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Abstract

We use Minkowski content (i.e., natural parametrization) of SLE to construct several
types of SLEκ loop measures for κ ∈ (0, 8). First, we construct rooted SLEκ loop measures

in the Riemann sphere Ĉ, which satisfy Möbius covariance, conformal Markov property,
reversibility, and space-time homogeneity, when the loop is parametrized by its (1 + κ

8 )-
dimensional Minkowski content. Second, by integrating rooted SLEκ loop measures, we
construct the unrooted SLEκ loop measure in Ĉ, which satisfies Möbius invariance and
reversibility. Third, we extend the SLEκ loop measures from Ĉ to subdomains of Ĉ and
to two types of Riemann surfaces using Brownian loop measures, and obtain conformal
invariance or covariance of these measures. Finally, using a similar approach, we construct
SLEκ bubble measures in simply/multiply connected domains rooted at a boundary point.
The SLEκ loop measures for κ ∈ (0, 4] give examples of Malliavin-Kontsevich-Suhov loop

measures for all c ≤ 1. The space-time homogeneity of rooted SLEκ loop measures in Ĉ
answers a question raised by Greg Lawler.
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1 Introduction

1.1 Overview

The Schramm-Loewner evolution (SLE), introduced by Oded Schramm in 1999 ([34]), is a one-
parameter (κ ∈ (0,∞)) family of probability measures on non-self-crossing curves, which has
received a lot of attention since then. It has been shown that, modulo time parametrization,
the interface of several discrete lattice models at criticality have SLEκ with different parameters
κ as their scaling limits. The reader may refer to [19, 33] for basic properties of SLE.

There are several versions of SLEκ curves in the literature. For most of them, the initial
point and the terminal point of the SLEκ curve are different. Motivated by the Brownian loop
measure constructed in [25], people have been considering the construction of a new version of
SLE called SLEκ loops, which locally looks like an ordinary SLEκ curve, starts and ends at the
same point, and satisfies some prerequired properties.

In this paper we focus on the SLE with parameter κ ∈ (0, 8), which has Hausdorff dimension
d := 1 + κ

8 ∈ (1, 2) (cf. [4]), and possesses natural parametrization (cf. [23, 26]) that agrees with
its d-dimensional Minkowski content (cf. [20]). Lawler and Sheffield introduced the natural
parametrization of SLE in [23] in order to describe the scaling limits of discrete random paths
with their natural length. So far the convergence of loop-erased random walk to SLE2 with
natural parametrization has been established (cf. [24]).

Besides conformal invariance or covariance, an SLEκ loop is expected to satisfy the space-
time homogeneity when it is parametrized by its natural parametrization, i.e., Minkowski con-
tent. The existence of such SLEκ loops was conjectured by Greg Lawler.

Similar to the Brownian loop, the “law” of an SLEκ loop can not be a probability measure
or a finite measure. Instead, it should be a σ-finite infinite measure. We will call it an SLEκ
loop measure to emphasize this fact.

In [38] Werner used the Brownian loop measure to construct an essentially unique measure
on the space of simple loops in any Riemann surface, which satisfies conformal invariance and
the restriction property, and has a close relation with SLE8/3.

Inspired by Malliavin’s work [27] and SLE theory, Kontsevich and Suhov conjectured in [16]
that for every c ≤ 1, there exists a unique locally conformally covariant measure on simple loops
in a Riemann surface with values in a certain determinant bundle. Furthermore, they proposed
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a reduction of this problem, to construct a scalar measure on simple loops in C surrounding
the origin, satisfying a restriction covariance property. The parameter c in their conjecture is
the central charge from conformal field theory (CFT). It is related to the parameter κ for SLE
by the formula:

c =
(6− κ)(3κ− 8)

2κ
. (1.1)

For c = 0 (i.e., κ = 8/3), their measure is Werner’s measure. For other c ≤ 1, their measure
should correspond to the SLEκ loop measure for some κ ≤ 4.

A loop version of SLE called conformal loop ensemble (CLEκ) was constructed for κ ∈
(8/3, 8) by Sheffield and Werner (cf. [37]) in order to describe the scaling limit of a full collection
of interfaces of critical lattice models. A CLE is a random collection of non-crossing loops in
a simply connected domain. Every loop in a CLEκ looks locally like an SLEκ curve. CLE is
different from the SLE loop here because the latter object is a single loop.

Kassel and Kenyon constructed in [14] natural probability measures on cycle-rooted span-
ning trees (CRSTs). A CRST on a graph G is a connected subgraph, which contains a unique
cycle called unicycle. They proved that, if G approximates a conformal annulus Σ, as the mesh
size tends to 0, the law of the unicycle of a uniform CRST on G, conditional on the event that
the unicycle separates the two boundary components of Σ, converges weakly to a probability
measure on simple loops in Σ separating the two boundary components of Σ. They proposed
a question whether this limit measure can be constructed via a stochastic differential equa-
tion, like a variant of SLE2 defined on Riemann surfaces. The limit measure was later studied
in [5] using a different approach, and it was explained there that this gives an example of a
Malliavin-Kontsevich-Suhov loop measure for c = −2, i.e., κ = 2.

Kemppainen and Werner defined ([15]) unrooted SLEκ loop measure in Ĉ for κ ∈ (8/3, 4]
as the intensity measure of a nested whole-plane CLEκ, and proved that this measure satisfies
Möbius invariance and is the only invariant measure under various Markov kernels defined using
CLE. They used the loop measure to prove the Möbius invariance of nested CLE on Ĉ. They
also defined a rooted SLEκ loop measure as a suitable scaling limit of their unrooted loop
measure restricted to the event that the curve passes through a small disc centered at a marked
point, and claimed that the limit converges1.

Another natural object is the SLEκ bubble measure, which is similar to the Brownian bubble
measure constructed in [22]. In the same paper, an SLE8/3 bubble measure was constructed.
Later in [37], SLEκ bubble measures for κ ∈ (8/3, 4] were constructed by conditioning a CLE
loop to touch a boundary point.

Field and Lawler have also been working on the construction of SLE loops ([10]). They have
constructed SLE loops rooted at an interior point in the whole plane and in simply connected
domains, and are able to verify that the measures are conformally covariant. Benoist and

1Werner told the author privately that they were able to prove that the rooted loop measure is well defined
and satisfies the conformal Markov property (CMP) as described in the current paper (Theorem 4.1 (ii)). Given
this fact, using the uniqueness statement (Theorem 4.1 (vii)), we see that the loop measures constructed in the
current paper for κ ∈ (8/3, 4] agree with Kemppainen-Werner’s measures.
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Dubédat ([7]) have been working on the construction of SLE loops using flow lines of Gaussian
free field, a natural object from Imaginary Geometry ([30, 28]).

1.2 Main results

In this paper, we construct several types of SLEκ loop measures for all κ ∈ (0, 8). Below is a
rough version of the theorem about rooted SLEκ loop measures in Ĉ (for complete and rigorous
statements, see Theorem 4.1 for details).

Theorem 1.1. Let κ ∈ (0, 8) and d = 1 + κ
8 . There is a σ-finite measure µ1

0 on the space
of (oriented) nondegenerate loops rooted at 0 such that, if γ follows the “law” of µ1

0, then the
following hold.

(i) (Conformal Markov property) For any stopping time τ that does not happen at the
initial time, conditional on the part of γ before τ and the event that τ happens before the
loop returns to 0, the rest part of γ is a chordal SLEκ curve.

(ii) (Space-time homogeneity) We may parametrize γ periodically with period p equal to
the (d-dimensional) Minkowski content of γ, such that γ(0) = 0, and for any a < b ≤ a+p,
the Minkowski content of γ([a, b]) equals b − a. Suppose γ has this parametrization. For
any deterministic number a ∈ R, if we reroot the loop at γ(a), which means that we define
a new loop Ta(γ) by Ta(γ)(t) = γ(a+ t)− γ(a), then the “law” of Ta(γ) is also µ1

0.

(iii) (Reversibility) The reversal of γ also has the “law” µ1
0.

(iv) (Möbius covariance) For every Möbius transformation F that fixes 0, we have F (µ1
0) =

|F ′(0)|2−dµ1
0.

(v) (Finiteness of big loops) For any r > 0, (a) the µ1
0 measure of loops with diameter > r

is finite; (b) the µ1
0 measure of loops with Minkowski content > r is finite.

(vi) (Uniqueness) The measure µ1
0 is determined by (i) and (v.a) up to a constant factor.

Here we remark that the conformal Markov property (CMP) is an essential property that
characterizes SLE. The CMP of the rooted SLEκ loop measure justifies its name, and allows us
to apply the SLE-based results and arguments to study SLEκ loop measures. The space-time
homogeneity gives a positive answer to Lawler’s conjecture.

The construction of rooted SLEκ loop measure uses two-sided whole-plane SLEκ. A two-
sided whole-plane SLEκ is a random loop in Ĉ passing through two distinct marked points,
which is characterized by the property that, conditional on any arc on the loop connecting the
two marked points, the other arc is a chordal SLEκ curve. Although this is also an SLEκ loop,
it does not satisfy the space-time homogeneity that we want.

The measure µ1
0 in Theorem 1.1 is constructed by integrating the laws of two-sided whole-

plane SLEκ curves with marked points being 0 and z ∈ C \ {0} against the function |z|2(d−2),
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and then unweighting the measure of loop by the Minkowski content of the loop. The proof of
the theorem makes use of the reversibility of two-sided whole-plane SLEκ curves ([29, 28, 43])
and the decomposition of chordal SLEκ in terms of two-sided radial SLEκ ([8, 40]).

A corollary of this theorem (Corollary 4.7) is that if a two-sided whole-plane SLEκ curve
γ from ∞ to ∞ passing through 0 is parametrized by d-dimensional Minkowski content with
γ(0) = 0, then it becomes a self-similar process of index 1

d with stationary increments. This
result was later used in [39] to study the Hölder regularity and dimension property of SLE with
natural parametrization.

After obtaining rooted SLEκ loop measures, we construct the unrooted SLEκ loop measure
µ0 in Ĉ by integrating SLEκ loop measures rooted at different z ∈ C against the Lebesgue
measure, and then unweighting the measure by the Minkowski content of the loop. The unrooted
SLEκ loop measure satisfies Möbius invariance and reversibility.

After constructing SLE loops in Ĉ, we turned to the construction of SLE loops in subdomains
of Ĉ. We follow Lawler’s approach in [18] about defining SLE in multiply connected domains
using Brownian loop measures. At first, we tried to define rooted/unrooted SLEκ loop measures
in a subdomain D of Ĉ by

µ1
D;z = 1{·⊂D}e

cµlp(L(·,Dc)) · µ1
z, µ0

D = 1{·⊂D}e
cµlp(L(·,Dc)) · µ0,

where µlp is the Brownian loop measure in Ĉ defined in [25], L(γ,Dc) is the family of loops
in Ĉ that intersect both γ and Dc, and c is the central charge given by (1.1). However, as
pointed out by Laurie Field, the quantity µlp(L(γ,Dc)) is not finite for any curve γ in D, and
the correct alternative is the normalized Brownian loop measure introduced in [9].

The normalized Brownian loop measure introduced in [9] is the following limit:

Λ∗(V1, V2) := lim
r↓0

[µlp
{|z−z0|>r}(L(V1, V2))− log log(1/r)], (1.2)

where µlp
{|z−z0|>r} is the Brownian loop measure in {|z − z0| > r}, and z0 ∈ C. It was proved in

[9] that the limit converges to a finite number if V1 and V2 are disjoint compact subsets of Ĉ;
and the value does not depend on the choice of z0, and satisfies Möbius invariance. Thus, the
correct way to define SLEκ loop measures in subdomains of Ĉ is using:

µ1
D;z = 1{·⊂D}e

c Λ∗(·,Dc) · µ1
z, µ0

D = 1{·⊂D}e
c Λ∗(·,Dc) · µ0.

Combining the generalized restriction property of chordal SLE with the CMP of rooted SLEκ
loop measure in Ĉ, we are able to prove that the rooted and unrooted SLEκ loop measures in
the subdomains of C satisfy conformally covariance and invariant, respectively.

By definition, the SLEκ loop measures in subdomains of Ĉ satisfy the generalized restriction
property. Especially, when κ = 8/3, i.e, c = 0, they satisfy the strong restriction property, and
so agree with Werner’s measure. When κ = 2 and D is a conformal annulus, if we restrict
µ0
D to the family of curves that separate the two boundary components of D, then we get

a finite measure, which is expected to agree with Kassel-Kenyon’s probability measure after
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normalization. For κ ∈ (8/3, 4], the SLEκ loop measures and bubble measures should agree
with the Kemppainen-Werner’s loop measures and Sheffield-Werner’s bubble measures up to a
multiplicative constant depending on κ. Our study of SLEκ loop measures will provide better
understanding of these known measures. Moreover, the SLEκ loop measures for κ ∈ (0, 4] give
examples of Malliavin-Kontsevich-Suhov loop measures for all c ≤ 1.

Later, we extend unrooted SLEκ loop measures to two types of Riemann surfaces S using
the Brownian loop measure on S. A Riemann surface S of the first type satisfies that, if for
any two disjoints subsets V1, V2 of S such that V1 is compact and V2 is closed, we have

µlp
S (L(V1, V2)) <∞, (1.3)

where µlp
S denotes the Brownain loop measure on S. For a Riemann surface S of the second

type, the above quantity is infinite, but the normalization method in [9] works. This means
that: first, if K is a nonpolar closed subset of S, i.e., K is accessible by a Brownian motion on
S, then S \K is of the first type; second, for any two disjoint closed subsets V1, V2 of S, one of
which is compact, and any z0 ∈ S, the limit

Λ∗S(V1, V2) := lim
r↓0

[µlp

S\B(z0,r)
(L(V1, V2))− log log(1/r)] (1.4)

converges to a finite number, which does not depend on the choice of z0 ∈ S. Here B(z0, r) is a
closed disc centered at z0 w.r.t. some chart surrounding z0. The limit should also not depend
on the choice of the chart. The quantity µlp

S\B(z0,r)
(L(V1, V2)) is finite because B(z0, r) is a

nonpolar set. We believe that ([11]) any compact Riemann surface is of the second type, and
any compact Riemann surface minus a nonpolar set is of the first type.

In contrast to the SLEκ defined in multiply connected domains and Riemann surfaces in
[3, 44, 18], the definition of (unrooted) SLEκ loop measure in a Riemann surface does not
require that the surface has a boundary, and does not need a marked point to start the curve.
This makes the SLEκ loop measure a more natural object in some sense.

At the end of the paper, we use a similar method to construct an SLEκ bubble measure µ1
H;x

in the upper half plane H rooted at a boundary point x. We obtain a theorem for µ1
H;x, which is

similar to Theorem 1.1, except that now the space-time homogeneity (ii) does not make sense,
and the covariance exponent 2 − d in (iv) should be replaced by 8

κ − 1 (and F maps H onto
H). Using the Brownian loop measure, we then extend the SLEκ bubble measures to multiply
connected domains.

The paper is organized as follows. In Section 2, we fix symbols and recall some fundamental
results about SLE. In Section 3, we describe how a whole-plane SLEκ(2) curve is distorted by
a conformal map that fixes 0. In Section 4, we construct the rooted and unrooted SLEκ loop
measures in Ĉ. In Section 5, we construct SLEκ loop measures in subdomains of Ĉ and in
general Riemann surfaces. In Section 6, we construct SLEκ bubble measures. In the appendix,
we extend the generalized restriction property for chordal SLEκ from κ ∈ (0, 4] to κ ∈ (0, 8).
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2 Preliminaries

2.1 Symbols and notation

Throughout, we fix κ ∈ (0, 8). Let d = 1 + κ
8 ∈ (1, 2) and c be given by (1.1). Let H = {z ∈

C : Im z > 0}; D = {z ∈ C : |z| < 1}; D∗ = {z ∈ C : |z| > 1} ∪ {∞}; T = ∂D = ∂D∗. For
z0 ∈ C and r > 0, let B(z0; r) = {z ∈ C : |z − z0| < r}. For a set S ⊂ C and r > 0, let
B(S; r) =

⋃
z∈S B(z; r). Let ei denote the map z 7→ eiz. We will use the functions sin2 =

sin(·/2), cos2 = cos(·/2), and cot2 = cot(·/2).
We use m and m2 to denote the 1-dimensional and 2-dimensional Lebesgue measures, re-

spectively. Given a measure µ, a nonnegative measurable function f , and a measurable set E on
a measurable space Ω, we use f ·µ to denote the measure on Ω that satisfies (f ·µ)(A) =

∫
A fdµ

for any measurable set A in Ω, and use µ|E to denote the measure 1E ·µ = µ(·∩E). If h : Ω→ Ω′

is a measurable map, then we use h(µ) to denote the pushforward measure µ ◦ h−1 on Ω′.
The Brownian loop measure in Ĉ is a sigma-finite measure on unrooted loops in Ĉ, which

locally look like planar Brownian motions. We use µlp to denote the Brownian loop measure
in Ĉ. Let LD(A,B) (resp. LD(A)) denote the sets of loops in D that intersect both A and B
(resp. A). We omit the subscript D when D = Ĉ. We need the following fact ([9, Corollary
4.20]): if D is a nonpolar domain, i.e., ∂D can be visited by a Brownian motion, then (1.3)
holds with S = D and disjoint closed subsets V1, V2 of D, one of which is compact. If D = Ĉ,
µlp(LD(V1, V2)) is not finite. Instead, we should use the normalized quantity Λ∗(V1, V2) in the
formula (1.2) as introduced in [9]. Suppose D1 ⊂ D2 are two nonpolar subdomains of Ĉ, and
K is a compact subset of D1. Using the fact that L(K,Dc

1) is the disjoint union of L(K,Dc
2)

and LD2(K,D2 \D1) and the formula (1.2), we get the equality:

Λ∗(K,Dc
1) = Λ∗(K,Dc

2) + µlp(LD2(K,D2 \D1)). (2.1)

We will use an important notion of modern probability: kernel (cf. [13]). Suppose (U,U) and
(V,V) are two measurable spaces. A kernel from (U,U) to (V,V) is a map ν : U × V → [0,∞]
such that (i) for every u ∈ U , ν(u, ·) is a measure on V, and (ii) for every F ∈ V, ν(·, F ) is
U-measurable. The kernel is said to be finite if for every u ∈ U , ν(u, V ) < ∞; and is said to
be σ-finite if there is a sequence Fn ∈ V, n ∈ N, with V =

⋃
Fn such that for any n ∈ N and

u ∈ U , ν(u, Fn) <∞. Let µ be a σ-finite measure on (U,U). Let ν be a σ-finite µ-kernel from
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(U,U) to (V,V). Then we may define a measure µ⊗ ν on U × V such that

µ⊗ ν(E × F ) =

∫
E
ν(u, F )dµ(u), E ∈ U , F ∈ V.

Sometimes, we write µ ⊗ ν as µ(du) ⊗ ν(u, dv) when the meaning of µ ⊗ ν is clearer with the
variable u, v explicitly stated.

If ν is a σ-finite measure on (V,V), and µ is a σ-finite kernel from (V,V) to (U,U), then we
use µ

←−⊗ν or µ(v, du)
←−⊗ν(dv) to denote the measure on U ×V, which is the pushforward of ν⊗µ

under the map (v, u) 7→ (u, v).
We may describe the sampling of (X,Y ) according to the measure µ⊗ν in two steps. First,

“sample” X according to the measure µ. Second, “sample” Y according to the kernel ν and
the value of X. After the second step, the marginal measure of X is changed unless ν is µ-a.s.
a probability kernel, i.e., ν(u, V ) = 1 for µ-a.s. every u ∈ U . The new marginal measure of
X after sampling Y is absolutely continuous w.r.t. µ. If ν is finite, then the new marginal
measure of X is σ-finite, and its Radon-Nikodym derivative w.r.t. µ is ν(·, V ); otherwise, the
new marginal measure of X is not σ-finite, and the Radon-Nikodym theorem does not apply.

By a simply connected domain, we mean a domain that is conformally equivalent to D.
Prime ends (cf. [1]) of simply connected domains are needed to rigorously describe the initial
point and terminal point of a chordal SLE or two-sided radial SLE curve. For a simply connected
domain D, a boundary point z0 ∈ ∂D, and a prime end p of D, if for any sequence (zn) in
D, zn → z0 if and only if zn → p then we do not distinguish z0 from p. For example, if D
is a Jordan domain, then there is a one-to-one correspondence between boundary points of D
and prime ends of D. If γ is a simple curve that starts from a boundary point of a simply
connected domain D, stays in D otherwise, and ends at an interior point of D, then the tip of
γ determines a prime end of D \ γ, while every other point of γ does not determine a prime
end of D \ γ. Instead, each of them corresponds to two prime ends. In this paper, when we say
that a curve lies in a simply connected domain D, it often means that the curve is contained
in the conformal closure of D, i.e., the union of D and all of its prime ends.

By f : D
Conf
� E, we mean that f maps a domain D conformally onto a domain E. If, f also

maps interior points or prime ends z1, . . . , zn of D to interior points or prime ends w1, . . . , wn

of E, then we write f : (D; z1, . . . , zn)
Conf
� (E;w1, . . . , wn).

