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Abstract

We use Minkowski content (i.e., natural parametrization) of SLE to construct several
types of SLE,; loop measures for « € (0,8). First, we construct rooted SLE,, loop measures
in the Riemann sphere ((A:, which satisfy Mobius covariance, conformal Markov property,
reversibility, and space-time homogeneity, when the loop is parametrized by its (1 + %)—
dimensional Minkowski content. Second, by integrating rooted SLE, loop measures, we
construct the unrooted SLE, loop measure in C, which satisfies Mobius invariance and
reversibility. Third, we extend the SLE, loop measures from C to subdomains of C and
to two types of Riemann surfaces using Brownian loop measures, and obtain conformal
invariance or covariance of these measures. Finally, using a similar approach, we construct
SLE, bubble measures in simply /multiply connected domains rooted at a boundary point.
The SLE, loop measures for £ € (0,4] give examples of Malliavin-Kontsevich-Suhov loop
measures for all ¢ < 1. The space-time homogeneity of rooted SLE, loop measures in C
answers a question raised by Greg Lawler.
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1 Introduction

1.1 Overview

The Schramm-Loewner evolution (SLE), introduced by Oded Schramm in 1999 ([34]), is a one-
parameter (k € (0,00)) family of probability measures on non-self-crossing curves, which has
received a lot of attention since then. It has been shown that, modulo time parametrization,
the interface of several discrete lattice models at criticality have SLE, with different parameters
k as their scaling limits. The reader may refer to [19] 33] for basic properties of SLE.

There are several versions of SLE,; curves in the literature. For most of them, the initial
point and the terminal point of the SLE, curve are different. Motivated by the Brownian loop
measure constructed in [25], people have been considering the construction of a new version of
SLE called SLE, loops, which locally looks like an ordinary SLE, curve, starts and ends at the
same point, and satisfies some prerequired properties.

In this paper we focus on the SLE with parameter x € (0, 8), which has Hausdorff dimension
d:=1+% € (1,2) (cf. [4]), and possesses natural parametrization (cf. [23} 26]) that agrees with
its d-dimensional Minkowski content (cf. [20]). Lawler and Sheffield introduced the natural
parametrization of SLE in [23] in order to describe the scaling limits of discrete random paths
with their natural length. So far the convergence of loop-erased random walk to SLEs with
natural parametrization has been established (cf. [24]).

Besides conformal invariance or covariance, an SLE, loop is expected to satisfy the space-
time homogeneity when it is parametrized by its natural parametrization, i.e., Minkowski con-
tent. The existence of such SLE, loops was conjectured by Greg Lawler.

Similar to the Brownian loop, the “law” of an SLE, loop can not be a probability measure
or a finite measure. Instead, it should be a o-finite infinite measure. We will call it an SLE,
loop measure to emphasize this fact.

In [38] Werner used the Brownian loop measure to construct an essentially unique measure
on the space of simple loops in any Riemann surface, which satisfies conformal invariance and
the restriction property, and has a close relation with SLEg/3.

Inspired by Malliavin’s work [27] and SLE theory, Kontsevich and Suhov conjectured in [16]
that for every ¢ < 1, there exists a unique locally conformally covariant measure on simple loops
in a Riemann surface with values in a certain determinant bundle. Furthermore, they proposed



a reduction of this problem, to construct a scalar measure on simple loops in C surrounding
the origin, satisfying a restriction covariance property. The parameter c in their conjecture is
the central charge from conformal field theory (CFT). It is related to the parameter x for SLE

by the formula:

c= (6’@2(3”8). (1.1)

For ¢ = 0 (i.e., k = 8/3), their measure is Werner’s measure. For other ¢ < 1, their measure
should correspond to the SLE, loop measure for some x < 4.

A loop version of SLE called conformal loop ensemble (CLE,) was constructed for x €
(8/3,8) by Sheffield and Werner (cf. [37]) in order to describe the scaling limit of a full collection
of interfaces of critical lattice models. A CLE is a random collection of non-crossing loops in
a simply connected domain. Every loop in a CLE, looks locally like an SLE,; curve. CLE is
different from the SLE loop here because the latter object is a single loop.

Kassel and Kenyon constructed in [I4] natural probability measures on cycle-rooted span-
ning trees (CRSTs). A CRST on a graph G is a connected subgraph, which contains a unique
cycle called unicycle. They proved that, if G approximates a conformal annulus X, as the mesh
size tends to 0, the law of the unicycle of a uniform CRST on G, conditional on the event that
the unicycle separates the two boundary components of ¥, converges weakly to a probability
measure on simple loops in X separating the two boundary components of . They proposed
a question whether this limit measure can be constructed via a stochastic differential equa-
tion, like a variant of SLEs defined on Riemann surfaces. The limit measure was later studied
in [5] using a different approach, and it was explained there that this gives an example of a
Malliavin-Kontsevich-Suhov loop measure for ¢ = —2, i.e., Kk = 2. R

Kemppainen and Werner defined ([15]) unrooted SLE,; loop measure in C for x € (8/3,4]
as the intensity measure of a nested whole-plane CLE,, and proved that this measure satisfies
Mobius invariance and is the only invariant measure under various Markov kernels defined using
CLE. They used the loop measure to prove the Mobius invariance of nested CLE on C. They
also defined a rooted SLE, loop measure as a suitable scaling limit of their unrooted loop
measure restricted to the event that the curve passes through a small disc centered at a marked
point, and claimed that the limit convergesﬂ

Another natural object is the SLE, bubble measure, which is similar to the Brownian bubble
measure constructed in [22]. In the same paper, an SLEg /3 bubble measure was constructed.
Later in [37], SLE, bubble measures for x € (8/3,4] were constructed by conditioning a CLE
loop to touch a boundary point.

Field and Lawler have also been working on the construction of SLE loops ([10]). They have
constructed SLE loops rooted at an interior point in the whole plane and in simply connected
domains, and are able to verify that the measures are conformally covariant. Benoist and

"Werner told the author privately that they were able to prove that the rooted loop measure is well defined
and satisfies the conformal Markov property (CMP) as described in the current paper (Theorem (ii)). Given
this fact, using the uniqueness statement (Theorem [4.1| (vii)), we see that the loop measures constructed in the
current paper for x € (8/3,4] agree with Kemppainen-Werner’s measures.



Dubédat ([7]) have been working on the construction of SLE loops using flow lines of Gaussian
free field, a natural object from Imaginary Geometry ([30, 28]).

1.2 Main results

In this paper, we construct several types of SLE, loop measures for all x € (0,8). Below is a
rough version of the theorem about rooted SLE, loop measures in C (for complete and rigorous
statements, see Theorem for details).

Theorem 1.1. Let k € (0,8) and d = 1 + 5. There is a o-finite measure pd on the space
of (oriented) nondegenerate loops rooted at 0 such that, if v follows the “law” of u}, then the
following hold.

(i) (Conformal Markov property) For any stopping time T that does not happen at the
initial time, conditional on the part of v before T and the event that T happens before the
loop returns to 0, the rest part of v is a chordal SLE, curve.

(ii) (Space-time homogeneity) We may parametrize v periodically with period p equal to
the (d-dimensional) Minkowski content of v, such that v(0) = 0, and for any a < b < a+p,
the Minkowski content of y([a,b]) equals b — a. Suppose v has this parametrization. For
any deterministic number a € R, if we reroot the loop at vy(a), which means that we define
a new loop To(7y) by Ta(7)(t) = y(a +t) — v(a), then the “law” of To(Y) is also u}.

(iii) (Reversibility) The reversal of v also has the “law” p}.

(iv) (Mébius covariance) For every Mébius transformation F that fives 0, we have F(u) =
| F7(0)[*~ .

(v) (Finiteness of big loops) For any r > 0, (a) the u} measure of loops with diameter > r
is finite; (b) the ,u(l) measure of loops with Minkowski content > r is finite.

(vi) (Uniqueness) The measure ug is determined by (i) and (v.a) up to a constant factor.

Here we remark that the conformal Markov property (CMP) is an essential property that
characterizes SLE. The CMP of the rooted SLE, loop measure justifies its name, and allows us
to apply the SLE-based results and arguments to study SLE, loop measures. The space-time
homogeneity gives a positive answer to Lawler’s conjecture.

The construction of rooted SLE, loop measure uses two-sided whole-plane SLE,. A two-
sided whole-plane SLE, is a random loop in C passing through two distinct marked points,
which is characterized by the property that, conditional on any arc on the loop connecting the
two marked points, the other arc is a chordal SLE,; curve. Although this is also an SLE, loop,
it does not satisfy the space-time homogeneity that we want.

The measure M(l) in Theorem is constructed by integrating the laws of two-sided whole-
plane SLE, curves with marked points being 0 and z € C\ {0} against the function |z|>(¢=2),



and then unweighting the measure of loop by the Minkowski content of the loop. The proof of
the theorem makes use of the reversibility of two-sided whole-plane SLE,; curves ([29, 28], 43])
and the decomposition of chordal SLE, in terms of two-sided radial SLE,; ([8, 40]).

A corollary of this theorem (Corollary is that if a two-sided whole-plane SLE, curve
~ from oo to co passing through 0 is parametrized by d-dimensional Minkowski content with
~v(0) = 0, then it becomes a self-similar process of index % with stationary increments. This
result was later used in [39] to study the Holder regularity and dimension property of SLE with
natural parametrization.

After obtaining rooted SLE, loop measures, we construct the unrooted SLE, loop measure

in C by integrating SLE, loop measures rooted at different z € C against the Lebesgue
measure, and then unweighting the measure by the Minkowski content of the loop. The unrooted
SLE, loop measure satisfies Mobius invariance and reversibility.

After constructing SLE loops in @, we turned to the construction of SLE loops in subdomains
of C. We follow Lawler’s approach in [I8] about defining SLE in multiply connected domains
using Brownian loop measures. At first, we tried to define rooted /unrooted SLE, loop measures
in a subdomain D of C by

cuP(L(D9)) |0

Culp(‘c('ch)) . 'u/ ,

MID;Z = 1{~CD}€ ’ :u,l,? :uOD = 1{-CD}€
where p' is the Brownian loop measure in C defined in [25], L(~, D) is the family of loops
in C that intersect both v and D€ and c is the central charge given by However, as
pointed out by Laurie Field, the quantity p'®(£(y, D)) is not finite for any curve v in D, and
the correct alternative is the normalized Brownian loop measure introduced in [9].

The normalized Brownian loop measure introduced in [9] is the following limit:

A (V1,Va) = Eig[ul{?zw|>r}(ﬁ(‘/17 Va)) — loglog(1/r)], (1.2)

where ul{l‘)ziz is the Brownian loop measure in {|z — zg| > r}, and zy € C. It was proved in

o|>r}
[9] that the limit converges to a finite number if V; and Vs are disjoint compact subsets of C;
and the value does not depend on the choice of zy, and satis/fjes Moébius invariance. Thus, the
correct way to define SLE, loop measures in subdomains of C is using;:

CA*(HDC) CA*('vDC) . 0

:ulD;z = 1{~CD}6 : :ui'? ,UOD = 1{-CD}6 B

Combining the generalized restriction property of chordal SLE with the CMP of rooted SLE,
loop measure in @, we are able to prove that the rooted and unrooted SLE, loop measures in
the subdomains of C satisfy conformally covariance and invariant, respectively.

By definition, the SLE,; loop measures in subdomains of C satisfy the generalized restriction
property. Especially, when k = 8/3, i.e, ¢ = 0, they satisfy the strong restriction property, and
so agree with Werner’s measure. When « = 2 and D is a conformal annulus, if we restrict
u% to the family of curves that separate the two boundary components of D, then we get
a finite measure, which is expected to agree with Kassel-Kenyon’s probability measure after



normalization. For xk € (8/3,4], the SLE, loop measures and bubble measures should agree
with the Kemppainen-Werner’s loop measures and Sheffield-Werner’s bubble measures up to a
multiplicative constant depending on k. Our study of SLE, loop measures will provide better
understanding of these known measures. Moreover, the SLE,; loop measures for x € (0, 4] give
examples of Malliavin-Kontsevich-Suhov loop measures for all ¢ < 1.

Later, we extend unrooted SLE, loop measures to two types of Riemann surfaces S using
the Brownian loop measure on S. A Riemann surface S of the first type satisfies that, if for
any two disjoints subsets V3, Vo of S such that V; is compact and V5 is closed, we have

PP (L(V1, V) < oo, (1.3)

where ,ug) denotes the Brownain loop measure on S. For a Riemann surface S of the second
type, the above quantity is infinite, but the normalization method in [9] works. This means
that: first, if K is a nonpolar closed subset of S, i.e., K is accessible by a Brownian motion on
S, then S\ K is of the first type; second, for any two disjoint closed subsets V1, V5 of S, one of
which is compact, and any zg € S, the limit

* 1 Ip
AS(Vvla VYQ) T I:ﬂ)l[/j’s\ﬁ(m’r) (‘C(Vi, Vv2)) - 1Og log(l/r)] (14)

converges to a finite number, which does not depend on the choice of 29 € S. Here B(zp,r) is a
closed disc centered at zy w.r.t. some chart surrounding zy. The limit should also not depend
on the choice of the chart. The quantity M?\E(zo T)(/J(Vl, V3)) is finite because B(zg,r) is a
nonpolar set. We believe that ([I1]) any compact Riemann surface is of the second type, and
any compact Riemann surface minus a nonpolar set is of the first type.

In contrast to the SLE, defined in multiply connected domains and Riemann surfaces in
[3, [44], 18], the definition of (unrooted) SLE, loop measure in a Riemann surface does not
require that the surface has a boundary, and does not need a marked point to start the curve.
This makes the SLE, loop measure a more natural object in some sense.

At the end of the paper, we use a similar method to construct an SLE, bubble measure uﬁ; .
in the upper half plane H rooted at a boundary point z. We obtain a theorem for uﬁ.m, which is
similar to Theorem except that now the space-time homogeneity (ii) does not make sense,
and the covariance exponent 2 — d in (iv) should be replaced by £ — 1 (and F maps H onto
H). Using the Brownian loop measure, we then extend the SLE, bubble measures to multiply
connected domains.

The paper is organized as follows. In Section [2] we fix symbols and recall some fundamental
results about SLE. In Section 3|, we describe how a whole-plane SLE,(2) curve is distorted by
a conformal map that fixes 0. In Section [4 we construct the rooted and unrooted SLE, loop
measures in C. In Section |5, we construct SLE, loop measures in subdomains of C and in
general Riemann surfaces. In Section [6] we construct SLE, bubble measures. In the appendix,
we extend the generalized restriction property for chordal SLE, from « € (0,4] to x € (0, 8).
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2 Preliminaries

2.1 Symbols and notation

Throughout, we fix k € (0,8). Let d =1+ § € (1,2) and c be given by . Let H={z €
C:Imz>0};D={ze€C:|z|<1};D*={2€C:|z| >1}U{oo}; T = 0D = dD*. For
zop € Cand r > 0, let B(zo;r) = {z € C : |z — 2| <7"} For a set S € C and r > 0, let
B(S;r) = U,cg B(z;r). Let €' denote the map z — e*. We will use the functions siny =
sin(-/2), cosa = cos(-/2), and coty = cot(-/2).

We use m and m? to denote the 1-dimensional and 2-dimensional Lebesgue measures, re-
spectively. Given a measure p, a nonnegative measurable function f, and a measurable set F on
a measurable space (2, we use f-u to denote the measure on Q that satisfies (f-u)(A) = fA fdu
for any measurable set A in 2, and use p|g to denote the measure 1g-p = p(-NE). If h:Q—Q
is a measurable map, then we use hL,u ) to denote the pushforward measure p o h~* on_ Q.

The Brownian loop measure in C is a sigma-finite measure on unrooted loops in (C which
locally look like planar Brownian motions. We use u!P to denote the Brownian loop measure
in C. Let Lp(A, B) (resp. Lp(A)) denote the sets of loops in D that intersect both A and B
(resp. A). We omit the subscript D when D = C. We need the following fact ([9, Corollary
4.20]): if D is a nonpolar domain, i.e., 9D can be visited by a Brownian motion, then
holds with S = D and disjoint closed subsets Vi, Vs of D, one of which is compact. If D = C,
P (Lp(Vy, Va)) is not finite. Instead, we should use the normalized quantity A*(V,Vs) in the
formula as introduced in [9]. Suppose Dy C Dy are two nonpolar subdomains of @, and
K is a compact subset of D;. Using the fact that £(K, DY) is the disjoint union of £(K, D5)
and Lp, (K, D2\ D) and the formula , we get the equality:

A*(K, DY) = A*(K, D$) + u'P(Lp, (K, D2\ Dy)). (2.1)

We will use an important notion of modern probability: kernel (cf. [13]). Suppose (U,U) and
(V,V) are two measurable spaces. A kernel from (U,U) to (V,V)isamap v:U xV — [0, ]
such that (i) for every u € U, v(u,-) is a measure on V, and (ii) for every F' € V, v(-, F) is
U-measurable. The kernel is said to be finite if for every u € U, v(u,V) < oo; and is said to
be o-finite if there is a sequence F,, € V, n € N, with V' = J F}, such that for any n € N and
ue U, v(u, F,) < oo. Let p be a o-finite measure on (U,U). Let v be a o-finite y-kernel from



(U,U) to (V,V). Then we may define a measure u ® v on U x V such that
puRu(E x F) :/ v(u, F)du(u), Eel, FeV.
E

Sometimes, we write u ® v as u(du) ® v(u,dv) when the meaning of u ® v is clearer with the
variable u, v explicitly stated.

If v is a o-finite measure on (V,V), and p is a o-finite kernel from (V,V) to (U,U), then we
use ,u®1/ or u(v, du)%l/(dv) to denote the measure on U x V, which is the pushforward of v ® p
under the map (v,u) — (u,v).

