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Abstract We first prove that, for κ ∈ (0, 4), a whole-plane SLE(κ; κ + 2) trace
stopped at a fixed capacity time satisfies reversibility. We then use this reversibility
result to prove that, for κ ∈ (0, 4), a chordal SLEκ curve stopped at a fixed capacity
time can bemapped conformally to the initial segment of a whole-plane SLE(κ; κ+2)
trace. A similar but weaker result holds for radial SLEκ . These results are then used
to study the ergodic behavior of an SLE curve near its tip point at a fixed capacity
time. The proofs rely on the symmetry of backward SLE weldings and conformal
removability of SLEκ curves for κ ∈ (0, 4).

Mathematics Subject Classification 60D · 30C

1 Introduction

The Schramm–Loewner evolution SLEκ , introduced by Oded Schramm, generates
random curves in plane domains which are the scaling limits of a number of critical
two dimensional lattice models. Many work have been done to prove the convergence
of various discrete models to SLE with different parameters κ . It is also interesting to
study the geometric properties of the SLE curves.

The current paper focuses on studying the tips of two versions of SLE: chordal SLE
and radial SLE at some fixed capacity time. There were previous work on the tips of
SLE, e.g., [3], in which the multifractal spectrum of the SLE tip is studied. This paper
studies the ergodic property of the SLE near its tip. Now we explain it.

Research partially supported by NSF grants DMS-1056840 and Sloan fellowship.

D. Zhan (B)
Michigan State University, East Lansing, USA
e-mail: zhan@math.msu.edu

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s00440-014-0613-5&domain=pdf


334 D. Zhan

Consider a chordal or radial SLEκ(κ ∈ (0, 4)) curve β, which is parameterized by
the half-plane or disc capacity. Let ht denote the harmonic measure of the left side of
β[t, 1] in ̂C\β[t, 1] as seen form ∞ (ignoring the real line and the rest of the curve).
Let v(t) be the (logarithm) capacity of β([t, 1]). Then as τ → −∞, hv−1(τ ) → h
in distribution, where the law of h is given explicitly. Moreover, for nicely-behaved
functions f on [0, 1], the averages of f (hv−1(τ )) over τ converge to E[ f (h)].

We will use results about backward SLE derived in [13]. The traditional chordal
or radial SLEκ is defined by solving a chordal or radial Loewner equation driven
by

√
κB(t). Adding a minus sign to the (forward) Loewner equations, we get the

backward Loewner equations. The backward chordal or radial SLEκ is then defined
by solving a backward chordal or radial Loewner equation driven by

√
κB(t).

The backward radial SLE(κ; ρ) processes resemble the forward radial SLE(κ; ρ)

processes, and play an important role in this paper. If κ ∈ (0, 4] and ρ ≤ − κ
2 − 2, a

backward radial SLE(κ; ρ) process induces a randomweldingφ which is an involution
(an auto homeomorphismwhose inverse is itself) of the unit discwith exactly two fixed
points such that for w �= z, w = φ(z) iff ft (z) = ft (w) when t is big enough, where
( ft ) are the solutions of the backward Loewner equation. It is proven in [13] that,
for κ ∈ (0, 4], there is a coupling of two different backward radial SLE(κ;−κ − 6)
processes which induce the same welding.

In Sect. 4 of this paper, we use a limit procedure to define a normalized backward
radial SLE(κ; ρ) trace, and prove that, up to a reflection about the unit circle, it
agrees with the forward whole-plane SLE(κ;−4−ρ) curve (Theorem 4.6). Using the
symmetry of backward radial SLE(κ;−κ − 6) welding together with the conformal
removability of SLEκ curves, we prove in Sect. 5 that, for κ ∈ (0, 4), a whole-plane
SLE(κ; κ + 2) curve stopped at the time 0 satisfies reversibility (Theorem 5.1). One
should keep in mind that a whole-plane SLE(κ; ρ) trace grows from 0 with time
interval [−∞,∞), and the time 0 is when the curve reaches the capacity of the closed
unit disc.

This reversibility is different from the reversibility of whole-plane SLEκ(κ ≤ 4)
derived in [18], or more generally, the reversibility of whole-plane SLEκ(ρ)(κ ≤
8, ρ > −2 and ρ ≥ κ

2 − 4) derived in [8], where the trace does not stop in the middle,
but goes all the way to∞. The methods in [8,18] used couplings of two SLE processes
and couplings of an SLE process with a Gaussian free field, respectively, which can
not be used to derive the reversibility here. In fact, the reversibility here does not hold
if κ + 2 is replaced by any other number.

This reversibility of the stopped whole-plane SLE(κ; κ + 2) is then used to prove
that, for κ ∈ (0, 4), a forward chordal SLEκ curve stopped at a fixed capacity time can
be mapped conformally to an initial segment of a whole-plane SLE(κ; κ + 2) curve,
and the same is true up to a change of the probability measure for a forward radial
SLEκ (Theorems 5.3 and 5.4). In Sect. 6, we use the above conformal relations to
derive ergodic properties of a chordal or radial SLEκ curves at a fixed capacity time
(Theorem 6.6).

Throughout this paper, we use the following symbols and notation. Let ̂C =
C ∪ {∞}, D = {z ∈ C : |z| < 1}, D

∗ = ̂C\D, T = {z ∈ C : |z| = 1}, and H = {z ∈
C : Im z > 0}. Let cot2(z) = cot(z/2) and sin2(z) = sin(z/2). Let IT(z) = 1/z be the
reflections aboutT. By an interval onT, wemean a connected subset ofT.We use B(t)
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Ergodicity of the tip of an SLE curve 335

to denote a standard real Brownianmotion.We useC(J ) to denote the space of real val-

ued continuous functions on J . By f : D Conf
� E wemean that f maps D conformally

onto E . By fn
l.u.−→ f in U we mean that fn converges to f locally uniformly in U .

2 Loewner equations

2.1 Forward equations

We review the definitions and basic facts about (forward) Loewner equations. The
reader is referred to [4] for details.

A set K is called anH-hull if it is a bounded relatively closed subset ofH, andH\K
is simply connected. For everyH-hull K , there is a unique gK : H\K Conf

� H such that
gK (z) − z → 0 as z → ∞. The number hcap(K ) := limz→∞ z(gK (z) − z) is always
nonnegative, and is called the half plane capacity of K . A set K is called a D-hull if it
is a relatively closed subset of D, does not contain 0, and D\K is simply connected.