For a simply connected domain D with two distinct prime ends a and b, and z0 ∈ D, we
use µ#

D;a→b and ν#
D;a→z0→b to denote the laws of a chordal SLEκ curve in D from a to b and a

two-sided radial SLEκ curve in D from a to b through z0, respectively, modulo a time change.
For z0 6= w0, we use ν#

z0→w0 and ν#
z0
w0

to denote the laws of a whole-plane SLEκ(2) curve in Ĉ
from z0 to w0 and a two-sided whole-plane SLEκ curve in Ĉ from z0 to z0 passing through w0,
respectively, modulo a time change. The superscript # is used to emphasize that the measure
is a probability measure.

We use GD;a→b to denote the Green’s function for the chordal SLEκ: µ#
D;a→b. We have a

close-form formula for GH;0→∞ (cf. [20]):

GH;0→∞(z) = ĉ|z|1−
8
κ (Im z)

κ
8

+ 8
κ
−2, z ∈ H, (2.2)
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where ĉ > 0 is a constant depending only on κ. For general (D; a, b), we may recover GD;a→b
using (2.2) and the conformal covariance property:

GD;a→b(z) = |g′(z)|2−dGE;c→d(g(z)), if g : (D; a, b)
Conf
� (E; c, d). (2.3)

A stopping time τ for a curve is called nontrivial if it does not happen at the initial time.
This is an assumption used in Theorem 1.1 (i). For a curve γ and a (stopping) time τ , we use
Kτ (γ) to denote the part of γ from its initial time till the time τ .

For two curves β and γ such that the terminal point of β agrees with the initial point γ,
we use β ⊕ γ to denote the concatenation of β and γ (modulo a time change). For a measure
µ and a kernel ν on the space of curves, if µ ⊗ ν is supported by the pairs (β, γ) such that
β ⊕ γ is well defined, we then use µ⊕ ν to denote the pushforward measure of µ⊗ ν under the
concatenation map (β, γ) 7→ β ⊕ γ.

For a simply connected domain D with two distinct prime ends a and b, let Γ(D; a, b)
denote the family of curves γ in D (modulo a time change) started from a such that γ does
not intersect a neighborhood of b in D, and the unique connected component of D \ γ that has
b as its prime end, denoted by D(γ; b), has a prime end determined by the tip of γ, denoted

by γtip. For γ ∈ Γ(D; a, b), the chordal SLEκ measure µ#
D(γ;b);γtip→b is well defined. Moreover,

γ 7→ µ#
D(γ;b);γtip→b is a kernel from Γ(D; a, b) to the space of curves.

For z ∈ Ĉ, let Γ(Ĉ; z) denote the set of curves γ in Ĉ (modulo a time change) from z
to another point γtip ∈ Ĉ, such that there is a unique connected component of Ĉ \ γ whose

boundary contains z and has two prime ends determined by z and γtip, respectively. Let Ĉ(γ; z)

denote this connected component. For z 6= w ∈ Ĉ, let Γ(Ĉ; z;w) denote the set of γ ∈ Γ(Ĉ; z)

such that w ∈ Ĉ(γ; z). For γ ∈ Γ(Ĉ; z;w), the two-sided radial SLEκ measure ν#

Ĉ(γ;z);γtip→w→z

is well defined, and the map from γ ∈ Γ(Ĉ; z;w) to this measure is a kernel.

2.2 SLE processes and their conformal Markov properties

In this subsection, we briefly review several types of SLE processes that are needed in this
paper, and describe their conformal Markov properties (CMP).

A chordal SLEκ curve is a random curve running in a simply connected domain D from one
prime end to another prime end. It is first defined in the upper half-plane H from 0 to∞ using
chordal Loewner equation, and then extended to other domains by conformal maps. Chordal
SLE is characterized by its CMP, i.e., if τ is a stopping time for a chordal SLEκ curve γ in D
from a to b, then conditional on the part of γ before τ and the event that τ < Tb (the hitting
time at b), the rest part of γ is a chordal SLEκ curve from γ(τ) to b in the remaining domain.
From ([43, 29]) we know that chordal SLEκ satisfies reversibility, i.e., the reversal of a chordal
SLEκ curve in D from a to b has the same law (modulo a time change) as a chordal SLEκ curve
in D from b to a.

A two-sided radial SLEκ curve is a random curve running in a simply connected domain D
from one prime end a to another prime end b through an interior point z0. It is defined by first
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running a radial SLEκ(2) curve in D from a to z0 with force point at b, and then continuing
it with a chordal SLEκ curve from z0 to b in the remaining domain. Two-sided radial SLE
also satisfies CMP: if τ is a stopping time for the above two-sided radial SLEκ curve γ, then
conditional on the part of γ before τ and the event that τ < Tz0 (the hitting time at z0), the rest
part of γ is a two-sided radial SLEκ curve from γ(τ) to b though z0 in the remaining domain.
Intuitively, one may view a two-sided radial SLEκ curve as a chordal SLEκ curve conditioned
to pass through an interior point.

Using the results and arguments in [43, 29], one can show that the two-sided radial SLEκ
curve also satisfies reversibility, i.e., the reversal of a two-sided radial SLEκ curve in D from a
to b through z0 has the same law (modulo a time change) as a two-sided radial SLEκ curve in
D from b to a though z0. In particular, we see that the two arms of a two-sided radial SLEκ
curve satisfies the resampling property: conditional on any one arm, the other arm is a chordal
SLEκ curve in the remaining domain.

A two-sided whole-plane SLEκ curve from a to a through b is a random loop in the Riemann
sphere Ĉ that starts from a ∈ Ĉ, passes through b ∈ Ĉ, and ends at a. The first arm of the curve
is a whole-plane SLEκ(2) curve from a to b. Given the first arm of the curve, the second arm of
the curve is a chordal SLEκ curve from b to a in the remaining domain. Two-sided whole-plane
SLEκ is related to two-sided radial SLEκ by the following CMP: If τ is a nontrivial stopping
time for a two-sided whole-plane SLEκ curve γ from a to a through b, then conditional on the
part of γ before τ and the event that τ < Tb, the rest part of γ is a two-sided radial SLEκ curve
from γ(τ) to a though b in the remaining domain. If the event is replaced by Tb ≤ τ < Ta,
where Ta is the returning time at a, then the rest part of γ is a chordal SLEκ curve.

From the resampling property of two-sided radial SLEκ, and the reversibility of whole-plane
SLEκ(2) and chordal SLEκ ([29, 28, 43]) we know that two-sided whole-plane SLE satisfies the
following two types of reversibility properties. Suppose γ is a whole-plane SLEκ curve from a
to a through b. Then (i) the reversal of γ has the same law (modulo a time change) as γ; and
(ii) the closed curve obtained by traveling along any arm from b to a and continuing with the
other arm from a to b has the same law (modulo a time-change) as a whole-plane SLEκ curve
from b to b through a.

The CMP of chordal SLE may be stated in terms of kernels by the following formula. Let
Tb be the hitting time at b. If τ is a stopping time, then

Kτ (µ#
D;a→b|{τ<Tb})(dγτ )⊕ µ#

D(γτ ;b);(γτ )tip→b(dγ
τ ) = µ#

D;a→b|{τ<Tb}, (2.4)

where implicitly stated in (2.4) is that Kτ (µ#
D;a→b|{τ<Tb}) is supported by Γ(D; a, b).

The CMP of the two-sided whole-plane SLE may be stated in terms of kernels by the
following formula. Let Tw be the hitting time at w. If τ is a nontrivial stopping time, then

Kτ (ν#
z→w|{τ<Tw})(dγτ )⊕ ν#

Ĉ(γτ ;z);(γτ )tip→w→z
(dγτ ) = ν#

z
w|{τ<Tw}. (2.5)

where implicitly stated in (2.5) is that Kτ (ν#
z→w|{τ<Tw}) is supported by Γ(Ĉ; z;w), and the

ν#
z→w on the left may be replaced by ν#

z
w.
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2.3 Minkowski content measure

Now we review the Minkowski content. Since we have fixed d = 1 + κ
8 ∈ (1, 2), we will omit the

word “d-dimensional”. Let S ⊂ C be a closed set. The Minkowski content of S is defined to be

Cont(S) = lim
r↓0

rd−2m2(B(S; r)), (2.6)

provided that the limit exists. Similarly, we define the upper (resp. lower) Minkowski content
of S: Contd(S) (resp. Contd(S)) using (2.6) with lim sup (resp. lim inf) in place of lim, which
always exists.

Here are some basic facts. We always have Contd(S) ≤ Contd(S), and the equality holds
iff Cont(S) exists, which equals the common value. If S ⊂ T , then Contd(S) ≤ Contd(T ) and
Contd(S) ≤ Contd(T ). Moreover, if S =

⋃∞
n=0 Sn, then

Cont(S) ≤
∞∑
n=0

Cont(Sn); (2.7)

Contd(S) ≤ Contd(S0) +
∞∑
n=1

Cont(Sn). (2.8)

Definition 2.1. Let S,U ⊂ C. Suppose M is a measure supported by S ∩ U such that for
every compact set K ⊂ U , Cont(K ∩S) =M(K) <∞. Then we say thatM is the Minkowski
content measure on S in U , or S possesses Minkowski content measure in U . If U = C, we may
omit the phrase “in U”.

Remark 2.2. If S possesses Minkowski content measure in U , then the measure is determined
by S and U . We will use MS;U to denote this measure. In the case U = C, we may also omit
the subscript U . If in addition, U ′ ⊂ U , then for any closed set F ⊂ C, S′ := S ∩ F also
possesses Minkowski content measure in U ′, and MS′;U =MS;U |S′∩U ′ .

Definition 2.3. Let µ be a measure on Ĉ. Let γ : I → Ĉ be a continuous curve, where I is a
real interval. We say that γ can be parametrized by µ, or µ is a parametrizable measure for γ if
there is a continuous and strictly increasing function θ defined on I such that for any a ≤ b ∈ I,
θ(b)− θ(a) = µ(γ([a, b])).

Remark 2.4. Suppose a parametrizable measure µ for γ exists. Then we may reparametrize
γ such that for any a ≤ b in the definition domain, µ(γ([a, b])) = b − a. In this case, we say
that γ is parametrized by µ. Consider the equality µ(γ(A)) = m(A) for such γ. By definition,
it holds for any interval A ⊂ I, where I is the definition interval of γ. By subadditivity and
monotone convergence of measures, the equality also holds for any finite or countable union
of subintervals of I; and if A and B are disjoint intervals, then µ(γ(A) ∩ γ(B) = 0. Thus, γ
induces an isomorphism modulo zero between the measure spaces (I,m |I) and (γ, µ), i.e., there
exist A ⊂ I and B ⊂ γ such that m(I \ A) = µ(γ \ B) = 0, and γ is an injective measurable
map from A onto B such that γ(m |A) = µ|B.

11



If in addition, γ is a non-degenerate closed curve, and we extend γ periodically to R, then
for any a, b ∈ R with b− a ∈ [0, µ(γ)], we have µ(γ([a, b])) = b− a. In this case, we say that γ
is periodically parametrized by µ.

Lemma 2.5. A chordal SLEκ curve γ in H from 0 to ∞ a.s. possesses Minkowski content
measure, which is supported by H and parametrizable for γ.

Proof. Let θt be the natural parametrization for γ ([23, 26]). From [20] we know that θt
is a.s. a strictly increasing continuous adapted process with θ0 = 0 such that for any 0 ≤
t1 ≤ t2, Cont(γ[t1, t2]) = θt2 − θt1 . We claim that γ(dθ) is the (d-dimensional) Minkowski
content measure on γ. To see this, we need to prove that for any compact subset K of γ,
Cont(K) = γ(dθ)(K). Since limt→∞ γ(t) = ∞ ([33]), γ−1(K) is a compact subset of [0,∞).
So it suffices to prove that for any compact set J ⊂ [0,∞). Cont(γ(J)) = dθ(J). We already
know that this is true for J = [t1, t2] for any 0 ≤ t1 ≤ t2. Suppose J =

⋃n
j=1[aj , bj ], where

0 ≤ a1 < b1 < a2 < b2 < · · · < an < bn. From (2.7), we get

Cont(γ(J)) ≤
n∑
j=1

Cont(γ[aj , bj ]) =

n∑
j=1

θbj − θaj = (dθ)(J).

Let J be any compact subset of [0,∞). We may find a decreasing sequence (Jm) such that
each Jm is of the form

⋃n
j=1[aj , bj ], and J =

⋂∞
m=1 Jm. From this, we see that

Cont(γ(J)) ≤ lim
m→∞

Cont(γ(Jm)) ≤ lim
m→∞

(dθ)(Jm) = (dθ)(J).

Let R = max J + 1. Then we may express (0, R) as the disjoint union of J and finitely or
countably many open intervals (an, bn). Using (2.8) we get

Cont(γ[0, R]) ≤ Contd(γ(J)) +
∑

Contd(γ[an, bn]).

Since Cont(γ[0, R]) = (dθ)([0, R]) and Cont(γ[an, bn]) = (dθ)([an, bn]) = (dθ)((an, bn)), we get

Contd(γ(J)) ≥ (dθ)([0, R])−
∑

(dθ)((an, bn)) = (dθ)(J).

Combining this with Contd(γ(J)) ≤ (dθ)(J), we get Cont(γ(J)) = (dθ)(J), as desired.
Since d > 1, for any n ∈ N, γ(dθ)([−n, n]) = Cont(γ ∩ [−n, n]) ≤ Cont([−n, n]) = 0. So we

get γ(dθ)(R) = 0. Thus, γ(dθ) is supported by H \ R = H. Finally, since

θ(b)− θ(a) = Cont(γ([a, b])) =Md(γ([a, b])) = γ(dθ)([a, b]), ∀0 ≤ a ≤ b,

and θ is continuous and strictly increasing, γ(dθ) is parametrizable for γ.

Lemma 2.6. Suppose that S possesses Minkowski content measureMS;U in an open set U ⊂ C.
Suppose f is a conformal map defined on U such that f(U) ⊂ C. Then for any compact set
K ⊂ U ,

Cont(f(K ∩ S)) =

∫
K
|f ′(z)|ddMS;U (z). (2.9)
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From this we see that the Minkowski content measure of f(S ∩ U) in f(U) exists, which is
absolutely continuous w.r.t. f(MS;U ), and the Radon-Nikodym derivative is |f ′(f−1(·))|d.

Proof. It suffices to prove (2.9). Let R > 0 be such that B(f(K);R) ⊂ f(U). Fix δ ∈ (0, R/6)
to be determined. Define the squares

Qm,n = [mδ, (m+ 1)δ]× [nδ, (n+ 1)δ], m, n ∈ Z.

Label the finite set I = {ι ∈ Z2 : f(S) ∩ Qι 6= ∅} as {ι1, . . . , ιn}. Then Qιj ⊂ f(U) for
1 ≤ j ≤ n. Let Kj = K ∩ f−1(Qιj ), 1 ≤ j ≤ n. Then K =

⋃n
j=1Kj . Since d > 1, and

for any 1 ≤ j < k ≤ n, Kj ∩ Kk is either empty or contained in a straight line, we have
MS(Kj ∩KK) = Cont(Kj ∩Kk) = 0. Thus, MS(K) =

∑n
j=1MS(Kj). Fix ε > 0. We may

choose δ small enough such that with Lj := B(Kj ; δ), 1 ≤ j ≤ n, we have

ε+

∫
K
|f ′(z)|ddMS(z) ≥

n∑
j=1

MS(Kj)
supz∈Lj |f

′(z)|2

infz∈Lj |f ′(z)|2−d

≥
n∑
j=1

MS(Kj)
infz∈Lj |f ′(z)|2

supz∈Lj |f ′(z)|2−d
≥
∫
K
|f ′(z)|ddMS(z)− ε, (2.10)

Let r ∈ (0, δ). By Koebe’s distortion theorem, we have

f(B(z;
r/|f ′(z)|
(1 + r

R)2
)) ⊂ B(f(z); r) ⊂ f(B(z;

r/|f ′(z)|
(1− r

R)2
)).

Thus, for any 1 ≤ j ≤ n,

f(B(Kj ;
r/ supz∈Kj |f

′(z)|
(1 + r

R)2
)) ⊂ B(f(Kj); r) ⊂ f(B(f(Kj);

r/ infz∈Kj |f ′(z)|
(1− r

R)2
)). (2.11)

Using the second inclusion in (2.11), we get

m2(B(f(K); r)) ≤
n∑
j=1

sup
z∈Lj
|f ′(z)|2 m2(B(Kj ;

r/ infz∈Kj |f ′(z)|
(1− r

R)2
)).

This together with Cont(Kj) =MS(Kj) and formula (2.10) implies that

Cont(f(K)) ≤
n∑
j=1

supz∈Lj |f
′(z)|2

infz∈Lj |f ′(z)|2−d
MS(Kj) ≤

∫
K
|f ′(z)|ddMS(z) + ε. (2.12)

Using the first inclusion in (2.11) and that f(Kj) ⊂ Qιj , we get

m2(B(f(K); r)) ≥
n∑
j=1

inf
z∈Lj
|f ′(z)|2 m2(B(Kj ;

r/ supz∈Kj |f
′(z)|

(1 + r
R)2

))
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−
∑

1≤j<k≤n
m2(B(Qιj ∩Qιk ; r)).

This together with Cont(Kj) = MS(Kj), formula (2.10), and that Cont(Qιj ∩ Qιk) = 0 (as
d > 1) implies that

Cont(f(K)) ≥
n∑
j=1

infz∈Lj |f ′(z)|2

supz∈Lj |f ′(z)|2−d
MS(Kj) ≥

∫
K
|f ′(z)|ddMS(z)− ε. (2.13)

Since (2.12) and (2.13) both hold for any ε > 0, we get (2.9).

Remark 2.7. From the above two lemmas, we see that, if β is a chordal SLEκ curve in a
simply connected domain D ⊂ C from a to b, then β possesses Minkowski content measure
in D, which is parametrizable for any subarc of β (strictly) contained in D. If there exists

W : (H;∞)
Conf
� (D; b), which extends conformally across R, then the whole β without b

possesses Minkowski content measure in C, which is parametrizable for β \ {b}. If D is an
analytic Jordan domain, then the previous statement holds for the entire β including b. Here
we use the reversibility of chordal SLEκ to exclude the bad behavior of β near b.

2.4 Decomposition of chordal SLE

Field proved in [8] that, for κ ∈ (0, 4], if one integrates the laws of two-sided radial SLEκ curves
in a suitable simply connected domain D passing through different interior points (with the
two ends fixed) against the Green’s function for the chordal SLEκ curve, then one gets the law
of a chordal SLEκ curve biased by the Minkowski content of the whole curve. This is analogous
to a simple fact of discrete random paths: if one integrates the laws of the path conditioned to
pass through different fixed vertices against the probability that the path passes through each
fixed vertex, one should get a measure on paths, which is absolutely continuous w.r.t. the law
of the original discrete random path, and the Radon-Nikodym derivative is the total number of
vertices on the path, which is due to the repetition of counting.

Later in [40], the author extended Field’s result to all κ ∈ (0, 8). Now we review a proposition
from [40]. It is expressed in terms of measures on the space of curve-point pairs.

Proposition 2.8. Let D be a simply connected domain with two distinct prime ends a and b.
Then

µ#
D;a→b(dγ)⊗Mγ;D(dz) = ν#

D;a→z→b(dγ)
←−⊗(GD;a→b ·m2)(dz).

Proof. The statement in the special case (D; a, b) = (H; 0,∞) follows from [40, Theorem 4.1]
and Lemma 2.5. The statement in the general case follows from that in the special case together
with Lemma 2.6 and (2.3).
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Remark 2.9. This proposition is very important for this paper. It has a richer structure than
Field’s result because it concerns both curve and point, which makes it more convenient for
applications. If

∫
DGD;a→b(z) m2(dz) <∞ (this holds if, e.g., D is a bounded analytic domain

as assumed in [8]), then the measure in the statement is finite. So the Minkowski content of
the entire chordal SLEκ curve is a.s. finite. By looking at the margin of the restricted measure
on the space of curves, we then recover Field’s result. For a general domain D, we may still
restrict the measure to a compact subset of D, and get some useful equality.

We now use this proposition to show that two-sided radial SLEκ curves and two-sided
whole-plane SLEκ curves also possess Minkowski content measures.

Lemma 2.10. For every θ ∈ (0, 2π), ν#
D;eiθ→0→1

-a.s., γ (including its two end points) possesses
Minkowski content measure, which is supported by D and parametrizable for γ.

Proof. From Proposition 2.8, we know that if we integrate the laws ν#
H;0→z→∞ for different z

against the measure 1KGH;0→∞ ·m2 for any compact set K ⊂ H, then we get a measure, which

is absolutely continuous w.r.t. µ#
H;0→∞. From Lemma 2.5 and Fubini Theorem, we conclude

that, for (Lebesgue) almost every z ∈ H, ν#
H;0→z→∞-a.s. γ possesses Minkowski content measure,

which is parametrizable for γ.
Using Lemma 2.6 and conformal invariance of two-sided radial SLE, we then conclude that,

for almost every θ ∈ (0, 2π), ν#
D;eiθ→0→1

-a.s., γ including the initial point eiθ but excluding the
terminal point 1 possesses Minkowski content measure, which is parametrizable for γ. Using
the reversibility of two-sided radial SLEκ curves, we find that the above statement holds for the
entire γ including its both end points. We need to replace “for almost every θ ∈ (0, 2π)” with
“for every θ ∈ (0, 2π)”. For this purpose, we fix θ0 ∈ (0, 2π), and let γ be a two-sided radial
SLEκ curve in D from eiθ0 to 1 through 0. Recall that γ up to T0, the hitting time at 0, is a
radial SLEκ(2) curve in D started from eiθ0 with force point at 1.