We may describe the sampling of (X,Y") according to the measure y® v in two steps. First,
“sample” X according to the measure p. Second, “sample” Y according to the kernel v and
the value of X. After the second step, the marginal measure of X is changed unless v is p-a.s.
a probability kernel, i.e., v(u,V) = 1 for p-a.s. every u € U. The new marginal measure of
X after sampling Y is absolutely continuous w.r.t. u. If v is finite, then the new marginal
measure of X is o-finite, and its Radon-Nikodym derivative w.r.t. u is v(-,V); otherwise, the
new marginal measure of X is not o-finite, and the Radon-Nikodym theorem does not apply.

By a simply connected domain, we mean a domain that is conformally equivalent to D.
Prime ends (cf. [I]) of simply connected domains are needed to rigorously describe the initial
point and terminal point of a chordal SLE or two-sided radial SLE curve. For a simply connected
domain D, a boundary point zy € 9D, and a prime end p of D, if for any sequence (z,) in
D, z, — zy if and only if 2z, — p then we do not distinguish zy from p. For example, if D
is a Jordan domain, then there is a one-to-one correspondence between boundary points of D
and prime ends of D. If v is a simple curve that starts from a boundary point of a simply
connected domain D, stays in D otherwise, and ends at an interior point of D, then the tip of
~ determines a prime end of D \ ~, while every other point of v does not determine a prime
end of D\ ~. Instead, each of them corresponds to two prime ends. In this paper, when we say
that a curve lies in a simply connected domain D, it often means that the curve is contained
in the conformal closure of D, i.e., the union of D and all of its prime ends.

Conf
By f: D 2 E , we mean that f maps a domain D conformally onto a domain FE. If, f also
maps interior points or prime ends z1,..., 2, of D to interior points or prime ends wy, ..., wy,

. Conf
of E, then we write f: (D;z1,...,2,) — (E wi,...,wy).

For a simply connected domain D with two distinct prime ends a and b, and zg € D, we
use uﬁ <a—sb and 1/2’;E <aszo—sb 10 denote the laws of a chordal SLE, curve in D from a to b and a
two-sided radial SLE curve in D from a to b through zy, respectively, modulo a time change.
For zg # wy, we use Vfé_)wo and I/ZO w, t0 denote the laws of a whole-plane SLE,(2) curve in C
from zy to wg and a two-sided whole-plane SLE, curve in C from zo to zg passing through wy,
respectively, modulo a time change. The superscript # is used to emphasize that the measure
is a probability measure.

We use G p.q—p to denote the Green’s function for the chordal SLE: ,u,D b We have a

close-form formula for G000 (cf. [20]):

GH;O—H)O(Z) = az| (Imz) R _2? zZ € Ha (22)



where ¢ > 0 is a constant depending only on x. For general (D;a,b), we may recover Gp., b
using ([2.2) and the conformal covariance property:

Cpiass(2) = |6/ ()2 Cpensale(2)), ifg: (Dsa,b) 2 (Ese,d). (2.3)

A stopping time 7 for a curve is called nontrivial if it does not happen at the initial time.
This is an assumption used in Theorem (i). For a curve 7 and a (stopping) time 7, we use
K+ () to denote the part of y from its initial time till the time 7.

For two curves [ and « such that the terminal point of 8 agrees with the initial point -,
we use 5 @ vy to denote the concatenation of 5 and v (modulo a time change). For a measure
u and a kernel v on the space of curves, if u ® v is supported by the pairs (/3,v) such that
B @ v is well defined, we then use p @ v to denote the pushforward measure of p ® v under the
concatenation map (3,7) — 5@ 7.

For a simply connected domain D with two distinct prime ends a and b, let I'(D;a,b)
denote the family of curves v in D (modulo a time change) started from a such that ~ does
not intersect a neighborhood of b in D, and the unique connected component of D \ v that has
b as its prime end, denoted by D(~;b), has a prime end determined by the tip of «, denoted

by Ytip.- For v € I'(D; a,b), the chordal SLE, measure ,uﬁ( is well defined. Moreover,

Yib)ip—b
v 'uﬁ(”/'b)mip _p, is a kernel from I'(D; a,b) to the space of curves.

For z € C, let F(@i) denote the set of curves v in C (modulo a time change) from 2
to another point i, € C, such that there is a unique connected component of C \ v whose
boundary contains z and has two prime ends determined by z and ~ygip, respectively. Let (C(’y, 2)
denote this connected component. For z # w € C, let F((C z;w) denote the set of v € F((C z)
such that w € (C(’y, z). For v € F((C, z;w), the two-sided radial SLE,, measure v

Clvs2)ymip—rw—rz
is well defined, and the map from v € I'(C; z; w) to this measure is a kernel.

2.2 SLE processes and their conformal Markov properties

In this subsection, we briefly review several types of SLE processes that are needed in this
paper, and describe their conformal Markov properties (CMP).

A chordal SLE, curve is a random curve running in a simply connected domain D from one
prime end to another prime end. It is first defined in the upper half-plane H from 0 to co using
chordal Loewner equation, and then extended to other domains by conformal maps. Chordal
SLE is characterized by its CMP, i.e., if 7 is a stopping time for a chordal SLE, curve v in D
from a to b, then conditional on the part of v before 7 and the event that 7 < T} (the hitting
time at b), the rest part of 7 is a chordal SLE,; curve from (7) to b in the remaining domain.
From ([43], 29]) we know that chordal SLE,; satisfies reversibility, i.e., the reversal of a chordal
SLE, curve in D from a to b has the same law (modulo a time change) as a chordal SLE,; curve
in D from b to a.

A two-sided radial SLE, curve is a random curve running in a simply connected domain D
from one prime end a to another prime end b through an interior point zy. It is defined by first



running a radial SLE(2) curve in D from a to zp with force point at b, and then continuing
it with a chordal SLE, curve from zy to b in the remaining domain. Two-sided radial SLE
also satisfies CMP: if 7 is a stopping time for the above two-sided radial SLE, curve -y, then
conditional on the part of v before 7 and the event that 7 < T, (the hitting time at zg), the rest
part of 7 is a two-sided radial SLE,; curve from (1) to b though 2y in the remaining domain.
Intuitively, one may view a two-sided radial SLE, curve as a chordal SLE, curve conditioned
to pass through an interior point.

Using the results and arguments in [43] 29], one can show that the two-sided radial SLE,
curve also satisfies reversibility, i.e., the reversal of a two-sided radial SLE, curve in D from a
to b through z has the same law (modulo a time change) as a two-sided radial SLE,, curve in
D from b to a though zg. In particular, we see that the two arms of a two-sided radial SLE,
curve satisfies the resampling property: conditional on any one arm, the other arm is a chordal
SLE, curve in the remaining domain.

A two-sided whole-plane SLE,; curve from a to a through b is a random loop in the Riemann
sphere C that starts from a € (C passes through b € (C and ends at a. The first arm of the curve
is a whole-plane SLE,(2) curve from a to b. Given the first arm of the curve, the second arm of
the curve is a chordal SLE,; curve from b to a in the remaining domain. Two-sided whole-plane
SLE is related to two-sided radial SLE, by the following CMP: If 7 is a nontrivial stopping
time for a two-sided whole-plane SLE,; curve v from a to a through b, then conditional on the
part of v before 7 and the event that 7 < Tj, the rest part of 7 is a two-sided radial SLE, curve
from (1) to a though b in the remaining domain. If the event is replaced by T, < 7 < Ty,
where T, is the returning time at a, then the rest part of + is a chordal SLE,; curve.

From the resampling property of two-sided radial SLE,, and the reversibility of whole-plane
SLE,(2) and chordal SLE, (]29] 28], 43]) we know that two-sided whole-plane SLE satisfies the
following two types of reversibility properties. Suppose v is a whole-plane SLE, curve from «a
to a through b. Then (i) the reversal of v has the same law (modulo a time change) as 7; and
(ii) the closed curve obtained by traveling along any arm from b to a and continuing with the
other arm from a to b has the same law (modulo a time-change) as a whole-plane SLE,; curve
from b to b through a.

The CMP of chordal SLE may be stated in terms of kernels by the following formula. Let
T, be the hitting time at b. If 7 is a stopping time, then

KT(Mﬁ;aab|{T<Tb})(d’yT) ® M%(%;b);(%)ﬁp%b(dVT) = /"Lﬁ;a*)b|{T<Tb}7 (2.4)

where implicitly stated in 1} is that ICT(uﬁ,a_)b]{T<Tb}) is supported by I'(D; a, b).
The CMP of the two-sided whole-plane SLE may be stated in terms of kernels by the
following formula. Let Ty, be the hitting time at w. If 7 is a nontrivial stopping time, then

,CT(Vj;w’{T<Tw})(d’7‘F) D (dlyT) = Vj;w|{7'<Tw}' (25)

v
C(v732);(vr ) tip—w—rz

where implicitly stated in li is that ICT(Vf_>w|{T<Tw}) is supported by F(@; z;w), and the

v, on the left may be replaced by Z/f;w.
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2.3 Minkowski content measure

Now we review the Minkowski content. Since we have fixed d = 14§ € (1,2), we will omit the
word “d-dimensional”. Let S C C be a closed set. The Minkowski content of S is defined to be
Cont(S) = hﬂ)l r2m?(B(S;r)), (2.6)
T
provided that the limit exists. Similarly, we define the upper (resp. lower) Minkowski content
of S: Conty(S) (resp. Cont,(S)) using (2.6) with limsup (resp. liminf) in place of lim, which
always exists.
Here are some basic facts. We always have Cont;(S) < Conty(S), and the equality holds
iff Cont(.S) exists, which equals the common value. If S C T', then Cont,(S) < Cont,(7") and
Contg(S) < Contg(T). Moreover, if S = J;2, Sn, then

o0

Cont($) < 3 Coni(S,): (27)
n=0
Cont,(S) < Cont,y(So) + iﬁ(&l). (2.8)

n=1

Definition 2.1. Let S,U C C. Suppose M is a measure supported by S N U such that for
every compact set K C U, Cont(K NS) = M(K) < oco. Then we say that M is the Minkowski
content measure on S in U, or S possesses Minkowski content measure in U. If U = C, we may
omit the phrase “in U”.

Remark 2.2. If S possesses Minkowski content measure in U, then the measure is determined
by S and U. We will use Mg.;; to denote this measure. In the case U = C, we may also omit
the subscript U. If in addition, U’ C U, then for any closed set FF C C, S’ := SN F also
possesses Minkowski content measure in U’, and Mg.;y = Mg,u|gnu.

Definition 2.3. Let u be a measure on C. Let v:1I— C be a continuous curve, where [ is a
real interval. We say that « can be parametrized by p, or p is a parametrizable measure for v if
there is a continuous and strictly increasing function 6 defined on I such that for any a < b € I,

0(b) — 6(a) = u(v([a, b]))-

Remark 2.4. Suppose a parametrizable measure u for v exists. Then we may reparametrize
~ such that for any a < b in the definition domain, p(y([a,b])) = b — a. In this case, we say
that + is parametrized by p. Consider the equality p(y(A4)) = m(A) for such . By definition,
it holds for any interval A C I, where I is the definition interval of . By subadditivity and
monotone convergence of measures, the equality also holds for any finite or countable union
of subintervals of I; and if A and B are disjoint intervals, then p(y(A) N~y(B) = 0. Thus, v
induces an isomorphism modulo zero between the measure spaces (I,m|7) and (v, p), i.e., there
exist A C I and B C v such that m(I \ A) = u(y\ B) = 0, and + is an injective measurable
map from A onto B such that y(m|4) = ul|p.
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If in addition, v is a non-degenerate closed curve, and we extend - periodically to R, then
for any a,b € R with b —a € [0, u(7)], we have u(vy([a,b])) = b — a. In this case, we say that
is periodically parametrized by u.

Lemma 2.5. A chordal SLE, curve v in H from 0 to co a.s. possesses Minkowski content
measure, which is supported by H and parametrizable for .

Proof. Let 6, be the natural parametrization for ~ ([23, 26]). From [20] we know that 6;
is a.s. a strictly increasing continuous adapted process with 8y = 0 such that for any 0 <
t1 < to, Cont(y[t1,t2]) = 6, — 0,. We claim that ~(df) is the (d-dimensional) Minkowski
content measure on 7. To see this, we need to prove that for any compact subset K of 7,
Cont(K) = ~(df)(K). Since lim; o 7(t) = oo ([33]), v~ 1(K) is a compact subset of [0, 00).
So it suffices to prove that for any compact set J C [0,00). Cont(y(J)) = db(J). We already
know that this is true for J = [t1,t2] for any 0 < ¢; < t9. Suppose J = Uj 1laj, b;], where
0<a1 <b<as<by<---<ay<by,. From,weget

Cont(y(J)) < Z Cont(v[aj, b; Z Op; — O, = (dO)(J).
Let J be any compact subset of [0,00). We may find a decreasing sequence (.J,,) such that
each Jp, is of the form (J;_;[a;,b;], and J = (\7_; Jm. From this, we see that

Cont(y(J)) < lim Cont(y(Jm)) < lim (d0)(Jn) = (dO)(J).

m—00

Let R = maxJ + 1. Then we may express (0, R) as the disjoint union of J and finitely or
countably many open intervals (a,, by,). Using (2.8) we get

Cont(v[0, R]) < Conty(y(J)) + Y _ Conta([an, bn)).
Since Cont ([0, R]) = (d)([0, R]) and Cont(v[an,b,]) = (d)([an, bn]) = (db)((an,bn)), we get
Conty(v()) = (d0)([0, B]) = 3 (d0)((an: bn)) = (d0)(J).

Combining this with Contg(y(J)) < (df)(J), we get Cont(v(J)) = (df)(J), as desired.
Since d > 1, for any n € N, v(d#)([-n,n]) = Cont(y N [-n,n]) < Cont([-n,n]) = 0. So we
get v(df)(R) = 0. Thus, v(df) is supported by H \ R = H. Finally, since

6(b) — 0(a) = Cont(y([a, b])) = Ma(v([a,8])) = ~(db)([a,b]), VO <a<b,
and 6 is continuous and strictly increasing, v(df) is parametrizable for ~. O

Lemma 2.6. Suppose that S possesses Minkowski content measure Mg.iy in an open set U C C.
Suppose f is a conformal map defined on U such that f(U) C C. Then for any compact set
K cU,

Cont(f(K15) = [ 17N M50 (:). (2.9)
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From this we see that the Minkowski content measure of f(S NU) in f(U) exists, which is
absolutely continuous w.r.t. f(Mg.ir), and the Radon-Nikodym derivative is |f'(f~1(-))|%.

Proof. Tt suffices to prove (2.9). Let R > 0 be such that B(f(K); R) C f(U). Fix § € (0, R/6)
to be determined. Define the squares

Qmn = [mo,(m+1)d] x [nd, (n+1)6], m,n € Z.

Label the finite set 1 = {o € Z? : f(S)NQ, # 0} as {u1,...,tn}. Then Q,; C f(U) for
1 <j<n Let K; = Kﬁf‘l(QLj), 1 <j<n Then K = U?:lKj- Since d > 1, and
forany 1 < j < k < n, K; N K, is either empty or contained in a straight line, we have
Ms(K; N Kk) = Cont(K; N Ki) = 0. Thus, Mg(K) = Z] 1 Ms(Kj). Fix e > 0. We may
choose § small enough such that with L; := B(Kj;6), 1 < j <n, we have

’ 2

5_|_/ |f ddMS >ZMS SuszL |f (Z)

1nfz€L ' (2)[>¢

7j=1
- ‘ lnfzeL |f d _
> ;MS(KJ)SUPZGLJ' e |2 a _/ |f )“dMg(z) — ¢, (2.10)
Let r € (0,9). By Koebe’s distortion theorem, we have
r/1f(2)] r/1f(2)]
FBG F{ ) € BUE) € FBG: L)
Thus, for any 1 < 7 <n,
(o LR TN gy < g LR ) o)
1+ %) (1-%)
Using the second inclusion in , we get
n fz /
(B )er) < Y- sup 17 (2w 0 P
j=1%%%
This together with Cont(K;) = Mg(K;) and formula implies that
"L sup.cp, (%)) ,
Cont(f(K)) < Z mfzeLEL\f’ )‘2_dMs(Kj) < /K | (2)|%dMs(2) + €. (2.12)

Using the first inclusion in and that f(K;) C Q,;, we get

r/sup.ex, |f(2)]
m?(B( >Zgw? (B~ 1

)
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- Z mZ(B(QLj N Qbk; T))
1<j<k<n
This together with Cont(K;) = Mg(Kj;), formula (2.10), and that Cont(QLj NQ,) =0 (as
d > 1) implies that

infoer, |/ (2)°

2 supey, [f/ ()P

Since (2.12) and (2.13)) both hold for any € > 0, we get (2.9). O

Remark 2.7. From the above two lemmas, we see that, if 8 is a chordal SLE, curve in a
simply connected domain D C C from a to b, then § possesses Minkowski content measure

in D, which is parametrizable for any subarc of § (strictly) contained in D. If there exists

Conf
W : (H;o0) — (D;b), which extends conformally across R, then the whole  without b

possesses Minkowski content measure in C, which is parametrizable for 5\ {b}. If D is an
analytic Jordan domain, then the previous statement holds for the entire S including b. Here
we use the reversibility of chordal SLE, to exclude the bad behavior of 5 near b.

Cont(f(K)) =

MS(Kj)z/Kyf’(z)yddMS(z)—e. (2.13)

2.4 Decomposition of chordal SLE

Field proved in [§] that, for x € (0, 4], if one integrates the laws of two-sided radial SLE, curves
in a suitable simply connected domain D passing through different interior points (with the
two ends fixed) against the Green’s function for the chordal SLE, curve, then one gets the law
of a chordal SLE, curve biased by the Minkowski content of the whole curve. This is analogous
to a simple fact of discrete random paths: if one integrates the laws of the path conditioned to
pass through different fixed vertices against the probability that the path passes through each
fixed vertex, one should get a measure on paths, which is absolutely continuous w.r.t. the law
of the original discrete random path, and the Radon-Nikodym derivative is the total number of
vertices on the path, which is due to the repetition of counting.

Later in [40], the author extended Field’s result to all k € (0, 8). Now we review a proposition
from [40]. It is expressed in terms of measures on the space of curve-point pairs.