For every D-hull K , there is a unique gK : D\K Conf
� D such that gK (0) = 0 and

g′
K (0) > 0. The number dcap(K ) := log(g′

K (0)) is always nonnegative, and is called
the disc capacity of K . A set K is called a C-hull if it is a connected compact subset
of C such that C\K is connected. For every C-hull with more than one point, ̂C\K is

simply connected, and there is a unique gK : ̂C\K Conf
� D

∗ such that gK (∞) = ∞
and g′

K (∞) := limz→∞ z/gK (z) > 0. The real number cap(K ) := log(g′
K (∞)) is

called the whole-plane capacity of K . In either of the three cases, let fK = g−1
K .

Let λ ∈ C([0, T )), where T ∈ (0,∞]. The chordal Loewner equation driven by λ

is

∂t gt (z) = 2

gt (z) − λ(t)
, 0 ≤ t < T ; g0(z) = z.

The radial Loewner equation driven by λ is

∂t gt (z) = gt (z)
eiλ(t) + gt (z)

eiλ(t) − gt (z)
, 0 ≤ t < T ; g0(z) = z.

Let gt , 0 ≤ t < T , be the solutions of the chordal (resp. radial) Loewner equation.
For each t ∈ [0, T ), let Kt be the set of z ∈ H (resp. ∈ D) at which gt is not defined.
Then for each t, Kt is an H (resp. D)-hull with hcap(Kt ) = 2t (resp. dcap(Kt ) = t)
and gKt = gt . We call gt and Kt , 0 ≤ t < T , the chordal (resp. radial) Loewner maps
and hulls driven by λ. We say that the process generates a chordal (resp. radial) trace
β if each g−1

t extends continuously to H (resp. D), and β(t) := g−1
t (λ(t)) (resp. :=

g−1
t (eiλ(t))), 0 ≤ t < T , is a continuous curve in H (resp. D). If the chordal (resp.

radial) trace β exists, then for each t, Kt is the H-hull generated by β([0, t]), i.e.,
H\Kt (resp. D\Kt ) is the component of H\β([0, t]) (resp. D\β([0, t])) which is
unbounded (resp. contains 0). Note that β(0) = λ(0) ∈ R (resp. = eiλ(0) ∈ T).
The trace β is called H-simple (resp. D-simple) if it has no self-intersections and
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336 D. Zhan

intersects R (resp. T) only at its one end point, in which case we have Kt = β((0, t])
for 0 ≤ t < T . Since hcap(Kt ) = 2t (resp. dcap(Kt ) = t) for all t , we say that the
chordal (resp. radial) trace is parameterized by the half-plane (resp. disc) capacity.

A simple property of the chordal (resp. radial) Loewner process is the translation
(resp. rotation) symmetry. Let C ∈ R and λ∗ = λ + C . Let g∗

t and K ∗
t be the

chordal (resp. radial) Loewner maps and hulls driven by λ∗. Then K ∗
t = C + Kt and

g∗
t (z) = C + gt (z−C) (resp. K ∗

t = eiC Kt and g∗
t (z) = eiC gt (z/eiC )). If λ generates

a chordal (resp. radial) trace β, then λ∗ also generates a chordal (resp. radial) trace β∗
such that β∗ = C + β (resp. = eiCβ).

Let κ > 0. The chordal (resp. radial) SLEκ is defined by solving the chordal (resp.
radial) Loewner equationwithλ(t) = √

κB(t), and the process a.s. generates a chordal
(resp. radial) trace, which is H(resp. D)-simple if κ ∈ (0, 4].

Let T ∈ R and λ ∈ C((−∞, T ]). The whole-plane Loewner equation driven by λ

is

{

∂t gt (z) = gt (z)
eiλ(t)+gt (z)
eiλ(t)−gt (z)

, t ≤ T ;
limt→−∞ et gt (z) = z, z �= 0.

It turns out that the family (gt ) always exists, and is uniquely determined by (eiλ(t)).
Moreover, there is an increasing family ofC-hulls (Kt )−∞<t≤T inCwith

⋂

t Kt = {0}
such that cap(Kt ) = t and gKt = gt .We call gt and Kt ,−∞ < t < T , thewhole-plane
Loewner maps and hulls driven by λ. We say that the process generates a whole-plane
trace β if each g−1

t extends continuously to D∗, and β(t) := g−1
t (eiλ(t)),−∞ <

t < T , is a continuous curve in C. If the whole-plane trace β exists, then it extends
continuously to [−∞, T ] with β(−∞) = 0, and for every t, C\Kt is the unbounded
component of C\β([−∞, t]). If β is a simple curve, then Kt = β([−∞, t]) for every
t . So we say that the whole-plane trace is parameterized by the whole-plane capacity.

2.2 Backward equations

Now we review the definitions and basic facts about backward Loewner equations.
The reader is referred to [13] for details.

Let T ∈ (0,∞] andλ ∈ C([0, T )). The backward chordal Loewner equation driven
by λ is

∂t ft (z) = − 2

ft (z) − λ(t)
, 0 ≤ t < T ; f0(z) = z.

The backward radial Loewner process driven by λ is

∂t ft (z) = − ft (z)
eiλ(t) + ft (z)

eiλ(t) − ft (z)
, 0 ≤ t < T ; f0(z) = z.

Let ft , 0 ≤ t < T , be the solutions of the backward chordal (resp. radial) Loewner
equation. Let Lt = H\ ft (H) (resp. D\ ft (D)), 0 ≤ t < T . Then every Lt is an
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Ergodicity of the tip of an SLE curve 337

H (resp. D)-hull with hcap(Lt ) = 2t (resp. dcap(Lt ) = t) and fLt = ft . We call
ft and Lt , 0 ≤ t < T , the backward chordal (resp. radial) Loewner maps and hulls
driven by λ.

Define a family of maps ft2,t1 , t1, t2 ∈ [0, T ), such that, for any fixed t1 ∈ [0, T )

and z ∈ ̂C\{λ(t1)}, the function t2 �→ ft2,t1(z) is the solution of the first (resp. second)
equation below (with the maximal definition interval):

∂t2 ft2,t1(z) = − 2

ft2,t1(z) − λ(t2)
, ft1,t1(z) = z;

∂t2 ft2,t1(z) = − ft2,t1(z)
eiλ(t2) + ft2,t1(z)

eiλ(t2) − ft2,t1(z)
, ft1,t1(z) = z. (2.1)

We call ( ft2,t1) the backward chordal (resp. radial) Loewner flow driven by λ. Note
that we allow that t2 to be smaller than t1 if t1 > 0. If t2 ≥ t1, ft2,t1 is defined on the
whole H (resp. D); and this is not the case if t2 < t1. The following lemma is obvious.

Lemma 2.1 (i) For any t1, t2, t3 ∈ [0, T ), ft3,t2 ◦ ft2,t1 is a restriction of ft3,t1 . In
particular, this implies that ft1,t2 = f −1

t2,t1 .
(ii) For any fixed t0 ∈ [0, T ), ft0+t,t0 , 0 ≤ t < T − t0, are the backward chordal

(resp. radial) Loewner maps driven by λ(t0 + t), 0 ≤ t < T − t0. Especially,
ft,0 = ft , 0 ≤ t < T .