For t < T0, let gt : (D(γ([0, t]); 1); 0, 1)
Conf
� (D; 0, 1), and let u(t) = |g′t(0)|. Then u is

continuous and strictly increasing, and maps [0, T0) onto [0,∞). Suppose γ is parametrized
such that u(t) = t for 0 ≤ t ≤ 1. For 0 ≤ t ≤ 1, let Xt ∈ (0, 2π) be such that eiXt = gt(γ(t)).
From the CMP of two-sided radial SLEκ curve and the definition of radial SLEκ(2) curve, we
know that, for any fixed t ∈ (0, 1], the gt-image of the part of γ after the time t is a two-sided
radial SLEκ curve in D from eiXt to 1 through 0; and Xt satisfies the SDE

dXt =
√
κdBt + 2 cot2(Xt)dt, 0 ≤ t ≤ 1,

for some Brownian motion Bt, with initial value X0 = θ0. After rescaling, (Xt) may be trans-
formed into a radial Bessel process of dimension 1 + 8

κ . From [41, Appendix B], we know that
for any t ∈ (0, 1], the law of Xt is absolutely continuous w.r.t. 1(0,2π) ·m.

Fix a t0 ∈ (0, 1). Let t1 be the last time after t0 that γ visits γ([0, t0]). Then the part of
γ strictly after t1 stays in a domain on which gt0 is conformal. Here we note that gt0 extends
conformally across T \ γ([0, t0]). From Lemma 2.6 and the above two paragraphs, we can
conclude that almost surely the part of γ from t+1 (not including t1) up to and including the
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terminal point 1 possesses Minkowski content measure (in C), which is parametrizable for this
part of γ. Since we may choose t0, t1 arbitrarily small, the above statement holds with 0+ in
place of t+1 . Using the reversibility, we then conclude that the statement holds for the entire γ
including its both end points. Finally, to see that the Minkowski content measure is supported
by D, we use the fact that Cont(∂D) = 0 because d > 1.

Remark 2.11. From Lemmas 2.6 and 2.10, we see that, if β is a two-sided radial SLEκ curve in
a simply connected domain D ⊂ C from a to b through some z ∈ D, then β possesses Minkowski
content measure in D, which is parametrizable for any subarc of β (strictly) contained in D.
If a conformal map from H onto D that takes ∞ to b extends analytically across R, then β
without b possesses Minkowski content measure (in C), which is parametrizable for β \ {b}. If
D is bounded by an analytic Jordan domain, then the previous statement holds for the entire
curve β including both a and b.

Lemma 2.12. Let z1 6= z2 ∈ C. Let γ be a two-sided whole-plane SLEκ curve from z1 to z1

through z2. Then γ almost surely possesses Minkowski content measure, which is parametrizable
for (the entire) γ. In particular, Cont(γ) almost surely exists and lies in (0,∞).

Proof. Fix r ∈ (0, |z1 − z2|). Let τr be the first time that γ reaches {|z − z1| = r}. Let Kτr

be the hull generated by the part of γ before τr, and let Dτr = Ĉ \Kτr . By CMP of two-sided
whole-plane SLE, conditional on the part of γ before τr, the rest part of γ is a two-sided radial
SLEκ curve in Dτr . Let ar be the last time that γ visits Kτr before it reaches z2; and let br be
the first time that γ visits Kτr after it reaches z2. By Lemmas 2.6 and 2.10 and the fact that γ
a.s. does not pass through∞, we see that the part of γ strictly between ar and br a.s. possesses
Minkowski content measure, which is parametrizable for this part of γ. By letting r → 0, we
then conclude that γ \ {z1} possesses Minkowski content measure, which is parametrizable for
γ \ {z1}. By reversibility of two-sided whole-plane SLE, the above statement holds with z2 in
place of z1. The two Minkowski content measures must agree, and so the entire γ (including
z1 and z2) possesses Minkowski content measure, which is parametrizable for γ. Finally, since
γ is compact and not a single point, the total mass is finite and strictly positive.

3 Whole-plane SLE Under Conformal Distortion

We need a lemma, which describes how a whole-plane SLEκ(2) curve from 0 to ∞ is modified
under a conformal map W , which fixes 0. To state the lemma, we need to review the definition
of whole-plane SLEκ(ρ) processes.

We start with the definition of interior hulls in C. A connected compact set K ⊂ C is
called an interior hull if Ĉ \K is connected, and is called non-degenerate if diam(K) > 0. For

a non-degenerate interior hull K, there is a unique gK such that gK : (Ĉ \K;∞)
Conf
� (D∗;∞),

and g′K(∞) := limz→∞ z/gK(z) > 0. The value cap(K) := log(g′K(∞)) is called the whole-plane
capacity of K. By Koebe’s 1/4 theorem, we see that, for any z0 ∈ K, max{|z − z0| : z ∈ K}
lies between ecap(K) and 4ecap(K).
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Next, we review the whole-plane Loewner equation. Let λ ∈ C((−∞, T ),R) for some
T ∈ (−∞,∞]. The whole-plane Loewner equation driven by eiλ is the ODE:

∂tgt(z) = gt(z)
eiλt + gt(z)

eiλt − gt(z)
,

with asymptotic initial value limt→−∞ e
tgt(z) = z. The covering whole-plane Loewner equation

driven by eiλ is the ODE:
∂tg̃t(z) = cot2(g̃t(z)− λt). (3.1)

with asymptotic initial value limt→−∞ g̃t(z) − it = z. It is known that the solutions gt and g̃t
exist uniquely for −∞ < t < T , and satisfy ei ◦ g̃t = gt ◦ ei for every t; and there exists an
increasing family of non-degenerate interior hulls Kt, −∞ < t < T , such that

⋂
tKt = {0}, and

for each t ∈ (−∞, T ), cap(Kt) = t and gKt = gt. So gt : Ĉ \Kt
Conf
� D∗. Let K̃t = (ei)−1(Kt).

Then g̃t : C \ K̃t
Conf
� −H. We call gt and Kt, −∞ < t < T , the whole-plane Loewner maps and

hulls, respectively, driven by eiλ; and call g̃t and K̃t the covering whole-plane Loewner maps
and hulls, respectively, driven by eiλ.

If for every t ∈ (−∞, T ), g−1
t extends continuously to D∗, and γt := g−1

t (ei(λt)), −∞ < t <
T , is a continuous curve, which extends continuously to [−∞, T ) with γ−∞ = 0, then we call
γ the whole-plane Loewner curve driven by eiλ. If such γ exists, then for any t ∈ (−∞, T ),
Ĉ \Kt is the connected component of Ĉ \ γ([−∞, t]) that contains ∞. Since cap(Kt) = t for
each t ∈ (−∞, T ), we say that γ is parametrized by whole-plane capacity.

Now we review the definition of whole-plane SLEκ(ρ) processes. Let κ > 0 and ρ ≥ κ
2−2. Let

(λt)t∈R and (qt)t∈R be two continuous real valued processes such that Xt := λt− qt ∈ (0, 2π) for
all t ∈ R. Let (Ft)t∈R be the filtration generated by (eiλt ; eiqt)t∈R. We say that the T×T-valued
process (eiλt ; eiqt)t∈R is a whole-plane SLEκ(ρ) driving process if for any finite (Ft)-stopping
time τ , λτ+t − λτ and qτ+t − qτ , t ≥ 0, satisfy the (Fτ+t)t≥0-adapted SDE:

d(λτ+t − λτ ) =
√
κdBτ

t +
ρ

2
cot2(Xτ+t)dt, (3.2)

d(qτ+t − qτ ) =− cot2(Xτ+t)dt, (3.3)

on [0,∞), where (Bτ
t )t≥0 is an (Fτ+t)t≥0-Brownian motion. Here we note that (λt) and (qt) are

in general not (Ft)-adapted, but (Xt) is (Ft)-adapted.
Given a whole-plane SLEκ(ρ) driving process (eiλt ; eiqt)t∈R, the whole-plane Loewner curve

γ driven by eiλ, which exists by Girsanov’s Theorem, is called a whole-plane SLEκ(ρ) curve
from 0 to ∞. Each g−1

t extends continuously to D∗; and the extended g−1
t maps eiλt to γ(t),

and maps eiqt to 0.
If F is a Möbius transformation, then the F -image of a whole-plane SLEκ(ρ) curve from 0

to ∞ is called a whole-plane SLEκ(ρ) curve from F (0) to F (∞). As mentioned before, each
arm of a two-sided whole-plane SLEκ curve is a whole-plane SLEκ(2) curve.

Let γ(t), −∞ ≤ t <∞, be a whole-plane SLEκ(2) curve from 0 to ∞ with driving process
(eiλt ; eiqt), t ∈ R. Let gt and Kt (resp. g̃t and K̃t) be the whole-plane Loewner maps and hulls
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(covering whole-plane Loewner maps and hulls), respectively, driven by eiλ. Let (Ft)t∈R be
the filtration generated by (eiλt ; eiqt). Let τ be any (Ft)-stopping time as in the definition of
whole-plane SLEκ(ρ) process. Then we have the (Fτ+t)t≥0-adapted SDE (3.2,3.3) with ρ = 2.
To avoid many occurrences of τ + t, we rewrite them as

d(λt − λτ ) =
√
κdBτ

t−τ + cot2(Xt)dt, τ ≤ t <∞; (3.4)

d(qt − qτ ) =− cot2(Xt)dt, τ ≤ t <∞. (3.5)

Combining the above two equations, we get an SDE for (Xt):

dXt =
√
κdBτ

t−τ + 2 cot2(Xt)dt, τ ≤ t <∞. (3.6)

Let U and V be sub-domains of Ĉ that contain 0. Suppose that W : (U ; 0)
Conf
� (V ; 0). We

will show that the law of γ stopped at certain time is absolutely continuous w.r.t. the law of the
W (γ) stopped at certain time, and describe the Radon-Nikodym derivative. We are going to
use a standard argument that originated in [22]. A similar argument involving chordal Loewner
equations can be found in the proof of Proposition A.3.

Let Ũ = (ei)−1(U) and Ṽ = (ei)−1(V ). There exists W̃ : Ũ
Conf
� Ṽ such that W ◦ei = ei◦W̃ .

Let τU be the largest time such that Kt ⊂ U \ {W−1(∞)} for −∞ < t < τU . If τU < ∞, then
either γ exits U \ {W−1(∞)} at τU , or separates some part of U \ {W−1(∞)} from ∞ at τU .
For −∞ < t < τU , W (Kt) is an interior hull in C, and we let u(t) = cap(W (Kt)). Then u is
continuous and strictly increasing, and maps (−∞, τU ) onto (−∞, S) for some S ∈ (−∞,∞].
Moreover, by Koebe’s distortion theorem, we have

lim
t→−∞

eu(t)−t = |W ′(0)|. (3.7)

Let Ls := W (Ku−1(s)) and β(s) := W (γ(u−1(s))), −∞ ≤ s < S. Then β is a whole-plane

Loewner curve, and Ls are the hulls generated by β. Let eiσs denote the driving function, and let
hs and h̃s be the corresponding whole-plane Loewner maps and covering whole-plane Loewner
maps, respectively. For −∞ < t < τU , define Wt = hu(t) ◦W ◦ g−1

t , W̃t = h̃u(t) ◦ W̃ ◦ g̃−1
t ,

Ut = gt(U \ Kt), Vu(t) = hu(t)(V \ Lu(t)), Ũt = (ei)−1(Ut), Ṽu(t) = (ei)−1(Vu(t)). Then Wt :

Ut
Conf
� Vu(t), and W̃t : Ũt

Conf
� Ṽt. From gt ◦ ei = ei ◦ g̃t, hs ◦ ei = ei ◦ h̃s, and W ◦ ei = ei ◦ W̃ , we

get Wt ◦ ei = ei ◦ W̃t. Note that Ut and Vt are subdomains of D∗ that contain neighborhoods
of T in D∗, and as z ∈ Ut tends to a point on T, Wt(z) tends to T as well. By Schwarz

reflection principle, Wt extends conformally across T, and maps T onto T. Similarly, W̃t extends
conformally across R, and maps R onto R. By the continuity of g̃t and h̃u(t) in t and the maximal

principle, we know that the extended W̃t is continuous in t (and z). Since gt(γ(t)) = eiλt and
hu(t)(β(u(t))) = eiσu(t) , we get eiσu(t) = Wt(e

iλt). By adding an integer multiple of 2π to σs, we
may assume that

σu(t) = W̃t(λt). (3.8)
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Fix t ∈ (−∞, τU ). Let ε ∈ (0, τU − t). Then gt(Kt+ε \Kt) is a hull in D∗ with radial capacity
w.r.t. ∞ (c.f. [19]) being ε; and hu(t)(Lu(t+ε) \ Lu(t))) is a hull in D∗ with radial capacity w.r.t.
∞ being u(t + ε) − u(t). Since Wt maps the former hull to the latter hull, and when ε → 0+,
the two hulls shrink to eiλt and eiσu(t) , respectively, using a radial version of [21, Lemma 2.8],

we obtain u′+(t) = |W ′t(eiλt)|2 = W̃ ′t(λt)
2. Using the continuity of W̃t in t, we get

u′(t) = W̃ ′t(λt)
2. (3.9)

Thus, h̃u(t) satisfies the equation

∂th̃u(t)(z) = W̃ ′t(λt)
2 cot2(h̃u(t)(z)− σu(t)). (3.10)

Combining (3.7,3.9), we get

exp
(∫ t

−∞
(W̃ ′s(λs)

2 − 1)ds
)

= |W ′(0)|−1eu(t)−t. (3.11)

From the definition of W̃t, we get the equality

W̃t ◦ g̃t(z) = h̃u(t) ◦ W̃ (z), z ∈ (ei)−1(U \Kt). (3.12)

Differentiating this equality w.r.t. t and using (3.1,3.10), we get

∂tW̃t(g̃t(z)) + W̃ ′t(g̃t(z)) cot2(g̃t(z)− λt) = W̃ ′t(λt)
2 cot2(h̃u(t) ◦ W̃ (z)− σu(t)).

Combining this formula with (3.8,3.12) and replacing g̃t(z) with w, we get

∂tW̃t(w) = W̃ ′t(λt)
2 cot2(W̃t(w)− W̃t(λt))− W̃ ′t(w) cot2(w − λt), w ∈ Ũt. (3.13)

Letting Ũt 3 w → λt in (3.13), we get

∂tW̃t(λt) = −3W̃ ′′t (λt). (3.14)

Differentiating (3.13) w.r.t. w and letting Ũt 3 w → λt, we get

∂tW̃
′
t(λt)

W̃ ′t(λt)
=

1

2

(W̃ ′′t (λt)

W̃ ′t(λt)

)2
− 4

3

W̃ ′′′t (λt)

W̃ ′t(λt)
− 1

6
(W̃ ′t(λt)

2 − 1). (3.15)

Define ps such that
pu(t) = W̃t(qt), −∞ < t < τU . (3.16)

Since gt(0) = eiqt , we get eipu(t) = hu(t)(0). Since W̃t(z+ 2π) = W̃t(z) + 2π, from λt− qt = Xt ∈
(0, 2π) and (3.8,3.16) we get Yu(t) := σu(t) − pu(t) ∈ (0, 2π). Using (3.1,3.5,3.10,3.12) we get

dpu(t) = −W̃ ′t(λt)2 cot2(Yu(t)). (3.17)
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Differentiating (3.13) w.r.t. w, letting Ũt 3 w → qt, and using (3.5), we get

dW̃ ′t(qt)

W̃ ′t(qt)
= W̃ ′t(λt)

2 cot′2(Yu(t))dt− cot′2(Xt)dt. (3.18)

Suppose the (Ft)-stopping time τ is less than τU . From now on till right before Lemma
3.2, the ranges of t in all equations are [τ, τU ). Combining (3.8,3.14,3.17,3.4), and using Itô’s
formula, we see that Yu(t) = σu(t) − pu(t) satisfies the SDE

dYu(t) = W̃ ′t(λt)
√
κdBτ

t−τ + W̃ ′t(λt) cot2(Xt)dt+
(κ

2
− 3
)
W̃ ′′t (λt)dt+ W̃ ′t(λt)

2 cot2(Yu(t))dt.

(3.19)

Combining (3.15,3.4) with ρ = 2 and using Itô’s formula, we get

dW̃ ′t(λt)

W̃ ′t(λt)
=
W̃ ′′t (λt)

W̃ ′t(λt)

√
κdBτ

t−τ +
W̃ ′′t (λt)

W̃ ′t(λt)
cot2(Xt)dt−

1

6
(W̃ ′t(λt)

2 − 1)dt

+
1

2

(W̃ ′′t (λt)

W̃ ′t(λt)

)2
dt+

(κ
2
− 4

3

)W̃ ′′′t (λt)

W̃ ′t(λt)
dt. (3.20)

Let (Sf)(z) = f ′′′(z)
f ′(z) −

3
2(f

′′(z)
f ′(z) )2 be the Schwarzian derivative of f . Let c be the central

charge for SLEκ as defined by (1.1). From (3.6,3.18,3.19,3.20) and Itô’s formula, we see that

d sin2(Xt)
−2/κ

sin2(Xt)−2/κ
=− cot2(Xt)

dBτ
t−τ√
κ

+
κ− 6

4κ
cot2(Xt)

2dt+
1

4
dt; (3.21)

d sin2(Yu(t))
2/κ

sin2(Yu(t))2/κ
=W̃ ′t(λt) cot2(Yu(t))

dBτ
t−τ√
κ

+
1

κ
W̃ ′t(λt) cot2(Xt) cot2(Yu(t))dt−

1

4
W̃ ′t(λt)

2dt

+
6− κ

4κ
W̃ ′t(λt)

2 cot2(Yu(t))
2dt+

κ− 6

2κ
W̃ ′′t (λt) cot2(Yu(t))dt; (3.22)

dW̃ ′t(λt)
6−κ
2κ

W̃ ′t(λt)
6−κ
2κ

=
6− κ

2

W̃ ′′t (λt)

W̃ ′t(λt)

dBτ
t−τ√
κ

+
6− κ

2κ

W̃ ′′t (λt)

W̃ ′t(λt)
cot2(Xt)dt

− 6− κ
12κ

(W̃ ′t(λt)
2 − 1)dt+

c

6
S(W̃t)(λt)dt; (3.23)

dW̃ ′t(qt)
6−κ
2κ

W̃ ′t(qt)
6−κ
2κ

=
6− κ

4κ
(−W̃ ′t(λt)2 cot2(Yu(t))

2 + cot2(Xt)
2)dt− 6− κ

4κ
(W̃ ′t(λt)

2 − 1)dt. (3.24)

Define
Nt = W̃ ′t(λt)

6−κ
2κ W̃ ′t(qt)

6−κ
2κ sin2(Yu(t))

2/κ sin2(Xt)
−2/κ. (3.25)

Combining (3.21,3.22,3.23,3.24) and using Itô’s formula, we get

dNt

Nt
=− cot2(Xt)

dBτ
t−τ√
κ

+ W̃ ′t(λt) cot2(Yu(t))
dBτ

t−τ√
κ

+
6− κ

2

W̃ ′′t (λt)

W̃ ′t(λt)

dBτ
t−τ√
κ

+
κ− 24

12κ
(W̃ ′t(λt)

2 − 1)dt+
c

6
S(W̃t)(λt)dt, τ ≤ t < τU . (3.26)
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We need the following proposition, which follows easily from [42, Lemma 4.4].

Proposition 3.1. There is a positive continuous function N(r) defined on (0,∞) that satisfies
N(r) = O(re−r) as r → ∞, such that the following is true. Let Û and V̂ be doubly connected

open neighborhoods of T in {z ∈ C : |z| > 1} with the same modulus r. Let Ŵ : Û
Conf
� V̂ be

such that Ŵ (T) = T. Then

| log Ŵ ′(x)|, |S(Ŵ )(x)| ≤ N(r) x ∈ R. (3.27)

Let a ∈ R be such that {|z| = 4ea} separates 0 from U c ∪ {W−1(∞)}. For t < a, since
cap(Kt) = t, we have Kt ⊂ {|z| ≤ 4et} ⊂ {|z| < 4ea}. Thus, Kt ⊂ U , and the modulus of the
doubly connected domain between Kt and {|z| = 4ea} is at least a − t. Since the conformal
image of this doubly connected domain under gt is an open neighborhood of T in Ut ∩ C, and
Wt maps this domain conformally onto an open neighborhood of T in Vt ∩C, using Proposition
3.1, we get

| log W̃ ′t(x)|, |S(W̃t)(x)| = O(|a− t|et−a), t ∈ (−∞, a), x ∈ R. (3.28)

For t ∈ (−∞, τU ), define

Mt = Nt exp
(
− κ− 24

12κ

∫ t

−∞
(W̃ ′s(λs)

2 − 1)ds− c

6

∫ t

−∞
S(W̃s)(λs)ds

)
. (3.29)

From (3.28) we know that the improper integrals inside the exponential function converge.
From (3.26) we see that (Mt) satisfies the SDE

dMt

Mt
= − cot2(Xt)

dBτ
t−τ√
κ

+ W̃ ′t(λt) cot2(Yu(t))
dBτ

t−τ√
κ

+
6− κ

2

W̃ ′′t (λt)

W̃ ′t(λt)

dBτ
t−τ√
κ
, τ ≤ t < τU .

(3.30)

Since Xt = λt − qt ∈ (0, 2π) and Yu(t) = σu(t) − pu(t) = W̃t(λt)− W̃t(qt), from (3.28) we get
sin2(Yu(t))/ sin2(Xt)→ 1 as t→ −∞. From (3.25,3.29) we see that M−∞ := limt→−∞Mt = 1.

