1. (10 pts) Does there exist a continuous function f defined on $(0,1)$, such that

$$
\{f(x): x \in(0,1)\}=(-1,0) \cup(1,2) ?
$$

Justify your answer.
Solution. Such f does not exist. In fact, for every continuous function f defined on $(0,1)$, by a corollary of Intermediate Value Theorem, $\{f(x): x \in(0,1)\}$ is an interval. But $(-1,0) \cup(1,2)$ is not an interval, which is a contradiction.
We may also prove the statement directly using Intermediate Value Theorem. From $\{f(x): x \in(0,1)\}=(-1,0) \cup(1,2)$ we have $x_{1}, x_{2} \in(0,1)$ such that $f\left(x_{1}\right)=-0.5$ and $f\left(x_{2}\right)=1.5$. Applying Intermediate Value Theorem to f on $\left[x_{1}, x_{2}\right]$ or $\left[x_{2}, x_{1}\right]$ (depending on $x_{1}<x_{2}$ or $x_{2}<x_{1}$, we conclude that there is some x between x_{1} and x_{2} such that $f(x)=0.5$. Now $x \in(0,1)$ but $f(x) \notin(-1,0) \cup(1,2)$, a contradiction.
2. (10 pts) Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence of real numbers that satisfy $\left|x_{n+1}-x_{n}\right| \leq\left(\frac{1}{2}\right)^{n}$ for all $n \in \mathbb{N}$. Prove that the sequence $\left(x_{n}\right)$ converges.
Hint: Consider $\sum_{n=1}^{\infty}\left(x_{n+1}-x_{n}\right)$, observe its partial sums, and use comparison test.
Proof. Consider the series $\sum_{n=1}^{\infty}\left(x_{n+1}-x_{n}\right)$. Note that its partial sum sequence is
$s_{n}=\sum_{k=1}^{n}\left(x_{k+1}-x_{k}\right)=\left(x_{1}-x_{0}\right)+\left(x_{2}-x_{1}\right)+\cdots+\left(x_{n+1}-x_{n}\right)=x_{n+1}-x_{0}, \quad n \in \mathbb{N}$.
So the series $\sum_{n=1}^{\infty}\left(x_{n+1}-x_{n}\right)$ converges iff the sequence $\left(x_{n+1}-x_{n}\right)$ converges, which is equivalent to that $\left(x_{n}\right)$ converges. Since $0<\frac{1}{2}<1$, we know that $\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}$ converges. Since $\left|x_{n+1}-x_{n}\right| \leq\left(\frac{1}{2}\right)^{n}$ for all $n \in \mathbb{N}$, by comparison test, $\sum_{n=1}^{\infty}\left(x_{n+1}-x_{n}\right)$ converges. Thus, $\left(x_{n}\right)$ converges.
3. Let $\sum_{n=0}^{\infty} a_{n} x^{n}$ be a power series with radius of convergence R.
(a) (3 pts) Write down the formula for R in terms of a_{n} 's.
(b) (3 pts) What is the radius of convergence of $\sum_{n=0}^{\infty}\left|a_{n}\right| x^{n}$?
(c) (4 pts) Suppose $\sum_{n=0}^{\infty} a_{n}(-\pi)^{n}$ converges. Prove that $\sum_{n=0}^{\infty}\left|a_{n}\right| 2^{n}$ also converges.

Solution. (a) We have

$$
R=\frac{1}{\limsup \left|a_{n}\right|^{1 / n}}
$$

Here if $\lim \sup \left|a_{n}\right|^{1 / n}=0$ then $R=\infty$; and if $\limsup \left|a_{n}\right|^{1 / n}=\infty$ then $R=0$.
(b) Let R^{\prime} denote the radius of convergence of $\sum_{n=0}^{\infty}\left|a_{n}\right| x^{n}$. Then

$$
R^{\prime}=\frac{1}{\limsup \left\|a_{n}\right\|^{1 / n}}=\frac{1}{\limsup \left|a_{n}\right|^{1 / n}}=R
$$

(b) From that $\sum_{n=0}^{\infty} a_{n}(-\pi)^{n}$ converges we then know that $R \geq|-\pi|=\pi$ because if $|-\pi|>R$, the series $\sum a_{n} x^{n}$ diverges at $x=-\pi$. Since $\sum\left|a_{n}\right| x^{n}$ also has radius R, and and $|2|=2<\pi \leq R$, we know that $\sum_{n=0}^{\infty}\left|a_{n}\right| 2^{n}$ converges.
4. Consider the sequence of functions $\left(f_{n}\right)$ defined by $f_{n}(x)=\frac{n x}{1+n x}$ on $[0, \infty)$.
(a) (2 pts) What is the pointwise limit of $\left(f_{n}\right)$ on $[0, \infty)$?
(b) (4 pts) Does $\left(f_{n}\right)$ converge uniformly on $[0,1]$?
(c) (4 pts) Does $\left(f_{n}\right)$ converge uniformly on $[1, \infty)$?