Proposition 2.8. Let D be a simply connected domain with two distinct prime ends a and b.
Then

%
M%;a—)b(d’y) ® M’}’?D(dz) = Vﬁ;a—m—w(dﬂy) ® (GD;G—>I7 ’ H12)(d2)

Proof. The statement in the special case (D;a,b) = (H;0,00) follows from [40, Theorem 4.1]
and Lemma[2.5] The statement in the general case follows from that in the special case together

with Lemma and (2.3). O
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Remark 2.9. This proposition is very important for this paper. It has a richer structure than
Field’s result because it concerns both curve and point, which makes it more convenient for
applications. If [, Gp.—(2) m?(dz) < oo (this holds if, e.g., D is a bounded analytic domain
as assumed in [§]), then the measure in the statement is finite. So the Minkowski content of
the entire chordal SLE, curve is a.s. finite. By looking at the margin of the restricted measure
on the space of curves, we then recover Field’s result. For a general domain D, we may still
restrict the measure to a compact subset of D, and get some useful equality.

We now use this proposition to show that two-sided radial SLE, curves and two-sided
whole-plane SLE, curves also possess Minkowski content measures.

Lemma 2.10. For every 0 € (0,27), Vuﬁew—m-n'a‘s" v (including its two end points) possesses

Minkowski content measure, which is supported by D and parametrizable for .

Proof. From Proposition we know that if we integrate the laws l/gfo aoo for different z
against the measure 1xGH.0— o0 - m? for any compact set K C H, then we get a measure, which
is absolutely continuous w.r.t. ,ug,o _oo- From Lemma and Fubini Theorem, we conclude

that, for (Lebesgue) almost every z € H, V%io L ayoo-.S. 7y possesses Minkowski content measure,
which is parametrizable for .

Using Lemma [2.6] and conformal invariance of two-sided radial SLE, we then conclude that,
for almost every 0 € (0, 27), I/]gi wi0 0 1--S-; 7 including the initial point e'? but excluding the
terminal point 1 possesses Minkowski content measure, which is parametrizable for v. Using
the reversibility of two-sided radial SLE,; curves, we find that the above statement holds for the
entire v including its both end points. We need to replace “for almost every 6 € (0,27)” with
“for every 6 € (0,2m)”. For this purpose, we fix 0y € (0,27), and let v be a two-sided radial
SLE, curve in D from €' to 1 through 0. Recall that v up to Tp, the hitting time at 0, is a

radial SLE,(2) curve in D started from e with force point at 1.

Conf
For t < Ty, let g : (D(y([0,t]);1);0,1) — (ID;0,1), and let u(t) = |g;(0)]. Then u is

continuous and strictly increasing, and maps [0,7) onto [0,00). Suppose 7 is parametrized
such that u(t) = ¢ for 0 <t < 1. For 0 <t < 1, let X; € (0,27) be such that Xt = g,(v(¢)).
From the CMP of two-sided radial SLE,; curve and the definition of radial SLE(2) curve, we
know that, for any fixed t € (0, 1], the g;-image of the part of v after the time ¢ is a two-sided
radial SLE,, curve in D from e’Xt to 1 through 0; and X; satisfies the SDE

dX; = \/EdBt + 2COt2(Xt)dt, 0<t<,

for some Brownian motion By, with initial value Xy = y. After rescaling, (X;) may be trans-
formed into a radial Bessel process of dimension 1 + %. From [41l, Appendix B], we know that
for any ¢ € (0, 1], the law of X; is absolutely continuous w.r.t. 1(g o) - m.

Fix a t9 € (0,1). Let ¢; be the last time after ¢y that ~ visits v([0,%]). Then the part of
«y strictly after ¢; stays in a domain on which gy, is conformal. Here we note that g;, extends
conformally across T \ 7([0,%p]). From Lemma and the above two paragraphs, we can
conclude that almost surely the part of 4 from ¢{ (not including ¢1) up to and including the
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terminal point 1 possesses Minkowski content measure (in C), which is parametrizable for this
part of 7. Since we may choose tg,t; arbitrarily small, the above statement holds with 07 in
place of tf. Using the reversibility, we then conclude that the statement holds for the entire
including its both end points. Finally, to see that the Minkowski content measure is supported
by D, we use the fact that Cont(0D) = 0 because d > 1. O

Remark 2.11. From Lemmas 2.6/ and [2.10] we see that, if 3 is a two-sided radial SLE,; curve in
a simply connected domain D C C from a to b through some z € D, then § possesses Minkowski
content measure in D, which is parametrizable for any subarc of 8 (strictly) contained in D.
If a conformal map from H onto D that takes oo to b extends analytically across R, then 3
without b possesses Minkowski content measure (in C), which is parametrizable for g\ {b}. If
D is bounded by an analytic Jordan domain, then the previous statement holds for the entire
curve 3 including both a and b.

Lemma 2.12. Let z; # z9 € C. Let v be a two-sided whole-plane SLE, curve from zi to z;
through zo. Then v almost surely possesses Minkowski content measure, which is parametrizable
for (the entire) ~. In particular, Cont(vy) almost surely exists and lies in (0, 00).

Proof. Fix r € (0,]21 — 22|). Let 7, be the first time that « reaches {|z — 21| = r}. Let K,
be the hull generated by the part of v before 7, and let D, = C\ K,,.. By CMP of two-sided
whole-plane SLE, conditional on the part of v before 7., the rest part of v is a two-sided radial
SLE, curve in D, . Let a, be the last time that v visits K. before it reaches z3; and let b, be
the first time that ~ visits K after it reaches z3. By Lemmas and and the fact that ~
a.s. does not pass through oo, we see that the part of v strictly between a, and b, a.s. possesses
Minkowski content measure, which is parametrizable for this part of . By letting r — 0, we
then conclude that v\ {z1} possesses Minkowski content measure, which is parametrizable for
v\ {z1}. By reversibility of two-sided whole-plane SLE, the above statement holds with z5 in
place of z;. The two Minkowski content measures must agree, and so the entire v (including
z1 and z9) possesses Minkowski content measure, which is parametrizable for . Finally, since
~ is compact and not a single point, the total mass is finite and strictly positive. O

3 Whole-plane SLE Under Conformal Distortion

We need a lemma, which describes how a whole-plane SLE,(2) curve from 0 to oo is modified
under a conformal map W, which fixes 0. To state the lemma, we need to review the definition
of whole-plane SLE,(p) processes.

We start with the definition of interior hulls in C. A connected compact set K C C is

called an interior hull if C \ K is connected, and is called non-degenerate if diam(K’) > 0. For

~ Conf
a non-degenerate interior hull K, there is a unique gx such that gx : (C\ K;00) 5 (D*; 00),

and g7 (00) 1= lim, ;00 2/gK (2) > 0. The value cap(K) := log(gj (c0)) is called the whole-plane
capacity of K. By Koebe’s 1/4 theorem, we see that, for any zp € K, max{|z — 29| : z € K}
lies between e“P(K) and 4ec2P(K),
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Next, we review the whole-plane Loewner equation. Let A € C((—o0,T),R) for some
T € (—o0, 00]. The whole-plane Loewner equation driven by ¢ is the ODE:

e gt(2)

Orgt(2) = g1(2) et — gi(2)’

with asymptotic initial value lim;_, o €’ g¢(z) = z. The covering whole-plane Loewner equation
driven by e is the ODE:

Otﬁt(z) = cotg(ﬁt(z) — )\t) (31)

with asymptotic initial value limy—,_ g¢(2) — it = 2. It is known that the solutions g; and g;
exist uniquely for —oo < t < T, and satisfy e’ o §; = g; o €’ for every t; and there exists an

increasing family of non-degenerate interior hulls K;, —oco < ¢t < T, such that ), K; = {0}, and

~ Conf ~ .

for each t € (—00,T), cap(K;) =t and g, = gr- So gt : C\ Ky — D*. Let K; = (e')"}(Ky).
~ Conf

Then g, : C\ K; — —H. We call g, and Ky, —0o < t < T, the whole-plane Loewner maps and

hulls, respectively, driven by e*; and call §; and K, the covering whole-plane Loewner maps
and hulls, respectively, driven by e™*.

If for every t € (—00,T), g; * extends continuously to D*, and ~; := g; *(e'(\)), —00 < t <
T, is a continuous curve, which extends continuously to [—00,T") with v_o, = 0, then we call
~ the whole-plane Loewner curve driven by e**. If such v exists, then for any t € (—o0,T),
C\ K, is the connected component of C \ v([—o0,t]) that contains co. Since cap(K;) = t for
each t € (—o0,T'), we say that v is parametrized by whole-plane capacity.

Now we review the definition of whole-plane SLE,(p) processes. Let k > 0and p > §—2. Let
(At)ter and (g¢)ter be two continuous real valued processes such that X; := Ay — ¢ € (0,27) for
allt € R. Let (F;):er be the filtration generated by (et; €% );cg. We say that the T x T-valued
process (et;e!t),cp is a whole-plane SLE,(p) driving process if for any finite (F;)-stopping
time 7, Ar4+ — Ar and ¢yt — g7, t > 0, satisfy the (Fri4)i>0-adapted SDE:

d\rst — Ar) =V/rdB] + g cota (X 44)dt, (3.2)
d(grt — gr) = — cota(Xry)dl, (3.3)

on [0,00), where (B] )¢>0 is an (Fr4¢)¢>0-Brownian motion. Here we note that (\¢) and (¢;) are
in general not (F;)-adapted, but (X;) is (F;)-adapted.

Given a whole-plane SLE,(p) driving process (e*t; ¢?),cg, the whole-plane Loewner curve
7 driven by e, which exists by Girsanov’s Theorem, is called a whole-plane SLE,(p) curve
from 0 to oco. Each g, ! extends continuously to D*; and the extended 9; L maps e to ~(t),
and maps €% to 0.

If F' is a Mobius transformation, then the F-image of a whole-plane SLE,(p) curve from 0
to oo is called a whole-plane SLE.(p) curve from F(0) to F(co). As mentioned before, each
arm of a two-sided whole-plane SLE,; curve is a whole-plane SLE,;(2) curve.

Let v(t), —oo <t < 00, be a whole-plane SLE,(2) curve from 0 to oo with driving process
(e e't), t € R. Let g; and K; (resp. gy and IN(t) be the whole-plane Loewner maps and hulls
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(covering whole-plane Loewner maps and hulls), respectively, driven by e, Let (Ft)ier be
the filtration generated by (e*t;e'*). Let T be any (F;)-stopping time as in the definition of
whole-plane SLE, (p) process. Then we have the (Fr¢)i>0-adapted SDE (3.2113.3)) with p = 2.
To avoid many occurrences of 7 + ¢, we rewrite them as

d(A\ — A\r) =VkKdB[_, + cota(Xy)dt, T <t < oo; (3.4)
d(qr — qgr) = — cota(Xp)dt, 7 <t < 0. (3.5)

Combining the above two equations, we get an SDE for (X;):

dXt = \/EdB;_T + 2COt2(Xt)dt, T S t < 00. (36)
~ Conf

Let U and V be sub-domains of C that contain 0. Suppose that W : (U;0) 5 (V;0). We

will show that the law of v stopped at certain time is absolutely continuous w.r.t. the law of the

W () stopped at certain time, and describe the Radon-Nikodym derivative. We are going to

use a standard argument that originated in [22]. A similar argument involving chordal Loewner
equations can be found in the proof of Proposition

~ . ~ . —~ ~ Conf ~ . P et

Let U = (¢/)"1(U) and V = (e*)~}(V). There exists W : U °5" V such that Woe! = efoTW.

Let 7y be the largest time such that K; C U\ {W~1(00)} for —oco < t < 7. If 7y < 00, then

either v exits U \ {W~!(c0)} at 7y, or separates some part of U \ {W~1(c0)} from oo at 7.

For —oo < t < 17, W(K}) is an interior hull in C, and we let u(t) = cap(W (K%)). Then wu is

continuous and strictly increasing, and maps (—oo, 77) onto (—o0,.S) for some S € (—o0, o0].

Moreover, by Koebe’s distortion theorem, we have

: u(t)—t _ /

til{lloo e W' (0)]. (3.7)

Let Ly := W(K,-1(5)) and S(s) :== W(y(u"'(s))), —oo < s < S. Then 8 is a whole-plane

Loewner curve, and L; are the hulls generated by 3. Let e'?s denote the driving function, and let

hs and hg be the corresponding whole-plane Loewner maps and covering whole-plane Loewner

maps, respectively. For —oo <t < 7y, define Wy = hyy o W o g{l, Wi = hygyoWo 5;1,

U = gt(U\Kt)7 Vu(t) = hu(t)(V \ Lu(t))v U = (ei)_l(Ut)> Vu(t) = (ei)_l(Vu(t))' Then Wy :

Conf —~ ~ Conf ~ . . . .~ . .~
U — Vypy, and Wi : Uy — Vi From gioe' = €' ogy, hsoe' =e'ohs, and Woe' =e' oW, we

get Wyoel =elo Wt. Note that U; and V; are subdomains of D* that contain neighborhoods
of T in D*, and as z € U; tends to a point on T, Wy(z) tends to T as well. By Schwarz
reflection principle, W; extends conformally across T, and maps T onto T. Similarly, Wt extends
conformally across R, and maps R onto R. By the continuity of ¢g; and %u(t) in t and the maximal
principle, we know that the extended W; is continuous in ¢ (and z). Since g;(y(t)) = ¢ and
P (B(u(t))) = e%u) | we get e7u() = Wy(e*). By adding an integer multiple of 27 to oy, we
may assume that -

Uu(t) = Wt()\t)- (3.8)
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Fix t € (—oo,7y). Let € € (0,77 — t). Then ¢:(Kiye \ K¢) is a hull in D* with radial capacity
w.r.t. oo (c.f. [19]) being ; and Ay (Ly(t4e) \ L)) is a hull in D* with radial capacity w.r.t.
oo being u(t + €) — u(t). Since W; maps the former hull to the latter hull, and when ¢ — 0%,
the two hulls shrink to e’ and e« respectively, using a radial version of [21, Lemma 2.8],

we obtain u/, (t) = |[W/(ei*)|? = W/(A\)2. Using the continuity of W, in ¢, we get
u'(t) = W)

Thus, Eu(t) satisfies the equation

Buhy(y(2) = Wi (M) cota (i) (2) — Tur))-
Combining (3.7}f3.9)), we get

oo ([ @00~ i) = W)t

From the definition of Wt, we get the equality
WeoGi(2) = hu 0 W(2), 2 € () U\ K.

Differentiating this equality w.r.t. ¢ and using (3.1§3.10)), we get

AW (G (2)) + Wi (Ge(2)) cota(Ge(2) — Ae) = W/ (M) cota (R © W (2) = 0y(r))-

Combining this formula with and replacing g;(z) with w, we get
0We(w) = W/ (M)? cota(Wy(w) — Wi(Ae)) — Wy (w) cota(w — Nr), w € Up.
Letting Uy 5w — N\ in , we get
Wi Ag) = —3W/ (\o).

Differentiating 1} w.r.t. w and letting U >w— At, we get

Wl () 1(Wt"(At))z AW 1
Wi(\) 2

—t LU (W ()2 - 1),
Define p, such that -
Pu(t) = Wilq), —oo<t<Ty.

Since g¢(0) = €%, we get ePu(t) = hu@(0). Since Wi(z+27) = Wi(z) + 2, from A\ — g4

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

=X €

(0,2m) and (3.83.16) we get Yy, () := 0y4) — Pu@) € (0,27). Using (3.1)3.503.1043.12)) we get

dpy() = W/ (\)? cota(Yy4))-
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Differentiating 1} w.r.t. w, letting (th > w — q, and using 1) we get
AW (qr)

Wi(a)

Suppose the (F;)-stopping time 7 is less than 7¢7. From now on till right before Lemma

the ranges of ¢ in all equations are [, 7¢7). Combining (3.8)13.14113.17}f3.4)), and using It6’s

formula, we see that Y,y = 0y(s) — Pu(r) satisfies the SDE

= W} (\)? coth(Yaq )dt — coth(Xy)dt. (3.18)

—_ —_ /i — —_—
dYu(t) = Wt/(At)\/EdBZ——T + WtI(At) cota (Xt)dt + (5 - 3) Wt//()\t)dt + Wt/()\t)z cota (Yu(t))dt

(3.19)
Combining (3.1513.4)) with p = 2 and using It6’s formula, we get
17/ W "
dlvj(m W, (At)ﬁng_T + =2 ALY coty (Xy)dt — f(Wt()\t) —1)dt
Wih) Wi (M) Wi\
! "
A
<Wt( )) dt + (5 )W ) . (3.20)
Wi (As) 2 3/ W)
Let (Sf)(z) = ];:I((ZZ)) — %(]} (Z)) be the Schwarman derlvatlve of f. Let ¢ be the central
charge for SLE,; as defined by (|1 . From (3.6)3.18||3.193.20)) and It6’s formula, we see that
dsing (X;)~2/* dBl_, k-6 ) 1
——————— = —cota(X to(Xy)“dt + —dt; 3.21
sing(X,)—2/% cota(Xy) === 4 = cota(Xe)dE 4 dt: (3.21)
dsing (Yvu(t))2/H 7 dBj_ 1=, 1=, 2
——————— =W/ (M) cota (V) —— + =W, (A¢) cota(Xy) cota (Yo )dt — =W (A\)“dt
Sing(Yu(t))Q/H t( t)CO 2( “(t)) \/E + K t( t)CO 2( t)CO 2( u(t)) 4 t( t)
6 — K~ 6~
+ ?‘/Vt/()\t)2 cota (Yu(t))z //()\t) COtQ(Yu(t))dt; (3.22)
7 bor T dBT T
dAI/I//t <)\t)6_2,$ :6 K I//[ﬁ ()\t) t—T + 6 K I//—[v/t ()\t) COtQ(Xt)dt
Wi (Ae) 2= 2 W/(\) VR 26 Wi(M)
6 — —
P MW ()2 — D)dt + §5<Wt)(At)dt; (3.23)
AW!(q) " 66—k —~ 6—K,~
(la) = _ (—=W](Ae)? cota(Yy(r))? + cota(Xy)?)d - (W/(A\)? = 1)dt. (3.24)