Let ρ be a Jordan curve, whose interior contains 0, and whose exterior contains U c ∪
{W−1(∞)}. Let τρ be the hitting time at ρ. Let r1 = min{|z| : z ∈ ρ} and r2 = max{|z| : z ∈ ρ}.
Then 0 < r1 ≤ r2 <∞, and log(r1/4) ≤ τρ ≤ log(r2). There is another Jordan curve ρ′, whose
interior contains ρ, and has the same property as ρ. Let m be the modulus of the domain
bounded by ρ and ρ′. Then for t ≤ τρ, the modulus of the domain bounded by ∂Kt and ρ′ is
at least m. From Proposition 3.1 we see that

| log W̃ ′t(x)|, |S(W̃t)(x)| ≤ N(m), t ∈ (−∞, τρ], x ∈ R. (3.31)

Combining (3.31) and (3.28) with a = log(r1/4), and using τρ − a ≤ log(r2)− log(r1/4), we see
that (Mt), is uniformly bounded on [−∞, τρ]. By choosing the τ in (3.30) to be any deterministic
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time less than a, we see that Mt, −∞ ≤ t ≤ τρ, is a uniformly bounded martingale. Thus,
E[Mτρ ] = M−∞ = 1. Weighting the underlying probability measure by Mτρ , we get a new
probability measure. Suppose τ < τρ. By Girsanov Theorem and (3.30), we find that

B̂τ
t := Bτ

t −
1√
κ

∫ t

0
W̃ ′s(λs) cot2(Yu(s))− cot2(Xs) +

6− κ
2

W̃ ′′s (λs)

W̃ ′s(λs)
ds, 0 ≤ t ≤ τρ − τ,

is a Brownian motion under the new probability measure. We may rewrite (3.19) as

dYu(τ+t) = W̃ ′τ+t(λτ+t)
√
κdB̂τ

t + 2W̃ ′τ+t(λτ+t)
2 cot2(Yu(τ+t))dt, 0 ≤ t ≤ τρ − τ. (3.32)

Since Lu(τρ) = W (Kτρ) intersects W (ρ), we have u(τρ) = cap(Lu(τρ)) ≥ log(dist(0,W (ρ))/4).
By choosing τ = u−1(b) for some b ∈ (−∞, log(dist(0,W (ρ))/4)], and using (3.9,3.32), we see
that there is a Brownian motion B̃b

s such that Ys satisfies the SDE

dYb+s =
√
κdB̃b

s + 2 cot2(Yb+s)ds, 0 ≤ s ≤ u(τρ)− b.

Since Ys = σs−ps and p′s = − cot2(Ys), and eiσs is the driving function for β = W (γ), we see that
(eiσs ; eips) satisfy (3.4,3.5) for b ≤ s ≤ u(τρ). Since this holds for any b ≤ log(dist(0,W (ρ))/4),
we see that (eiσs ; eips)−∞<s≤u(τρ) is the driving process for a whole-plane SLEκ(2) curve stopped
at u(τρ), which is the hitting time at W (ρ). Since β = W (γ) is the whole-plane Loewner curve
driven by eiσ, we get the following lemma.

Lemma 3.2. Let ρ be a Jordan curve, whose interior contains 0, and whose exterior contains
U c ∪ {W−1(∞)}. Let τρ and τW (ρ) be the hitting time at ρ and W (ρ), respectively. Then

KτW (ρ)
(ν#

0→∞) = W (Mτρ · Kτρ(ν
#
0→∞)),

where (Mt) is defined by (3.25,3.29). Here we note that Mτρ(γ) is determined by the driving
process (eiλt ; eiqt)t≤τρ, which in turn is determined by Kτρ(γ).

As a corollary, we obtain the following lemma about the absolute continuity between the
laws of whole-plane SLEκ(2) curves.

Lemma 3.3. Let w ∈ C \ {0}. Let ρ be a Jordan curve in C, whose interior contains 0, and
whose exterior contains w. Let τ be the hitting time at ρ. Then

Kτ (ν#
0→w)(dγτ ) = Rw(γτ ) · Kτ (ν#

0→∞)(dγτ ),

where, in terms of the whole-plane SLEκ(2) driving process (eiλt ; eiqt) and the corresponding
whole-plane Loewner maps (gt), Rw(γτ ) can be expressed by

Rw(γτ ) =
|w|2(2−d)e(d−2)τ |g′τ (w)|2−d(|gτ (w)|2 − 1)

κ
8

+ 8
κ
−2

|gτ (w)− eiλτ |
8
κ
−1|gτ (w)− eiqτ |

8
κ
−1

.

22



Proof. Let W (z) = z
w−z . Then W : (Ĉ; 0, w)

Conf
� (Ĉ; 0,∞). Thus, W−1(ν#

0→∞) = ν#
0→w. From

Lemma 3.2, we know that
Kτρ(ν

#
0→w) = Mτρ · Kτρ(ν

#
0→∞),

where Mτ is the value of (Mt) defined by (3.25,3.29) for the above W at the time τ .

We have U = V = Ĉ. So for all t < τU , Ut = Vt = D∗, and Wt : D∗
Conf
� D∗. From (3.12)

and that hs(∞) = ∞, we know that Wt maps gt(w) to ∞. Thus, there is Ct ∈ T such that

Wt(z) = Ct
1−gt(w)z
z−gt(w) . So we have

W̃ ′t(x) = |W ′t(eix)| = |gt(w)|2 − 1

|gt(w)− eix|2
, x ∈ R;

sin2(Yt)

sin2(Xt)
=
|Wt(e

iλt)−Wt(e
iqt)|

|eiλt − eiqt |
=

|gt(w)|2 − 1

|gt(w)− eiλt ||gt(w)− eiqt |
.

Combining the above formulas, we get

Nt =
( |gt(w)|2 − 1

|gt(w)− eiλt ||gt(w)− eiqt |

) 8
κ
−1
. (3.33)

SinceWt is a Möbius Transformation, we have SWt ≡ 0. Since ei◦W̃t = Wt◦ei, a straightforward
calculation gives

S(W̃t)(λt) = −(W̃ ′t(λt)
2 − 1)/2.

Thus, from (3.11,1.1) we have

exp
(
− κ− 24

12κ

∫ t

−∞
(W̃ ′s(λs)

2 − 1)ds− c

6

∫ t

−∞
S(W̃s)(λs)ds

)
= (|w|eu(t)−t)1−κ

8 . (3.34)

Since eu(t) = h′u(t)(∞), using (3.12) and the expressions of W and Wt, we get eu(t) =
|w||g′t(w)|
|gt(w)|2−1

.

Combining (3.29,3.33,3.34), we find that Mτ = Rw(γτ ), as desired.

We use the following lemma to relate the integral of S(W̃t)(λt) in (3.29) with the normalized
Brownian loop measure Λ∗ defined by (1.2).

Lemma 3.4. For any time τ < τU ,

Λ∗(βu(τ), V
c)− Λ∗(γτ , U

c) =
1

6

∫ τ

−∞
S(W̃t)(λt)dt+

1

12

∫ τ

−∞
(W̃ ′t(λt)

2 − 1)dt,

where γτ and βu(τ) are the parts of γ and β up to τ and u(τ), respectively.
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Proof. We use the Brownian bubble analysis of Brownian loop measure. Let µbb
x0 denote the

Brownian bubble measure in D∗ rooted at eix0 ∈ T as defined in [25]. From the decomposition
theorem of Brownian loop measure and (2.1), we know that

Λ∗(γτ , U
c) = lim

a→−∞

∫ τ

a
µbb
λt (L(D∗ \ Ut))dt− log(−a); (3.35)

Λ∗(βu(τ), V
c) = lim

a→−∞

∫ u(τ)

u(a)
µbb
σs (L(D∗ \ Vs))ds− log(−u(a))

= lim
a→−∞

∫ τ

a
W̃ ′t(λt)

2µbb
σu(t)

(L(D∗ \ Vu(t)))dt− log(−a), (3.36)

where we used the facts that Λ∗(γa, U
c) + log(−a)→ 0 and u(a)−a→ log(W ′(0)) as a→ −∞.

The former can be derived using the argument in [9].
If U is a subdomain of D∗ that contains a neighborhood of T in D∗, we let PUx0 denote the

Poisson kernel in U with the pole at eix0 , and P̃Ux0 = PUx0 ◦ e
i. Especially, PD∗

x0 (z) = 1
2π Re z+eix0

z−eix0
and P̃D∗

x0 (z) = Im cot2(z − x0). From [25] we know

µbb
λt (L(D∗ \ Ut)) = lim

Ut3z→eiλt

1

|z − eiλt |2
(

1−
PUtλt (z)

PD∗
λt

(z)

)
= lim

Ũt3z→λt

1

|z − λt|2
(

1−
P̃Utλt (z)

P̃D∗
λt

(z)

)
.

Similarly, using (3.8) and that W̃t : Ũt
Conf
� Ṽu(t), we get

µbb
σu(t)

(L(D∗ \ Vu(t))) = lim
Ṽu(t)3w→σu(t)

1

|w − σu(t)|2
(

1−
P̃
Vu(t)
σu(t) (w)

P̃D∗
σu(t)

(w)

)

= lim
Ũt3z→λt

1

|W̃t(z)− W̃t(λt)|2

(
1−

P̃
Vu(t)
σu(t) ◦ W̃t(z)

P̃D∗
σu(t)
◦ W̃t(z)

)

= lim
Ũt3z→λt

W̃ ′t(λt)
−2

|z − λt|2
(

1−
W̃ ′t(λt)

−1P̃Utλt (z)

P̃D∗
σu(t)
◦ W̃t(z)

)
.

Combining the above two formulas, we get

W̃ ′t(λt)
2µbb

σu(t)
(L(D∗ \ Vu(t)))− µbb

λt (L(D∗ \ Ut)) = lim
z→λt

1

|z − λt|2
( P̃Utλt (z)

P̃D∗
λt

(z)
−
W̃ ′t(λt)

−1P̃Utλt (z)

P̃D∗
σu(t)
◦ W̃t(z)

)

=
1

6
S(W̃t)(λt) +

1

12
(W̃ ′t(λt)

2 − 1),

where the latter equality follows from some tedious but straightforward computation involving
power series expansions. This together with (3.35,3.36) completes the proof of Lemma 3.4
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4 SLE Loop Measures in Ĉ

We first construct rooted SLE loop measures µ1
z, z ∈ Ĉ, in Ĉ. The superscript 1 means that

the curve has one root, and the subscript z means that the root is z.

Theorem 4.1 (Rooted loops). Let GC(w) = |w|−2(2−d). We have the following.

(i) For each z ∈ C, there is a unique σ-finite measure µ1
z, which is supported by non-

degenerate loops in Ĉ rooted (start and end) at z which possess Minkowski content measure
(in C) that is parametrizable, and satisfies

µ1
z(dγ)⊗Mγ(dw) = ν#

z
w(dγ)
←−⊗GC(w − z) ·m2(dw). (4.1)

Moreover, µ1
z satisfies the reversibility, and may be expressed by

µ1
z = Cont(·)−1 ·

∫
C\{z}

ν#
z
wGC(w − z) m2(dw). (4.2)

(ii) For every z ∈ C, µ1
z satisfies the following CMP. Let Tz be the time that the loop returns

to z. Then for any nontrivial stopping time τ , we have

Kτ (µ1
z|{τ<Tz})(dγτ )⊕ µ#

Ĉ(γτ ;z);(γτ )tip→z
(dγτ ) = µ1

z|{τ<Tz}, (4.3)

where implicitly stated in the formula is that Kτ (µ1
z|{τ<Tz}) is supported by Γ(Ĉ; z).

(iii) Suppose the law of a random curve γ is µ1
0. Let γ be parametrized by its Minkowski content

measure such that γ(0) = 0. Let a ∈ R be a fixed deterministic number. Then the law of
the random curve Ta(γ) defined by Ta(γ)(t) = γ(a+ t)− γ(a) is also µ1

0.

(iv) Let J(z) = −1/z, and µ1
∞ = J(µ1

0). Then µ1
∞ is supported by loops in Ĉ rooted at ∞,

which possesses Minkowski content measure (in C) that is parametrizable for the loop
without ∞, and satisfies

µ1
∞(dγ)⊗Mγ(dw) = ν#

∞
w(dγ)
←−⊗ m2(dw). (4.4)

Moreover, for any bounded set S ⊂ C, µ1
∞-a.s. Cont(γ ∩ S) <∞.

(v) For each z ∈ Ĉ, the measures µ1
z satisfies Möbius covariance as follows. If F is a Möbius

transformation that fixes z, then F (µ1
z) = |F ′(z)|2−dµ1

z. In the case z = ∞, this means
that F (z) = az + b for some a, b ∈ C with a 6= 0, and F (µ1

∞) = |a|d−2µ1
∞.

(vi) For any r > 0 and z ∈ C, µ1
z({γ : diam(γ) > r}) and µ1

z({γ : Cont(γ) > r}) are finite.
Moreover, there are constants C1, C2 ∈ (0,∞) such that µ1

z({γ : diam(γ) > r}) = C1r
d−2

and µ1
z({γ : Cont(γ) > r}) = C2r

(d−2)/d for any z ∈ C and r > 0.
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(vii) For z ∈ C, if a measure µ′ supported by non-degenerate loops rooted at z satisfies (ii) and
that µ′({γ : diam(γ) > r}) <∞ for every r > 0, then µ′ = cµ1

z for some c ∈ [0,∞).

The following theorem is about unrooted SLE loop measure. By an unrooted loop we mean
an equivalence class of continuous functions defined on T, where γ1 and γ2 are equivalent if there
is a orientation-preserving auto-homeomorphism φ of T such that γ2 = γ1 ◦φ. We may view the
two-sided whole-plane SLEκ measure ν#

z
w as a measure on unrooted loops. By reversibility of
two-sided whole-plane SLEκ, we get ν#

z
w = ν#
w
z.

Theorem 4.2 (Unrooted loops). Let GC(w) = |w|−2(2−d). Define the measure µ0 on unrooted
loops by

µ0 = Cont(·)−2 ·
∫
C

∫
C
ν#
z
wGC(w − z) m2(dw) m2(dz). (4.5)

Then µ0 is a σ-finite measure that satisfies reversibility and the following properties.

(i) We have the equalities

µ0(dγ)⊗Mγ(dz) = µ1
z(dγ)

←−⊗ m2(dz); (4.6)

µ0(dγ)⊗ (Mγ)2(dz ⊗ dw) = ν#
z
w(dγ)

←−⊗GC(w − z) · (m2)2(dz ⊗ dw). (4.7)

(ii) For any Möbius transformation F , F (µ0) = µ0.

Remark 4.3. The CMP of rooted SLEκ loop measures allows us to apply the SLE-based
results and arguments to study SLE loop measures. In the next section, we will combine the
generalized restriction property of chordal SLE with this CMP to define SLE loop measures in
multiply connected domains and general Riemann surfaces.

Another application of the CMP is to study the multi-point Green’s function for the rooted
SLE loop measure:

Gz0(z1, . . . , zn) := lim
r1,...,rn↓0

n∏
j=1

rd−2
j µ1

z0{γ : γ ∩B(zj ; rj) 6= ∅, 1 ≤ j ≤ n},

where z0, z1, . . . , zn are distinct points in C. Using the CMP together with the results of [32]
on multi-point Green’s function for chordal SLE, it is not difficult to prove the existence and
get up-to-constant sharp bounds for the Green’s function here.

Remark 4.4. For κ ≥ 8, we may construct a probability measure µ#
0 on loops rooted at 0 that

satisfies the CMP in Theorem 4.1 (ii). For the construction, one may consider a whole-plane
SLEκ(κ−6) curve started from 0. Since κ−6 ≥ κ

2−2, 0 is never separated by the curve from∞.
At any nontrivial stopping time τ , conditional on the past of the curve, the rest of the curve is a
radial SLEκ(κ− 6) curve with 0 being the force point. From [35] we know that this is a chordal
SLEκ curve in the remaining domain aiming at 0, but stopped at reaching ∞. Thus, we may
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construct a random curve with law µ#
0 by continuing a whole-plane SLEκ(κ− 6) curve with a

chordal SLEκ curve from ∞ to 0. The measure µ#
∞ := J(µ#

0 ) (J(z) = 1/z) is invariant under

translation and scaling; and for µ#
∞-a.s. γ, γ visits every point in C, and can be parametrized

by the Lebesgue measure m2. This measure agrees with the law of the space-filling SLEκ curve
from ∞ to ∞ constructed in [28]. The space-filling SLEκ from ∞ to ∞ was also defined for
κ ∈ (4, 8) in [28]. But that curve does not locally look like an ordinary SLEκ curve.

Remark 4.5. Theorem 4.1 (without (vii)) and Theorem 4.2 also hold for κ = 0, and the proofs
are quite simple. Here we note that a two-sided whole-plane SLE0 curve from z to z passing
through w is a random circle in Ĉ passing through z and w such that the angle of the curve at
z or w is uniform in [0, 2π). The rooted SLE0 loop measure µ1

0 turns out to be supported by
circles passing through 0, which are radially symmetric, and the distance of the center of the
circle from 0 follows the law of 1

x2
· 1(0,∞) ·m(dx). The measure µ1

∞ rooted at ∞ is supported
by straight lines, which is invariant under rotation or translation.

Proof of Theorem 4.1. (i) It suffices to consider the case z = 0 since µ1
z can be expressed by z+

µ1
0. Let γτ (t), −∞ ≤ t ≤ τ , be a whole-plane Loewner curve started from 0 with driving function
eiλt , −∞ < t ≤ τ . Note that (γτ )tip = γτ (τ). Let gt and g̃t be the corresponding Loewner maps

and covering Loewner maps. Suppose γτ ∈ Γ(Ĉ; 0;∞). Then gτ : (Ĉ(γτ ; 0);∞, γτ (τ), 0)
Conf
�

(D∗;∞, eiλτ , eiqτ ) for some qτ ∈ (λτ − 2π, λτ ). Recall that we have the chordal SLEκ measure

µ#

Ĉ(γτ ;0);γτ (τ)→0
and the two-sided radial SLEκ measure ν#

Ĉ(γτ ;0);γτ (τ)→w→0
for each w ∈ Ĉ(γτ ; 0).

Since these measures are all determined by γτ , we now write µ#
γτ and ν#

γτ ;w, respectively, for
them. We write Gγτ (w) for the Green’s function GĈ(γτ ;0);γτ (τ)→0

(w). Let K be a compact

subset of C \ {0} such that K ∩ γτ = ∅. From Proposition 2.8, we have

µ#
γτ (dγ)⊗Mγ∩K(dw) = ν#

γτ ;w(dγ)
←−⊗1KGγτ ·m2(dw). (4.8)

We now compute Gγτ (w) for w ∈ Ĉ(γτ ; 0). Let φ(z) = i z−e
iλτ

z−eiqτ . Then φ : (D∗; eiλτ , eiqτ )
Conf
�

(H; 0,∞). Since gτ : (Ĉ(γτ ; 0); γτ (τ), 0)
Conf
� (D∗; eiλτ , eiqτ ), by (2.2) and (2.3), we get

Gγτ (w) = |φ′(gτ (w))|2−d|g′τ (w)|2−dGH(φ ◦ gτ (w))

=
ĉ|g′τ (w)|2−d|eiλτ − eiqτ |

8
κ
−1

|gτ (w)− λτ |
8
κ
−1|gτ (w)− eiqτ |

8
κ
−1
·
( |gτ (w)|2 − 1

2

) 8
κ

+κ
8
−2

(4.9)

Let Rw(γτ ) be as in Lemma 3.3. Let

Q(γτ ) = 2
κ
8

+ 8
κ
−2ĉ−1|eiλτ − eiqτ |1−

8
κ e(d−2)τ . (4.10)

From the above formulas, we get

Q(γτ )Gγτ (w) = Rw(γτ )GC(w). (4.11)
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From (4.8) and (4.11), we get

Q(γτ )µ#
γτ (dγτ )⊗Mγ∩K(dw) = Rw(γτ )ν#

γτ ;w(dγτ )
←−⊗1KGC ·m2(dw). (4.12)

Suppose that τ is a nontrivial stopping time. Recall that Kτ is the killing map at time τ .
Define

Γτ = {γ : τ(γ) < T0(γ),Kτ (γ) ∈ Γ(C; 0;∞)}.
We view both sides of (4.12) as kernels from γτ ∈ Γ(Ĉ; 0;∞) to the space of curve-point pairs.

Let K be a fixed compact subset of C \ {0}, and Γτ ;K = Γτ ∩ {γ : K ⊂ Ĉ(Kτ (γ); 0)}. Then

the measure Kτ (1Γτ ;K · ν
#
0→∞)(dγτ ) is supported by Γ(Ĉ; 0;∞), on which µ#

γτ and ν#
γτ ;w are well

defined if w ∈ K. Acting Kτ (1Γτ ;K · ν
#
0→∞)(dγτ )⊗ on the left of both sides of (4.12), we get

two equal measures on the space of curve-curve-point triples (γτ , γ
τ , w) such that w ∈ γτ , and

γτ ⊕ γτ can be defined. On the lefthand side, we get the measure

Kτ ;K(1Γτ ;K · ν
#
0→∞)(dγτ )⊗ [Q(γτ )µ#

γτ (dγτ )⊗Mγτ∩K(dw)]

=[Q · Kτ (1Γτ ;K · ν
#
0→∞)(dγτ )⊗ µ#

γτ (dγτ )]⊗Mγτ∩K(dw).