(iii) For any fixed t0 ∈ [0, T ), ft0−t,t0 , 0 ≤ t ≤ t0, are the forward chordal (resp.
radial) Loewner maps driven by λ(t0 − t), 0 ≤ t ≤ t0.

We say that a backward chordal (resp. radial) Loewner process driven by λ ∈
C([0, T )) generates a family of backward chordal (resp. radial) traces βt , 0 ≤ t ≤ T ,
if for each fixed t0 ∈ (0, T ), the forward chordal (resp. radial) Loewner process
driven by λ(t0 − t), 0 ≤ t ≤ t0, generates a chordal (resp. radial) trace, which is
βt0(t0 − t), 0 ≤ t ≤ t0. Equivalently, this means that, for each t0, βt0 : [0, t0] →
H (resp. D) is continuous, and or any t2 ≥ t1 ≥ 0, ft2,t1 extends continuously to
H (resp. D) such that βt2(t1) = ft2,t1(λ(t1)) (resp. ft2,t1(e

iλ(t1))). Taking t2 = t1 = t ,
we get βt (t) = λ(t) ∈ R (resp. = eiλ(t) ∈ T). Moreover, the equality ft2,t1 ◦ ft1,t0 =
ft2,t0 , t2 ≥ t1 ≥ t0 ≥ 0, holds after the continuation, and so we have

ft2,t1(βt1(t)) = βt2(t), t2 ≥ t1 ≥ t ≥ 0. (2.2)

The backward chordal (resp. radial) SLEκ is defined to be the backward chordal
(resp. radial) Loewner process driven by

√
κB(t), 0 ≤ t < ∞. The existence of the

forward chordal (resp. radial SLEκ) trace together with Lemma 2.1 and the trans-
lation (resp. rotation) symmetry implies that the backward chordal (resp. radial)
SLEκ process generates a family of backward chordal (resp. radial) traces, which
are H (resp. D)-simple, if κ ≤ 4.

Remark One should keep in mind that each βt is a continuous function defined on
[0, t], βt (0) is the tip of βt , and βt (t) is the root of βt , which lies on R. The parame-
trization is different from a forward chordal Loewner trace.
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338 D. Zhan

For everyH (resp.D)-hull L , gL extends analytically toR\L (resp.T\L), andmaps
R\L (resp.T\L) to anopen subset ofR (resp.T). The set SL := R\gL(R\L) (resp. :=
T \ gL(T \ L)) is a compact subset of R (resp. T), and is called the support of L . The
map fL then extends analytically toR\SL (resp.T\SL). If (Lt )0≤t<T areH (resp.D)-
hulls generated by a backward chordal (resp. radial) Loewner process, then each SLt

is an interval on R (resp. T), and SLt1
⊂ SLt2

if t1 < t2 (c.f. Lemmas 2.7 and 3.3 in
[13]). The following is Lemma 3.5 in [13].

Lemma 2.2 Let Lt , 0 ≤ t < ∞, be D-hulls generated by a backward radial Loewner
process. Then

⋃

t SLt is equal to either T or T without a single point.

Now we review the welding induced by a backward Loewner process. See Section
3.5 of [13] for details.

Suppose L = β is an H (resp. D)-simple curve. Then Sβ is the union of two
intervals on R (resp. T), which intersects at one point, and fβ extends continuously
to Sβ , and maps the two intervals onto the two sides of β. Every point on β except
the tip point has two preimages. The welding φβ induced by β is the involution of Sβ

with exactly one fixed point which is the fβ -pre-image of the tip of β, such that for
x �= y ∈ Sβ, y = φβ(x) if and only if fβ(x) = fβ(y).

Suppose a backward chordal (resp. radial) Loewner process generates a family
of H (resp. D)-simple traces (βt )0≤t<T . Then for any t1 < t2, Sβt1

is contained in
the interior of Sβt2

, and φβt1
is a restriction of φβt2

. The latter can be seen from
ft2,t1 ◦ ft1 = ft2 . So the process naturally induces a welding φ which is an involution
of the open interval

⋃

0≤t<T Sβt on R (resp. T) such that φ|Sβt
= φβt for each t . The

welding has only one fixed point: λ(0) ∈ R (resp. eiλ(0) ∈ T). Consider the radial case
and suppose T = ∞. Lemma 2.2 and the properties of Sβt ’s imply thatT\⋃

0≤t<∞ Sβt

contains exactly one point, say w0. We call w0 the joint point of the process, which
is the only point such that ft (w0) ∈ T for all t ≥ 0. In this case we extend φ to an
involution of T with exactly two fixed points: eiλ(0) and w0.

3 SLE(κ; ρ) processes

In this section, we review the definitions of the forward and backward radial SLE(κ; ρ)

processes, respectively, as well as the whole-plane SLE(κ; ρ) process.
Let κ > 0 and and ρ ∈ R. Let σ ∈ {1,−1}. The case σ = 1 (resp. = −1)

corresponds to the forward (resp. backward) process. Let z �= w ∈ T. Choose x, y ∈ R

such that eix = z, eiy = w, and 0 < x − y < 2π . Let λ(t) and q(t), 0 ≤ t < T , be
the solution of the system of SDE:

{

dλ(t) = √
κdB(t) + σ

ρ
2 cot2(λ(t) − q(t))dt, λ(0) = x;

dq(t) = σ cot2(q(t) − λ(t))dt, q(0) = y.
(3.1)

If σ = 1 (resp. = −1), the forward (resp. backward) radial Loewner process driven by
λ is called a forward (resp. backward) SLE(κ; ρ) process started from (z;w). Recall
that cot2(z) = cot(z/2). The appearance of cot2 comes from the covering forward
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Ergodicity of the tip of an SLE curve 339

and backward radial Loewner equations. Since cot2 has period 2π , it is easy to see
that the definition does not depend on the choice of x, y.

Let Zt = λ(t) − q(t). Then ( 12 Z 4
κ
t ) is a radial Bessel process of dimension δ :=

4
κ
σ (

ρ
2 + 1) + 1 (see “Appendix B”). Thus, T = ∞ if δ ≥ 2; T < ∞ if δ < 2.