Wt/ (Qt)%m ax
Define
Ny = W) 7 W (qe) 7 sing(Ygp)?/" sing(X) "2/, (3.25)
Combining (3.21})3.22]13.23}|3.24)) and using It6’s formula, we get

dN, dBT .  —~, dB] . 6—rW/(\)dB]_,
—— = — cotg (X + W, (A¢) cota(Y, + —
N, )T I o) =0 ) VR
24 —
+ “m (W/(\)? — 1)dt + %S(Wt)()\t)dt, r<t<my. (3.26)
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We need the following proposition, which follows easily from [42, Lemma 4.4].
Proposition 3.1. There is a positive continuous function N(r) defined on (0,00) that satisfies
N(r) =0(re ") as r — oo, such that the following is true. Let U and V be doubly connected

—~ ~ Conf ~
open neighborhoods of T in {z € C : |z| > 1} with the same modulus r. Let W : U %V be
such that W(T) =T. Then

| log W' ()|, |S(W)(z)] < N(r) z €R. (3.27)

Let a € R be such that {|z| = 4e%} separates 0 from U¢U {W~1(c0)}. For t < a, since
cap(K¢) = t, we have K; C {|z| < 4e'} C {|z| < 4e®}. Thus, K; C U, and the modulus of the
doubly connected domain between K; and {|z| = 4e®} is at least a — ¢t. Since the conformal
image of this doubly connected domain under g; is an open neighborhood of T in U; N C, and
Wy maps this domain conformally onto an open neighborhood of T in V; NC, using Proposition

[3:1] we get
|log W}(2)], |S(Wy)(z)| = O(la — t|e!™®), t € (—o0,a), z€R. (3.28)

For t € (—o0, 117), define

M, = Nyexp ( - “1_2:4 /_ ;(WV;(AS)? s ¢ /_ ; SWIOds).  (329)

From (3.28) we know that the improper integrals inside the exponential function converge.
From ([3.26]) we see that (M;) satisfies the SDE

dM, dBl ., —, dB]_, 6—rW/(\)dB]_,
= ot (X)) —=T 4+ W () cota(Y, s <t<7y.
b, — R W o) Ty Ve RS

(3.30)
Since X; = Ay — g € (0,27) and Y, ) = 0y4) — Pur) = Wt()\t) - Wt(qt), from @ we get
sing(Yy,(p))/ sina(X¢) — 1 as t — —oc. From we see that M_o = limy_,_oo My = 1.
Let p be a Jordan curve, whose interior contains 0, and whose exterior contains U¢ U
{W~1(c0)}. Let 7, be the hitting time at p. Let r1 = min{|z| : 2z € p} and r2 = max{|z| : z € p}.
Then 0 < r; <7y < 00, and log(r1/4) < 7, <log(rz). There is another Jordan curve p’, whose
interior contains p, and has the same property as p. Let m be the modulus of the domain
bounded by p and p'. Then for ¢t < 7,, the modulus of the domain bounded by 0K; and p' is
at least m. From Proposition we see that

[log W/ ()|, |S(Wi) ()| < N(m), te€(—o0,7,), z€R. (3.31)

Combining (3.31)) and (3.28) with a = log(r1/4), and using 7, — a < log(r2) —log(r1/4), we see
that (M;), is uniformly bounded on [—o0, 7,]. By choosing the 7 in (3.30]) to be any deterministic
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time less than a, we see that M;, —oo <t < 7,, is a uniformly bounded martingale. Thus,
E[M;,| = M_ = 1. Weighting the underlying probability measure by M. , we get a new
probability measure. Suppose 7 < 7,. By Girsanov Theorem and ({3.30)), we find that

6—r W/(\s)

~ 1 t__
B := B — \/E/O Wi(As) cota(Yy(s)) — cota(Xy) + des, 0<t<7,—m,

is a Brownian motion under the new probability measure. We may rewrite (3.19)) as
AYyirr) = Wy et WRAB] + 2W, L (Ari)? coto(Yy(ran)dt, 0<t<7,—7.  (3.32)

Since Ly(;,) = W (K;,) intersects W (p), we have u(1,) = cap(Luyr,)) > log(dist(0, W(p))/4).

By choosing 7 = u~*(b) for some b € (—o0,log(dist(0, W(p))/4)], and using (3.913.32), we sce
that there is a Brownian motion B? such that Y; satisfies the SDE

dYpys = VRrABY + 2oty (Yors)ds, 0<s< u(t,) —b.

Since Y = 05—ps and p, = — cota(Ys), and €% is the driving function for 8 = W (), we see that
(€'9=; e'P=) satisfy (3.443.5)) for b < s < u(7,). Since this holds for any b < log(dist(0, W (p))/4),
we see that (e7s;ePs)_ - s<u(r,) 18 the driving process for a whole-plane SLE,(2) curve stopped
at u(7,), which is the hitting time at W (p). Since 8 = W () is the whole-plane Loewner curve
driven by €, we get the following lemma.

Lemma 3.2. Let p be a Jordan curve, whose interior contains 0, and whose exterior contains
UcU{W1(c0)}. Let 7, and Tw(p) be the hitting time at p and W (p), respectively. Then

Koo Usoe) = WMy, - Koy (v,00)),

where (My) is defined by . Here we note that M, () is determined by the driving

process (e €"")y<r,, which in turn is determined by K-, (7).

As a corollary, we obtain the following lemma about the absolute continuity between the
laws of whole-plane SLE,(2) curves.

Lemma 3.3. Let w € C\ {0}. Let p be a Jordan curve in C, whose interior contains 0, and
whose exterior contains w. Let T be the hitting time at p. Then

Kr (V) () = Ru(r) - Kr (000 (dr),

where, in terms of the whole-plane SLE.(2) driving process (e"t;e') and the corresponding
whole-plane Loewner maps (g), Ry (vr) can be expressed by

wP@Deld=27 ! () 2| g, (w) |2 — 1) 5 TR

8 1

Ry (7v7) : :
N |9+ (w) — €r |27 |g, (w) — eidr|
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Proof. Let W(z) = -*. Then W : (C;0,w) 5 (C;0,00). Thus, W~ (V0—>oo) = V#—m' From
Lemma [3:2] we know that
’CTP(V(?:'LU) MTP ICTP (VO—N)O)

where M; is the value of (M;) defined by (3.25]3.29) for the above W at the time 7.

~ Conf
We have U =V = C. Sofor allt < 7y, Uy = V; = D*, and Wy : D* — D*. From (3.12

and that hs(oo) = oo, we know that W; maps ¢g;(w) to oo. Thus, there is C; € T such that

Wi(z) = Ct%. So we have

|ge(w)> — 1

Wi@) = IWi(e)| = 7 05 g

r € R;

simg(¥)) _ [Wile™) ~Wi(e®)| _ [gy(w)? ~ 1
sing (X)) [eh — i [ge(w) — e lgi(w) — ci#e|

Combining the above formulas, we get

_ lge(w)]* =1 e
N, = - eiqt|) . (3.33)

<Igwf(w) — e |gi(w)

Since W; is a Mobius Transformation, we have SW; = 0. Since eith = W;o0€’, a straightforward

calculation gives . .
SWe) (M) = —=(W{(A\)? = 1)/2.

Thus, from (3.11}]1.1]) we have

exp ( k=24 /_too(mN/S’(/\s)Q — 1)ds — g/_too S(I/IN/S)()\S)d8> — (|w|e" 115 (3.34)

12k

Since e¥t) = h;(t)(oo), using (3.12) and the expressions of W and W;, we get e*(*) = %.

Combining (3.2943.33)13.34)), we find that M; = Ry (v;), as desired.

We use the following lemma to relate the integral of S (Wt)()\t) in (3.29) with the normalized
Brownian loop measure A* defined by (|1.2)).

Lemma 3.4. For any time T < 1y,
A*(ﬁu(T)v ) A* ’YT,UC = / S Wt >\t dt—l— / Wt >\t — )d y

where 7y, and By(y) are the parts of v and 3 up to T and u(r), respectively.
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Proof. We use the Brownian bubble analysis of Brownian loop measure. Let ﬂ';,'g denote the
Brownian bubble measure in D* rooted at e"*° € T as defined in [25]. From the decomposition
theorem of Brownian loop measure and (2.1)), we know that

T

AN (yr,U) = Tim [ pRY(L(D*\ Up))dt — log(—a); (3.35)

a——00 a

u(7)
A” (5u(7')7 VC) = lim MB’E(‘C(D* \ VS))dS - log(_u(a))

a——0o0 u(a

~ lim / WHOMPHED, (L(D"\ Vig))dt — log(~a), (3.36)

a——0o0

where we used the facts that A*(v,, U¢) +log(—a) — 0 and u(a) —a — log(W'(0)) as a — —oo.
The former can be derived using the argument in [9].
If U is a subdomain of D* that contains a neighborhood of T in D*, we let P_,% denote the

Poisson kernel in U with the pole at ¢°, and ﬁg) = Pl oe'. Especially, PE: (2) = % Re ZH¢0

2—e'%0

and ]33;*(,2) = Im coty(z — zp). From [25] we know

1 PYt (4 1 PUt(4
pRR(L(D\T)) = lim - 2( _ %;*( ) _ lim 72(1— 31( )).
UiDz—eit ‘Z —e f‘ P)\t (Z) UiSz— A ’Z — )\t| PE (z)
L. . —~ ~ Conf ~
Similarly, using 1} and that Wi : Uy — Vi), we get
~V,
1 P (w
W LD\ Vi) = lim (1= Tty
V() DW=y (1) |w - Uu(t)| Pgu(t) (’LU)

~Vu —_—
= lim 1 _ PUU((:)) © Wt(z))

RNy |Wt(z)—f/l7t()\t)|2< PD* oWy (2)

Tu(t)
T2 o Bie)y
FE o Wi(2)

= lim

ﬁt92—>)\t |Z - )\t’2 .

Combining the above two formulas, we get

= 1 (PME) W0TR ()
W/ A 2 bb L(ID*\ V. _,,bb LD\ U - i ~>\t — /\/)\t
OB (D" \ Vi) = iR LD\ U) = lim At‘Q(PE*(z) o)

Tu(t)

1
"6
where the latter equality follows from some tedious but straightforward computation involving
power series expansions. This together with completes the proof of Lemma O

ST + 5 (TH )~ 1),
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4 SLE Loop Measures in C

We first construct rooted SLE loop measures pl, z € ((A:, in C. The superscript 1 means that
the curve has one root, and the subscript z means that the root is z.

Theorem 4.1 (Rooted loops). Let Ge(w) = |w|~22=D . We have the following.

()

(i)

(iii)

(i)

(v)

(vi)

For each z € C, there is a unique o-finite measure pl, which is supported by non-
degenerate loops in C rooted (start and end) at z which possess Minkowski content measure
(in C) that is parametrizable, and satisfies

pl(dy) @ M, (dw) = v, (d7) B Ge(w — 2) - m?(dw). (4.1)

Moreover, ul satisfies the reversibility, and may be expressed by

pl = Cont(-)~t- / v wGe(w — 2) m?(dw). (4.2)
C\{z}

For every z € C, pul satisfies the following CMP. Let T, be the time that the loop returns
to z. Then for any nontrivial stopping time T, we have

Ko (il trery)dr) @ i (7) = malirerys (4.3)

Yr32)5 (Y7 )tip—2
where implicitly stated in the formula is that Kr(pil(r<1.y) is supported by I'(C; 2).

Suppose the law of a random curve v is u. Let v be parametrized by its Minkowski content
measure such that v(0) = 0. Let a € R be a fized deterministic number. Then the law of
the random curve To(7) defined by To(y)(t) = y(a +t) — v(a) is also pd.

Let J(2) = —1/z, and ply = J(pd). Then ul, is supported by loops in C rooted at oo,
which possesses Minkowski content measure (in C) that is parametrizable for the loop
without oo, and satisfies

&
pio(dy) @ My (dw) = vE ., (dy) ® m*(dw). (4.4)
Moreover, for any bounded set S C C, ul -a.s. Cont(yN S) < oc.

For each z € @, the measures . satisfies Mobius covariance as follows. If F' is a Mébius
transformation that fizes z, then F(ul) = |F'(2)]>~%ul. In the case z = oo, this means
that F(z) = az + b for some a,b € C with a # 0, and F(ul,) = |a|*2ul,.

For any r > 0 and z € C, pl({y: diam(y) > r}) and pl({y : Cont(y) > r}) are finite.
Moreover, there are constants C1,Co € (0,00) such that pl({y : diam(y) > r}) = Cyr9=2
and p({y: Cont(y) > r}) = Cor®2/4 for any z € C and r > 0.
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(vii) For z € C, if a measure u' supported by non-degenerate loops rooted at z satisfies (ii) and
that p'({~y : diam(vy) > r}) < oo for every r > 0, then y' = cul for some c € [0, 00).

The following theorem is about unrooted SLE loop measure. By an unrooted loop we mean
an equivalence class of continuous functions defined on T, where ~y; and -5 are equivalent if there
is a orientation-preserving auto-homeomorphism ¢ of T such that v = 71 0. We may view the
two-sided whole-plane SLE, measure l/j;w as a measure on unrooted loops. By reversibility of
two-sided whole-plane SLE,;, we get ufiw = yfiz.

Theorem 4.2 (Unrooted loops). Let Ge(w) = |w| =2~ . Define the measure ui° on unrooted
loops by

n® = Cont(- // VI wGe(w — 2) m?(dw) m?(dz). (4.5)
Then u° is a o-finite measure that satisfies reversibility and the following properties.

(i) We have the equalities
%
1 (dy) ® My (dz) = pz(dy) & m?(dz); (4.6)

10(dy) ® (M4)*(dz ® dw) = uj;w(dfy)%_@Gc(w —2)- (m?)?(dz @ dw). (4.7)

(ii) For any Mébius transformation F, F(u°) = .

Remark 4.3. The CMP of rooted SLE, loop measures allows us to apply the SLE-based
results and arguments to study SLE loop measures. In the next section, we will combine the
generalized restriction property of chordal SLE with this CMP to define SLE loop measures in
multiply connected domains and general Riemann surfaces.

Another application of the CMP is to study the multi-point Green’s function for the rooted
SLE loop measure:

G (21, ,20) = lim H d- 2ui Ay v N B(zj575) # 0,1 < j < n},

1, 77’n~|/0

where zg, 21, ..., z, are distinct points in C. Using the CMP together with the results of [32]
on multi-point Green’s function for chordal SLE, it is not difficult to prove the existence and
get up-to-constant sharp bounds for the Green’s function here.

Remark 4.4. For x > 8, we may construct a probability measure ,ugé on loops rooted at 0 that
satisfies the CMP in Theorem (ii). For the construction, one may consider a whole-plane
SLE,(k—6) curve started from 0. Since k—6 > § —2, 0 is never separated by the curve from oo.
At any nontrivial stopping time 7, conditional on the past of the curve, the rest of the curve is a
radial SLE, (k — 6) curve with 0 being the force point. From [35] we know that this is a chordal
SLE, curve in the remaining domain aiming at 0, but stopped at reaching co. Thus, we may
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construct a random curve with law u# by continuing a whole-plane SLE,(x — 6) curve with a
chordal SLE, curve from oo to 0. The measure pf = J (/L# ) (J(2) = 1/z) is invariant under
translation and scaling; and for ,ufo—a.s. v, 7y visits every point in C, and can be parametrized
by the Lebesgue measure m?. This measure agrees with the law of the space-filling SLE, curve
from oo to oo constructed in [28]. The space-filling SLE,; from oo to co was also defined for
k € (4,8) in [28]. But that curve does not locally look like an ordinary SLE, curve.

Remark 4.5. Theorem [4.1] (without (vii)) and Theorem [4.2)also hold for £ = 0, and the proofs
are quite simple. Here we note that a two-sided whole-plane SLEq curve from z to z passing
through w is a random circle in C passing through z and w such that the angle of the curve at
z or w is uniform in [0,27). The rooted SLEq loop measure u turns out to be supported by
circles passing through 0, which are radially symmetric, and the distance of the center of the
circle from 0 follows the law of z—g 1(0,00) - m(dx). The measure pl. rooted at oo is supported
by straight lines, which is invariant under rotation or translation.

Proof of Theorem [{-1} (i) It suffices to consider the case z = 0 since u! can be expressed by z +
u(l). Let v-(t), —oo < t < 7, be a whole-plane Loewner curve started from 0 with driving function

e, —0co < t < 7. Note that (v, )ip = V(7). Let g; and g; be the corresponding Loewner maps

. ~ ~ Conf
and covering Loewner maps. Suppose v, € I'(C;0;00). Then g, : (C(v+;0);00,7v-(7),0) —

(D*; 00, €7, €%7) for some ¢, € (Ar — 27, \;). Recall that we have the chordal SLE, measure

KE and the two-sided radial SLE, measure v for each w € ((A:(VT; 0).

¥730);77 (1)—0 C(y730)377 (1) —=w—0

Since these measures are all determined by -, we now write /ﬂﬁ and Vji;w, respectively, for

them. We write G, (w) for the Green’s function G@( . (w). Let K be a compact
T 77'10 ”YT(T)*)O

subset of C\ {0} such that K N~; = . From Proposition we have
e
,uiﬁ (dvy) @ Myng(dw) = V,ﬁ;w(d’}/) ®1xG.,. - m?(dw). (4.8)

N ixn . Conf
We now compute G, (w) for w € C(v7;0). Let ¢(z) = ii:ii; . Then ¢ : (D*; €7 elar) 5

-~ Conf . .
(H:;0,00). Since g, : (C(7730);7,(r), 0) 5" (D75 e, i), by (2.2) and (2.3), we get

Gy, (w) = ¢/ (gr (W)~ |97 (w) [~ Crr(¢ © g7 (w))

elg’ (w 2—d| i _ oigr 51 g7 (w 2 1\ 845-2
u ( ) (4.9)
- 8 . 8 N
|g7'(w) - AT’E_l‘gT(w) - equ’;_l 2

Let Ry (7-) be as in Lemma Let

Qyy) = 28+572571|ihr _ giar|1=% o (d-2)7 (4.10)
From the above formulas, we get

Q(7r)Gr. (w) = Ru(yr)Ge(w). (4.11)
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From and ( -, we get
QU (A7) ® My (dw) = Roy(y2 ), (d7") B 15 Ge - m*(dw). (4.12)

Suppose that 7 is a nontrivial stopping time. Recall that K, is the killing map at time 7.
Define
I ={y:7(y) <To(7),K+(7) € I(C;0; 00)}.