On the righthand side, we get the measure

Kτ (1Γτ ;K · ν
#
0→∞)(dγτ )⊗ [Rw(γτ )ν#

γτ ;w(dγτ )
←−⊗1KGC ·m2(dw)]

=[Rw · Kτ (1Γτ ;K · ν
#
0→∞)(dγτ )⊗ ν#

γτ ;w(dγτ )]
←−⊗1KGC ·m2(dw)

=[Kτ (1Γτ ;K · ν
#
0→w)(dγτ )⊗ ν#

γτ ;w(dγτ )]
←−⊗1KGC ·m2(dw),

where in the last step we used Lemma 3.3.
Applying the map (γτ , γ

τ , w) 7→ (γτ ⊕ γτ , w) to the above two measures, and using the fact
that M(γτ⊕γτ )∩K =Mγτ∩K when K ∩ γτ = ∅, we get

[Q · Kτ (1Γτ ;K · ν
#
0→∞)(dγτ )⊕ µ#

γτ (dγτ )](dγ)⊗Mγ∩K(dw)

=[Kτ (1Γτ ;K · ν
#
0→w)(dγτ )⊕ ν#

γτ ;w(dγτ )]
←−⊗1KGC ·m2(dw)

=1Γτ ;K · ν
#
0
w(dγ)

←−⊗1KGC ·m2(dw), (4.13)

where in the last step we used the CMP formula (2.5).
Define

µτ ;K = Q · Kτ (1Γτ ;K · ν
#
0→∞)(dγτ )⊕ µ#

γτ (dγτ ). (4.14)

Using (4.13), we get

µτ ;K(dγ)⊗Mγ∩K(dw) = 1Γτ ;K · ν
#
0
w(dγ)

←−⊗1KGC ·m2(dw). (4.15)

The total mass of the righthand side of (4.15) is bounded above by
∫
K GC(z) m2(dz), which

is finite. So both sides of (4.15) are finite measures. Thus, µτ ;K-a.s., Contd(· ∩K) < ∞. By
looking at the marginal measure of the first component (the curve), we find that

Contd(· ∩K) · µτ ;K =

∫
K

1Γτ ;K · ν
#
0
wGC(w) m2(dw) =: µ̂K;τ . (4.16)
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Thus, µ̂K;τ is supported by ΓK := {γ : Contd(γ ∩K) > 0}. Define

µK;τ = Contd(· ∩K)−1 · µ̂K;τ . (4.17)

By (4.16,4.17), we get
µτ ;K |ΓK = µK;τ . (4.18)

We now define
µτ = Q · Kτ (1Γτ · ν

#
0→∞)(dγτ )⊕ µ#

γτ (dγτ ); (4.19)

µ̂K =

∫
K
ν#

0
wGC(w) m2(dw). (4.20)

Then µτ is supported by Γτ . From (4.14,4.16) we get

µτ |Γτ ;K = µτ ;K ; (4.21)

µ̂K |Γτ ;K = µ̂K;τ . (4.22)

For n ∈ N, let τn be the first time that the curve reaches the circle {|z| = 1/n}. Then

Γτn;K = Γτn , if dist(0,K) > 1/n. (4.23)

Let n > 1/dist(0,K). From (4.20) we see that µ̂K is supported by Γτn . Define

µK = Cont(· ∩K)−1 · µ̂K . (4.24)

Then for any nontrivial stopping time τ ,

µK |Γτ ;K = µK;τ . (4.25)

Since µ̂K is supported by Γτn , from (4.22,4.23) we see that µ̂K;τn = µ̂K . So we have µK = µK;τn .
Since µτn is supported by Γτn , from (4.21,4.23) we get µτn = µτn;K . Combining these formulas
with (4.18), we get

µτn |ΓK = µK . (4.26)

Let K1 ⊂ K2 be two compact subsets of C \ {0}. Let n > 1/ dist(0,K2). Then (4.26) holds
for K = K1 or K2. Since ΓK1 ⊂ ΓK2 , we get

µK2 |ΓK1
= µK1 .

So we may define a σ-finite measure µ1
0 supported by

⋃
n Γ{1/n≤|w|≤n} =

⋃
K⊂C\{0} ΓK such

that
µ1

0|ΓK = µK , for any compact K ⊂ C \ {0}. (4.27)

By Lemma 2.12 and (4.20,4.24), each µK is supported by non-degenerate loops rooted at 0
which possess Minkowski content measure that is parametrizable. So µ1

0 also satisfies these
properties.
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Let K ⊂ C\{0} be compact, and τ be a nontrivial stopping time. From (4.18,4.21,4.25,4.27)
we have

µ1
0|Γτ ;K∩ΓK = µK |Γτ ;K = µK;τ = µτ ;K |ΓK = µτ |Γτ ;K∩ΓK .

Let Ξ denote the set of closure of domains that lie in C \ {0} whose boundary consists of a
disjoint union of finitely many polygonal curves whose vertices have rational coordinates. Then
Ξ is countable. From the above displayed formula, we see that µ1

0 and µτ agree on

Γ̃τ :=
⋃
K∈Ξ

(Γτ ;K ∩ ΓK) ⊂ Γτ .

Given γτ , by Lemmas 2.5 and 2.6, µ#
γτ = µ#

Ĉ(γτ ;0);(γτ )tip→0
is supported by

⋃
K∈Ξ,K⊂Ĉ(γτ ;0)

{γτ : Cont(γτ ∩K) > 0} =
⋃
K∈Ξ

{γτ : γτ ⊕ γτ ∈ ΓK ,K ⊂ Ĉ(γτ ; 0)}.

From (4.19) we see that µτ is supported by Γ̃τ .

Fix any w ∈ C \ {0}. Suppose γ has the law of ν#
0
w. Let Tw be the hitting time at w.

On the event Γτ , let γτ and γτ be the parts of γ before τ and after τ , respectively. From the
CMP of two-sided whole-plane SLEκ, conditional on γτ and Γτ , if τ < Tw, γτ is a two-sided
radial SLEκ curve in Ĉ(γτ ; 0); and if Tw ≤ τ < T0, then γτ is a chordal SLEκ curve in Ĉ(γτ ; 0).
Following the argument in the last paragraph and using Lemmas 2.5, 2.6 and 2.10, we find
that ν#

0
w|Γτ is supported by Γ̃τ . From (4.20,4.24) we know that µK |Γτ is supported by Γ̃τ for
every compact K ⊂ C \ {0}. Since µ1

0 is supported by
⋃
K ΓK , from (4.27) we see that µ1

0|Γτ is

supported by Γ̃τ . Since µ1
0|Γτ and µτ agree on Γ̃τ , and are both supported by Γ̃τ , we get

µ1
0|Γτ = µτ . (4.28)

Let K ⊂ C \ {0} be compact, and n > 1/ dist(0,K). Taking τ = τn in (4.15) and using
(4.23), we get

(µ1
0(dγ)⊗Mγ(dw))|Γτn×K = (ν#

0
w(dγ)
←−⊗GC ·m2(dw))|Γτn×K . (4.29)

From the CMP formula (2.5), we know that, for each w ∈ K, ν#
0
w vanishes on {τn <∞}\Γτn .

From (4.20,4.24,4.27), we see that µ1
0 also vanishes on {τn < ∞} \ Γτn . Thus, (4.29) holds

with Γτn replaced by {τn <∞}. Since both µ1
0(dγ)⊗Mγ(dw) and ν#

0
w(dγ)
←−⊗GC ·m2(dw) are

supported by ⋃
n>m

({γ : τn(γ) <∞}× {z : 1/m ≤ |z| ≤ m}),

we obtain (4.1) with z = 0. By looking at the marginal measure in curves, we obtain (4.2) with
z = 0, which immediately implies the uniqueness of µ1

0. The reversibility of µ1
0 follows from

(4.2) and the reversibility of ν#
0
w.

30



(ii) It suffices to consider the case z = 0. From (4.19,4.28) we see that Kτ (1Γτµ
1
0) =

Q · Kτ (1Γτ ν
#
0→∞), and

µ1
0|Γτ = Kτ (1Γτµ)(dγτ )⊕ µ#

Ĉ(γτ ;0);(γτ )tip→0
(dγτ ).

This formula is different from (4.3) because Γτ is a subset of {τ < T0}. However, if τ = τn,
then the measures on both sides vanish on {τn < T0}\Γτn . So we can conclude that (4.3) holds
for τ = τn. Now we consider a general nontrivial stopping time τ . We have τ > infn τn. Fix
any n ∈ N. Since (4.3) holds for τn, we get

µ1
0|Γτn∩{τn<τ} = Kτn(1Γτn∩{τn<τ}µ)(dγτn)⊕ µ#

Ĉ(γτn ;0);(γτn )tip→0
(dγτn).

Applying the CMP formula (2.4) to the chordal SLEκ measure µ#

Ĉ(γτn ;0);(γτn )tip→0
and the stop-

ping time τ − τn on the event {τn < τ}, with T τn0 := T0 − τn, we get

µ1
0|{τn<τ<T0} = (µ|Γτn∩{τn<τ})|{τ−τn<T τn0 }

=Kτn(1Γτn∩{τn<τ}µ
1
0)(dγτn)⊕ 1τ−τn<T τn0 µ#

Ĉ(γτn ;0);(γτn )tip→0
(dγτn)

=Kτn(1Γτn∩{τn<τ}µ
1
0)(dγτn)⊕Kτ−τn(1{τ−τn<T τn0 }µ

#

Ĉ(γτn ;0);(γτn )tip→0
)(dγτnτ )

⊕ µ#

Ĉ(γτn⊕γ
τn
τ ;0);(γτn⊕γ

τn
τ )tip→0

(dγτ ).

Thus, we get

µ1
0|{τn<τ<T0} = Kτ (1{τn<τ<T0}µ

1
0)(dγτ )⊕ µ#

Ĉ(γτ ;0);(γτ )tip→0
(dγτ ).

Since {τ < T0} =
⋃
n{τn < τ < T0}, from the above formula we get (4.3) with z = 0.

(iii) Fix a ∈ R. Since Ta(γ) has the same Minkowski content as γ, it suffices to prove that

the statement holds with µ1
0 replaced by µ̂1

0 := Cont ·µ1
0 =

∫
CGC(w)ν#

0
w m2(dw). Now suppose
γ has the law of µ̂1

0, and is parametrized by its Minkowski content measure with γ(0) = 0.
Let θ be a random variable uniformly distributed on (0, 1) and independent of γ. Let

β = TθCont(γ)(γ). Then β is also parametrized by its Minkowski content measure periodically
with β(0) = 0, and Cont(β) = Cont(γ). Since γ is parametrized by its Minkowski content
measure, by (i), the law of (γ, γ(θCont(γ))) is

µ̂1
0(dγ)⊗Mγ(dw)/Cont(γ) = ν#

0
w(dγ)
←−⊗GC(w) m2(dw).

For every w ∈ C \ {0}, by the reversibility of two-sided whole-plane SLE, if γ̃ has the law of

ν#
0
w and is parametrized by its Minkowski content measure such that γ̃(0) = 0, then there

a.s. exists a unique s ∈ (0,Cont(γ̃)) such that γ̃(s) = w, and Ts(γ̃) has the law of ν#
0
−w

with Ts(γ̃)(−s) = −w. Since GC(−w) = GC(w), we see that (β, β(−θCont(β))) has the same
law as (γ, γ(θCont(γ))). This means that β has the same law as γ, and is independent of θ.
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By periodicity, we have Ta(γ) = Ta−θCont(β)(β) = Tθ′ Cont(β)(β), where θ′ ∈ [0, 1) is such that
a/Cont(β)− θ − θ′ ∈ Z. Since θ is uniformly distributed on (0, 1) and independent of β, so is
θ′. From the argument above, Ta(γ) = Tθ′ Cont(β)(β) has the same law as β, which in turn has
the same law as γ. This finishes the proof.

(iv) Applying the map J ⊗ J to both sides of (4.1) and using Lemma 2.6, we get (4.4)
and conclude that µ1

∞ is supported by loops rooted at ∞, which possesses Minkowski content
measure (in C) that is parametrizable for the loop without∞. Let K = S. Then K is a compact
set. Computing the total mass of the measures on both sides of (4.4) restricted to w ∈ K, we
get

∫
Cont(γ∩K)µ1

∞(dγ) = m2(K) <∞. So we have µ1
∞-a.s. Cont(γ∩S) ≤ Cont(γ∩K) <∞.

(v) Let F (z) = az + b be a polynomial of degree 1. Applying F ⊗ F to both sides of (4.4),
and using Lemma 2.6, we get

F (µ1
∞)(dγ)⊗ a−dMγ(dw) = ν#

∞
w(dγ)
←−⊗a−2 m2(dw) = a−2µ1

∞(dγ)⊗Mγ(dw).

Let K be a compact subset of C and ΓK = {γ : Cont(γ ∩K) > 0}. Restricting both sides of
the above formula to w ∈ K, and looking at the marginal measures of γ, we get F (µ1

∞)|ΓK =
ad−2µ1

∞|ΓK . Since µ1
∞-a.s. Cont(γ) > 0, we see that µ1

∞ is supported by
⋃
K ΓK , and so does

F (µ1
∞). Thus, F (µ1

∞) = ad−2µ1
∞, i.e., (v) holds for z = ∞. Applying the inverse map J and

translations w → w + z, we see that (v) holds for any z ∈ C.
(vi) By the translation invariance, the scaling property (v) and Lemma 2.6, it suffices to

prove the first sentence of (vi) for z = 0. We first show µ1
0({γ : diam(γ) > r}) <∞ for any r > 0.

For a compact set S ⊂ C, we use KS to denote the interior hull generated by S, i.e., Ĉ\KS is the
connected component of Ĉ\S that contain∞. Since ecap(Kγ) � diam(Kγ) = diam(γ), from the
scaling property, it suffices to show that µ1

0({γ : cap(Kγ) > 0}) <∞. We use γt to denote the
part of γ up to t. Let τ0 be the first time that the curve returns to 0 or disconnects 0 from ∞.
We have µ1

0-a.s. Kγ = Kγτ0
since from the CMP of µ1

0, the part of γ after τ0 grows inside Kγτ0
.

Let σ0 denote the first t such that cap(Kγt) = 0. Then cap(Kγ) > 0 is equivalent to σ0 < τ0.
Applying (4.19,4.28) with τ = τ0 ∧ σ0 and using that µ1

0-a.s. Γτ = {τ < τ0} = {σ0 < τ0},
we get Kσ0(µ1

0|{σ0<τ0}) = Q(γσ0) · Kσ0(ν#
0→∞). Thus, µ1

0({σ0 < τ0}) = E
ν#0→∞

[Q(γσ0)]. It

remains to show that the expectation is finite. Suppose γ follows the law of ν#
0→∞, i.e., is a

whole-plane SLEκ(2) curve from 0 to ∞. Let (eiλt ; eiqt)t∈R be the driving process for γ. Then
(Xt := λt − qt)t∈R is a stationary diffusion process that satisfies (3.6). By [17, Equations (56),
(62)], the law of X0 is absolutely continuous w.r.t. m |(0,π), and the density is proportional to

sin2(x)8/κ. By (4.10) we get

E
ν#0
∞

[Q(γσ0)] =
2d−2

ĉ
·
∫ 2π

0 sin2(x)dx∫ 2π
0 sin2(x)8/κdx

<∞.

Next, we show that µ1
0({γ : Cont(γ) > r}) <∞ for any r > 0. From (4.1, we know that∫

Cont(γ ∩ D)µ1
0(dγ) =

∫
D
GC(w) m2(dw) =

∫
D
|w|−2(2−d) m2(dw) <∞.
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Thus, µ1
0({γ : Cont(γ ∩ D) > r}) <∞ for any r > 0. Since for curves started from 0,

{γ : Cont(γ) > r} ⊂ {γ : Cont(γ ∩ D) > r} ∪ {γ : diam(γ) > 1},

and µ1
0({γ : diam(γ) > 1}) <∞, we get µ1

0({γ : Cont(γ) > r}) <∞ for any r > 0.
(vii) We may assume that z = 0. Suppose µ′ satisfies the assumption for z = 0. Fix

r > s > 0, a compact set K ⊂ C with dist(0,K) > r. Let τs and τr be the first time that
the curve reaches {|z| = s} and {|z| = r}, respectively. We use the notation in the proof of
(i). From the assumption, we have µ′(Γτs) < ∞. Suppose γ is parametrized by whole-plane
capacity up to τr. Let µ̂′K = Cont(· ∩K) · µ′. Using (4.3) and Proposition 2.8 we get

µ̂′K =

∫
K
Kτs(µ′|Γτs )(dγτs)⊕Gγτs (w) · ν#

γτs ;w(dγτsτr ) m2(dw).

Thus, the total mass of µ̂′K equals
∫ ∫

K Gγτs (w) m2(dw)Kτs(µ′|Γτs )(dγτs). From (4.9) we see
that Gγτs (w) is uniformly bounded in both γτs and w ∈ K. Thus, from the finiteness of µ′|Γτs
we can conclude that µ̂′K is a finite measure. Since the first arm of a two-sided radial SLEκ
curve is a radial SLEκ(2) curve, using a martingale in [35], we get

Kτr(ν#
γτs ;w|Γτr )(dγτsτr ) =

Rw(γτs ⊕ γτsτr )

Rw(γτs)
· Kτr(ν#

γτs ;∞)(dγτsτr ), w ∈ K. (4.30)

A simple way to see that this formula is correct without complicated computation is to apply
Lemma 3.3 to the times τs and τr and use the CMP for whole-plane SLEκ(2) measures ν#

0→w
and ν#

0→∞. In fact, by doing that, we see that (4.30) at least holds for Kτs(ν
#
0→∞)-a.s. every

γτs . Using (4.11) and the above two displayed formulas, we get

Kτr(µ̂′K) = Kτs(µ′|Γτs )(dγτs)⊕
∫
K
Gγτs⊕γ

τs
τr

(w) m2(dw)
Q(γτs ⊕ γτsτr )

Q(γτs)
· Kτr(ν#

γτs ;∞)(dγτsτr ). (4.31)

Define a new measure ν ′r;K by

ν ′r;K(dγτr) =
(∫

K
Q(γτr)Gγτr (w) m2(dw))

)−1
· Kτr(µ̂′K)(dγτr).

Since µ̂′K is a finite measure, from (4.9,4.10) we see that ν ′r;K is also finite. From (4.31) we see
that

Kτs(ν ′r;K)(dγτs) =
1

Q(γτs)
· Kτs(µ′|Γτs )(dγτs);

ν ′r;K = Kτs(ν ′r;K)(dγτs)⊕Kτr(ν#
γτs ;∞)(dγτsτr ).

We observe that ν ′r;K satisfies the CMP for ν#
0
∞ up to τr. Since ν ′r;K is supported by non-

degenerate curves started from 0, and is finite, we conclude that there is cr;K ∈ [0,∞) such

that ν ′r;K = cr;KKτr(ν
#
0
∞) = cr;KKτr(ν

#
0→∞). By the definitions of ν ′r;K and µ̂′K , we get

Kτr(Cont(· ∩K) · µ′) = cr;K

∫
K
Q(γτr)Gγτr (w) m2(dw) · Kτr(ν

#
0→∞).
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Using (4.11,4.20,4.24,4.27) and Lemma 3.3, we get

Kτr(Cont(· ∩K) · µ′) = cr;K

∫
K
Kτr(ν

#
0→w)GC(w) m2(dw)

= cr;KKτr(µ̂K) = cr;KKτr(Cont(· ∩K) · µK) = cr;KKτr(Cont(· ∩K) · µ1
0).

Since the total mass of the measures on both sides do not depend on r, we see that cr;K depends
only on K, and so write it as cK . Since both µ′ and µ1

0 satisfy (4.3), from Proposition 2.8 we
see that the expectation of Cont(γ ∩K) conditional on Kτr(γ) w.r.t. either µ′ or µ1

0 is equal to∫
K GKτr (γ)(w) m2(dw), which is positive and finite. So from the above displayed formula, we

get
Kτr(µ′|Γτr ) = cKKτr(µ1

0|Γτr ).

Thus, cK also does not depend on K, and we may write it as c. Applying (4.3) again, we get
µ′|Γτr = cµ1

0|Γτr . Since both µ′ and µ1
0 are supported by non-degenerate loops rooted at 0, by

letting r, s→ 0+, we conclude that µ′ = cµ1
0.

Remark 4.6. We record the following fact for future references. From the proof of Theorem
4.1 (i), we see that, if ρ is any Jordan curve in C surrounding 0, and τρ is the hitting time at ρ,

then Kτρ(µ1
0|{τρ<∞}) = Q · Kτρ(ν

#
0→∞), and the Radon-Nikodym derivative Q may be expressed

by

Q(γτρ) = 2d−2ĉ−1| sin2(λτρ − qτρ)|1−
8
κ e(d−2)τρ ,

if (eiλt ; eiqt) is the driving process for the whole-plane SLEκ(2) curve. In the proof, we only
considered the case ρ = {|z| = r}, but the above formula holds for general ρ. Thus, µ1

0|{τρ<∞}
may be constructed by first weighting the law of a whole-plane SLEκ(2) curve stopped at τρ by
Q, and then continue with a chordal SLEκ curve from the tip to 0 in the remaining domain.

Corollary 4.7. Suppose that γ̂0 is a Minkowski content parametrization of a two-sided whole-
plane SLEκ curve from ∞ to ∞ passing through 0 such that γ̂0(0) = 0. Then γ̂0 is a self-similar
process of index 1

d defined on R with stationary increments.

