
MTH 320 Section 004 Midterm 2 November 18, 2019

1. (10 pts) Does there exist a continuous function f defined on (0, 1), such that

{f(x) : x ∈ (0, 1)} = (−1, 0) ∪ (1, 2)?

Justify your answer.

Solution. Such f does not exist. In fact, for every continuous function f defined on
(0, 1), by a corollary of Intermediate Value Theorem, {f(x) : x ∈ (0, 1)} is an interval.
But (−1, 0) ∪ (1, 2) is not an interval, which is a contradiction.

We may also prove the statement directly using Intermediate Value Theorem. From
{f(x) : x ∈ (0, 1)} = (−1, 0) ∪ (1, 2) we have x1, x2 ∈ (0, 1) such that f(x1) = −0.5
and f(x2) = 1.5. Applying Intermediate Value Theorem to f on [x1, x2] or [x2, x1]
(depending on x1 < x2 or x2 < x1, we conclude that there is some x between x1 and x2
such that f(x) = 0.5. Now x ∈ (0, 1) but f(x) 6∈ (−1, 0) ∪ (1, 2), a contradiction.

2. (10 pts) Let (xn)n∈N be a sequence of real numbers that satisfy |xn+1 − xn| ≤ (1
2
)n for

all n ∈ N. Prove that the sequence (xn) converges.
Hint: Consider

∑∞
n=1(xn+1 − xn), observe its partial sums, and use comparison test.

Proof. Consider the series
∑∞

n=1(xn+1 − xn). Note that its partial sum sequence is

sn =
n∑

k=1

(xk+1 − xk) = (x1 − x0) + (x2 − x1) + · · ·+ (xn+1 − xn) = xn+1 − x0, n ∈ N.

So the series
∑∞

n=1(xn+1−xn) converges iff the sequence (xn+1−xn) converges, which is
equivalent to that (xn) converges. Since 0 < 1

2
< 1, we know that

∑∞
n=1(

1
2
)n converges.

Since |xn+1−xn| ≤ (1
2
)n for all n ∈ N, by comparison test,

∑∞
n=1(xn+1−xn) converges.

Thus, (xn) converges.

3. Let
∑∞

n=0 anx
n be a power series with radius of convergence R.

(a) (3 pts) Write down the formula for R in terms of an’s.

(b) (3 pts) What is the radius of convergence of
∑∞

n=0 |an|xn?

(c) (4 pts) Suppose
∑∞

n=0 an(−π)n converges. Prove that
∑∞

n=0 |an|2n also converges.

Solution. (a) We have

R =
1

lim sup |an|1/n
.

Here if lim sup |an|1/n = 0 then R =∞; and if lim sup |an|1/n =∞ then R = 0.



(b) Let R′ denote the radius of convergence of
∑∞

n=0 |an|xn. Then

R′ =
1

lim sup ||an||1/n
=

1

lim sup |an|1/n
= R.

(b) From that
∑∞

n=0 an(−π)n converges we then know that R ≥ | − π| = π because if
| − π| > R, the series

∑
anx

n diverges at x = −π. Since
∑
|an|xn also has radius R,

and and |2| = 2 < π ≤ R, we know that
∑∞

n=0 |an|2n converges.

4. Consider the sequence of functions (fn) defined by fn(x) = nx
1+nx

on [0,∞).

(a) (2 pts) What is the pointwise limit of (fn) on [0,∞)?

(b) (4 pts) Does (fn) converge uniformly on [0, 1]?

(c) (4 pts) Does (fn) converge uniformly on [1,∞)?

Justify your answers.

Solution. (a) For x = 0, fn(x) = 0 for all n. For x > 0, fn(x) = x
1/n+x

→ x
x

= 1 as

n → ∞. Thus, the pointwise limit of (fn) on [0,∞) is the function f with f(0) = 0
and f(x) = 1 for x > 0.

(b) (fn) does not converge uniformly on [0, 1]. If it converges uniformly on [0, 1], then
since each fn is continuous on [0, 1], the limit function should be continuous on [0, 1].
However, the limit function must be the function f in (a), which is not continuous at
0.

(c) We estimate that for x ∈ [1,∞),

|fn(x)− f(x)| =
∣∣∣ nx

1 + nx
− 1
∣∣∣ =

1

1 + nx
≤ 1

n
.

Thus, sup{|fn(x)− f(x)| : x ∈ [0,∞)} ≤ 1
n
→ 0 as n→∞. By a remark in the book,

we see that (fn) converges to f uniformly on [0,∞).

5. Let f and g be defined and differentiable on an open interval I.

(a) (4 pts) Write down the product rule for derivatives.

(b) (3 pts) Suppose now f and g are both twice differentiable on I. Recall that this
means that f ′ and g′ are differentiable on I, and their derivatives are denoted by
f ′′ and g′′. Prove that fg is also twice differentiable on I, and express (fg)′′(x) for
x ∈ I in terms of f(x), f ′(x), f ′′(x) and g(x), g′(x), g′′(x).

(c) (3 pts) Suppose further that f ′′ and g′′ are both differentiable on I. Then we say
that f and g are three times differentiable on I, and denote the derivatives of f ′′ and
g′′ by f ′′′ and g′′. Prove that fg is also three times differentiable on I, and express
(fg)′′′(x) for x ∈ I in terms of f(x), f ′(x), f ′′(x), f ′′′(x) and g(x), g′(x), g′′(x), g′′′(x).



Solution. (a) The product rule states that fg is differentiable on I, and

(fg)′(x) = f ′(x)g(x) + f(x)g′(x).

(b) Since f and g are twice differentiable on I, f ′, g, f, g′ are all differentiable on I. By
product rule and sum rule, (fg)′ = f ′g + fg′ is differentiable on I and

(fg)′′(x) = f ′′(x)g(x) + f ′(x)g′(x) + f ′(x)g′(x) + f(x)g′′(x)

= f ′′(x)g(x) + 2f ′(x)g′(x) + f(x)g′′(x).

(c) Since f and g are three times differentiable on I, f ′′, f ′, f and g′′, g′, g are all
differentiable on I. By product rule and sum rule, (fg)′′ = f ′′g + 2f ′g′ + fg′′ is
differentiable on I and

(fg)′′′(x) = f ′′′(x)g(x)+f ′′(x)g′(x)+2f ′′(x)g′(x)+2f ′(x)g′′(x)+f ′(x)g′′(x)+f(x)g′′′(x)

= f ′′′(x)g(x) + 3f ′′(x)g′(x) + 3f ′(x)g′′(x) + f(x)g′′′(x).