We view both sides of {i as kernels from ~, € F(@; 0; 00) to the space of curve-point pairs.
Let K be a fixed compact subset of C\ {0}, and Irg =T70 {yv:KC (C(ICT(v); 0)}. Then

the measure K- (1, - ¥ HOO)(d’yT) is supported by F((C 0; 00), on which ,uA, and ij%_ . are well
defined if w € K. Acting K (1r, V0—>oo)(d%)® on the left of both sides of , we get

two equal measures on the space of curve-curve-point triples (v,,~”,w) such that w € 7, and
Y- @7 can be defined. On the lefthand side, we get the measure

Krik (I, - Visoo) (dyr) @ [Q(y ) (d77) © My (dw)]
=[Q - Kr(Ir, . - 1 o0)(dyr) ® i (dy7)] © My (dw).

On the righthand side, we get the measure

(i, - 1 o) () © (R (dy7) B 1k G - m(dw)
R Ko (Ir e 0 ) ) 8 (0] LG ()
-
e (e e - i) (dre) @ v, (d7)[ 81 Ge - m* (dw),
where in the last step we used Lemma [3.3]
Applying the map (y-,7",w) — (7 ", w) to the above two measures, and using the fact
that My, @yynx = Marax when K Ny, =0, we get
Q- Kr(r, - 1 s00) (1) @ uiwﬂ](dw ® Mk (dw)
=[K-(1r, . vstwww & vf () E1xGe - m? (dw)

:1FT; ’/0—‘ (d’y) R1Ge -m (dw), (4.13)
where in the last step we used the CMP formula ({2.5).
Define
K= Q Kr(lr, - v o)(dvr) @ i (dy7). (4.14)
Using (4.13)), we get
ek (dy) @ Moy (dw) = 1p, VOA (d’y)@lKG(C 2(dw). (4.15)
The total mass of the rlghthand side of (4.15) is bounded above by [} G¢(z) m?(dz), which

is finite. So both sides of (4.15|) are finite measures Thus, pr k-a.s., Contg(- ﬂ K) < 0. By
looking at the marginal measure of the first component (the curve), we find that

Contg(- N K) - pirx = / I, 4 Vain(c(w) m?(dw) =: lig.r- (4.16)
K
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Thus, [k, is supported by 'y := {7 : Conty(y N K) > 0}. Define

WK = Contg(- N K)il . ﬁK;T‘ (4.17)
By (4.16[4.17), we get
frik |0 = BEr- (4.18)
We now define
pr = Q- Kr(Lr, - v, ) (dyr) @ il () (4.19)
lig = / it Ge(w) m?(dw). (4.20)
K
Then p, is supported by I';. From (4.14}}4.16]) we get
ILLT‘FT;K = MUK (421)
BK|r, o = K- (4.22)

For n € N, let 7, be the first time that the curve reaches the circle {|z| = 1/n}. Then
Tk =T, if dist(0,K) > 1/n. (4.23)
Let n > 1/dist(0, K). From we see that [ix is supported by I'; . Define
px = Cont(- N K)™t - fig. (4.24)

Then for any nontrivial stopping time 7,

PE|T, = WK (4.25)

Since fif is supported by I'r, , from (4.22}§4.23)) we see that [ix .., = lix. So we have g = fif.r,.

Since fi,, is supported by 'y, , from (4.214.23)) we get pir,, = pir,,.;c. Combining these formulas
with (4.18]), we get

fr [P = HEK- (4.26)

Let K1 C K5 be two compact subsets of C\ {0}. Let n > 1/ dist(0, K2). Then (4.26]) holds
for K = K1 or K. Since ', C I',,, we get

NK2|FK1 = HK;-

So we may define a o-finite measure p supported by |, L n<jul<ny = UKC(C\{O} 'k such
that
udlr, = px, for any compact K C C\ {0}. (4.27)

By Lemma [2.12] and (4.204.24)), each px is supported by non-degenerate loops rooted at 0
which possess Minkowski content measure that is parametrizable. So ,ull) also satisfies these
properties.

29



Let K C C\{0} be compact, and 7 be a nontrivial stopping time. From (4.18}4.21{}4.25/l4.27))
we have

M(l)‘Fr;KﬂFK = MK’FT;K = KKr = :UJT;K’FK = MT’FT;KQFK'

Let = denote the set of closure of domains that lie in C \ {0} whose boundary consists of a
disjoint union of finitely many polygonal curves whose vertices have rational coordinates. Then
= is countable. From the above displayed formula, we see that u(l) and p, agree on

I,:=|J@rnxnlk) CTy.
Ke=

Given ., by Lemmas and u% = ,u?;(% 0)i(9m et 0 is supported by
U {77 : Cont(v" N K) >0} = U {v v @17 €Tk, K C C(vy;0)}.
KeE,KCC(vr;0) KeE

From 1) we see that p, is supported by fT
Fix any w € C\ {0}. Suppose v has the law of Vgtw. Let Ty, be the hitting time at w.

On the event I';, let v, and 4™ be the parts of v before 7 and after 7, respectively. From the
CMP of two-sided Wl%)le—plane SLE, conditional on ~, and I';, if 7 < Ty, 7" is a tv/&\fo—sided
radial SLE, curve in C(v,;0); and if T, < 7 < Tp, then 47 is a chordal SLE,, curve in C(~,;0).

Follovvlng the argument in the last parai raﬂh and using Lemmas [2.5, 2.6] and 2.10, we find

that VOA Ir, is supported by F From 1- -i we know that ux|r. is supported by F for
every compact K C C\ {0}. Since yu is supported by |z 'k, from (4.27) we see that ud|r. is
supported by I';. Since ,u(l)|pT and p, agree on I';, and are both supported by I';, we get

Hhlr, = pir. (4.28)

Let K C C\ {0} be compact, and n > 1/dist(0, K). Taking 7 = 7, in (4.15] and using
(4.23), we get

(1b(dv) @ Mo (dw))lr,, e = (e, (d7) B Ge - m (dw))e,, (4.29)

From the CMP formula (2 , we know that, for each w € K, 1/8‘71 vanishes on {7, < oo} \T';, .
From (4.204.244.27)), we see that u also vanishes on {Tn < oo} \ | Thus, - holds
with I';,, replaced by {7, < co}. Since both u}(dy) ® M, (dw) and VOQ (d7)®G<c m?(dw) are
supported by

U {7y :m(y) <o} x{z:1/m <|z| <m}),

n>m

we obtain (4.1)) with z = 0. By looking at the marginal measure in curves, we obtain (4.2)) with
z = 0, which immediately implies the uniqueness of ,u(l). The reversibility of ,u(l) follows from

1’ and the reversibility of ygiw.
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(ii) It suffices to consider the case z = 0. From (4.194.28) we see that K,(1p pud) =
Q- K- (1r,v,), and

uolr, = Kr (Lo p)(dvr) & il (dy7).

('YT%O)§('YT)tip_>O
This formula is different from (4.3)) because I'; is a subset of {7 < Tp}. However, if 7 = 7,,
then the measures on both sides vanish on {7, < Tp} \I',. So we can conclude that (4.3]) holds
for 7 = 7,. Now we consider a general nontrivial stopping time 7. We have 7 > inf, 7,. Fix

any n € N. Since (4.3)) holds for 7, we get

#olr,, Afra<rt = Kr, (A, Afra <) (dyr,) © ugm;0);(7%)@%(6177”)-

C(vrn30);(Vrn )tip—0
ping time 7 — 7, on the event {7, < 7}, with Tj" := Ty — 7,,, we get

Applying the CMP formula 1} to the chordal SLE, measure /ﬂf and the stop-
M(l)’{Tn<T<To} = (lu"l_‘q—nﬂ{Tn<T})|{7‘—7‘n<TJ"}

T

:]CT"(1F7nm{T”<T}M(1))(d/7’r") ® 1T_Tn<T(;—n'LLg('YT i0);(vr )tipﬁo(dfy n)

:,CTn(]‘Frnm{Tn<T}M(1))(dryTn) D ICTan(l{T—Tn<T6—n}M§(,YT 0) ( )(d’)/;—n)

130); (Y7 ) tip—0
@ ut , , (dv7).
C(vrn, ®77™30);(Yrn Y7 )tip—0

Thus, we get

I'L(l)’{Tn<T<TO} = ]CT(l{Tn<T<TO}Iu%])(d7’T) D Mg( (dVT)'

Yr ;0)§('Y‘r)tip‘>0

Since {7 < Tp} = U, {mn <7 < Ty}, from the above formula we get with z = 0.

(iii) Fix a € R. Since T,(7y) has the same Minkowski content as -, it suffices to prove that
the statement holds with p replaced by 7y := Cont-ug = [ G(C(’LU)Z/# ", m?(dw). Now suppose
7 has the law of 1§, and is parametrized by its Minkowski content measure with v(0) = 0.

Let 6 be a random variable uniformly distributed on (0,1) and independent of . Let
B = TyCont() (7). Then 3 is also parametrized by its Minkowski content measure periodically
with 3(0) = 0, and Cont(8) = Cont(y). Since 7 is parametrized by its Minkowski content
measure, by (i), the law of (v, (6 Cont(v))) is

fib(dv) © My (dw)/ Cont(y) = v, (d7) B Ge(w) m?(dw).

For every w € C\ {0}, by the reversibility of two-sided whole-plane SLE, if 7 has the law of
y# ", and is parametrized by its Minkowski content measure such that 7(0) = 0, then there

a.s. exists a unique s € (0,Cont(7)) such that 7(s) = w, and T4(7) has the law of 1/6‘7;_1”
with 75(7)(—s) = —w. Since Ge(—w) = Ge(w), we see that (8, 5(—60 Cont(S))) has the same
law as (,7(0 Cont(y))). This means that 5 has the same law as v, and is independent of 6.
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By periodicity, we have To(v) = Ta—gcont(8)(B) = To cont(8)(8), where 6" € [0,1) is such that
a/ Cont(B) — 60 — 0" € Z. Since 6 is uniformly distributed on (0,1) and independent of S, so is
¢'. From the argument above, T4 () = Tgr cont(s)() has the same law as 8, which in turn has
the same law as ~y. This finishes the proof.

(iv) Applying the map J ® J to both sides of and using Lemma we get
and conclude that p!, is supported by loops rooted at oo, which possesses Minkowski content
measure (in C) that is parametrizable for the loop without co. Let K = S. Then K is a compact
set. Computing the total mass of the measures on both sides of restricted to w € K, we
get [ Cont(yNK)ul (dy) =m?(K) < co. So we have pl-a.s. Cont(yNS) < Cont(yNK) < oco.

(v) Let F(z) = az + b be a polynomial of degree 1. Applying F' ® F to both sides of (4.4)),
and using Lemma [2.6] we get

Fpk)(dy) @ a™ M, (dw) = vE _ oy (d7) B a2 m?(dw) = a2l (dv) © M., (dw).

Let K be a compact subset of C and T'x = {7 : Cont(yN K) > 0}. Restricting both sides of
the above formula to w € K, and looking at the marginal measures of v, we get F(ul))|r, =
a®=2ul |, Since pl-a.s. Cont(y) > 0, we see that ul, is supported by [ 'k, and so does
F(ul,). Thus, F(ul,) = a®2ul,, ie., (v) holds for 2 = co. Applying the inverse map J and
translations w — w + z, we see that (v) holds for any z € C.

(vi) By the translation invariance, the scaling property (v) and Lemma it suffices to
prove the first sentence of (vi) for z = 0. We first show pd({ : diam(y) > r}) < oo for any r > 0.
For a compact set S C C, we use Kg to denote the interior hull generated by S, i.e., ((A:\KS is the
connected component of C \ S that contain co. Since e®®P(5+) < diam(K.,) = diam(y), from the
scaling property, it suffices to show that pj ({7 : cap(K,) > 0}) < co. We use 7; to denote the
part of v up to t. Let 79 be the first time that the curve returns to 0 or disconnects 0 from oc.
We have utl)—a.s. Ky = K, since from the CMP of ,u(l), the part of v after 79 grows inside K, .
Let o denote the first ¢ such that cap(/K,,) = 0. Then cap(K,) > 0 is equivalent to op < 7.

Applying with 7 = 79 A 0 and using that pj-a.s. T, = {7 < 10} = {00 < 70},
we get ICUO(IU’%)|{O'O<T()}) = Q(’Vcro) ) KUO(”(#—}OO)' Thus, M(l)({ao < 7—0}) = EV(?J‘ZOO[Q(VOO)]' It
remains to show that the expectation is finite. Suppose v follows the law of VSiOO, ie. is a
whole-plane SLE,(2) curve from 0 to co. Let (e™;e!),cr be the driving process for 7. Then
(Xt := M — q1)ter is a stationary diffusion process that satisfies . By [17, Equations (56),
(62)], the law of X is absolutely continuous w.r.t. m|( ), and the density is proportional to

sing(z)%/*. By (4.10) we get

24=2 27 sing () dx
B [Qw) = 2o - —Jo 52"
=00 ¢ [y sing(x)8/Rda

Next, we show that ud({7y : Cont(y) > r}) < oo for any r > 0. From we know that
/ Cont(y ND)ud(dy) = / Ge(w) m?(dw) = / lw| 722D m?(dw) < .
D D
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Thus, p({y : Cont(y ND) > r}) < oo for any r > 0. Since for curves started from 0,
{: Cont(y) >} C {7 : Cont(yND) > r} U {y:diam(y) > 1},

and p$({vy : diam(y) > 1}) < oo, we get pud({ : Cont(y) > r}) < oo for any r > 0.

(vii) We may assume that z = 0. Suppose p’ satisfies the assumption for z = 0. Fix
r > s > 0, a compact set K C C with dist(0,K) > r. Let 75 and 7, be the first time that
the curve reaches {|z| = s} and {|z| = r}, respectively. We use the notation in the proof of
(i). From the assumption, we have p/(T';,) < oco. Suppose v is parametrized by whole-plane

capacity up to 7. Let i = Cont(- N K) - i/ Using (4.3) and Proposition we get
e = [ K, ) d72) © G () v (@072) mi ().

Thus, the total mass of @ equals [ [ G, (w)m?(dw)Kr, (1|r,,)(dvs,). From (4.9) we see
that G, (w) is uniformly bounded in both ~,, and w € K. Thus, from the finiteness of 1|,

we can conclude that i is a finite measure. Since the first arm of a two-sided radial SLE,
curve is a radial SLE,(2) curve, using a martingale in [35], we get

Ry (vr, ©772)
Rw (77'3)

A simple way to see that this formula is correct without complicated computation is to apply
Lemma to the times 75 and 7, and use the CMP for whole-plane SLE,(2) measures 1/8éﬁ o
and 1/8%é " .- In fact, by doing that, we see that at least holds for ICTS(I/O oo )-2.S. every
Yr,. Using and the above two displayed formulas, we get

Q(vr, @ 7:,5)
Q(vr,)

KWl ) (drT) = K0 ), weK.  (430)

o, (Vo) (dn7). (4.31)

Vs

Ko, () = Ko (. ) (dym,) © /K G,y e (w) m2(duo)

Define a new measure v, ;- by
~1
k) = ([ @m )G, (0) it (au))) - K G ).
Since [ is a finite measure, from 1 -D we see that v/ . 1¢ 1s also finite. From we see

that )
K, V;- dvr,) = K, ' Idry);
(V) (dr,) 00 (Wlr,,)(dyr,)
V;;K = K. ( rK)(d’YTS) & K, (v Vnrgs00 ) (A7)

We observe that 1/7’,; i satisfies the CMP for 1/0 oo up to 7. Since 1/7’"; x is supported by non-
degenerate curves started from 0, and is finite, we conclude that there is ¢,.x € [0,00) such

that v, = ¢,k Kr, (1/8#;00) = CT;KK:TT(V#_)OO). By the definitions of v}, and fif, we get
K (Cont(- N K) ) = eric | Q1n )Gy, () () I ().
K
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Using (4.11)}4.2014.24}}4.27)) and Lemma we get

Ko (Cont(- 1K) ) = o [ Ko (0 0) Gel0) i)

= ok Kr, (i) = ¢y Kr, (Cont(- N K) - pi) = ¢y K, (Cont(- N K) - N(l))-

Since the total mass of the measures on both sides do not depend on r, we see that ¢,,x depends
only on K, and so write it as cx. Since both p/ and pj satisfy , from Proposition we
see that the expectation of Cont(yN K) conditional on Ky, (y) w.r.t. either i/ or p} is equal to
[ Gr,, ((w) m*(dw), which is positive and finite. So from the above displayed formula, we
get

Kr (tIr,,) = exKr, (ugr., )-

Thus, cx also does not depend on K, and we may write it as c¢. Applying (4.3) again, we get
t|r,. = cudlr,, . Since both x/ and p are supported by non-degenerate loops rooted at 0, by
letting r, s — 0", we conclude that p/ = cug. O

Remark 4.6. We record the following fact for future references. From the proof of Theorem
(i), we see that, if p is any Jordan curve in C surrounding 0, and 7, is the hitting time at p,
then K7, (u(l)\{Tp@o}) =Q- /CTP(VSéé "), and the Radon-Nikodym derivative () may be expressed
by
ECVURTN 8 (g—
Q(’Y’rp) — 2d 20 1‘ Slng()\Tp o qu)‘l He(d 2)7',,,

if (e'M;et) is the driving process for the whole-plane SLE,(2) curve. In the proof, we only
considered the case p = {|z| = r}, but the above formula holds for general p. Thus, /1(1)|{r,,<oo}
may be constructed by first weighting the law of a whole-plane SLE,(2) curve stopped at 7, by
@, and then continue with a chordal SLE, curve from the tip to 0 in the remaining domain.