Proof. We view ν#
∞
0 as a measure on unparametrized curves. Let ν̂#

∞
0 denote the law of the
random parametrized curve γ̂0 in the statement. The self-similarity of γ̂0 follows easily from
the scaling invariance of ν#

∞
0 and the scaling covariance of the Minkowski content measure
(Proposition 2.6 applied to a scaling map). Since the Minkowski contents of both arms of γ̂0

are positive, by the self-similarity, the definition interval of γ̂0 has to be R.
Now we prove that γ̂0 has stationary increments. Because of the self-similarity of γ̂0, it

suffices to show that ν̂#
∞
0 is invariant under the map T1 : γ̂ 7→ γ̂(·+ 1)− γ̂(1).

Let Γ denote the space of unparametrized curves γ, which possesses Minkowski content
measure that is parametrizable for γ, such that the definition domain for any Minkowski content
parametrization of γ is R. For each γ ∈ Γ, define Tγ : γ → γ such that if γ̂ is a Minkowski
content parametrization of γ, then for z ∈ γ, Tγ(z) = γ̂(τz(γ̂) + 1), where τz(γ̂) is the first
time that γ̂ reaches z. Note that the definition does not depend on the choice of γ̂. Since
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γ̂ induces an isomorphism modulo zero between (R,m) and (γ,Mγ) (Remark 2.4), and m is
invariant under translation, we see that Mγ is invariant under Tγ . Thus, µ1

∞(dγ)⊗Mγ(dz) is

invariant under the map T∗ : (γ, z) 7→ (γ, Tγ(z)). By Theorem 4.1 (iv), ν#
∞
z(dγ) ⊗m2(dz) is

also invariant under T∗.
Define the map RΓ(γ, z) = (z+γ, z) on Γ×C. Since ν#

∞
z = z+ν#
∞
0, we have ν#

∞
z(dγ)⊗
m2(dz) = RΓ(ν#

∞
0 ⊗m2). Thus, ν#
∞
0 ⊗m2 is invariant under the map R−1

Γ ◦ T∗ ◦ RΓ.
Let Γ0 be the set of γ ∈ Γ such that 0 ∈ γ and 0 is not a double point of γ. By scaling

invariance, µ#
∞
0 is supported by Γ0. For every γ ∈ Γ0, there is a unique Minkowski content

parametrization of γ, denoted by P(γ) such that P(γ)(0) = 0. Then ν̂#
∞
0 = P(ν#

∞
0). Define

RC(γ, z) = (γ, z −P(γ)(1)) on Γ0 ×C. By the translation invariance of m2, ν#
∞
0 ⊗m2 is also

invariant under RC. Thus, ν#
∞
0 ⊗m2 is invariant under R−1

Γ ◦ T∗ ◦ RΓ ◦ RC.
Let γ ∈ Γ0 and z ∈ C. Then z is not a double point of z + γ, and z +P(γ) is a Minkowski

content parametrization of z + γ such that z + P(γ)(0) = z. Thus,

T∗ ◦ RΓ(γ, z) = T∗(z + γ, z) = (z + γ, Tz+γ(z)) = (z + γ, z + P(γ)(1)).

So we have R−1
Γ ◦ TP ◦ RΓ ◦ RC(γ, z) = (γ − P(γ)(1), z). Therefore, ν#

∞
0 is invariant under

γ 7→ γ−P(γ)(1). So for ν#
∞
0-a.s. γ, γ−P(γ)(1) ∈ Γ0. Note that when γ−P(γ)(1) ∈ Γ0, with

γ̂ := P(γ), T1(γ̂) = γ̂(· + 1) − γ̂(1) is the Minkowski content parametrization of γ − γ̂(1) that

satisfies T1(γ̂)(0) = 0, which implies that P(γ − P(γ)(1)) = T1(P(γ)). Since ν#
∞
0 is invariant

under γ 7→ γ − P(γ)(1), we get that ν̂#
∞
0 = P(ν#

∞
0) is invariant under T1, as desired.

Remark 4.8. In the subsequent paper [39], it is proved that the γ in Corollary 4.7 is locally
α-Hölder continuous for any α < 1/d, and for any deterministic closed A ⊂ R, dimH(γ(A)) =
d · dimH(A), where dimH stands for Hausdorff dimension.

Remark 4.9. Corollary 4.7 also holds for κ ≥ 8, if we replace the two-sided SLEκ curve from
∞ to ∞ passing through 0 with the SLEκ loop rooted at ∞ (with law µ#

∞) as described in
Remark 4.4, and let d = 2 so that the (d-dimensional) Minkowski content agrees with the
Lebesuge measure m2. This is [12, Lemma 2.3]. We now give an alternative proof by modifying
the above proof. The self-similarity is obvious. For the stationarity of increments, we define Γ
to be the space of space-filling curves from ∞ to ∞ that is parametrizable by m2, and define
Tγ : C→ C for each γ ∈ Γ as in the above proof. The same argument shows that m2 is invariant

under Tγ . Thus, µ#
∞⊗m2 is invariant under T∗ : (γ, z) 7→ (γ, Tγ(z)). Since µ#

∞ is invariant under

translation, µ#
∞ ⊗m2 is also invariant under RΓ : (z, γ) 7→ (z + γ, z). Define Γ0, P, and RC as

in the above proof. By the scaling invariance, µ#
∞ is supported by Γ0. By translation invariance

of m2, µ#
∞ ⊗m2 is also invariant under RC. Thus, µ#

∞ ⊗m2 is invariant under the composition
R−1

Γ ◦ TP ◦ RΓ ◦ RC : (γ, z) 7→ (γ − P(γ)(1), z). So µ#
∞ is invariant under γ 7→ γ − P(γ)(1).

When γ −P(γ)(1) ∈ Γ0, we have P(γ −P(γ)(1)) = T1(P(γ)). Thus, µ̂#
∞ := P(µ#

∞) is invariant
under T1. So the increments are stationary.

Proof of Theorem 4.2. (i) From (4.2,4.5) we see that µ0 = Cont(·)−1 ·
∫
C µ

1
z m2(dz) and satisfies

reversibility. Integrating (4.1) against the measure m2(dz) and using the above formula and
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the definition of µ1
z, we get

Cont(γ) · µ0(dγ)⊗Mγ(dw) = Cont(γ) · µ1
w(dγ)

←−⊗GC ·m2(dw),

which immediately implies (4.6) since both sides are supported by loops with positive Minkowski
content. Combining (4.6) with (4.1), we get (4.7).

(ii) Let F be a Möbius transformation. Applying the map F ⊗ F to both sides of (4.6), we
get two equal measures. On the left, using Lemma 2.6, we get

F (µ0)(dγ)⊗ F (MF−1(γ))(dz) = F (µ0)(dγ)⊗ |F ′(F−1(z))|−d · Mγ(dz).

On the right, using Theorem 4.1 (iv) and (4.6), we get

F (µ1
F−1(z))(dγ)

←−⊗F (m2)(dz) = |F ′(F−1(z))|2−dµ1
z
←−⊗|F ′(F−1(z))|−2 ·m2(dz)

= |F ′(F−1(z))|−d · (µ1
z
←−⊗ m2(dz)) = µ0(dγ)⊗ |F ′(F−1(z))|−d · Mγ(dz).

Since both µ0 and F (µ0) are supported by loops with positive Minkowski content, by looking
at the marginal measures in loops, we get F (µ0) = µ0.

5 SLE Loop Measures in Riemann Surfaces

First, we use Brownian loop measure (c.f. [25]), the approach used in [18], and the normalized
Brownian loop measure introduced in [9] to define SLE loops in subdomains of Ĉ. We are going
to prove the following theorem.

Theorem 5.1 (Loops in a subdomain of Ĉ). Let µ1
z and µ0 be as in Theorems 4.1 and 4.2.

Let D be a subdomain of Ĉ. For z ∈ D, define

µ1
D;z = 1{·⊂D}e

c Λ∗(·,Dc) · µ1
z, µ0

D = 1{·⊂D}e
c Λ∗(·,Dc) · µ0.

Then µ1
D;z and µ0

D satisfy the following conformal covariance and invariance, respectively. If

W maps a domain U ⊂ Ĉ conformally onto a domain V ⊂ Ĉ, then

W (µ1
U ;z) = |W ′(z)|2−dµ1

V ;W (z), ∀z ∈ U \ {∞,W−1(∞)}; (5.1)

W (µ0
U ) = µ0

V . (5.2)

Using (2.1), we easily get the following generalized restriction property: if D1 ⊂ D2 are
nonpolar domains, and z ∈ D1, then

µ1
D1;z = 1{·⊂D1}e

cµlpLD2
(·,D2\D1) · µ1

D2;z;

µ0
D1

= 1{·⊂D}e
cµlpLD2

(·,D2\D1) · µ0
D1
. (5.3)
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Now we show how Theorem 5.1 can be used to define unrooted SLEκ loop measure in some
Riemann surfaces, such that the loop measures satisfy the generalized restriction property and
conformal invariance. Let S be a Riemann surface. The Brownian loop measure on S was
defined in [38], which satisfies conformal invariance and the restriction property. We use µlp

S to
denote this measure. We say that S is of type I if (1.3) holds for disjoint closed subsets V1, V2

of S, one of which is compact.
The definition of unrooted SLEκ loop on a type I Riemann surface S is as follows. Let S

denote the set of subdomains of S, which are conformally equivalent to some subdomain of Ĉ.

For every D ∈ S, we may find E ⊂ Ĉ and f : E
Conf
� D. Then we define µ0

D = f(µ0
E). From

Theorem 5.1, the value of µ0
D does not depend on the choices of E and f . Moreover, from (5.3)

we get the generalized restriction property

µ0
D1

= 1{·⊂D1}e
cµlpS (LD2

(·,D2\D1)) · µ0
D2
, ∀D1 ⊂ D2 ∈ S. (5.4)

Using (5.4), we may define a measure µ0
S on the space of (unrooted) loops in S, which is

supported by the union of {· ⊂ D} over D ∈ S, such that

µ0
D = 1{·⊂D}e

cµlpS (LS(·,S\D)) · µ0
S , ∀D ∈ S. (5.5)

In fact, (5.5) requires that µ0
S |{·⊂D} = e− cµlpS (LS(·,S\D))µ0

D, where we use µlp
S (LS(·, S \D)) <∞.

Let µSD denote the measure on the right hand side. From (5.4) and the fact that LS(·, S \D1)
is the disjoint union of LS(·, S \ D2) and LD2(·, D2 \ D1), we get the consistency criterion:
µSD1

= µSD2
|{·⊂D1} if D1 ⊂ D2 ∈ S. Thus, µ0

S exists and is unique. We call µ0
S the unrooted

SLEκ loop measure in S. It clearly satisfies the conformal invariance and the generalized
restriction property.

We say that a Riemann surface S is of type II if (1.3) does not hold, but the normalization
method in [9] works. This means that, for any nonpolar closed subset K of S, S \K is of type I,
and the limit Λ∗S(V1, V2) in (1.4) converges for disjoint closed subsets V1, V2 of S, one of which
is compact, and does not depend on the choice of z0 ∈ S. We may also define unrooted SLEκ
loop on a type II Riemann surface. The above approach still works except that we now use
Λ∗S(·, S \D) to replace the µlp

S (LS(·, S \D)) in (5.5).
We expect that ([11]) every subsurface D of a compact Riemann surface S is of type I or

type II depending on whether S \ D can be reached by a Brownian motion on S. Therefore,
unrooted SLEκ loop measure can be defined on any Riemann surface that can be embedded
into a compact Riemann surface.

Remark 5.2. there may be other ways to define SLE loops on Riemann surfaces, such as
using Werner’s SLE8/3 loop measure in place of the normalized or unnormalized Brownian loop
measure. Stéphane Benoist dis some work on classifying all possible definitions of conformally
invariant loop measures ([6]).

Remark 5.3. If κ = 8/3, we have the strong restriction property: µ0
S′ = µ0

S |{·⊂S′} because
c = 0. This measure is supported by simple loops, and so agrees with the loop measure
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constructed by Werner in [38] up to a positive multiplicative constant. Since c = 0 when κ = 6,
the SLE6 unrooted loop measure also satisfies the strong restriction property.

Remark 5.4. If κ = 2, and D is a doubly connected domain, then µ0
D restricted to the family

Γ of the loops in D that separate the two boundary components of D is a finite measure. The
normalized probability measure µ#

D := µ0
D|Γ/|µ0

D|Γ| should agree with the measure constructed
in [14] as the scaling limit of the unicycle of a conditional uniform CRST.

Remark 5.5. If some assumption holds, we also have the CMP of rooted SLEκ loop measure
in a subdomain of Ĉ. We use the measure µDU ;a→b defined in (A.3). If it is a finite measure,

then we may normalize it to get a probability measure, which is denoted by µ#
U ;a→b. This is the

case, e.g., if κ ∈ (0, 8/3]∪ [6, 8). From Proposition A.3 we know that µ#
U ;a→b satisfies conformal

invariance. From the CMP for the rooted SLE loop measure in Ĉ, we get the following CMP:

Kτ (µ1
U ;z|{τ<Tz})(dγτ )⊕ µ#

Ĉ(γτ ;z)∩U ;(γτ )tip→z
(dγτ ) = µ1

U ;z|{τ<Tz},

if τ is a nontrivial stopping time, and if µ#

Ĉ(γτ ;z)∩U ;(γτ )tip→z
is well defined.

Proof of Theorem 5.1. We first prove (5.1). We may assume that z = 0 and W (0) = 0. Let ρ
be a Jordan curve in C that separates 0 from (Ĉ \ U) ∪ {W−1(∞)}. Then W (ρ) is a Jordan
curve in C that separates 0 from (Ĉ \ V ) ∪ {W (∞)}. Let τρ and τW (ρ) be the hitting times at
ρ and W (ρ), respectively. From Remark 4.6, we see that

Kτρ(µ1
0|{·∩ρ 6=∅}) = Q · Kτρ(ν

#
0→∞);

KτW (ρ)
(µ1

0|{·∩W (ρ)6=∅}) = Q · KτW (ρ)
(ν#

0→∞).

Moreover, the Radon-Nikodym derivatives Q may be expressed by the following. Suppose
that γ is a whole-plane SLEκ(2) curve with driving process (eiλt ; eiqt). With the symbols

in Section 3 (e.g., Xt = λt − qt, Ys = σs − ps, σu(t) = W̃t(λt), pu(t) = W̃t(qt)), we have
τW (ρ)(W (γ)) = u(τρ(γ)), and

Q(γτρ) = 2d−2ĉ−1| sin2(Xτρ)|1−
8
κ e(κ

8
−1)τρ ;

Q(W (γτρ)) = 2d−2ĉ−1| sin2(Yu(τρ))|1−
8
κ e(κ

8
−1)u(τρ).

Using (3.11,3.25,3.29) and Lemma 3.4, we may express the Mτρ in Lemma 3.2 as

Mτρ = |W ′(0)|
κ
8
−1|W̃ ′τρ(λτρ)W̃

′
τρ(qτρ)|

6−κ
2κ · ec Λ∗(γτρ ,U

c)

ec Λ∗(W (γτρ ),V c)
·
∣∣∣sin2(Yu(τρ))

sin2(Xτρ)

∣∣∣1− 6
κ
. (5.6)

For a curve γ started from 0 that intersects ρ, we use γτρ and γτρ to denote the parts of γ
before τρ and after τρ, respectively. Since ρ separates 0 from U c, γ ∩ U c 6= ∅ iff γτρ ∩ U c 6= ∅.
Recall that Kτρ is the interior hull generated by γτρ . Suppose that γτρ lies in the closure of

38



Ĉ\Kτρ . If a loop is disjoint from γτρ and intersects both γτρ and U c, then the loop is contained

in Ĉ \Kτρ . Thus, L(γ, U c) is the disjoint union of L(γτρ , U
c) and LĈ\Kτρ (γτρ , U c). Using the

above facts, the formula (2.1), the CMP for µ1
0 at τρ (note that Ĉ(γτρ ; 0) = Ĉ \ Kτρ), and

Remark 4.6, with the notation in (A.3), we have the expression:

µ1
U ;0|{·∩ρ6=∅} = Qec Λ∗(·,Uc) · Kτρ(ν

#
0→∞)(dγτρ)⊕ µ

Ĉ\Kτρ
U\Kτρ ;(γτρ )tip→0(dγτρ).

Similarly,

µ1
V ;0|{·∩W (ρ)6=∅} = Qec Λ∗(·,V c) · KτW (ρ)

(ν#
0→∞)(dβτW (ρ)

)⊕ µ
Ĉ\LτW (ρ)

V \LτW (ρ)
;(βτW (ρ)

)tip→0(dβτW (ρ)).

From Lemma 3.2 and (5.6), we find that the W -image of the measure

|W ′τρ(e
iλτρ )W ′τρ(e

iqτρ )|
6−κ
2κ

∣∣∣sin2(Yu(τρ))

sin2(Xτρ)

∣∣∣1− 6
κ ·Qec Λ∗(·,Uc) · Kτρ(ν

#
0→∞)

is
|W ′(0)|1−

κ
8Qec Λ∗(·,V c) · KτW (ρ)

(ν#
0→∞).

From Lemma A.5, we see that the W -image of the kernel

|W ′τρ(e
iλτρ )W ′τρ(e

iqτρ )|−
6−κ
2κ

∣∣∣sin2(Yu(τρ))

sin2(Xτρ)

∣∣∣ 6κ−1
· µĈ\KτρU\Kτρ ;(γτρ )tip→0

is

µ
Ĉ\LτW (ρ)

V \LτW (ρ)
;(βτW (ρ)

)tip→0.

Combining the above six displayed formulas, we get

W (µ1
U ;0|{·∩ρ 6=∅}) = |W ′(0)|1−

κ
8 µ1

V ;0|{·∩W (ρ)6=∅}.

Since µ1
U ;0 and µ1

V ;0 are supported by non-degenerate loops rooted at 0, by choosing ρ = {|z| =
1/n} and letting n→∞, we finish the proof of (5.1).

Finally, we prove (5.2). From (4.6) we get

µ0
U (dγ)⊗Mγ(dz) = µ1

U ;z(dγ)
←−⊗1U ·m2(dz).

Applying the map W ⊗W to both sides, and using Lemma 2.6 and (5.1), we conclude that

W (µ0
U )(dγ)⊗Mγ(dz) = µ0

V (dγ)⊗Mγ(dz).

Let L be a compact subset of V , and ΓL = {γ : Contd(γ ∩ L) > 0}. Restricting both sides of
the above formula to z ∈ L, and looking at the marginal measures of the first component, we
get W (µ0

U )|ΓL = µ0
V |ΓL . Since µ0

V -a.s. the Minkowski content measure for γ is strictly positive,
we see that µ0

V is supported by
⋃
L⊂V ΓL, and so does W (µ0

U ). This implies that (5.2) holds
and completes the proof of Theorem 5.1.
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6 SLE Bubble Measures

In this section, we will construct SLEκ loop measures, for κ ∈ (0, 8), rooted at boundary,
which we also call SLEκ bubble measures, and study their basic properties. The SLEκ bubble
measures were first constructed in [22] for κ = 8/3 using the restriction property of SLE8/3,
and later in [37] for κ ∈ (8/3, 4] in order to construct CLE.

The argument in this section is similar to the construction of SLE loop measures in Ĉ. We
will need the degenerate two-sided radial SLE process. To motivate the definition, let’s consider
a two-sided radial SLEκ curve in H from a ∈ R to b ∈ R through w ∈ H. From [35] the curve
up to hitting w or separating b from ∞ is a chordal SLEκ(2, κ − 8) curve started from a with
force points (b, w) (modulo a time change). We now define a degenerate two-sided radial SLEκ
curve in H from a− to a+ through w ∈ H. Roughly speaking, it is the limit of the above
curve when b → a+. More specifically, the degenerate two-sided radial SLEκ curve is defined
by first running a chordal SLEκ(2, κ − 8) curve β started from a with force points (a+, w) up
to a nontrivial stopping time τ before w is reached, and then continuing it with a two-sided
radial SLEκ curve in the remaining domain from β(τ) to a+ through w. The definition does
not depend on the choice of the stopping time τ . Similarly, we may define degenerate two-sided
radial SLEκ curve in H from a+ to a− through w. We have the obvious reversibility property:
the time-reversal of a degenerate two-sided radial SLEκ curve in H from a− to a+ through w is
a degenerate two-sided radial SLEκ curve in H from a+ to a− through w. Moreover, conditional
on any arm (between w and a+ or a−) of the curve, the other arm is a chordal SLEκ curve. From
Lemmas 2.6 and 2.10 we see that the above degenerate two-sided radial SLEκ curve possesses
Minkowski content measure in C \ {a}, which is parametrizable for the loop without a.