Lemma 3.1 Let κ > 0 and ρ ≤ − κ
2 −2. Let Lt , 0 ≤ t < ∞, be D-hulls generated by

a backward radial SLE(κ; ρ) process started from (z;w). Then
⋃

t≥0 SLt = T\{w}.
Proof Since σ = −1 for the backward equation, ρ ≤ − κ

2 − 2 implies that δ ≥ 2, and
so T = ∞. Let ft , 0 ≤ t < ∞, be the conformal maps generated by the backward
radial SLE(κ; ρ) process. Formula (3.1) in the case σ = −1 implies that eiq(t) =
ft (w), 0 ≤ t < ∞. This means that w /∈ SLt , 0 ≤ t < ∞. The conclusion then
follows from Lemma 2.2. ��

Assume that δ ≥ 2, which means that ρ ≥ κ
2 − 2 if σ = 1 and ρ ≤ − κ

2 − 2 if
σ = −1. From Corollary 8.2, (Zt ) has a unique stationary distribution μδ which has a
density proportional to sin2(x)δ−1, and the stationary process is reversible. Let (Z̄t )t∈R
denote the stationary process. Let ȳ be a random variable with uniform distribution
U[0,2π) on [0, 2π) such that ȳ is independent of (Z̄t ). Let q̄(t) = ȳ−σ

∫ t
0 cot2(Z̄s)ds

and λ̄(t) = q̄(t) + Z̄t , t ∈ R. If σ = 1 (resp. = −1), the forward (resp. backward)
radial Loewner process driven by λ̄(t), 0 ≤ t < ∞, is called a stationary forward
(resp. backward) radial SLE(κ; ρ) process. Equivalently, a stationary forward (resp.
backward) radial SLE(κ; ρ) process is a forward (resp. backward) radial SLE(κ; ρ)

process started from a random pair (ei x̄ , ei ȳ) with (x̄, x̄ − ȳ) ∼ U[0,2π) × μδ . If
σ = 1, the whole-plane Loewner process driven by λ̄(t), t ∈ R, is called a whole-
plane SLE(κ; ρ) process.

It is easy to verify the following Markov-type relation between a whole-plane
SLE(κ; ρ) process and a forward radial SLE(κ; ρ) process. Recall that IT(z) = 1/z̄
is the reflection about T. Let gt and Kt , t ∈ R, be maps and hulls generated by a
whole-plane SLE(κ; ρ) process. Let t0 ∈ R. Then IT ◦ gt0+t ◦ g−1

t0 ◦ IT and IT ◦
gt0(Kt0+t\Kt0), t ≥ 0, are maps and hulls generated by a stationary forward radial
SLE(κ; ρ) process.

Using the reversibility of the stationary radial Bessel processes of dimension δ ≥ 2,
we obtain the following lemma.

Lemma 3.2 Let κ > 0 and ρ ≤ − κ
2 − 2. Let λ(t), t ≥ 0, be a driving function of a

stationary backward radial SLE(κ; ρ) process. Then for any t0 > 0, λ(t0−t), 0 ≤ t ≤
t0, is a driving function up to time t0 of a stationary forward radial SLE(κ;−4 − ρ)

process; and λ(−t),−∞ < t ≤ 0, is a driving function up to time 0 of a whole-plane
SLE(κ;−4 − ρ) process.

Girsanov’s theorem implies that many properties of forward or backward radial
SLEκ process carry over to radial SLE(κ; ρ) processes. For example, a forward (resp.
backward) radial SLE(κ; ρ) process generates a forward radial trace (resp. a family of
backward radial traces). If κ ≤ 4 and ρ ≤ − κ

2 − 2, then a backward radial SLE(κ; ρ)

process induces a welding, say φ, of T with two fixed points. Suppose the process is
started from (z;w). From eiλ(0) = ei(q(0)+Z0) = eix = z we see that z is one fixed
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340 D. Zhan

point of φ. Lemma 3.1 implies that w is the joint point of the process, and so is the
other fixed point of φ.

Corollary 3.3 Let κ > 0 and ρ ≤ − κ
2 − 2. Let (βt ) be a family of back-

ward radial traces generated by a stationary backward radial SLE(κ; ρ) process.
Let β be a stationary forward radial SLE(κ;−4 − ρ) trace. Then for every fixed
t0 ∈ (0,∞), βt0(t), 0 ≤ t ≤ t0, has the same distribution as β(t0 − t), 0 ≤ t ≤ t0.

Remark One special value of ρ is−4. Theorem 6.8 in [13] implies that, if κ ∈ (0, 4], a
stationary backward radial SLE(κ;−4) process is a stationary backward radial SLEκ

process, i.e., the process driven by λ(t) = x̄ + √
κB(t), where x̄ is a random variable

uniformly distributed on [0, 2π) and independent of B(t). So the above corollary
provides a connection between a family of stationary backward radial SLEκ traces
and a stationary forward radial SLEκ trace.

We are especially interested in the backward radial SLE(κ;−κ −6) processes. The
proposition below is Corollary 4.8 in [13].

Proposition 3.4 Let κ > 0 and z0 �= z∞ ∈ T. Let ft and Lt , 0 ≤ t < ∞, be the
backward radial SLE(κ;−κ − 6) maps and hulls started from (z0, z∞). Let W be a
Möbius transformation with W (D) = H,W (z0) = 0, and W (z∞) = ∞. Then there
is a strictly increasing function v with v([0,∞)) = [0,∞) such that WH(Lv(t)), 0 ≤
t < ∞, are the H-hulls driven by a backward chordal SLEκ process.

That the range of v is [0,∞) is a part of the statement of Corollary 4.8 in [13]: up
to a time change, WH(Lt ) is a (complete) backward chordal SLEκ process. See the
end of the proof of a similar proposition: Theorem 4.6 in [13].

The symbolWH(L) is defined in Section 2.3 of [13]. Theorem 2.20 in [13] ensures
that for aD-hull L and aMöbius transformationW fromD ontoHwithW−1(∞) /∈ SL ,
there is a unique Möbius transformation WL from D onto H such that WL(L) is an
H-hull, and WL ◦ f DL = f H

WL (L)
◦ W holds in D. The WH(L) is then defined to be

the H-hull WL(L). Since z∞ is the joint point of the process, W−1(∞) = z∞ /∈ SLt

for each t , and so WLt and WH(Lt ) are well defined.
WriteWt = WLt , 0 ≤ t < ∞. Let λ be the driving function for the backward radial

Loewner process (Lt ). Let̂λ be the driving function for the backward chordal process
(WH(Lv(t)) = Wv(t)(Lv(t))). Then (4.10) in [13] implies thatWt (eiλ(t)) =̂λ(v(t)). In

fact, in (4.10) of [13], the ˜W satisfies that ei ˜W (z) = W (eiz), and theλ∗(t) corresponds to
thêλ(v(t)) here. Let ft (resp. ̂ft ), ft2,t1 (resp. ̂ft2,t1), and (βt ) (resp. ̂βt ), 0 ≤ t < ∞,
be the backward radial (resp. chordal) Loewner maps, flows, and traces driven by
λ (resp.̂λ). Then we have Wt ◦ ft = ̂fv−1(t) ◦ W in D for any t ≥ 0. Applying this
equality to t = t2 and t = t1, where t2 ≥ t1 ≥ 0, and using Lemma 2.1, we get
Wt2 ◦ ft2,t1 ◦ ft1 = ̂fv−1(t2),v−1(t1) ◦ Wt1 ◦ ft1 in D, which implies that Wt2 ◦ ft2,t1 =
̂fv−1(t2),v−1(t1) ◦ Wt1 in D, and so

̂βt2(t1) = ̂ft2,t1(̂λ(t1)) = ̂ft2,t1 ◦ Wv(t1)(e
iλ(v(t1)))

= Wv(t2) ◦ fv(t2),v(t1)(e
iλ(v(t1))) = Wv(t2)(βv(t2)(v(t1))).