Corollary 4.7. Suppose that 7y is a Minkowski content parametrization of a two-sided whole-
plane SLE,; curve from oo to oo passing through 0 such that 7p(0) = 0. Then 7g is a self-similar
process of index é defined on R with stationary increments.

Proof. We view I/:i _ as a measure on unparametrized curves. Let /V\fo‘:‘(] denote the law of the
random parametrized curve 7y in the statement. The self-similarity of 7y follows easily from
the scaling invariance of uf;io and the scaling covariance of the Minkowski content measure
(Proposition applied to a scaling map). Since the Minkowski contents of both arms of 7y
are positive, by the self-similarity, the definition interval of 7y has to be R.

Now we prove that 7y has stationary increments. Because of the self-similarity of 7y, it
suffices to show that ﬁi:a is invariant under the map 7; : 5 — (- + 1) — 5(1).

Let I' denote the space of unparametrized curves v, which possesses Minkowski content
measure that is parametrizable for v, such that the definition domain for any Minkowski content
parametrization of v is R. For each v € T, define 7, : v — « such that if 7 is a Minkowski
content parametrization of v, then for z € v, 7,(2) = J(7.(7) + 1), where 7,(7) is the first
time that 7 reaches z. Note that the definition does not depend on the choice of 7. Since
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7 induces an isomorphism modulo zero between (R,m) and (v, M,) (Remark 2.4), and m is
invariant under translation, we see that M., is invariant under 7,. Thus, ul (dy) ® M, (dz) is
invariant under the map 7 : (v, 2) — (7, T5(2)). By Theorem (iv), v _.(dv) ® m2(dz) is
also invariant under 7.

Define the map Rr(7,z) = (247, z) on I' xC. Since - z—i—yﬁﬁo, we have yﬁﬁz(d'y)@)
m?(dz) = RF(I/foio ® m?). Thus, I/iﬁo ® m? is invariant under the map RI?I oT.oRr.

Let T'g be the set of v € T such that 0 € v and 0 is not a double point of +. By scaling
invariance, ,uo#o —o is supported by I'g. For every v € I'g, there is a unique Minkowski content
parametrization of v, denoted by P(7) such that P(y)(0) = 0. Then I/Jfo\ﬁ() = P(yiio). Define
Re(v,2) = (7,2 — P(7)(1)) on Ty x C. By the translation invariance of m?, Vféﬁo ®m? is also
invariant under R¢. Thus, I/Zi¢0 ® m? is invariant under Ry Yo Trio Rr oRc.

Let v € Tg and z € C. Then z is not a double point of z + v, and z + P(y) is a Minkowski
content parametrization of z + v such that z 4+ P(y)(0) = z. Thus,

TeoRr(v,2) = Te(2+7,2) = (247, To44(2)) = (2 + 7,2 + P(1)(1))-

So we have Ryt o Tp o Rr o Re(v, 2) = (v — P(7)(1), 2). Therefore, Vo?ti(] is invariant under
v+ ~v—"P(y)(1). So for Viio—a.s. v, ¥—P(7)(1) € Ty. Note that when v —P(y)(1) € Ty, with
v :=P(), () =7(- + 1) —7(1) is the Minkowski content parametrization of v — (1) that
satisfies 71(7)(0) = 0, which implies that P(y — P(y)(1)) = T1(P(y)). Since Vi‘io is invariant
under v — v — P(7)(1), we get that ﬁiﬁo =P

7 _o) is invariant under 77, as desired. O

Remark 4.8. In the subsequent paper [39], it is proved that the « in Corollary is locally
a-Holder continuous for any o < 1/d, and for any deterministic closed A C R, dimpy(v(4)) =
d - dimg(A), where dimy stands for Hausdorff dimension.

Remark 4.9. Corollary [1.7] also holds for x > 8, if we replace the two-sided SLE,; curve from
00 to oo passing through 0 with the SLE,; loop rooted at oo (with law ,ufo) as described in
Remark and let d = 2 so that the (d-dimensional) Minkowski content agrees with the
Lebesuge measure m?. This is [12, Lemma 2.3]. We now give an alternative proof by modifying
the above proof. The self-similarity is obvious. For the stationarity of increments, we define I'
to be the space of space-filling curves from oo to co that is parametrizable by m?, and define
Ty : C — C for each v € I as in the above proof. The same argument shows that m? is invariant
under 7. Thus, s @m? is invariant under 7 : (v, 2) — (7, T+(2)). Since uZs is invariant under
translation, ,ufo ® m? is also invariant under Rr : (z,7) = (2 47, ). Define I'g, P, and R¢ as
in the above proof. By the scaling invariance, /Lfo is supported by I'g. By translation invariance
of m?, ;ﬂfo ®@m? is also invariant under R¢. Thus, u ® m? is invariant under the composition
RploTpoRroRe : (7,2) = (v — P(v)(1),2). So s is invariant under v — y — P(v)(1).
When v — P(y)(1) € T, we have P(y — P(7)(1)) = Ti(P(y)). Thus, fi% := P(u) is invariant
under 77. So the increments are stationary.

Proof of Theorem[{.4 (i) From (4.2J4.5) we sce that u° = Cont(-)~!- [ ul m*(dz) and satisfies
reversibility. Integrating (4.1)) against the measure m?(dz) and using the above formula and
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the definition of ul, we get
Cont(7) - 1°(d) @ M., (dw) = Cont(v) - ik, (d7) & G - m2(dw),

which immediately implies (4.6]) since both sides are supported by loops with positive Minkowski

content. Combining (4.6) with (4.1), we get (4.7)).
(ii) Let F' be a Mobius transformation. Applying the map F' ® F to both sides of (4.6)), we

get two equal measures. On the left, using Lemma 2.6, we get
F(u®)(dy) @ F(Mp-1())(d2) = F(u°)(dy) @ |F'(F~(2))| 74 - M (dz).
On the right, using Theorem |4.1| (iv) and , we get
F(pth1()(dy) B F(m?)(dz) = |F/(F~(2) Pl B F/(F ()| 72 - m?(d2)

= |[F/(F7(2)[ ™ (uk® m?(d2)) = p(dy) @ |[F/(F(2))[ 7 - My (dz).

Since both p® and F(u°) are supported by loops with positive Minkowski content, by looking
at the marginal measures in loops, we get F'(u") = u°. O

5 SLE Loop Measures in Riemann Surfaces

First, we use Brownian loop measure (c.f. [25]), the approach used in [I8], and the normalized
Brownian loop measure introduced in [9] to define SLE loops in subdomains of C. We are going
to prove the following theorem.

Theorem 5.1 (Loops in ~a subdomain of (6) Let i} and p° be as in Theorems and .
Let D be a subdomain of C. For z € D, define

*(-,D°) cA*(-,D¢) 0

Mb;z = 1{-CD}€CA ':ui: IUOD = 1{~CD}6 B

Then ,u}j.z and [LOD satisfy the following conformal covariance and invariance, respectively. If

W maps a domain U C C conformally onto a domain V C @, then
W) = W' () b ¥z € U\ {oo, W (c0) ) (5.1)

W (ugy) = . (5.2)

Using (2.1)), we easily get the following generalized restriction property: if D; C Ds are
nonpolar domains, and z € Dy, then

CMIP‘CDQ ('7D2\D1)

1 _ 1.
KDz = 1{-CD1}6 " HDy;zs

/-LODl — 1{,CD}eCulpﬁD2('7D2\D1) . IU’ODl (53)
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Now we show how Theorem can be used to define unrooted SLE, loop measure in some
Riemann surfaces, such that the loop measures satisfy the generalized restriction property and
conformal invariance. Let S be a Riemann surface. The Brownian loop measure on S was
defined in [38], which satisfies conformal invariance and the restriction property. We use ,ug’ to
denote this measure. We say that S is of type I if holds for disjoint closed subsets Vi, Vs
of S, one of which is compact.

The definition of unrooted SLE,; loop on a type I Riemann surface S is as follows. Let S

denote the set of subdomains of S, which are conformally equivalent to some subdomain of C.

~ Conf
For every D € S, we may find FE C C and f: F 2" D. Then we define 1 = f(u%). From

Theorem the value of u% does not depend on the choices of E and f. Moreover, from ({5.3))

we get the generalized restriction property
1
,u%l = 1{.CD1}6C“Sp(ch("DQ\Dl)) -M%z, VD, C Dy e S. (5.4)

Using (5.4), we may define a measure ,u% on the space of (unrooted) loops in S, which is
supported by the union of {- C D} over D € S, such that

1 = LicpyeFEsCSD) 0 wpes. (5.5)

In fact, requires that yg|.cpy = e*"“lsp(LS("S\D))pJ%, where we use ug’(ﬁs(-, S\ D)) < .
Let 417, denote the measure on the right hand side. From and the fact that Lg(-,S \ D1)
is the disjoint union of Lg(-,S \ D2) and Lp,(-, D2 \ D1), we get the consistency criterion:
M%l = M%2|{~CD1} if D1 C Dy € S. Thus, u% exists and is unique. We call ,u% the unrooted
SLE, loop measure in S. It clearly satisfies the conformal invariance and the generalized
restriction property.

We say that a Riemann surface S is of type II if does not hold, but the normalization
method in [9] works. This means that, for any nonpolar closed subset K of S, S\ K is of type I,
and the limit A%(V1,V2) in converges for disjoint closed subsets Vi, Vo of S, one of which
is compact, and does not depend on the choice of zy € S. We may also define unrooted SLE,
loop on a type Il Riemann surface. The above approach still works except that we now use
A%(+, 8\ D) to replace the ,ug’(lig(-, S\ D)) in

We expect that ([11]) every subsurface D of a compact Riemann surface S is of type I or
type II depending on whether S\ D can be reached by a Brownian motion on S. Therefore,
unrooted SLE, loop measure can be defined on any Riemann surface that can be embedded
into a compact Riemann surface.

Remark 5.2. there may be other ways to define SLE loops on Riemann surfaces, such as
using Werner’s SLEg,3 loop measure in place of the normalized or unnormalized Brownian loop
measure. Stéphane Benoist dis some work on classifying all possible definitions of conformally
invariant loop measures ([6]).

Remark 5.3. If k = 8/3, we have the strong restriction property: ,u%, = M%’{.C s} because
¢ = 0. This measure is supported by simple loops, and so agrees with the loop measure

37



constructed by Werner in [38] up to a positive multiplicative constant. Since ¢ = 0 when k = 6,
the SLEg unrooted loop measure also satisfies the strong restriction property.

Remark 5.4. If Kk =2, and D is a doubly connected domain, then ,uOD restricted to the family
I" of the loops in D that separate the two boundary components of D is a finite measure. The
normalized probability measure ,u% = u%|r/|p%|r| should agree with the measure constructed

in [I4] as the scaling limit of the unicycle of a conditional uniform CRST.

Remark 5.5. If some assumption holds, we also have the CMP of rooted SLE, loop measure
in a subdomain of C. We use the measure ,uU .a—sp defined in If it is a finite measure,

then we may normalize it to get a probability measure, which is denoted by /ﬂg, asp- This is the

case, e.g., if k € (0,8/3]U[6,8). From Proposition [A.3| we know that ,uﬁ.aﬁb satisfies conformal

invariance. From the CMP for the rooted SLE loop measure in (E, we get the following CMP:

ICT(ILL%];Z|{T<TZ})(d’yT) @ /Lg( (d’yT) = :U’ll];Z’{T<TZ}7

¥r32)NU ;5 (y7 )tip— 2

if 7 is a nontrivial stopping time, and if ,ugh U Y 2 is well defined.
T y\V7 )tip

Proof of Theorem [5.1. We first prove . We may assume that z = 0 and W(0) =0. Let p
be a Jordan curve in C that separates 0 from (C\U) U {W1(c0)}. Then W(p) is a Jordan
curve in C that separates 0 from (C\ V) U {W(c0)}. Let 7, and Ty (,) be the hitting times at
p and W(p), respectively. From Remark we see that

Ko, (bl g opoy) = Q- Koy (V100 ):

ICTW(p) ('u(l)|{'ﬂw(ﬂ)7é0}) =Q- ICTW(,;)(VS%:oo)'

Moreover, the Radon-Nikodym derivatives Q may be expressed by the following. Suppose
that ~ is a whole-plane SLE,(2) curve with driving process (eiMe; eir), With the symbols
in Section (eg, Xe = M —aq, Ys = 05 — ps, ou) = Wi(Me), Puy = Wilar)), we have
TW(p)(W(fV)) = U(Tﬂ(’)/))ﬂ and

Q(vs,) = 272 Y sing (X, )|~ el D7,

Q(W('%'p)) - 2d72?1’ Sing (Yu(Tp))P*%@(%fl)u(Tp)'
Using (3.11] 3.29) and Lemma we may express the M, in Lemma [3.2) as

ecA*('Y-rp,UC) Sin?(Y’u,(Tp)) ‘1—2

6—k
A (W(r,) Vo) ‘ sing(X7,)

M, = W' (0)|5 7 W, (A, )WL (qr,)] 2= -

(5.6)

For a curve v started from 0 that intersects p, we use v;, and ¥ to denote the parts of v
before 7, and after 7,, respectively. Since p separates 0 from U¢, y N U # 0 iff v N U # 0.
Recall that K is the interior hull generated by 7;,. Suppose that 4™ lies in the closure of
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@\KT ,- If aloop is disjoint from 7, and intersects both v and U¢, then the loop is contained
in C\ K,,. Thus, L(v,U¢) is the disjoint union of L(v;,,U¢) and E(C\K (v, U¢). Using the

above facts, the formula lj the CMP for pf at 7, (note that (C(’yTp, 0) = C \ K-,), and
Remark with the notation in (A.3)), we have the expression:

cA*(-,U° C\K T,
M[B;O’{-ﬁp#@} = Qe ATCTS) ICTp (V(;)#—)OO)(d’YTp) S //LU\Kpr(’YTp)tip*)O(d’y ﬂ)'

Similarly,

(e C\L,
ol towzoy = Qe OV Koy, ) (00 (@Bry ) © 7 (5 g(dBTVO)).
(p) NTTW (p) /P
From Lemma and (5.6)), we find that the W-image of the measure

3 6
I (A 1 (igr 67—: San(Yu(Tp)) ‘1_E . cA*(-,U°) | #
‘WTp (6 P)WTp(e p)| 2 SiHQ(X—rp) Qe ’CTﬂ( )

Yoo

is
WO FQeN YD Koy (04 o).

From Lemma we see that the W-image of the kernel

6—r Sin?(Yu(Tp))

sing(X7,)

6 —~
=1 C\k,,

! i\T / iqr, \|—
’WTp(el p)WTp(eZq °)| IJ/U\K‘FP;('YTp)tip*}O

is
C\Lry, )
Hy L,

W (p) 7(6TW(p) )tip_>0 :

Combining the above six displayed formulas, we get
W (170l f.opray) = W ()" ol {ow ()20

Since ,uU o and ,uv .o are supported by non-degenerate loops rooted at 0, by choosing p = {|z| =
1/n} and letting n — oo, we finish the proof of (5.1)).

Finally, we prove . From we get
u%uw @ M, (dz) = plro(dy) By - m?(d2).
Applying the map W ® W to both sides, and using Lemma and , we conclude that
W (i) (dy) & M (d2) = il (d) © M., (dz2).

Let L be a compact subset of V, and 'y, = {y : Conty(y N L) > 0}. Restricting both sides of
the above formula to z € L, and looking at the marginal measures of the first component, we
get W(ud)|r, = 1%, . Since ud-a.s. the Minkowski content measure for v is strictly positive,
we see that ,u?, is supported by (J;y 'z, and so does W(u%). This implies that 1} holds
and completes the proof of Theorem O
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6 SLE Bubble Measures

In this section, we will construct SLE, loop measures, for k € (0,8), rooted at boundary,
which we also call SLE, bubble measures, and study their basic properties. The SLE,; bubble
measures were first constructed in [22] for k = 8/3 using the restriction property of SLEg)3,
and later in [37] for k € (8/3,4] in order to construct CLE. R

The argument in this section is similar to the construction of SLE loop measures in C. We
will need the degenerate two-sided radial SLE process. To motivate the definition, let’s consider
a two-sided radial SLE, curve in H from a € R to b € R through w € H. From [35] the curve
up to hitting w or separating b from oo is a chordal SLE (2, x — 8) curve started from a with
force points (b, w) (modulo a time change). We now define a degenerate two-sided radial SLE,,
curve in H from a~ to at through w € H. Roughly speaking, it is the limit of the above
curve when b — a™. More specifically, the degenerate two-sided radial SLE, curve is defined
by first running a chordal SLE, (2, k — 8) curve 3 started from a with force points (a™,w) up
to a nontrivial stopping time 7 before w is reached, and then continuing it with a two-sided
radial SLE,; curve in the remaining domain from 3(7) to a® through w. The definition does
not depend on the choice of the stopping time 7. Similarly, we may define degenerate two-sided
radial SLE, curve in H from a™ to a~ through w. We have the obvious reversibility property:
the time-reversal of a degenerate two-sided radial SLE, curve in H from a~ to a* through w is
a degenerate two-sided radial SLE,; curve in H from a™ to a~ through w. Moreover, conditional
on any arm (between w and a™ or a™) of the curve, the other arm is a chordal SLE, curve. From
Lemmas and we see that the above degenerate two-sided radial SLE, curve possesses
Minkowski content measure in C \ {a}, which is parametrizable for the loop without a.