From the definition, we see that a degenerate two-sided radial SLEκ curve satisfies CMP.
We now use the language of kernels to describe this CMP. For a ∈ R, let Γ(H; a+) denote the
set of curves γ in H (modulo a time change) from a to another point γtip ∈ H, such that there

is a unique connected component of Ĥ \ γ whose boundary contains (a, a + ε) for some ε > 0
and has two distinct prime ends determined by a+ and γtip. Let H(γ; a+) denote this connected

component. For γ in this space, the chordal SLEκ measure µ#
H(γ;a+);γtip→a+ is well defined, and

the map from γ to this measure is a kernel. For a ∈ R and w ∈ H, let Γ(H; a+;w) denote the
set of γ ∈ Γ(H; a+) such that w ∈ H(γ; a+). For γ in this space, the two-sided radial SLEκ
measure ν#

H(γ;a+);γtip→w→a+ is well defined, and the map from γ to this measure is a kernel. Let

ν#
H;a−→w;a+

denote the law of a chordal SLEκ(2, κ − 8) curve started from a with force points

(a+, w). Let ν#

H;a−+
w
denote the law of a degenerate two-sided radial SLEκ curve (modulo a

time change) from a− to a+ through w. The CMP of the degenerate two-sided radial SLE can
now be stated as follows. If τ is a nontrivial stopping time, then

Kτ (ν#
H;a−→w;a+

)|{τ<Tw}(dγτ )⊕ ν#
H(γτ ;a+);(γτ )tip→w→a+(dγτ ) = ν#

H;a−+
w
|{τ<Tw}, (6.1)

where implicitly in the formula is that Kτ (ν#
H;a−→w;a+

)|{τ<Tw} is supported by Γ(H; a+;w).
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We may similarly define Γ(H; a−), H(γ; a−), and Γ(H; a−;w). Then (6.1) holds with a+, a−

and a−+ replaced with a−, a+ and a+
−, respectively.

For a ∈ R, we use ν#
H;a−→∞;a+

to denote the law of a chordal SLEκ(2) curve started from a

with force point a+. The following proposition described the Radon-Nikodym derivatives be-
tween ν#

H;a−→w;a+
and ν#

H;a−→∞;a+
stopped at certain stopping times, which follows immediately

from [35, Theorem 6].

Proposition 6.1. Let a ∈ R, w ∈ H, and let τw be the first time that the curve visits w or
disconnects w from ∞. Then for any stopping time τ ,

Kτ (1{τ<τw} · ν
#
H;a−→w;a+

)(dγτ ) = Rw(γτ ) · Kτ (1{τ<τw} · ν
#
H;a−→∞;a+

)(dγτ ),

where Rw(γτ ) is given by the following. Let γτ be parametrized by half-plane capacity, and let λt
and gt, 0 ≤ t ≤ τ , be the chordal Loewner driving function and maps for γτ (see, e.g., Appendix
A). Then

Rw(γτ ) = |g′τ (w)|
8−κ
8

( |gτ (w)− λτ |
|w − a|

)κ−8
κ
( |gτ (w)− gτ (a+)|

|w − a|

)κ−8
κ
( Im gτ (w)

Imw

) (κ−8)2

8κ
. (6.2)

Theorem 6.2. Let GH(w) = |w|
2
κ

(κ−8)(Imw)
(κ−8)2

8κ . Then the following are true.

(i) For every a ∈ R, there is a unique σ-finite measure µ1
H;a−+

, which is supported by non-

degenerate loops in H rooted at a which possess Minkowski content measure in C \ {0}
that is parametrizable for the loop without a, and satisfies

µ1
H;a−+

(dγ)⊗Mγ;C\{0}(dw) = ν#

H;a−+
w
(dγ)
←−⊗GH(w − a) ·m2(dw), a ∈ R. (6.3)

Moreover, the time-reversal of µ1
H;a−+

is µ1
H;a+−

, which satisfies the same property as µ1
H;a−+

except that (6.3) is modified with a+ and a− swapped.

(ii) For every a ∈ R, µ1
H;a−+

satisfies the following CMP: if τ is a nontrivial stopping time,

then
Kτ (µ1

H;a−+
|{τ<Ta})(dγτ )⊕ µ#

H(γτ ;a+);(γτ )tip→a+(dγτ ) = µ1
H;a−+
|{τ<Ta}, (6.4)

where implicitly stated in the formula is that Kτ (µ1
H;a−+

)|{τ<Ta} is supported by Γ(H; a+).

(iii) Let J(z) = −1/z, and µ1
H;∞+

−
= J(µ1

H;0−+
). Then µ1

H;∞+
−

is supported by loops in H rooted

at ∞, which possesses Minkowski content measure (in C), and satisfies

µ1
H;∞+

−
(dγ)⊗Mγ(dw) = ν#

H;∞+
−
w

(dγ)
←−⊗(Imw)

(κ−8)2

8κ m2(dw), (6.5)

where we define ν#

H;∞+
−
w

= J(ν#

H;0−+
J(w)
). Moreover, for any bounded set S ⊂ C,

µ1
H;∞+

−
-a.s. Cont(γ ∩ S) <∞.
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(iv) If F is a Möbius automorphism of H, then F (µ1
H;x−+

) = |F ′(x)|
8
κ
−1µ1

H;F (x)−+
for any x ∈ R

such that F (x) ∈ R. If F (z) = az + b for some a, b ∈ R with a > 0, then F (µ1
H;∞+

−
) =

|a|1−
8
κµ1

H;∞+
−

.

(v) For any r > 0 and a ∈ R, µ1
H;a−+

({γ : diam(γ) > r})is finite. Moreover, there is a constant

C ∈ (0,∞) such that µ1
H;a−+

({γ : diam(γ) > r}) = Cr1− 8
κ for any a ∈ R and r > 0.

(vi) For a ∈ R, if a measure µ′ supported by non-degenerate loops in H rooted at a satisfies
(ii) and that µ′({γ : diam(γ) > r}) < ∞ for every r > 0, then µ′ = cµ1

H;a−+
for some

c ∈ [0,∞).

Remark 6.3. For κ ≥ 8, it is easy to construct an SLEκ bubble measure µ#

H;a−+
that satisfies

the CMP as in Theorem 6.2 (ii). This is similar to Remark 4.4. To construct a random curve

with law µ#

H;a−+
, we start a chordal SLEκ(κ − 6) curve in H from a to ∞ with force point a+,

and after the curve reaches ∞, we continue it with a chordal SLEκ curve from ∞ to 0 growing
in the remaining domain.

Proof of Theorem 6.2. This proof is very similar to the proof of Theorem 4.1. We will point
out the main difference and omit the parts that are similar.

(i) It suffices to consider the case a = 0. Let γτ (t), 0 ≤ t ≤ τ , be a chordal Loewner curve
started from 0 with driving function λt, 0 ≤ t ≤ τ . Let gt be the corresponding Loewner maps.

Suppose γτ ∩ (0,∞) = ∅. Then gτ : (H(γτ ; 0+);∞, (γτ )tip = γτ (τ), 0+)
Conf
� (H;∞, λτ , qτ )

for some qτ > λτ . We have the chordal SLEκ measure µ#
H(γτ ;0+);γτ (τ)→0+

and the two-sided

radial SLEκ measure ν#
H(γτ ;0+);γτ (τ)→w→0+

for each w ∈ H(γτ ; 0+). Since these measures are all

determined by γτ , we now write µ#
γτ and ν#

γτ ;w, respectively, for them. We write Gγτ (w) for
the Green’s function GH(γτ ;0+);γτ (τ)→0+(w). Let K be a compact subset of H \ {0} such that
K ∩ γτ = ∅. From Proposition 2.8, we have

µ#
γτ (dγ)⊗Mγ∩K(dw) = ν#

γτ ;w(dγ)
←−⊗(1KGγτ ·m2)(dw). (6.6)

We now compute Gγτ (w) = GH(γτ ;0+);γτ (τ)→0(w) for w ∈ H(γτ ; 0+). Let φ(z) = z−λτ
qτ−z . Then

φ : (H;λτ , qτ )
Conf
� (H; 0,∞). Recall that gτ : (H(γτ ; 0+); γτ (τ), 0+)

Conf
� (H; λτ , qτ ). By (2.2)

and (2.3), we get

Gγτ (w) = ĉ |g′τ (w)|2−d|φ′(gτ (w))|2−d|φ(gτ (w))|1−
8
κ (Imφ(gτ (w)))

κ
8

+ 8
κ
−2

= ĉ|g′τ (w)|2−d · |qτ − λτ |
8
κ
−1

|gτ (w)− qτ |
8
κ
−1|gτ (w)− λτ |

8
κ
−1
· (Im gτ (w))

κ
8

+ 8
κ
−2. (6.7)

42



Let GH(w) be as in the statement and

Q(γτ ) = ĉ−1|qτ − λτ |1−
8
κ . (6.8)

Using (6.2) and (6.10), we find that

Q(γτ )Gγτ (w) = Rw(γτ )GH(w). (6.9)

From (6.6) and (6.9), we get

Q(γτ )µ#
γτ (dγτ )⊗Mγ∩K(dw) = (Rw(γτ )ν#

γτ ;w)(dγτ )
←−⊗(1KGH ·m2)(dw). (6.10)

Note that the above two formulas are similar to (4.11,4.12).
For any stopping time τ , define

Γτ = {γ : τ(γ) < T0(γ),Kτ (γ) ∈ Γ(H; 0+), γ([0, τ ]) ∩ (0,∞) = ∅}.

We view both sides of (6.10) as kernels from γτ ∈ Γτ to the space of curve-point pairs. Let
K be a fixed compact subset of H \ {0}. Let Γτ ;K = Γτ ∩ {γ : K ⊂ H(Kτ (γ); 0+)}. Acting

Kτ (1Γτ ;K · ν
#
H;0−→∞;0+

)(dγτ )⊗ on the left of both sides of (6.10), we get an equality of two

measures on the space of curve-curve-point triples (γτ , γ
τ , w), i.e.,

[Q · Kτ (1Γτ ;K · ν
#
H;0−→∞;0+

)(dγτ )⊗ µ#
γτ (dγτ )]⊗Mγτ∩K(dw)

=[Kτ (1Γτ ;K · ν
#
H;0−→w;0+

)(dγτ )⊗ ν#
γτ ;w(dγτ )]

←−⊗(1KGH ·m2)(dw).

The rest of the proof of (i) is almost the same as the part of the proof of Theorem 4.1 (i)
starting from the paragraph containing (4.13) except for the following modifications: we use

H \ {0}, GH, ν#
H;0−→∞;0+

, ν#
H;0−→w;0+

ν#

H;0−+
w
, µ1

H;0−+
, µ1

H;∞+
−

, Γ(H; 0+), H(·; 0+), and M·;C\{0}
to replace C \ {0}, GC, ν#

0→∞, ν#
0→w, ν#

0
w, µ1
0, µ1

∞, Γ(C; 0), Ĉ(·; 0), and M·, respectively.
We need to prove the uniqueness of µ1

H;0−+
without a formula similar to (4.2). Suppose µ

satisfies the properties of µ1
H;0−+

. Let K be a compact subset of H \ {0}. Let r ∈ (0, dist(0,K))

and τr be the first time that the curve reaches {|z| = r}. Restricting (6.3) for µ to γ ∈ Γτr and
w ∈ K, we get

µ|Γτr (dγ)⊗Mγ∩K(dw) = ν#

H;0−+
w

←−⊗1KGH ·m2(dw).

Since µ-a.s., Mγ∩K is a finite measure, from the above formula, we get

µ|ΓK = Cont(·)−1 ·
∫
K
ν#

H;0−+
w
GH(w) m2(dw) = µ1

H;0−+
|ΓK ,

where ΓK := {γ : Contd(γ ∩ K) > 0} ⊂ Γτr . From the assumption we see that both µ and
µ1
H;0−+

are supported by
⋃
K ΓK . So they must agree. Finally, the reversibility of µ1

H;0−+
follows

from (6.3), the reversibility of ν#

H;0−+
w
, and the uniqueness of µ1

H;0−+
.
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(ii, iii, iv) The proofs of (ii, iii, iv) are almost the same as the proofs of Theorem 4.1 (ii, iv,
v), respectively, except for the modifications described near the end of the proof of (i).

(v) By the translation invariance and the scaling property (iv), it suffices to prove the
first sentence of (v) for a = 0 and r = 1. We will use the chordal Loewner equation (see
Appendix A). Let γ be a chordal SLEκ(2) curve started from 0 with force point at 0+. Let γ
be parametrized by half-plane capacity, and λ be its chordal Loewner driving function. Let Kt

and gt be the chordal Loewner hulls and maps, respectively, driven by λ. Recall that H \Kt

is the unbounded connected component of H \ γ([0, t]), gt(H \ Kt;∞)
Conf
� (H;∞), satisfies

g′t(∞) = 1, and maps γ(t) to λt. Let Kdoub
t = Kt ∪ {z ∈ −H : z ∈ Kt}. By Schwarz

reflection principle, gt extends to gt : C \Kdoub
t

Conf
� C \ [q−t , q

+
t ] for some q−t ≤ q+

t ∈ R. Since
γ(t) ∈ ∂Kt, we get q−t ≤ λt ≤ q+

t . Since g′t(∞) = 1, we have cap(Kdoub
t ) = cap([q−t , q

+
t ]).

Thus, diam(γ([0, t])) ≤ diam(Kdoub
t ) ≤ q+

t − q
−
t . By chordal Loewner equation (A.1) and the

definition of SLEκ(2) process (note that (q+
t ) is the force point process), we see that (λt) and

(q±t ) satisfy the SDE

dλt =
√
κdBt +

2

λt − q+
t

dt;

dq±t =
2

q±t − λt
dt,

for some Brownian motion Bt. So we have d log(q+
t − q

−
t ) = 2

(q+t −λt)(λt−q
−
t )
> 0. Let

Yt =
q+
t − λt
q+
t − q

−
t

− λt − q−t
q+
t − q

−
t

∈ [−1, 1].

Then Yt + 1 =
2(q+t −λt)
q+t −q

−
t

and Yt − 1 =
2(q−t −λt)
q+t −q

−
t

. By Itô’s formula, Yt satisfies the SDE

dYt =
−2
√
κ

q+
t − q

−
t

dBt +
6

(q+
t − λt)(q

+
t − q

−
t )

dt− 2

(λt − q−t )(q+
t − q

−
t )

dt− 2Yt

(q+
t − λt)(λt − q

−
t )

dt.

Let u(t) = κ
2 log(q+

t − q
−
t ). Then u is absolutely continuous and strictly increasing, and maps

(0,∞) onto (−∞,∞). Moreover, u′(t) = κ
(q+t −λt)(λt−q

−
t )

whenever q−t < λ(t) < q+
t , which holds

for almost every t > 0. Let v = u−1, Ŷt = Yv(t). By a straightforward computation, we find

that Ŷt, −∞ < t <∞, satisfies the SDE

dŶt = −
√

1− Ŷ 2
t dB̂t −

2

κ
(Ŷt + 1)dt− 4

κ
(Ŷt − 1)dt.

This agrees with the SDE in [41, Remark 3 after Corollary 8.5] with δ+ = 8
κ and δ− = 16

κ .

Thus, for each fixed deterministic t ∈ R, the law of Ŷt has a density w.r.t. 1[−1,1] · m, which

is proportional to (1 − x)
4
κ
−1(1 + x)

8
κ
−1. Let τ = v(0). Then τ is the first time t such that
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q+
t − q

−
t = 1. So we get 1 + Yτ = 2(q+

τ − λτ ). Thus, the law of q+
τ − λτ is proportional to

1[0,1](x)x
8
κ
−1(1− x)

4
κ
−1 ·m. From the construction of µ1

H;0−+
and (6.8) we see that

Kτ (µ1
H;0−+
|Γτ ) = ĉ−1(q+

τ − λτ )1− 8
κ · Kτ (ν#

H;0−→∞;0+
|Γτ ).

Thus,

µ1
H;0−+

(Γτ ) =

∫ 1
0 (1− x)

4
κ
−1dx∫ 1

0 x
8
κ
−1(1− x)

4
κ
−1dx

<∞.

Let τ[0,∞) be the first t > 0 such that γ(t) ∈ [0,∞). The above formula implies that, for any

µ1
H;0−+

[
sup

0≤t≤τ[0,∞)

q+
t − q

−
t > 1

]
≤ µ1

H;0−+
(Γτ ) <∞.

Since diam(Kt) ≤ q+
t − q

−
t for t ≤ τ[0,∞), we have µ1

H;0−+
[diam(Kτ[0,∞)

) > 1] <∞. Since γ either

ends at τ[0,∞) (when κ ∈ (0, 4]) or grows inside Kτ[0,∞)
after τ[0,∞) (when κ ∈ (4, 8)), we get

diam(γ) = diam(Kτ[0,∞)
). Thus, µ1

H;0−+
[diam(γ) > 1] <∞.

(vi) The proofs of (vi) is almost the same as the proof of Theorem 4.1 (vii) except for the
modifications described near the end of the proof of (i).

Theorem 6.4. Let µ1
H;a−+

be as in the previous theorem. Let D ⊂ H be an open neighborhood

of R ∪ {∞} in H. Define

µ1
D;a−+

= 1{·⊂D}e
cµlp(LH(·,H\D)) · µ1

H;a−+
, a ∈ R.

Then µ1
D;a−+

satisfies the following conformal covariance. If W maps D conformally onto another

domain E with the same properties as D, and maps a ∈ R to b ∈ R, then

W (µ1
D;a−+

) = |W ′(a)|
8
κ
−1µ1

E;b−+
.

Proof. The proof is similar to that of Theorem 5.1 except that here we use Lemma A.6, (A.16),
and Lemma 6.5 below to replace Lemmas A.5, 3.4, and 3.2 in the proof of Theorem 5.1, and
the role of (2.1) is played by an equality of Brownian loop measures without normalization.

Lemma 6.5. Let a > a′ > 0 be such that the circle {|z| = a} separates 0 from H \ U . Let
ρ = {|z| = a′}. Let τρ and τW (ρ) be the hitting time at ρ and W (ρ), respectively. Then

KτW (ρ)
(ν#

H;0−→∞;0+
) = W (Mτρ · Kτρ(ν

#
H;0−→∞;0+

)),

where (Mt) is a local martingale defined as follows.
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Suppose that γ has the law ν#
H;0−→∞;0+

, i.e., is a chordal SLEκ(2) curve started from 0 with

force point 0+. Let λt and qt be its driving function and force point process, respectively, and
let Xt = λt − qt. Let (Kt) be the chordal Loewner hulls driven by λ. Let Lt = W (Kt). Suppose

that gKt : (H \ Kt;∞)
Conf
� (H;∞) and gLt : (H \ Lt;∞)

Conf
� (H;∞) behave like z + o(1) as

z →∞. Let Wt = gLt ◦W ◦ g−1
Kt

, σt = Wt(λt), pt = Wt(qt), and Yt = σt − pt. Then

Mt(γ) = W ′t(λt)
6−κ
2κ W ′t(qt)

6−κ
2κ

∣∣∣ Yt
Xt

∣∣∣ 2κ exp
(
− c

6

∫ t

0
S(Ws)(λs)ds

)
.

Proof. This follows from a chordal version of the argument in the proof of Lemma 3.2, which
uses chordal Loewner equations, and is similar to the one used in the proof of Proposition A.3.
Here we use Yt instead of the Yu(t) as in (3.25) because we did not do a time-change on (Lt).

Remark 6.6. For κ ∈ (4, 8), there is another way to construct the SLEκ bubble measure. The
construction uses two-sided chordal SLE. Roughly speaking, a two-sided chordal SLEκ curve
is a chordal SLEκ conditioned to pass through a fixed boundary point. For a 6= x ∈ R, the
degenerate two-sided chordal SLEκ curve in H from a− to a+ passing through x can be defined
as the limit as b→ a+ of a two-sided chordal SLEκ curve in H from a to b passing through x.
The degenerate two-sided chordal SLEκ curve satisfies the reversibility as a two-sided whole-
plane SLEκ curve does. [40, Theorem 6.1] states that if we integrate the law of two-sided
chordal SLEκ curves in H from 0 to ∞ passing through different x ∈ R against the measure
1U ·m(dx), where U is a compact subset of R\{0}, we get a law, which is absolutely continuous
w.r.t. that of a chordal SLEκ in H from 0 to ∞, and the Radon-Nikodym derivative may be
described as the (2 − 8

κ)-dimensional Minkowski content of the intersection of the curve with
U . Here we use Lawler’s result on the existence of the Minkowski content of the intersection
of SLEκ curve with the domain boundary [17], which was conjectured in [2] and later solved
We may derive a theorem that is similar to Theorem 4.1 except for the following modifications:
the measure ν#

z
w should be replaced by ν#

H;x−+
y+−
, the law of a degenerate two-sided chordal

SLEκ curve in H from x− to x+ passing through y; the function GC(w− z) should be replaced

by GH(y − x) := |x − y|−2( 8
κ
−1); the measure m2(dw) should be replaced by m(dy); the d-

dimensional Minkowski content Cont(·) and Minkowski content measure Mγ of γ should be
replaced by the (2− 8

κ)-dimensional Minkowski content Cont2− 8
κ
(· ∩R) and Minkowski content

measureM(2− 8
κ

)

γ∩R of γ∩R; the measureM(2− 8
κ

)

γ∩R is not parametrizable for the curve, so here we do
not have a statement similar to Theorem 4.1 (iii); and the exponents d−2 and (d−2)/d in (vi)
should be replaced by 1− 8

κ and (1− 8
κ)/(2− 8

κ), respectively. The statements on the CMP and
uniqueness in this theorem and Theorem 6.2 ensures that the bubble measure constructed in the
two theorems are equal up to a multiplicative constant because of the uniqueness. Moreover,
following the proof of Theorem 4.2, we may construct an unrooted SLEκ bubble measure, which
is invariant under Möbius automorphisms of H. Following the proof of (5.2) in Theorem 5.1, we
can prove that this unrooted loop measure satisfies the generalized restriction property without
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the factor |W ′(a)|
8
κ
−1 as in Theorem 6.4. Then we may follow the argument after Theorem 5.1

to define unrooted SLEκ measure µS;C in any Riemann surface S with a boundary component
C, which is conformally invariant and satisfies the generalized restriction property.