Thus, the proposition above implies the following corollary.
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Corollary 3.5 Let κ > 0 and z0 �= z∞ ∈ T. Let βt , 0 ≤ t < ∞, be the back-
ward radial SLE(κ;−κ − 6) traces started from (z0, z∞). Then there exist a strictly
increasing function v with v([0,∞)) = [0,∞), and a family of Möbius transforma-
tions (Wt )t≥0 with Wt (D) = H, such that ̂βt := Wv(t) ◦ βv(t) ◦ v, 0 ≤ t < ∞, are
backward chordal traces generated by a backward chordal SLEκ process.

The following proposition is Theorem 6.1 in [13].

Proposition 3.6 Let κ ∈ (0, 4]. Let z1 �= z2 ∈ T. There is a coupling of two backward
radial SLE(κ;−κ − 6) processes, one started from (z1; z2), the other started from
(z2; z1), such that the two processes induce the same welding.

Remark If δ = 4
κ
σ (

ρ
2 + 1) + 1 ∈ (1, 2), we may define a forward (resp. backward)

radial SLE(κ; ρ) process in the case σ = 1 (resp. σ = −1) such that the time interval
of the process is [0,∞). First, the second remark in “Appendix B” says that a radial
Bessel process (Xt ) of dimension δ > 0 started from (x − y)/2 can be defined for
all t ≥ 0. Second, the transition density of (Xt ) given by Proposition (8.1) (which is
also true in the case δ ∈ (0, 2)) shows that, if δ > 1, then cot(Xt ), 0 ≤ t < ∞, is
locally integrable. Thus, if δ > 1, we may let q(t) = y − σ

∫ t
0 cot2(Zs)ds and λ(t) =

q(t) + Zt , 0 ≤ t < ∞, where Zt = 2X κ
4 t
, and use λ as the driving function to define

a forward (resp. backward) radial SLE(κ; ρ) process. The corresponding stationary
processes are similarly defined. Lemma 3.2 still holds thanks to the reversibility of the
stationary radial Bessel process in the case δ ∈ (1, 2). But Girsanov’s theorem does
not apply beyond the time that λ(t) − q(t) hits {0, 2π}.

4 Normalized backward radial Loewner trace

In general, a backward chordal (resp. radial) Loewner process does not naturally gener-
ate a single curve even if the backward chordal (resp. radial) traces (βt ) exist, because
they may not satisfy βt1 ⊂ βt2 when t1 ≤ t2. A normalization method was intro-
duced in [13] to define a normalized backward chordal Loewner trace (under certain
conditions). In this sectionwewill define a normalized backward radial Loewner trace.

Lemma 4.1 Let λ ∈ C([0,∞)), and ( ft2,t1) be the backward radial Loewner
flow driven by λ. Define Ft2,t1 = et2 ft2,t1 , t2 ≥ t1 ≥ 0. Then for every fixed
t0 ∈ [0,∞), Ft,t0 converges locally uniformly in D as t → ∞ to a conformal map,
denoted by F∞,t0 , which satisfies that F∞,t0(0) = 0, F ′∞,t0(0) = et0 , and

F∞,t2 ◦ ft2,t1 = F∞,t1 , t2 ≥ t1 ≥ 0. (4.1)

Moreover, let Gs = IT ◦ F−1∞,−s ◦ IT and Ks = C\IT ◦ F∞,−s(D),−∞ < s ≤ 0. Then
Gs and Ks are whole-plane Loewner maps and hulls driven by λ(−s),−∞ < s ≤ 0.

Proof Lemma 2.1(ii) implies that, if t2 ≥ t1 ≥ 0, then ft2,t1 is a conformal map
on D with ft2,t1(0) = 0 and f ′

t2,t1(0) = e−(t2−t1). Thus, every Ft2,t1 is a conformal
map on D that satisfies Ft2,t1(0) = 0 and F ′

t2,t1(0) = et1 . Koebe’s distortion theorem
(c.f. [1]) implies that, for every fixed t1, (Ft2,t1)t2≥t1 is a normal family. Let S be a
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countable unbounded subset of [0,∞), and write S≥t = {x ∈ S : x ≥ t} for every
t ≥ 0. Using a diagonal argument, we can find a positive sequence tn → ∞ such that
for any x ∈ S, (Ftn ,x ) converges locally uniformly in D. Let F∞,x denote the limit.
Lemma 7.2 implies that F∞,x is a conformal map on D, and satisfies F∞,x (0) = 0
and F ′∞,x (0) = ex .

Let x2 ≥ x1 ∈ S. From ftn ,x2 ◦ fx2,x1 = ftn ,x1 we conclude that F∞,x2 ◦ fx2,x1 =
F∞,x1 . For t ∈ [0,∞), choose x ∈ S≥t and define the conformal map F∞,t =
F∞,x ◦ fx,t on D. Lemma 2.1(i) and F∞,x2 ◦ fx2,x1 = F∞,x1 for x2 ≥ x1 ∈ S imply
that the definition of F∞,t does not depend on the choice of x ∈ S≥t , and (4.1) holds.

From (2.1) we see that ft2,t1 commutes with the reflection IT(z) = 1/z̄. Since
f −1
t2,t1 = ft1,t2 , using (4.1) we get Gs1 = f−s1,−s2 ◦ Gs2 if s1 ≤ s2 ≤ 0. From (2.1) we

see that Gs satisfies the equation

∂sGs(z) = Gs(z)
eiλ(−s) + Gs(z)

eiλ(−s) − Gs(z)
, −∞ < s ≤ 0. (4.2)

Let ̂F∞,t (z) = F∞,t (e−t z), t ≥ 0. Then each ̂F∞,t is a conformal map defined

on etD, and satisfies ̂F∞,t (0) = 0 and ̂F ′∞,t (0) = 1. As t → ∞, etD
Cara−→ C (c.f.