From the definition, we see that a degenerate two-sided radial SLE, curve satisfies CMP.
We now use the language of kernels to describe this CMP. For a € R, let I'(H;a™) denote the
set of curves v in H (modulo a time change) from a to another point Veip € H, such that there
is a unique connected component of H \ v whose boundary contains (a,a + ¢) for some € > 0
and has two distinct prime ends determined by at and y;p. Let H(v;a™) denote this connected

component. For v in this space, the chordal SLE,; measure ,ug( is well defined, and

v;at)ivip—at
the map from 7 to this measure is a kernel. For a € R and w € H, let T'(H;a*;w) denote the
set of v € T'(H;a™) such that w € H(y;at). For v in this space, the two-sided radial SLE,

#
measure v

H(v;a% )5y
V#

Hea st denote the law of a chordal SLE (2, x — 8) curve started from a with force points

(a™,w). Let V;; -y, denote the law of a degenerate two-sided radial SLE, curve (modulo a
) +‘_

—w_sq+ 18 well defined, and the map from 7 to this measure is a kernel. Let
P

time change) from a~ to a’ through w. The CMP of the degenerate two-sided radial SLE can
now be stated as follows. If 7 is a nontrivial stopping time, then

KT(”ﬁfﬁw;ﬁ)‘{T<Tw}(d%) @ Vﬁ(%;aﬂ;(%)ﬁp_}wﬁﬁ (dy") = Vﬁa;ﬁw’{T<Tw}7 (6.1)

where implicitly in the formula is that . ( |¢r<7,1 is supported by I'(H; at;w).

#
V]H[;a— Hw;a"")
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We may similarly define T'(H; a™), H(vy;a™), and I'(H; a™;w). Then (6.1 holds with a*, a~
and a replaced with a~, a® and a’, respectively.

#

For a € R, we use v, .+ to denote the law of a chordal SLE,(2) curve started from a

H;a=—o005a
with force point a*. The following proposition described the Radon-Nikodym derivatives be-
tween l/gia, Cswiat and V]ﬁi a- oot stopped at certain stopping times, which follows immediately

from [35, Theorem 6].
Proposition 6.1. Let a € R, w € H, and let 7, be the first time that the curve visits w or
disconnects w from oo. Then for any stopping time T,

KT(1{7<7—M} ) Vﬁaf_)w;ﬁ)(d’%) = Ry(vr) - ICT<1{T<Tw} ) Vz?giaf%oo;ﬁ)(d'ﬁ)a

where Ry, () is given by the following. Let v, be parametrized by half-plane capacity, and let A
and g, 0 < t < 7, be the chordal Loewner driving function and maps for v (see, e.g., Appendix

. Then
(r—8)2

Rw(%):|g;(w)|sg~(W—M)T(!gf(w)—%(a*)\)“f(hngf(w)) = (62)

|lw — al |lw — al Imw

Y
Theorem 6.2. Let Gy(w) = |w]%(”78) (Im w)( S . Then the following are true.

(i) For every a € R, there is a unique o-finite measure ,ullHI.a,, which is supported by non-
iy

degenerate loops in H rooted at a which possess Minkowski content measure in C\ {0}
that is parametrizable for the loop without a, and satisfies

ullm.a, (dvy) ® Mo\ qoy(dw) = vt (d'y)%GH(w —a)-m?(dw), a€cR. (6.3)
oy

H;a;ﬁw
Moreover, the time-reversal of u;ﬂ.a_ is Mllfﬂ-a+’ which satisfies the same property as u;{.a_
e} + P Rade—. el +

except that is modified with a™ and a~ swapped.

(ii) For every a € R, ,ullHl.a, satisfies the following CMP: if T is a nontrivial stopping time,
ay
then
’CT(N%;Q; ‘{T<Ta})<d'YT) @ Nﬁ(%;aﬂ;(%)ﬁp_ﬂﬁ (dy7) = N%HI;G; ’{T<Ta}7 (6.4)

where implicitly stated in the formula is that K. ( Mir<t,y s supported by T'(H; a’).

1
’LL]HI;aJ_r
(i1i) Let J(z) = —1/z, and ,u%l;oot = J(M%ﬂ;oi)' Then ,u%l;oot is supported by loops in H rooted

at oo, which possesses Minkowski content measure (in C), and satisfies

— (5—8)2
Moot (1) ® My (dw) = v, (@)@ (Imw) "5 m? (duw), (6.5)
where we define I/Ej; o= J I/go_gj( )). Moreover, for any bounded set S C C,
;00 _Fw §+— w

L-a.s. Cont(yNS) < 0.

1
'LLH;OO
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(iv) If F is a Mébius automorphism of H, then F(M%HM;) = ]F’(x)|%_1u[1EH;F(x); for any x € R
such that F(x) € R. If F(z) = az 4+ b for some a,b € R with a > 0, then F(M]}_H.OOJr) =

la '~ -

(v) Foranyr >0 anda € R, 'u];lu* ({~ : diam() > r})is finite. Moreover, there is a constant
ay
C € (0,00) such that u]}_ﬂ.a,({’y sdiam(y) > r}) = Cri=x for any a € R and r > 0.
L

(vi) For a € R, if a measure i’ supported by non-degenerate loops in H rooted at a satisfies
(i1) and that p'({~ : diam(y) > r}) < oo for every r > 0, then ' = cuﬁ.a, for some
0y

c € [0,00).

Remark 6.3. For x > 8, it is easy to construct an SLE, bubble measure Mﬁ. _ that satisfies

ay
the CMP as in Theorem (ii). This is similar to Remark To construct a random curve
with law “E-a*’ we start a chordal SLE(x — 6) curve in H from a to oo with force point a*,

and after the curve reaches co, we continue it with a chordal SLE, curve from oo to 0 growing
in the remaining domain.

Proof of Theorem[6.3. This proof is very similar to the proof of Theorem [£.1] We will point
out the main difference and omit the parts that are similar.
(i) It suffices to consider the case a = 0. Let v,(f), 0 < ¢ < 7, be a chordal Loewner curve

started from 0 with driving function A¢, 0 <t < 7. Let g; be the corresponding Loewner maps.
n n Conf
Suppose v N (0,00) = 0. Then g, : (H(v-;07); 00, (’YT)tip = 7:(7),07) — (H;o0,Ar,qr)

for some ¢, > A,. We have the chordal SLE, measure pﬁ(%,o e (1) 0+ and the two-sided

radial SLE, measure v, for each w € H(v,;0"). Since these measures are all

Iz?IE(%;OJF);"VT(T)%”JHOJ“
determined by v;, we now write pf and Vﬁ;w, respectively, for them. We write G, (w) for
the Green’s function Gy, .0+, (r)»o+ (w). Let K be a compact subset of H\ {0} such that
K N~; = 0. From Proposition we have

1 (dy) ® Myarc(dw) = v2E,(d7) B (1 G, - m?)(dw). (6.6)
We now compute G, (w) = Gy, 0+)s, (r)—o(w) for w € H(y7;07). Let ¢(2) = P Az Then

Conf Conf
6+ (HArygr) 2 (H;0,00). Recall that g, : (H(17;0%);7(7),07) = (H; Ar,q.). By ()

and , we get
G (w) = Eg ()P~ 16 (g7 () P~ 6(gr ()|~ * (Im (g (w))) $ 752

_/c\]gl (w)|2—d | _)‘ |§_1
- T : 8
g7 (w )_QT‘ 1‘97( ) = Arl® !

T2 (6.7)

—~
5
o
)
—~
S
~—
~—
3
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Let Gg(w) be as in the statement and

Qyr) = gr — M1 7%. (6.8)
Using and (6.10), we find that
Q(1r)Ghy, (w) = Ruy ()G (w). (6.9)
From and (6.9), we get
QUi (dy™) @ My (dw) = (Ruy(v-)v ) (dy™) B (1 G - m?) (dw). (6.10)

Note that the above two formulas are similar to (4.11}4.12)).
For any stopping time 7, define

Tr = {y:7(y) < To(v),K-(v) € T(E;07),7([0,7]) N (0, 00) = B}

We view both sides of (6.10) as kernels from ~; € I'; to the space of curve-point pairs. Let
K be a fixed compact subset of H \ {0}. Let I'r.x = T N{y : K C H(K.(7);0")}. Acting

Kr(Ar, g - Vﬁo,_}wm)(d%)@ on the left of both sides of (6.10]), we get an equality of two

measures on the space of curve-curve-point triples (y-,7",w), i.e.,

Q- Kr(Ar, e+ Vit o oo ) (A7) ® 2 (dy7)] @ My (duw)
s
= (Ir, e+ Vg o ) (A7) © v, (A1) ® (1 G - ) (dw).

The rest of the proof of (i) is almost the same as the part of the proof of Theorem (i)
starting from the paragraph containing (4.13|) except for the following modifications: we use
i # # # 1 1 .0+ -0+
H\ {0}, GHu, V0~ S 00:0+ 7 VH:0- w0+ VH;O;:W “H;o;’ ot [(H;0%), H(;07), and M..c\ 0}
to replace C\ {0}, G¢, 1/6‘7;00, Vg/;w, I/S‘iw, 1s, po, T(C;0), C(+;0), and M., respectively.

We need to prove the uniqueness of ,u];m, without a formula similar to 1) Suppose i
satisfies the properties of 'ul%}o*' Let K be a compact subset of H \ {0}. Let r € (0, dist(0, K))
Oy

and 7, be the first time that the curve reaches {|z| = r}. Restricting (6.3) for u to v € I';, and
w € K, we get

%
plr,. (dy) @ Moy (dw) = ”E?fo;iw ®1xGy - m?(dw).

Since p-a.s., Mynk is a finite measure, from the above formula, we get

_ N—1 # 2 _ 1
plr = Cont() ™!+ [ v Galw) ) = k- I

where 'y := {7y : Contg(y N K) > 0} C T';,. From the assumption we see that both px and

u]}{[. - are supported by |J, I'x. So they must agree. Finally, the reversibility of ,u]%} - follows
e} + K +

el e # . 1
from 1' the reversibility of V0 —? and the uniqueness of Mg, oz

W
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(ii, iii, iv) The proofs of (ii, iii, iv) are almost the same as the proofs of Theorem (ii, iv,
v), respectively, except for the modifications described near the end of the proof of (i).

(v) By the translation invariance and the scaling property (iv), it suffices to prove the
first sentence of (v) for a = 0 and » = 1. We will use the chordal Loewner equation (see
Appendix . Let v be a chordal SLE,(2) curve started from 0 with force point at 0F. Let v
be parametrized by half-plane capacity, and A be its chordal Loewner driving function. Let K;

and g; be the chordal Loewner hulls and maps, respectively, driven by A. Recall that H \ K

Conf
is the unbounded connected component of H \ v([0,t]), g:(H \ Ky; 00) > (H; 00), satisfies

gi(00) = 1, and maps (t) to A;. Let Ki°®* = K, U{z € ~H : z € K;}. By Schwarz
Conf
reflection principle, g; extends to g; : C\ Kgoub 2 C\ [g ,q/] for some ¢, < ¢ € R. Since

v(t) € 0Ky, we get q; < M\ < ¢. Since gj(c0) = 1, we have cap(Kf°") = cap([q; , ¢/ ]).
Thus, diam(y([0,#])) < diam(K{°"P) < ¢;" — ¢; . By chordal Loewner equation and the
definition of SLE,(2) process (note that (g;") is the force point process), we see that ()\;) and
(¢i) satisfy the SDE

2

t — 4
2
dgi = dt,
! qti -\
for some Brownian motion B;. So we have dlog(q;" —¢;) = —+——2—— > 0. Let

= @) e—q;)

T At — G
vp=2 L2 H e g)
9y — G 4 — 4

+ —
Then Y; +1 = @ and V; — 1= M. By It6’s formula, Y; satisfies the SDE

9 — 9 qy —4;

) 2 2Y;
dY; = +\/E_dBt+ 0 dt — dt — !

4 —a (" = )(a —a) M —a ) —a) (¢ = )N —qp) "

Let u(t) = %log(qtJr —¢; ). Then u is absolutely continuous and strictly increasing, and maps

(0,00) onto (—o0,00). Moreover, u/(t) = m whenever ¢, < A(t) < ¢;7, which holds

for almost every ¢t > 0. Let v = ™1, Y; = Y, ). By a straightforward computation, we find
that }/;t, —00 < t < 0o, satisfies the SDE

~ ~ o~ 2 ~ 4 ~
4%, = 1~ V2dB, — 2 (Fi+ 1)dt — = (¥, ~ 1)t

This agrees with the SDE in [4I, Remark 3 after Corollary 8.5] with 6; = £ and §_ = 18,

Thus, for each fixed deterministic ¢ € R, the law of }/}t has a density w.r.t. 1;_y 1 - m, which
is proportional to (1 — x)%_l(l + x)%_l. Let 7 = v(0). Then 7 is the first time ¢ such that
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¢ —q, = 1. So we get 1 +Y; = 2(¢F — A;). Thus, the law of ¢; — )\, is proportional to
1j,1) (x)x%—l(l - x)%—l -m. From the construction of “1151;0; and we see that

— _s
,CT(/‘I’IIHLOI‘FT) =cC I(Q: - AT)I f ICT(V]I:’—]?;O—*)OO;O+|FT)'
Thus,
4
B fol(l — )% ldx
fol x%_l(l - l’)%_ld.%'

Let 7jg,0c) be the first ¢ > 0 such that y(t) € [0,00). The above formula implies that, for any

M]}'H;O:L (FT)

1 [ + - 1
- sup ¢, —¢q >1}§ () < o0.
MH7O+ 0§t§7[01w> t t /’LH7O+( T)

Since diam(K;) < ¢;” —q; for t < 7 ), we have M;HI'O_ [diam (K, > 1] < co. Since 7 either
Oy

[0,00))
ends at 7jp ) (When & € (0,4]) or grows inside K,
diam(vy) = diam (K

(vi) The proofs of (vi) is almost the same as the proof of Theorem [4.1| (vii) except for the
modifications described near the end of the proof of (i). O

o after mo o) (when r € (4,8)), we get

0.00y)- Thus, M]%—H;O; [diam(y) > 1] < 0.

Theorem 6.4. Let ,uIIHI_a, be as in the previous theorem. Let D C H be an open neighborhood
iy
of RU{oo} in H. Define

cp'P(Ly(-H\D)) | 1

Hiay’ a € R.

1
MD;a; = 1{'CD}6
Then uba_ satisfies the following conformal covariance. If W maps D conformally onto another
s

domain E with the same properties as D, and maps a € R to b € R, then

Wl )= |W(a)|="

1 1
.o [T
D,(Z+ E7b+

Proof. The proof is similar to that of Theorem except that here we use Lemma (A.16]),

and Lemma below to replace Lemmas and in the proof of Theorem and
the role of ([2.1)) is played by an equality of Brownian loop measures without normalization. [J

Lemma 6.5. Let a > a’ > 0 be such that the circle {|z| = a} separates 0 from H\ U. Let
p=A{lz| = d'}. Let 7, and Ty, be the hitting time at p and W (p), respectively. Then

# _ #
K ) = W(M,, - K, (v

7—W(p)(V]HI;O*—MDO;OJF H;O*—>oo;0+))’

where (My) is a local martingale defined as follows.
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Suppose that v has the law V§~0*—>oo~0+7 i.e., is a chordal SLE(2) curve started from 0 with

force point 0T. Let \; and q; be its driving function and force point process, respectively, and

let Xy =\ — qi. Let (Ky) be the chordal Loewner hulls driven by X. Let Ly = W (Ky). Suppose

Conf Conf
that gg, = (H\ Ky;00) > (H; 00) and gr, : (H\ Ly;00) > (H; 00) behave like z + o(1) as

z—o00. Let Wy =gr, oW og[_(tl, o =Wi(\), oo = Wi(qr), and Yy = oy — pi. Then

—K | Y} % C t
Mi(y) = W) 5 W (qr) 5 | <L ’ exp < - / S(”s)(ks)d‘g)
X, 6/,

Proof. This follows from a chordal version of the argument in the proof of Lemma [3.2] which
uses chordal Loewner equations, and is similar to the one used in the proof of Proposition
Here we use Y; instead of the Y, as in (3.25) because we did not do a time-change on (L¢). [

Remark 6.6. For k € (4, 8), there is another way to construct the SLE,; bubble measure. The
construction uses two-sided chordal SLE. Roughly speaking, a two-sided chordal SLE,; curve
is a chordal SLE, conditioned to pass through a fixed boundary point. For a # z € R, the
degenerate two-sided chordal SLE, curve in H from a~ to a™ passing through z can be defined
as the limit as b — a™ of a two-sided chordal SLE, curve in H from a to b passing through .
The degenerate two-sided chordal SLE, curve satisfies the reversibility as a two-sided whole-
plane SLE, curve does. [40, Theorem 6.1] states that if we integrate the law of two-sided
chordal SLE, curves in H from 0 to co passing through different = € R against the measure
1y -m(dx), where U is a compact subset of R\ {0}, we get a law, which is absolutely continuous
w.r.t. that of a chordal SLE, in H from 0 to oo, and the Radon-Nikodym derivative may be
described as the (2 — %)—dimensional Minkowski content of the intersection of the curve with
U. Here we use Lawler’s result on the existence of the Minkowski content of the intersection
of SLE,; curve with the domain boundary [I7], which was conjectured in [2] and later solved
We may derive a theorem that is similar to Theorem except for the following modifications:

the measure V;iw should be replaced by Vg. ooyt the law of a degenerate two-sided chordal
el _}'-ﬁ -

SLE,, curve in H from 2~ to 2T passing through y; the function G¢(w — z) should be replaced
by Gu(y — z) = |z — y\_2(%_1); the measure m?(dw) should be replaced by m(dy); the d-
dimensional Minkowski content Cont(:) and Minkowski content measure M, of v should be
replaced by the (2 — £)-dimensional Minkowski content Cont,,__ 5 (-NR) and Minkowski content

9_8 2-8y . .
measure M(WRK) of yNR; the measure M( mR“) is not parametrizable for the curve, so here we do

not have a statement similar to Theorem {4.1] (iii); and the exponents d —2 and (d —2)/d in (vi)
should be replaced by 1 — 2 and (1—2)/(2— ), respectively. The statements on the CMP and
uniqueness in this theorem and Theorem ensures that the bubble measure constructed in the
two theorems are equal up to a multiplicative constant because of the uniqueness. Moreover,
following the proof of Theorem [£.2] we may construct an unrooted SLE,, bubble measure, which
is invariant under Mobius automorphisms of H. Following the proof of in Theorem |5.1] we
can prove that this unrooted loop measure satisfies the generalized restriction property without
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the factor |W’ (a)\%_l as in Theorem Then we may follow the argument after Theorem
to define unrooted SLE, measure pg.c in any Riemann surface S with a boundary component
C, which is conformally invariant and satisfies the generalized restriction property.