Justify your answers.
Solution. (a) For $x=0, f_{n}(x)=0$ for all n. For $x>0, f_{n}(x)=\frac{x}{1 / n+x} \rightarrow \frac{x}{x}=1$ as $n \rightarrow \infty$. Thus, the pointwise limit of $\left(f_{n}\right)$ on $[0, \infty)$ is the function f with $f(0)=0$ and $f(x)=1$ for $x>0$.
(b) $\left(f_{n}\right)$ does not converge uniformly on $[0,1]$. If it converges uniformly on $[0,1]$, then since each f_{n} is continuous on $[0,1]$, the limit function should be continuous on $[0,1]$. However, the limit function must be the function f in (a), which is not continuous at 0.
(c) We estimate that for $x \in[1, \infty)$,

$$
\left|f_{n}(x)-f(x)\right|=\left|\frac{n x}{1+n x}-1\right|=\frac{1}{1+n x} \leq \frac{1}{n}
$$

Thus, $\sup \left\{\left|f_{n}(x)-f(x)\right|: x \in[0, \infty)\right\} \leq \frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty$. By a remark in the book, we see that $\left(f_{n}\right)$ converges to f uniformly on $[0, \infty)$.
5. Let f and g be defined and differentiable on an open interval I.
(a) (4 pts) Write down the product rule for derivatives.
(b) (3 pts) Suppose now f and g are both twice differentiable on I. Recall that this means that f^{\prime} and g^{\prime} are differentiable on I, and their derivatives are denoted by $f^{\prime \prime}$ and $g^{\prime \prime}$. Prove that $f g$ is also twice differentiable on I, and express $(f g)^{\prime \prime}(x)$ for $x \in I$ in terms of $f(x), f^{\prime}(x), f^{\prime \prime}(x)$ and $g(x), g^{\prime}(x), g^{\prime \prime}(x)$.
(c) (3 pts) Suppose further that $f^{\prime \prime}$ and $g^{\prime \prime}$ are both differentiable on I. Then we say that f and g are three times differentiable on I, and denote the derivatives of $f^{\prime \prime}$ and $g^{\prime \prime}$ by $f^{\prime \prime \prime}$ and $g^{\prime \prime}$. Prove that $f g$ is also three times differentiable on I, and express $(f g)^{\prime \prime \prime}(x)$ for $x \in I$ in terms of $f(x), f^{\prime}(x), f^{\prime \prime}(x), f^{\prime \prime \prime}(x)$ and $g(x), g^{\prime}(x), g^{\prime \prime}(x), g^{\prime \prime \prime}(x)$.

Solution. (a) The product rule states that $f g$ is differentiable on I, and

$$
(f g)^{\prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

(b) Since f and g are twice differentiable on $I, f^{\prime}, g, f, g^{\prime}$ are all differentiable on I. By product rule and sum rule, $(f g)^{\prime}=f^{\prime} g+f g^{\prime}$ is differentiable on I and

$$
\begin{aligned}
(f g)^{\prime \prime}(x) & =f^{\prime \prime}(x) g(x)+f^{\prime}(x) g^{\prime}(x)+f^{\prime}(x) g^{\prime}(x)+f(x) g^{\prime \prime}(x) \\
& =f^{\prime \prime}(x) g(x)+2 f^{\prime}(x) g^{\prime}(x)+f(x) g^{\prime \prime}(x)
\end{aligned}
$$

(c) Since f and g are three times differentiable on $I, f^{\prime \prime}, f^{\prime}, f$ and $g^{\prime \prime}, g^{\prime}, g$ are all differentiable on I. By product rule and sum rule, $(f g)^{\prime \prime}=f^{\prime \prime} g+2 f^{\prime} g^{\prime}+f g^{\prime \prime}$ is differentiable on I and

$$
\begin{gathered}
(f g)^{\prime \prime \prime}(x)=f^{\prime \prime \prime}(x) g(x)+f^{\prime \prime}(x) g^{\prime}(x)+2 f^{\prime \prime}(x) g^{\prime}(x)+2 f^{\prime}(x) g^{\prime \prime}(x)+f^{\prime}(x) g^{\prime \prime}(x)+f(x) g^{\prime \prime \prime}(x) \\
=f^{\prime \prime \prime}(x) g(x)+3 f^{\prime \prime}(x) g^{\prime}(x)+3 f^{\prime}(x) g^{\prime \prime}(x)+f(x) g^{\prime \prime \prime}(x) .
\end{gathered}
$$