Appendices

A Chordal SLE in Multiply Connected Domains

In the appendix, we review the definition of chordal SLE in multiply connected domains for
κ ∈ (0, 8). First, we review hulls, Loewner chains and chordal Loewner equations, which define
chordal SLE in simply connected domains. The reader is referred to [19] for details.

A subset K of H is called an H-hull if it is bounded, relatively closed in H, and H\K is simply

connected. For every H-hull K, there is are a unique c ≥ 0 and a unique gK : H \ K
Conf
� H

such that gK(z) = z + c
z +O( 1

z2
) as z →∞. The number c is called the H-capacity of K, and

is denoted by hcap(K).
If K1 ⊂ K2 are two H-hulls, we define K2/K1 = gK1(K2 \ K1). Then K2/K1 is also an

H-hull, and we have hcap(K2/K1) = hcap(K2)− hcap(K1).
The following proposition is essentially Lemma 2.8 in [21].

Proposition A.1. Let W be a conformal map defined on a neighborhood of x0 ∈ R such that
an open real interval containing x0 is mapped into R. Then

lim
H→z0

hcap(W (H))

hcap(H)
= |W ′(z0)|2,

where H → z0 means that diam(H ∪ {z0})→ 0 with H being a nonempty H-hull.

Let T ∈ (0,∞] and λ ∈ C([0, T ),R). The chordal Loewner equation driven by λ is

∂tgt(z) =
2

gt(z)− λt
, 0 ≤ t < T ; g0(z) = z. (A.1)

For each z ∈ C, let τz be such that the maximal interval for t 7→ gt(z) is [0, τz). Let Kt = {z ∈
H : τz ≤ t}, i.e., the set of z ∈ H such that gt(z) is not defined. Then gt and Kt, 0 ≤ t < T , are
called the chordal Loewner maps and hulls driven by λ. It is known that (Kt) is an increasing
family of H-hulls with hcap(Kt) = 2t and gt = gKt for 0 ≤ t < T . At t = 0, K0 = ∅ and g0 = id.

We say that λ generates a chordal Loewner curve γ if

γ(t) := lim
H3z→λ(t)

g−1
t (z) ∈ H

exists for 0 ≤ t < T , and γ is a continuous curve. We call such γ the chordal Loewner curve
driven by λ. If the such γ exists, then for each t, H \ Kt is the unbounded component of
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H \ γ([0, t]), and g−1
t extends continuously from H to H ∪ R. Since hcap(Kt) = 2t for all t, we

say that γ is parametrized by half-plane capacity.
Another way to characterize the chordal Loewner hulls (Kt) is using the notation of H-

Loewner chain. A family of H-hulls: Kt, 0 ≤ t < T , is called an H-Loewner chain if

1. K0 = ∅ and Kt1 $ Kt2 whenever 0 ≤ t1 < t2 < T ;

2. for any fixed a ∈ [0, T ), the diameter of Kt+ε/Kt tends to 0 as ε → 0+, uniformly in
t ∈ [0, a].

An H-Loewner chain (Kt) is said to be normalized if hcap(Kt) = 2t for each t. The following
proposition is a result in [21].

Proposition A.2. Let T ∈ (0,∞]. The following are equivalent.

(i) Kt, 0 ≤ t < T , are chordal Loewner hulls driven by some λ ∈ C([0, T )).

(ii) Kt, 0 ≤ t < T , is a normalized H-Loewner chain.

If either of the above holds, we have

{λ(t)} =
⋂
ε>0

Kt+ε/Kt, 0 ≤ t < T. (A.2)

If Kt, 0 ≤ t < T , is any H-Loewner chain, then the function u(t) := hcap(Kt)/2, 0 ≤ t < T , is
continuous and strictly increasing with u(0) = 0, which implies that Ku−1(t), 0 ≤ t < u(T ), is a
normalized H-Loewner chain.

For κ > 0, chordal SLEκ is defined by solving the chordal Loewner equation with λ(t) =√
κB(t), where B(t) is a Brownian motion. The chordal Loewner curve γ driven by this driving

function a.s. exists, and satisfies limt→∞ γ(t) = ∞. So it is called a chordal SLEκ curve in
H from 0 to ∞. It satisfies that, if κ ∈ (0, 4], γ is simple, and Kt = γ((0, t]); if κ ≥ 8, γ is
space-filling, i.e., visits every points in H; if κ ∈ (4, 8), γ is neither simple nor space-filling, and
every bounded subset of H is contained in Kt for some finite t > 0.

Via conformal maps, we may define SLEκ curve in any simply connected domain D from
one prime end a to another prime end b. Recall that we use µ#

D;a→b to denote the law of such
curve (modulo a time change).

Now we review the definition of chordal SLE in multiply connected domains in [18]. The
laws of such SLE are no longer probability measures, but finite or σ-finite measures. We will
use the following notation. Suppose D is a simply connected domain with two distinct prime
ends a and b. Let U ⊂ D be an open neighborhood of both a and b in D. We define

µDU ;a→b = 1{·∩(D\U)=∅}e
cµlp(LD(·,D\U)) · µ#

D;a→b. (A.3)
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Proposition A.3. Let U and V be open neighborhoods of R∪{∞} in H. Suppose W : U
Conf
� V

extends conformally across R∪{∞} such that W (R) = R and W (∞) =∞. Then for any x ∈ R,

µHV ;W (x)→∞ = |W ′(x) ·W ′(∞)|−
6−κ
2κ W (µHU ;x→∞),

where W ′(∞) := (J ◦W ◦ J)′(0) with J(z) := −1/z.

Proof. This proposition was proved in [18, Section 4.1] for κ ∈ (0, 4] by considering simply
connected subdomains of U . In this proof, we assume that κ ∈ (4, 8). The proof is similar to
those of Theorem 5.1 and Lemma 3.4, and uses a standard argument that originated in [22].
WLOG, we may assume that x = 0 and W (0) = 0. Let Pa denote the multiplication map
z 7→ az. By conformal invariance of chordal SLE and Brownian loop measure, we know that
µHPa(V );0→∞ = Pa(µ

H
V ;0→∞) for any a > 0. Since (aW )′(0) · (aW )′(∞) = W ′(0) ·W ′(∞), we may

assume that W ′(∞) = 1 by replacing W with aW for some a > 0.
Let γ be a chordal SLEκ curve in H from 0 to ∞ with driving function λt =

√
κBt. Let gt

and Kt, 0 ≤ t <∞, be the chordal Loewner maps and hulls, respectively, driven by λ.
Let τU be the first time that γ exits U . Then β(t) := W (γ(t)) is well defined for 0 ≤ t < τU .

For each 0 ≤ t < τU , let Lt be the H-hull such that H \ Lt is the unbounded connected
component of H \ β([0, t]). If Kt ⊂ U , then Lt = W (Kt). Since κ ∈ (4, 8), Kt may swallow
some relatively clospen subset of H \ U before the time τU , and W (Kt) is not defined at that
time. Using the conformal invariance of extremal length, we can see that (Lt) is an H-Loewner
chain (even after Kt intersects H \U). From Proposition A.2, we may reparametrize the family
(Lt) using the function u(t) = hcap(Lt)/2 to get a family of chordal Loewner hulls. Let σs,
0 ≤ s < S := u(τU ), be the driving function for the normalized (Ls). Let hs, 0 ≤ s < S, be the
corresponding chordal Loewner maps. We also reparametrize β using u. Then β is the chordal
Loewner curve driven by σ, and βu(t) = W (γ(t)), 0 ≤ t < τU .

For 0 ≤ t < τU , define Ut = gt(U \ Kt), Vt = hu(t)(V \ Lu(t)), and Wt = hu(t) ◦W ◦ g−1
t .

Then Ut and Vt are open neighborhoods of R ∪ {∞} in H, Wt : Ut
Conf
� Vt, and satisfies that, if

z ∈ Ut tends to R or∞, then Wt tends to R or∞, respectively. By Schwarz reflection principle,
Wt extends conformally across R, and maps R onto R. Since W, gt, hu(t) all fix ∞, and have
derivative 1 at ∞, Wt also satisfies this property.

By the continuity of gt and hu(t) in t and the maximal principle, we know that the extended
Wt is continuous in t (and z). Fix 0 ≤ t < τU . Let ε ∈ (0, τU − t). Now Kt+ε/Kt is an H-hull
with H-capacity being 2ε; and Lu(t+ε)/Lu(t) is an H-hull with H-capacity being 2u(t+ε)−2u(t).
Since Wt(Kt+ε/Kt) = Lu(t+ε)/Lu(t), using Propositions A.1 and A.2, we get

σu(t) = Wt(λt), (A.4)

and u′+(t) = W ′t(λt)
2. Using the continuity of Wt in t, we get

u′(t) = W ′t(λt)
2. (A.5)
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Thus, hu(t) satisfies the equation

∂thu(t)(z) =
2W ′t(λt)

2

hu(t)(z)− σu(t)
. (A.6)

From the definition of Wt, we get the equality

Wt ◦ gt(z) = hu(t) ◦W (z), z ∈ U \Kt. (A.7)

Differentiating this equality w.r.t. t and using (A.1,A.6), we get

∂tWt(gt(z)) +
2W ′t(gt(z))

gt(z)− λt
=

2W ′t(λt)
2

hu(t) ◦W (z)− σu(t)
, z ∈ U \Kt.

Combining this formula with (A.4,A.7) and replacing gt(z) with w, we get

∂tWt(w) =
2W ′t(λt)

2

Wt(w)−Wt(λt)
− 2W ′t(w)

w − λt
, w ∈ Ut. (A.8)

Letting Ut 3 w → λt in (A.8), we get

∂tWt(λt) = −3W ′′t (λt). (A.9)

Differentiating (A.8) w.r.t. w and letting Ut 3 w → λt, we get

∂tW
′
t(λt)

W ′t(λt)
=

1

2

(W ′′t (λt)

W ′t(λt)

)2
− 4

3

W ′′′t (λt)

W ′t(λt)
. (A.10)

Combining (A.4,A.9), and using Itô’s formula and that λt =
√
κBt, we see that σu(t) satisfies

the SDE

dσu(t) = W ′t(λt)
√
κdBt +

(κ
2
− 3
)
W ′′t (λt)dt. (A.11)

Combining (A.10) with λt =
√
κBt and using Itô’s formula, we get

dW ′t(λt)

W ′t(λt)
=
W ′′t (λt)

W ′t(λt)

√
κdBt +

1

2

(W ′′t (λt)

W ′t(λt)

)2
dt+

(κ
2
− 4

3

)W ′′′t (λt)

W ′t(λt)
dt. (A.12)

Let (Sf)(z) = f ′′′(z)
f ′(z) −

3
2(f

′′(z)
f ′(z) )2 be the Schwarzian derivative of f . Using (A.12) and Itô’s

formula, we see that

dW ′t(λt)
6−κ
2κ

W ′t(λt)
6−κ
2κ

=
6− κ

2

W ′′t (λt)

W ′t(λt)

dBt√
κ

+
c

6
S(Wt)(λt)dt. (A.13)

So we get the following positive continuous local martingale

Mt := W ′t(λt)
6−κ
2κ exp

(
−
∫ t

0

c

6
S(Ws)(λs)ds

)
, (A.14)
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which satisfies the SDE

dMt

Mt
=

6− κ
2

W ′′t (λt)

W ′t(λt)

dBt√
κ
, 0 ≤ t < τU . (A.15)

We claim that the following equality holds: for any 0 ≤ T < τU ,∫ T

0

1

6
S(Wt)(λt)dt = µlp(LH(β([0, u(T )],H \ V ))− µlp(LH(γ([0, T ]),H \ U)). (A.16)

Note that this is similar to Lemma 3.4. To prove (A.16), we use the Brownian bubble analysis
of Brownian loop measure. Let µbb

x0 denote the Brownian bubble measure in H rooted at x0 ∈ R
as defined in [25], from which we know, for any 0 ≤ T < τU ,

µlp(LH(γ([0, T ]),H \ U)) =

∫ T

0
µbb
λt (L(H \ Ut))dt; (A.17)

µlp(LH(β([0, u(T )],H \ V )) =

∫ u(T )

0
µbb
σs (L(H \ Vs))ds

=

∫ T

0
W ′t(λt)

2µbb
σu(t)

(L(H \ Vu(t)))dt. (A.18)

If U∗ is a subdomain of H that contains a neighborhood of R∪{∞} in H, we let PU
∗

x0 denote

the Poisson kernel in U∗ with the pole at x0 ∈ R. Especially, PH
x0(z) = Im −1/π

z−x0 . From [25] we
know

µbb
λt (L(H \ Ut)) = lim

Ut3z→λt

1

|z − λt|2
(

1−
PUtλt (z)

PH
λt

(z)

)
Similarly, using (A.4) and that Wt : Ut

Conf
� Vu(t), we get

µbb
σu(t)

(L(H \ Vu(t))) = lim
Vu(t)3w→σu(t)

1

|w − σu(t)|2
(

1−
P
Vu(t)
σu(t) (w)

PH
σu(t)

(w)

)
= lim

Ut3z→λt

1

|Wt(z)−Wt(λt)|2
(

1−
P
Vu(t)
σu(t) ◦Wt(z)

PH
σu(t)
◦Wt(z)

)
= lim

Ut3z→λt

W ′t(λt)
−2

|z − λt|2
(

1−
W ′t(λt)

−1PUtλt (z)

PH
σu(t)
◦Wt(z)

)
.

Combining the above two formulas and using some tedious but straightforward computation
involving power series expansions, we get

W ′t(λt)
2µbb

σu(t)
(L(H \ Vu(t)))− µbb

λt (L(H \ Ut)) =
1

6
S(Wt)(λt).
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This together with (A.17,A.18) completes the proof of (A.16).
Since γ is continuous and tends to ∞, from (1.3,A.16), we see that, on the event that

γ ∩ (H \ U) = ∅, the improper integral
∫∞

0
1
6S(Ws)(λs)ds converges to µlp(LH(β,H \ V )) −

µlp(LH(γ,H \ U)).
We claim that limt→∞W

′
t(λt) = 1 on the event that γ ∩H \U = ∅. Since κ ∈ (4, 8), there is

t0 ∈ (0,∞) such that H \U ⊂ Kt0 . Then for t ≥ t0, U \Kt = H \Kt, and so Ut = H. Similarly,

Vt = H for t ≥ t0. Thus, for t ≥ t0, Wt : (H;∞)
Conf
� (H;∞) and W ′t(∞) = 1, which implies

that W ′t(λt) = 1. So the claim is proved.

From the above we see that M∞ := limt→∞Mt = ecµlp(LH(γ,H\U))/ecµlp(LH(W (γ),H\V )) on the
event that γ ∩ (H \ U) = ∅. Thus, Mt, 0 ≤ t <∞, is bounded on this event.

For n ∈ N, let Tn be the first time that γ hits H \ U or Mt ≥ n, whichever happens first.

Then Tn is a stopping time, and Mt up to Tn is bounded by n. Thus, E[MTn ] = M0 = W ′(0)
6−κ
2κ .

Weighting the underlying probability measure by MTn/M0, we get a new probability measure.
By Girsanov Theorem and (A.15), we find that

B̂t := Bt −
1√
κ

∫ t

0

6− κ
2

W ′′s (λs)

W ′s(λs)
ds, 0 ≤ t < Tn,

is a Brownian motion under the new probability measure. From (A.11), we get

dσu(t) = W ′t(λt)
√
κdB̂t, 0 ≤ t < Tn.

From (A.5) we see that, under the new probability measure, σs/
√
κ, 0 ≤ s < u(Tn), is a

Brownian motion, and so βs, 0 ≤ s ≤ u(Tn), is a chordal SLEκ curve in H from 0 to∞, stopped
at u(Tn). let En denote the event that γ ∩ (H \ U) = ∅ and Mt ≤ n for 0 ≤ t < ∞; and
let Fn denote the event that W−1(β) ∈ En. Then on the event En, Tn = u(Tn) = ∞ , and

MTn/M0 = M∞/W
′(0)

6−κ
2κ . From the above argument, we get

1Fn · µ
#
H;0→∞ = W (W ′(0)−

6−κ
2κ ecµlp(LH(·,H\U))/ecµlp(LH(W (·),H\V ))1En · µ

#
H;0→∞).

Since µ#
H;0→∞-a.s.

⋃
En = {·∩H \U = ∅} and

⋃
Fn = {·∩H \V = ∅}, the above formula holds

with En and Fn replaced by {· ∩H \U = ∅} and {· ∩H \ V = ∅}, respectively. The proposition
now follows from this formula since we assumed that W ′(∞) = 1.

Remark A.4. The above proof also works for κ ∈ (0, 4] except that limt→∞W
′
t(λt) = 1 on the

event γ ∩ (H \ U) = ∅ requires a little bit more work to prove.

Lemma A.5. Let K and L be two non-degenerate interior hulls. Let U, V ⊂ Ĉ be open

neighborhoods of K and L, respectively. Suppose W : (U ;K)
Conf
� (V ;L). Let a and b be

distinct prime ends of Ĉ \ K. Then W (a) and W (b) are distinct prime ends of Ĉ \ L. Let

gK : Ĉ \K
Conf
� D∗ and gL : Ĉ \ L

Conf
� D∗. Suppose gK(a) = eiλ, gK(b) = eiq, gL(W (a)) = eiσ,
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and gL(W (b)) = eip for some λ, q, σ, p ∈ R. Let WK = gL ◦W ◦ g−1
K . Extend WK conformally

across T. Then we have

µ
Ĉ\L
V \L;W (a)→W (b) =

∣∣∣sin2(σ − p)
sin2(λ− q)

∣∣∣ 6κ−1
· |W ′K(eiσ)W ′K(eiq)|−

6−κ
2κ ·W (µ

Ĉ\K
U\K;a→b).

Proof. Let φ(z) = i z+e
iq

z−eiq and ψ(z) = i z+e
ip

z−eip . Then φ : (D∗; eiλ, eiq)
Conf
� (H; cot2(λ − q),∞)

and ψ : (D∗; eiσ, eip)
Conf
� (H; cot2(σ − p),∞). Let UK = gK(U \ K) and VL = gL(V \ L).

Then UK and VL are open neighborhoods of T in D∗, WK : UK
Conf
� VL, and can be extended

conformally across T. The extended WK maps T onto T, and maps eiλ and eiq to eiσ and eip,
respectively. Let ÛK = φ(UK), V̂L = ψ(VL), and ŴK = ψ◦WK ◦φ−1. Then ÛK and V̂L are open

neighborhoods of R∪ {∞} in H, and ŴK : (ÛK ;R, cot2(λ− q),∞)
Conf
� (V̂K ;R, cot2(σ− p),∞).

From Proposition A.3, we have

µH
V̂L;cot2(σ−p)→∞ = |Ŵ ′K(cot2(λ− q))Ŵ ′(∞)|−

6−κ
2κ ŴK(µH

ÛK ;cot2(λ−q)→∞).

We have φ ◦ gK : (Ĉ \ K,U \ K; a, b)
Conf
� (H, ÛK ; cot2(λ − q),∞) and ψ ◦ gL : (Ĉ \ L, V \

L;W (a),W (b))
Conf
� (H, V̂L; cot2(σ−p),∞). From the conformal invariance of chordal SLE and

Brownian loop measure, we have

φ ◦ gK(µ
Ĉ\K
U\K;a→b) = µH

ÛK ;cot2(λ−q)→∞, ψ ◦ gL(µ
Ĉ\L
V \L;W (a)→W (b)) = µH

V̂L;cot2(σ−p)→∞.

Combining the above displayed formulas and the fact that ŴK = ψ ◦ gL ◦W ◦ g−1
K ◦φ−1, we see

that it suffices to prove that∣∣∣sin2(σ − p)
sin2(λ− q)

∣∣∣−2
· |W ′K(eiσ)W ′K(eiq)| = |Ŵ ′K(cot2(λ− q))Ŵ ′K(∞)|.

To see this, one may check that |φ′(eiλ)| = | sin2(λ− q)|−2/2, |ψ′(eiσ)| = | sin2(σ− p)|−2/2; and
with J(z) := −1/z, |(J ◦ φ)′(eiq)| = |(J ◦ ψ)′(eip)| = 1/2.

Lemma A.6. Let K and L be two H-hulls. Let U and V be open neighborhoods of R ∪ {∞}
in H such that K ⊂ U and L ⊂ V . Suppose W : (U ;R,∞,K)

Conf
� (V ;R,∞, L). Let a and b

be distinct prime ends of H \K that lie on ∂K. Then W (a) and W (b) are distinct prime ends

of H \ L that lie on ∂L. Let gK : H \ K
Conf
� H and gL : H \ L

Conf
� H. Suppose gK(a) = λ,

gK(b) = q, gL(W (a)) = σ, and gL(W (b)) = p for some λ, q, σ, p ∈ R. Let WK = gL ◦W ◦ g−1
K .

Extend WK conformally across R. Then we have

µ
H\L
V \L;W (a)→W (b) =

∣∣∣σ − p
λ− q

∣∣∣ 6κ−1
· |W ′K(σ)W ′K(q)|−

6−κ
2κ ·W (µ

H\K
U\K;a→b).

Proof. The proof is similar to that of Lemma A.5 except that here we use the functions φ(z) =
− z+q
z−q and ψ(z) = − z+p

z−p , which map H conformally onto H.
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