Definition 7.1). Koebe’s distortion theorem implies that |̂F∞,t (z)| ≤ |z|
(1−e−t |z|)2 for

z ∈ etD. Thus, for every r > 0, there exists t0 ∈ R such that, if t ≥ t0, then
|̂F∞,t | ≤ 2r on {|z| ≤ r}. Therefore, every sequence (tn), which tends to ∞, contains
a subsequence (tnk ) such that ̂F∞,tnk

converges locally uniformly in C. Applying
Lemma 7.2, we see that the limit function is a conformal map on C, which fixes 0 and

has derivative 1 at 0. Such conformal map must be the identity. Hence ̂F∞,t
l.u.−→ id

in C as t → ∞. Applying Lemma 7.2 again, we see that et F−1∞,t (z)
l.u.−→ id in C as

t → ∞. Thus, lims→−∞ esGs(z) = z for any z ∈ C\{0}, which together with (4.2)
implies that Gs,−∞ < s ≤ 0, are whole-plane Loewner maps driven by λ(−s). The
Ks are the corresponding hulls because Ks = C\G−1

s (D∗).
It remains to show that, for any t ∈ [0,∞), Fx,t

l.u.−→ F∞,t inD as x → ∞. Assume
that this is not true for some t0 ∈ [0,∞). Since (Fx,t0)x≥t0 is a normal family, there
exists xn → ∞ such that Fxn ,t0 converges locally uniformly in D to a function other
than F∞,t0 . Let ˜F∞,t0 denote the limit. Let S = N∪{t0}. By passing to a subsequence,
we may assume that, for every t ∈ S, Fxn ,t

l.u.−→ ˜F∞,t in D. Now we may repeat the
above construction to define ˜F∞,t for every t ∈ [0,∞). The previous argument shows
that IT ◦ ˜F−1∞,−t ◦ IT,−∞ < t ≤ 0, are the whole-plane Loewner maps driven by

λ(−t),−∞ < t ≤ 0. Since the same is true for IT ◦ F−1∞,−t ◦ IT, we get ˜F∞,t = F∞,t

for every t , which contradicts that ˜F∞,t0 �= F∞,t0 . Thus, Fx,t
l.u.−→ F∞,t in D as

x → ∞. ��
Lemma 4.2 Let λ ∈ C([0,∞)). Let (F∞,t )t≥0 be given by the above lemma. Suppose
the backward radial Loewner process driven by λ generates a family of backward
radial Loewner traces βt , 0 ≤ t < ∞, and

∀t0 ∈ [0,∞), ∃t1 ∈ (t0,∞), βt1([0, t0]) ⊂ D. (4.3)
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Then every F∞,t extends to a continuous function D → ̂C, and there is a continuous
curve β(t), 0 ≤ t < ∞, with limt→∞ β(t) = ∞ such that

β(t) = F∞,t0(βt0(t)), t0 ≥ t ≥ 0; (4.4)

and for any t ≥ 0, F∞,t (D) is the component ofC\β([t,∞)) that contains 0. Further-
more, γ (s) := IT(β(−s)),−∞ < s ≤ 0, is the whole-plane Loewner trace driven by
λ(−s).

Proof For every t0 ∈ [0,∞), using (4.3) we may pick t1 ∈ (t0,∞) such that
βt1([0, t0]) ⊂ D, and define β(t) = F∞,t1 ◦ βt1(t), t ∈ [0, t0]. From (2.2) and (4.1)
we see that the definition of β does not depend on t0 and t1, and β is continuous on
[0,∞).

Let Lt2,t1 = D\ ft2,t1(D), t2 ≥ t1 ≥ 0. Then Lt2,t1 is the D-hull generated by
βt2([t1, t2]), i.e., D\Lt2,t1 is the component of D\βt2([t1, t2]) that contains 0. Hence
∂Lt2,t1 ∩ D ⊂ βt2([t1, t2]).

Let Gs and Ks,−∞ < s ≤ 0, be given by the previous lemma. Then (Ks)

is an increasing family with
⋂

s≤0 Ks = {0}. If s2 ≤ s1 ≤ 0, from F∞,−s1 =
F∞,−s2 ◦ f−s2,−s1 and f−s2,−s1(D) = D\L−s2,−s1 , we see that Ks1\Ks2 = IT ◦
F∞,−s2(L−s2,−s1).

Fix t2 ≥ t1 ≥ 0. Choose T > t2 such that βT ([0, t2]) ⊂ D. Then β(t2) = F∞,T ◦
βT (t2). Since fT,t1 : D

Conf
� D\LT,t1 , LT,t1 is the D-hull generated by βT ([t1, T ]),

and t2 ∈ [t1, T ], we see that βT (t2) /∈ fT,t1(D). So β(t2) /∈ F∞,T ◦ fT,t1(D) =
F∞,t1(D). This implies that, if s2 ≤ s1 ≤ 0, then γ (s2) = IT(β(−s2)) ∈ C\IT ◦
F∞,−s1(D) = Ks1 . Thus, γ ((−∞, s]) ⊂ Ks for every s ≤ 0. Since

⋂

s≤0 Ks = {0},
we get lims→−∞ γ (s) = 0.

Define γ (−∞) = 0. Let s ≤ 0. Let z0 ∈ ∂Ks . If z0 = 0, then z0 = γ (−∞) ∈
γ ([−∞, s]). Now suppose z0 �= 0. Since (Ks) is increasing and

⋂

s≤0 Ks = {0}, there
is s0 < s such that z0 /∈ Ks0 . Thus, z0 ∈ Ks\Ks0 = IT ◦ F∞,−s0(L−s0,−s). From z0 ∈
∂Ks we see that w0 := F−1∞,−s0 ◦ IT(z0) ∈ ∂L−s0,−s ∩ D. Since L−s0,−s is the D-hull
generated by β−s0([−s,−s0]), there is t1 ∈ [−s,−s0] such that w0 = β−s0(t1). Thus,
z0 = IT ◦ F∞,−s0(β−s0(t1)) = γ (−t1) ∈ γ ([−∞, s]). Thus, ∂Ks ⊂ γ ([−∞, s]),
which implies that ∂Ks is locally connected. Since IT◦F∞,−s ◦ IT : D

∗ Conf
� ̂C\Ks , we

see that F∞,t extends continuously to D for each t ≥ 0 (c.f. [10]). The equality (4.1)
holds after continuation, which togetherwith (2.2) and the definition ofβ implies (4.4).
Setting t1 = t = −s, we see that γ (s) = IT ◦ F∞,t (eiλ(t)) = G−1

s (eiλ(−s)). Thus,
γ (s),−∞ ≤ s ≤ 0, is the whole-plane Loewner trace driven by λ(−s),−∞ < s ≤ 0.
This implies that limt→∞ β(t) = IT(lims→−∞ γ (s)) = ∞.

