6.3 Let D be a simply connected domain with three distinct boundary points a, b, c. Let $\beta(t), 0 \leq t<\infty$, be chordal $S L E_{8}$ in D from a to b. Let $D_{t}=D \backslash \beta(0, t]$. Let $I_{c, b}$ denote the boundary arc of D between c and b that does not contain a. Let T_{1} denote the first t such that $\beta(t) \in I_{c, b}$. For $t<T_{1}$, let I_{t}^{1} denote the boundary arc of D_{t} between $\beta(t)$ and b that contains $I_{c, b}$, and let I_{t}^{2} denote the other boundary arc of D_{t} between $\beta(t)$ and b. For $0 \leq t<T_{1}$, let h_{t} be the bounded harmonic function in D_{t}, which equals 1 on $I_{c, b}$, equals 0 on $I_{t}^{1} \backslash I_{c, b}$, and whose normal derivative vanishes on I_{t}^{2}. Fix $z_{0} \in D$ and let $T_{z_{0}}$ denote the first time that β visits z_{0}. Then $h_{t}\left(z_{0}\right), 0 \leq t<T_{1} \wedge T_{z_{0}}$ is a continuous martingale.

Proof. We may assume that $D=\mathbb{H}, a=0, c=\infty$, and $b>0$. Suppose the driving function is $\lambda_{t}=\sqrt{\kappa} B_{t}$, and g_{t} are the chordal Loewner maps driven by λ. Suppose W maps \mathbb{H} conformally onto the half strip $\{z \in \mathbb{C}: \operatorname{Re} z<0,0<\operatorname{Im} z<1\}$ and maps $0,1, \infty$ to $i,-\infty, 0$, respectively. Then $h_{t}(z)=\operatorname{Im} W\left(\frac{g_{t}(z)-\lambda_{t}}{g_{t}(b)-\lambda_{t}}\right)$. One can show that $W\left(\frac{g_{t}(z)-\lambda_{t}}{g_{t}(b)-\lambda_{t}}\right)$ is a local martingale for any $z \in \mathbb{H}$. We leave the details to the reader.

Open problems.

1. Construct a lattice model which generates a curve that converges to radial SLE $_{8}$.
2. Let T be a UST on D^{δ} (without conditioning). Describe the scaling limit of the Peano curve surrounding T. Note that if we let D_{\dagger}^{δ} to be the subgraph of $(\delta / 2, \delta / 2)+\delta \mathbb{Z}^{2}$ restricted in the rectangle $\left\{(x, y):-\delta / 2 \leq x \leq m_{1}+\delta / 2,-\delta / 2 \leq y \leq m_{2}+\delta / 2\right\}$, then the dual of T is a UST on D_{\dagger}^{δ} with all vertices on the boundary identified as a single vertex.
3. Suppose D is a doubly connected lattice domain with boundary components C_{1} and C_{2}. Let T be the UST on D^{δ} / C_{1}, i.e., all vertices of D^{δ} on C_{1} are identified as a single vertex. Describe the scaling limit of the Peano curve surrounding T.
4. Let $G=D^{\delta} /\left(C_{1} \cup C_{2}\right)$, i.e., all vertices of D^{δ} on $C_{1} \cup C_{2}$ are identified as a single vertex. Let T be the UST on G. Since C_{1} and C_{2} are identified as the same vertex, there is no path on T connecting C_{1} with C_{2}. So T has two connected components. Now the dual of T is no longer a tree. Instead, it contains a unique simple loop separating C_{1} and C_{2}. Describe the scaling limit of this simple loop.

Remark. In the last problem, if the vertices on C_{1} and the vertices on C_{2} are identified as two distinct vertices, then there is a unique simple path on T connecting C_{1} with C_{2}. The scaling limit of this path is now well understood, which is an annulus SLE_{2} curve.

Because of the limited time, the following interesting topics about SLE are not covered in this course.

1. The existence and continuity of the SLE trace. S. Rhode and O. Schramm.
2. The Hausdorff dimension of the SLE trace. V. Beffara.
3. Intersection components of planar Brownian motions. G. Lawler, O. Schramm, and W. Werner.
4. Convergence of critical site percolation on triangular lattices to SLE_{6}. S. Smirnov.
5. Convergence of discrete Gaussian free field contour line to SLE $_{4}$. S. Sheffield and O. Schramm.
6. Convergence of critical Ising models to SLE_{3} and $\mathrm{SLE}_{16 / 3}$. S. Smirnov.
7. Natural parameterization of SLE. G. Lawler, S. Sheffield and W. Zhou.
8. Brownian loop soup. W. Werner and G. Lawler.
9. Conformal loop ensemble. W. Werner and S. Sheffield.
10. Extending SLE to multiply connected domains.
11. Reversibility of SLE $(\kappa \leq 4)$ and duality of SLE.