Appendices

A Chordal SLE in Multiply Connected Domains

In the appendix, we review the definition of chordal SLE in multiply connected domains for
k € (0,8). First, we review hulls, Loewner chains and chordal Loewner equations, which define
chordal SLE in simply connected domains. The reader is referred to [19] for details.

A subset K of H is called an H-hull if it is bounded, relatively closed in H, and H\ K is simply

Conf
connected. For every H-hull K, there is are a unique ¢ > 0 and a unique gx : H\ K o H

such that gx(2) = 2z + £ + O(Z%) as z — 00. The number c is called the H-capacity of K, and
is denoted by hcap(K).

If K1 C Ky are two H-hulls, we define K2/K; = gk, (K2 \ K1). Then K3/K; is also an
H-hull, and we have hcap(K2/K;) = hcap(Ks3) — heap(Kq).

The following proposition is essentially Lemma 2.8 in [21].

Proposition A.1. Let W be a conformal map defined on a neighborhood of ro € R such that
an open real interval containing xq is mapped into R. Then

heap(W (H))

_ / 2
H—z hcap(H) W (z0)l",

where H — zy means that diam(H U {z9}) — 0 with H being a nonempty H-hull.
Let T € (0,00] and A € C([0,T),R). The chordal Loewner equation driven by A is

2
gi(z) = M\’

For each z € C, let 7, be such that the maximal interval for ¢ — g.(2) is [0,7,). Let K; = {z €

H: 7, <t},ie., the set of z € H such that g;(z) is not defined. Then g; and K;, 0 <t < T, are

called the chordal Loewner maps and hulls driven by A. It is known that (K3) is an increasing

family of H-hulls with hcap(K;) = 2t and g, = gk, for 0 <t <T. At t =0, Ko = () and gp = id.
We say that A generates a chordal Loewner curve « if

Ohgi(z) = 0<t<T; go(z) ==z (A.1)

t):= i —1 H
y(t) oy 9t (2) €

exists for 0 <t < T, and ~ is a continuous curve. We call such v the chordal Loewner curve
driven by A. If the such ~ exists, then for each t, H \ K; is the unbounded component of

47



H \ 7([0,]), and g; " extends continuously from H to H U R. Since hcap(K;) = 2t for all ¢, we
say that v is parametrized by half-plane capacity.

Another way to characterize the chordal Loewner hulls (K%) is using the notation of H-
Loewner chain. A family of H-hulls: K, 0 <t < T, is called an H-Loewner chain if

1. Ko =0 and K;; & K3, whenever 0 <t <ty < T}

2. for any fixed a € [0,T), the diameter of K;i./K; tends to 0 as ¢ — 07, uniformly in
te0,al.

An H-Loewner chain (K;) is said to be normalized if hcap(K;) = 2t for each ¢. The following
proposition is a result in [21].

Proposition A.2. Let T € (0,00]. The following are equivalent.
(i) K, 0 <t <T, are chordal Loewner hulls driven by some A € C([0,T)).
(i) Ki, 0 <t <T, is a normalized H-Loewner chain.

If either of the above holds, we have

(A0} = () Kie/Er, 0<t<T. (A.2)
e>0

If K, 0 <t < T, is any H-Loewner chain, then the function u(t) := hcap(K;)/2, 0 <t < T, is
continuous and strictly increasing with u(0) = 0, which implies that K1), 0 <t <u(T), is a
normalized H-Loewner chain.

For k > 0, chordal SLE, is defined by solving the chordal Loewner equation with A(¢) =
VKB(t), where B(t) is a Brownian motion. The chordal Loewner curve v driven by this driving
function a.s. exists, and satisfies lim;_,o, v(t) = 00. So it is called a chordal SLE, curve in
H from 0 to oo. It satisfies that, if k € (0,4], 7 is simple, and K; = v((0,t]); if K > 8, 7 is
space-filling, i.e., visits every points in H; if x € (4, 8), 7 is neither simple nor space-filling, and
every bounded subset of H is contained in K; for some finite ¢ > 0.

Via conformal maps, we may define SLE, curve in any simply connected domain D from
one prime end a to another prime end b. Recall that we use ,ug a_sp to denote the law of such
curve (modulo a time change). ’

Now we review the definition of chordal SLE in multiply connected domains in [I8]. The
laws of such SLE are no longer probability measures, but finite or o-finite measures. We will
use the following notation. Suppose D is a simply connected domain with two distinct prime
ends a and b. Let U C D be an open neighborhood of both a and b in D. We define

WP(Lp(D\V)) | # (A.3)

D
HU.a—b = 1{-O(D\U):(D}6C "HD.a—b
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Conf
Proposition A.3. Let U and V' be open neighborhoods of RU{oco} in H. Suppose W : U el 74

extends conformally across RU{oo} such that W(R) = R and W (oo) = oco. Then for any x € R,

6—K

M@;W(m)—mo = ‘W’(l‘) ’ WI(OO) 7WW(ILL@;$‘>OO)7
where W'(o0) := (J o W o J)(0) with J(z) := —1/z.

Proof. This proposition was proved in [I8 Section 4.1] for k € (0,4] by considering simply
connected subdomains of U. In this proof, we assume that x € (4,8). The proof is similar to
those of Theorem and Lemma and uses a standard argument that originated in [22].
WLOG, we may assume that x = 0 and W(0) = 0. Let P, denote the multiplication map
z +— az. By conformal invariance of chordal SLE and Brownian loop measure, we know that
M%(V);(Hoo = Pa(/‘@;OHOO) for any a > 0. Since (aW)'(0) - (aW)'(00) = W'(0) - W'(0), we may
assume that W’ (oo0) = 1 by replacing W with aW for some a > 0.

Let v be a chordal SLE, curve in H from 0 to oo with driving function \; = /kBy. Let g,
and Ky, 0 <t < oo, be the chordal Loewner maps and hulls, respectively, driven by A.

Let 717 be the first time that v exits U. Then 5(t) := W (v(t)) is well defined for 0 < ¢ < 7.
For each 0 < t < 7y, let Ly be the H-hull such that H \ L; is the unbounded connected
component of H \ 4([0,¢]). If K; C U, then Ly = W(K;). Since € (4,8), K; may swallow
some relatively clospen subset of H \ U before the time 777, and W (K}) is not defined at that
time. Using the conformal invariance of extremal length, we can see that (L) is an H-Loewner
chain (even after K; intersects H\ U). From Proposition we may reparametrize the family
(L¢) using the function u(t) = hcap(Lt)/2 to get a family of chordal Loewner hulls. Let oy,
0 <s < S :=u(ry), be the driving function for the normalized (Ls). Let hs, 0 < s < S, be the
corresponding chordal Loewner maps. We also reparametrize § using u. Then 3 is the chordal
Loewner curve driven by o, and 8, = W(y(1)), 0 <t < 1p.

For 0 <t < 1y, define Uy = g1(U \ Ky), Vi = hy@y(V \ Lyw)), and Wy = hy o W og L.

Conf
Then U; and V; are open neighborhoods of R U {oco} in H, W; : Uy % V4, and satisfies that, if

z € Uy tends to R or oo, then W; tends to R or oo, respectively. By Schwarz reflection principle,
Wi extends conformally across R, and maps R onto R. Since W, gy, by all fix oo, and have
derivative 1 at oo, W; also satisfies this property.

By the continuity of g; and h,;) in ¢ and the maximal principle, we know that the extended
W is continuous in ¢ (and z). Fix 0 <t < 7. Let € € (0,77 — t). Now K;./K; is an H-hull
with H-capacity being 2¢; and Ly, 1)/ Lyt is an H-hull with H-capacity being 2u(t+¢) —2u(t).
Since Wi(Kyye/Kt) = Ly(t42)/ Lut), using Propositions and we get

au(y = Wi(M), (A.4)
and /, (t) = W/(M\)?. Using the continuity of W; in ¢, we get

u(t) = W (). (A.5)
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Thus, h, ) satisfies the equation

2W/ (\¢)?

Othyy(2) = hra(2) — Oute)’

(A.6)

From the definition of W%, we get the equality
Wi 0gi(2) = hywy o W(2), z€U\K;. (A7)
Differentiating this equality w.r.t. ¢ and using (A.1lA.6), we get

Wi g(=) _ 2W(M)?
gt(Z) — )\t hu(t) o W(Z) — Uu(t)

Combining this formula with (A.4JA.7)) and replacing g;(z) with w, we get

8tWt(gt(Z)) + , z€eU \ K;.

O 2W(M)? 2Wi (w)
RWi(w) = Wiw) — Wilhe)  w— Ay’

Letting Uy 3 w — A¢ in (A.8]), we get
Wi (M) = =3W/ (\e). (A.9)

w € Uy. (AS)

Differentiating (A.8) w.r.t. w and letting U; > w — A\, we get
IWi (M) _ }(W{’()\t)>2 AW (A
WiA) — 2\W{(\) 3 Wi(A)

Combining (A.4JA.9), and using It6’s formula and that \; = \/k B, we see that o, satisfies
the SDE

. (A.10)

doye = W (AN)VrdB, + (g — 3) W/ ()t (A.11)
Combining (A.10) with A\; = v/kB; and using Itd’s formula, we get
thI()\t) Wt//()\t) 1 Wt”()\t) 2 K 4 Wt/”()\t)
= dB; + = dt - — = dt. A12
Wi~ w0V s (g ) (6 5) Wi (412

Let (Sf)(2) = J}I:,((ZZ)) - %(];cl,l((j)))Q be the Schwarzian derivative of f. Using (A.12) and Ito’s
formula, we see that

AW/(A\)=  6—kW/'(\)dB, ¢
— = L ZS(W) (At A13
WionE 2 Wow v e (A19)

So we get the following positive continuous local martingale

M, = W{()\t)%ﬁ exp ( — /Ot %S(WS)()\s)CLS), (A.14)
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which satisfies the SDE

dM; 6 —k W/ (\) dB;
My 2 WM VE

0<t<1y. (A.15)
We claim that the following equality holds: for any 0 < T < 7y,
T
1
/0 g W) (N)dt = PP (L (B0, w(T), H\ V)) — pP(Lu(3([0, T1), H\ U)). (A.16)

Note that this is similar to Lemma To prove (A.16]), we use the Brownian bubble analysis
of Brownian loop measure. Let ,uglg denote the Brownian bubble measure in H rooted at g € R
as defined in [25], from which we know, for any 0 < T < 7y,

T
;Pwm%meH\Uﬁzé JE(C(H\ U) )t (A17)
u(T)
;ﬁumwwwa»H\vwzﬂg W2 (L(HL\ Va))ds
= /OT W{()\t)%};z)(t) (L(HN\ Viypy))dt. (A.18)

If U* is a subdomain of H that contains a neighborhood of RU{oc} in H, we let Pg)* denote

the Poisson kernel in U* with the pole at zg € R. Especially, Pﬁ% (2) =1Im ;_14 75. From [25] we
know
1 P (2)
bb : A
LENTY)) = 1 (1- 2
NAt( (H\ Up)) UtBIZH—1>)\t |2 — A2 P;IE(Z)
. . Conf
Similarly, using (A.4) and that Wy : Uy — V), we get
v,
1 Py (w)
bb . u(t)
Mo (L(H N\ V, = lim (1 — )
w0 CHAVa0)) Va 30— [ — oy |2 oy ()
Va
= lim 1 ( _ P“u<(tt)) © Wt(z))
UDz— At \Wt(z) — Wt()\t)‘Q Pg-]i(t) o Wt(Z)

L W ( W (At>‘1P§?(z>>
UiDz— ¢ ‘Z — )\t|2 P‘;}E(t) o Wt(Z)

Combining the above two formulas and using some tedious but straightforward computation
involving power series expansions, we get

W (ECH Vi) — 80 (LCE T7) =SSR (M),

o1



This together with (A.17JA.18) completes the proof of (A.16)).
Since v is continuous and tends to oo, from (1.3[JA.16)), we see that, on the event that

vN (H\ U) = 0, the improper integral [, £S(W,)(As)ds converges to uP(Ly(B8,H \ V)) —
P (Lu (v, H\ U)).
We claim that limg_,o W/(A\:) = 1 on the event that yNH\ U = (). Since x € (4, 8), there is

to € (0,00) such that H\ U C Ky,. Then for t > to, U\ K; = H\ Ky, and so U; = H. Similarly,
Conf
Vi = H for t > ty. Thus, for t > tg, Wy : (H;00) — (H;o00) and W/(c0) = 1, which implies

that W/ (A¢) = 1. So the claim is proved.

From the above we see that My, := lim;_,oo M; = €€ “lp(LH(%H\U))/eC PP (La(W()H\V)) on the
event that v N (H\ U) = 0. Thus, Mz, 0 <t < oo, is bounded on this event.

For n € N, let T}, be the first time that + hits H \ U or M; > n, whichever happens first.
Then T, is a stopping time, and M; up to T, is bounded by n. Thus, E[Mp, ] = My = W’(O)62;:.
Weighting the underlying probability measure by My, /My, we get a new probability measure.
By Girsanov Theorem and , we find that

/@W” As)
B,:=B d 0<t< Ty,
t t \/>/ 2 )\s) S, St <

is a Brownian motion under the new probability measure. From (A.11)), we get

doymy = Wi(\)VrdB;, 0<t<T,.

From we see that, under the new probability measure, os/\/k, 0 < s < u(T},), is a
Brownian motion, and so s, 0 < s < u(7,), is a chordal SLE,; curve in H from 0 to oo, stopped
at w(T},). let F, denote the event that y N (H\ U) = 0 and M; < n for 0 < t < oo; and
let F, denote the event that W~1(8) € E,. Then on the event E,, T}, = u(T},) = oo , and

My, /My = MOO/W'(O)%K. From the above argument, we get
1z, uﬁ e = WIV'(0 )~ %5 e P (Lr(H\D)) foc P (La(W(H\V)) Y o T

Since uﬁ.oﬁw—a.s. UE,={NH\U =0} and JF,, = {{-NH\ V = 0}, the above formula holds
with E,, and F,, replaced by { "H\ U = 0} and {- NH\ V = 0}, respectively. The proposition
now follows from this formula since we assumed that W’/ (c0) = 1. O

Remark A.4. The above proof also works for x € (0,4] except that lim;_,oo W/(\¢) =1 on the
event v N (H \ U) = 0 requires a little bit more work to prove.

Lemma A.5. Let K and L be two non-degenerate interior hulls. Let UV C C be open

Conf
neighborhoods of K and L, respectively. Suppose W : (U; K) — (V;L). Let a and b be

distinct prime ends of C\ K. Then W(a) and W(b) are distinct prime ends of C \ L. Let

Con . . .
JK : C\K E» D* and gy, : (C\L 3» D*. Suppose g (a) = e, g (b) = €%, gr(W(a)) = €',
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and g (W (b)) = € for some \,q,0,p € R. Let Wi = g, oW o gl_(l. Exztend Wi conformally
across T. Then we have

C\L . Sin2(0—p) %_1. ! /o 1 iq ) (C\K
PALW(@=W®) = | Sing(h — q) Wi () Wi ()|~ % W (b i sasp)-
. . Conf
Proof. Let ¢(z) = % and P(z) = zz*';ﬁ Then ¢ : (D*;e™,e) = (H;cota(\ — q),00)
Conf
and ¢ : (D*; e, e) — (H;cotz(o — p),00). Let Uy = gx(U \ K) and Vi, = gr(V \ L).

Conf
Then Ug and Vj, are open neighborhoods of T in D*, Wk : Ug —» VL, and can be extended

conformally across T. The extended Wx maps T onto T, and maps e and e to e' and e,
respectively. Let UK = ¢(Uk), VL =1 (Vg), and WK = poWgop~!. Then UK and VL are open

—~ Co
neighborhoods of RU {co} in H, and W : (UK;R,cotg()\ —q),00) —» (VK;R,CO‘G2(U —P),00).
From Proposition we have

— Wi (cota(A — )W (00)|~ 5 Wi (1

M\7L;cot2(a—p)—>oo 'uUK;cotg()\—q)—mo)'

-~ Conf ~ ~
We have ¢p o g : (C\ K,U \ K;a,b) — (H,Ug;cota(A — q),00) and o gr : (C\ L,V \
Conf -~
L;W(a),W(b)) — (H,Vg;cota(o—p),00). From the conformal invariance of chordal SLE and

Brownian loop measure, we have
C\K m C\L _H
po 9K(”U\K;a—>b) = Hcota(A—g)—00” Yo gL('uV\L;W(a)%W(b)) = 1V, scota(0—p)—roc”

Combining the above displayed formulas and the fact that WK =1ogroWo g;(l o™t we see
that it suffices to prove that

AT =D | ()W ()] = (Wi (eota(A — ) W (o).

sing (A — q)
To see this, one may check that |¢/(e™)| = | sing(A — q)|72/2, |¢'(e?)| = | sing(o — p)|2/2; and
with J(2) := —1/z, |(J 0 ¢)'(e'?)| = |(J o 1) ()| = 1/2. O

Lemma A.6. Let K and L be two H-hulls. Let U and V' be open neighborhoods of R U {oco}

Conf
in H such that K C U and L C V. Suppose W : (U;R, 00, K) % (V;R,00,L). Let a and b
be distinct prime ends of H\ K that lie on K. Then W (a) and W (b) are distinct prime ends

Conf Conf
of H\ L that lie on OL. Let g : H\ K — H and g, : H\ L — H. Suppose gi(a) = A,
g5 (b) = 4, g(W(a)) = o, and g(W (b)) = p for some A, q,0,p € R. Let Wi = g o W o gicl.
Extend Wi conformally across R. Then we have
6

—plxt _6-=x H\K
=l WREOWR @I W (i)

H\L _
Fy\ LW (a)— W (b) ‘

Proof. The proof is similar to that of Lemma except that here we use the functions ¢(z) =

?Z and ¢ (z) = Z+p , which map H conformally onto H. 0
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