Finally, from the properties of the whole-plane Loewner trace, we see that for any
s ≥ 0,G−1

s (D∗) is the component of ̂C\γ ([−∞, s]) that contains 0. Since G−t =
IT ◦ F−1∞,t ◦ IT and γ (−t) = IT(β(t)), we see that, for any t ≥ 0, F∞,t (D) is the
component of C\β([t,∞)) that contains IT(∞) = 0. ��
Definition 4.3 The β(t), 0 ≤ t < ∞, given by the lemma is called the normalized
backward radial Loewner trace driven by λ.
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If the backward radial Loewner traces βt are all D-simple traces, then (4.3) clearly
holds because we may always choose t1 = t0 +1. Moreover, (4.4) implies that for any
t0 > 0, β restricted to [0, t0) is simple. Thus, the whole curve β is simple. This implies
further that F∞,t (D) = C\β([t,∞)) for any t ≥ 0. In particular, F∞,0 maps two arcs
on T with two common end points onto the two sides of β. Let φ be the welding
induced by the process. The equality F∞,0 = F∞,t ◦ ft implies that, if y = φ(x) then
F∞,0(x) = F∞,0(y) ∈ β. The two fixed points of φ are mapped to the two ends of β

such that eiλ(0) is mapped to β(0) ∈ C, and the joint point is mapped to ∞.
We will prove that (4.3) holds in some other cases. We say that an H (resp. D)-hull

K is nice if SK is an interval on R (resp. D), and fK extends continuously to SK and
maps the interior of SK into H (resp. D). This means that ∂K ∩ H (resp. ∂K ∩ D) is
the image of an open curve in H (resp. D), whose two ends approach R (resp. T). It
is easy to see that, if K is a nice H-hull, and W is a Möbius transformation such that
W (H) = D and 0 /∈ W (K ), then W (K ) is a nice D-hull.

Lemma 4.4 Let κ > 4 and ρ ≤ − κ
2 −2. Let (Lt ) beD-hulls generated by a backward

radial SLE(κ; ρ) process. Then for every fixed t0 ∈ (0,∞), a.s. Lt0 is nice.

Proof Theorem 6.1 in [17] shows that, if (Ht ) are H-hulls generated by a (forward)
chordal SLEκ process, then for any stopping time T ∈ (0,∞), a.s. HT is a niceH-hull.
From the equivalence between chordal SLEκ and radial SLEκ (Proposition 4.2 in [6]),
we conclude that, if (Kt ) are D-hulls generated by a forward radial SLEκ process,
then for any deterministic point z0 ∈ T and any stopping time T ∈ (0,∞) such that
z0 /∈ KT , a.s. KT is a nice D-hull. This further implies that, for any stopping time
T ∈ (0,∞), on the event that T �⊂ KT , a.s. KT is a nice D-hull. Let (L0

t ) be H-hulls
generated by a backward radial SLEκ process. The above result in the case that T
is a deterministic time together with Lemma 2.1 and the rotation symmetry of radial
Loewner processes implies that, for any fixed t0 ∈ (0,∞), on the event that SL0

t0
�= T,

a.s. L0
t0 is a nice D-hull.

By rotation symmetry, we may assume that the backward radial SLE(κ; ρ) process
which generates (Lt ) is started from (1;w0). Fix t0 ∈ (0,∞). Girsanov’s theo-
rem implies that the distribution of (Lt )0≤t≤t0 is absolutely continuous w.r.t. that
of (L0

t )0≤t≤t0 given by the last paragraph conditioned on the event that f 0t (w0) ∈ T

for 0 ≤ t ≤ t0. Since f 0t0(w0) ∈ T is equivalent to w0 ∈ T\SLt0
, which implies that

SLt0
�= T, the proof is completed. ��

Proposition 4.5 Let κ > 0 and ρ ≤ − κ
2 −2. Then condition (4.3) almost surely holds

for a backward radial SLE(κ; ρ) process.

Proof The result is clear if κ ≤ 4 since the traces are D-simple. Now assume that
κ > 4. Suppose the process is started from (z0;w0). Lemma 3.1 implies that SLt0

⊂
T\{w0}. So ft0(w0) /∈ Lt0 . Since Lt0 is theD-hull generated by βt0 , we have ft0(w0) /∈
βt0([0, t0]). TheMarkov property of Brownianmotion and the fact that eiq(t) = ft (w0)

for all t imply that, conditioned on λ(t), 0 ≤ t ≤ t0, the maps ft0+t,t0 , t ≥ 0, are
generated by a backward radial SLE(κ; ρ) process started from (eiλ(t0); ft0(w0)). Let
Lt0+t,t0 = D\ fLt0+t,t0

(D). Lemma 4.4 implies that, for every t1 > t0, a.s. Lt1,t0 is nice.
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Lemma 3.1 implies that the probability that βt0([0, t0])∩T is contained in the interior
of SLt1,t0

tends to 1 as t1 → ∞.
If Lt1,t0 is nice and βt0([0, t0]) ∩ T is contained in the interior of SLt1,t0

, then

βt1([0, t0]) = ft1,t0(βt0([0, t0])) = fLt1,t0
(βt0([0, t0])) ⊂ D.

In fact, if z ∈ βt1([0, t0]) ∩ D, then obviously fLt1,t0
(z) ∈ D; if z ∈ βt0([0, t0]) ∩ T,

then fLt1,t0
(z) ∈ D follows from that Lt1,t0 is nice and z lies in the interior of SLt1,t0

.
Thus, as t1 → ∞, the probability that βt1([0, t0]) ⊂ D tends to 1. This means that,
for every fixed t0 > 0, a.s. there exists a (random) t1 > t0 such that βt1([0, t0]) ⊂ D.
Thus, on an event with probability 1, (4.3) holds for every t0 ∈ N. Since βt1([0, t0]) ⊂
βt1([0, n]) ⊂ D if t0 < n ∈ N, we see that (4.3) holds on that event. This completes
the proof. ��

Thus, a normalized backward radial SLE(κ; ρ) trace can be well defined for any
κ > 0 and ρ ≤ − κ

2 − 2. Combining Lemmas 3.2 and 4.2, we obtain the following
theorem.

Theorem 4.6 Let κ > 0 and ρ ≤ − κ
2 − 2. Let β(t), 0 ≤ t < ∞, be a normalized

stationary backward radial SLE(κ; ρ) trace. Then γ (s) := IT(β(−s)),−∞ < s ≤ 0,
is a whole-plane SLE(κ;−4 − ρ) trace stopped at time 0.

5 Conformal images of the tips

Theorem 5.1 Let κ ∈ (0, 4). Let γ (s),−∞ ≤ s ≤ 0, be a whole-plane SLE(κ; κ+2)
trace stopped at time 0. Then after an orientation reversing time change, the curve
γ (s) − γ (0),−∞ ≤ s ≤ 0, has the same distribution as γ (s),−∞ ≤ s ≤ 0.

Proof Theorem 4.6 shows that β(t) := IT(γ (−t)), 0 ≤ t ≤ ∞, is a normalized
stationary backward radial SLE(κ;−κ − 6) trace, which is a simple curve with

β(∞) = ∞, and there is F∞,0 : D
Conf
� C\β such that F∞,0(0) = 0, F ′∞,0(0) = 1,

and F∞,0(x) = F∞,0(y) implies that y = x or y = φ(x), where φ is the weld-
ing induced by the stationary backward radial SLE(κ;−κ − 6) process. Proposition
3.6 implies that this process can be coupled with another stationary backward radial
SLE(κ;−κ − 6) process, which induces the same welding, but has a different joint
point. Let ˜β and ˜F∞,0 be the normalized trace and map for the second process. Let
γ̃ (s) = IT(˜β(−s)),−∞ ≤ s ≤ 0. Theorem 4.6 implies that γ̃ is also a whole-plane
SLE(κ; κ + 2) trace stopped at time 0.

Define W = IT ◦ ˜F∞,0 ◦ F−1
∞,0 ◦ IT. Then W : ̂C\γ Conf

� ̂C\γ̃ and satisfies
that W (∞) = ∞ and W ′(∞) = 1. Since the two backward radial SLE(κ;−κ − 6)
processes induce the same welding, we see that F∞,0(x) = F∞,0(y) iff ˜F∞,0(x) =
˜F∞,0(y). Thus,W extends continuously to γ . The work in [2] shows that the boundary
of a Hölder domain is conformally removable; while the work in [12] shows that, for
κ ∈ (0, 4), a chordal SLEκ trace is the boundary of a Hölder domain, which together
with the Girsanov’s theorem and the equivalence between chordal SLEκ and radial
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SLEκ implies that a radial SLE(κ; ρ) trace is conformally removable for κ ∈ (0, 4) and
ρ ≥ κ

2 −2 (which is true if ρ = κ+2). TheMarkov-type relation betweenwhole-plane
SLE(κ; κ+2) and radial SLE(κ; κ+2) processes implies that γ ([t0, 0]) is conformally
removable for any t0 ∈ (−∞, 0), and so is the whole curve γ = γ ([−∞, 0]). Thus,
W extends to a conformal map defined on̂C such thatW (γ ) = γ̃ . SinceW (∞) = ∞
and W ′(∞) = 1, we have W (z) = z + C for some constant C ∈ C. This means
that γ̃ = γ + C , where both curves are viewed as sets. Since both curves are simple,
W maps end points of γ to end points of γ̃ . Now 0 is an end point of both curves.
Since F∞,0 and ˜F∞,0 map the joint points of the two processes, respectively, to ∞,
and the two joints points are different, W does not fixed 0. So W maps the other end
point of γ : γ (0) to 0, which implies that C = −γ (0) and the orientations of γ̃ and
W (γ ) = γ − γ (0) are opposite to each other. Thus, the whole-plane SLE(κ; κ + 2)
trace γ̃ up to time 0 is an orientation reversing time-change of γ − γ (0) up to time 0,
which completes the proof. ��
Remark This theorem says that awhole-plane SLE(κ; κ+2)(κ ∈ (0, 4)) trace stopped
at whole-plane capacity time 0 satisfies reversibility. So a tip segment of the trace at
time 0 has the same shape as an initial segment of the trace.

Lemma 5.2 Let κ > 0. Let β be a forward chordal SLEκ trace. Let t0 ∈ (0,∞) be
fixed. Then there is a whole-plane SLE(κ; κ + 2) process, which generates hulls (Ks)

and a trace γ , and a random conformalmapW defined onH such that W (H) = ̂C\Ks0
for some random s0 < 0 and W (β(t)) = γ (v(t)), 0 ≤ t ≤ t0, where v is a random
strictly increasing function with v([0, t0]) = [s0, 0].
Proof Let λ be the driving function for β. Lemma 2.1 and the translation symmetry
implies that there is a backward chordal SLEκ process, which generates backward
chordal traces (˜βt ) such that ˜βt0(t0 − t) = β(t) − λ(t0), 0 ≤ t ≤ t0. Corollary
3.5 implies that there exist a stationary backward radial SLE(κ;−κ − 6) process
generating backward radial traces (̂βt ), a family of Möbius transformations (Vt ) with
Vt (H) = D for each t , and a strictly increasing function u with u([0,∞)) = [0,∞),
such that Vt1(˜βt1(t)) = ̂βu(t1)(u(t)) for any t1 ≥ t ≥ 0. In particular, it follows that
Vt0(β(t) − λ(t0)) = ̂βu(t0)(u(t0 − t)), 0 ≤ t ≤ t0.

Let̂β be the normalized backward radial trace generated by that stationary backward
radial SLE(κ;−κ − 6) process, which exists thanks to Proposition 4.5. Lemmas 4.1
and 4.2 state that there exists a family of conformal maps F∞,t , t ≥ 0, defined on
D, with continuation to D, such that ̂β(t) = F∞,t1(βt1(t)) for any t1 ≥ t ≥ 0. In
particular, we have

F∞,u(t0)(Vt0(β(t) − λ(t0))) = F∞,u(t0)(
̂βu(t0)(u(t0 − t))) = ̂β(u(t0 − t)),

0 ≤ t ≤ t0.

Theorem 4.6 states that γ (s) := IT(̂β(−s)),−∞ < s ≤ 0, is a whole-plane
SLE(κ; κ +2) trace stopped at time 0. Lemma 4.1 states that Ks := C\IT ◦ F∞,−s(D)

are the corresponding hulls. Then we have IT(F∞,u(t0)(Vt0(β(t) − λ(t0)))) =
γ (−u(t0 − t)), 0 ≤ t ≤ t0. Now it is easy to check that W (z) := IT(F∞,u(t0)(Vt0(z −
λ(t0)))), v(t) := −u(t0 − t), and s0 := −u(t0) satisfy the desired properties. ��
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Theorem 5.3 Let κ ∈ (0, 4) and t0 ∈ (0,∞). Let β(t), t ≥ 0, be a forward chordal
SLEκ trace (parameterized by the half-plane capacity). Then there is a random con-
formal map V defined on H such that V (β(t0)) = 0, and V (β(t0 − t)), 0 ≤ t ≤ t0, is
an initial segment of a whole-plane SLE(κ; κ + 2) trace, up to a time change.

Proof Lemma 5.2 states that we can map β(t0 − t), 0 ≤ t ≤ t0, conformally to a tip
segment of a whole-plane SLE(κ; κ +2) trace at time 0. Then we may apply Theorem
5.1. ��

We may derive a similar but weaker result for radial SLE.

Theorem 5.4 Let κ ∈ (0, 4) and t0 ∈ (0,∞). Let β(t), t ≥ 0, be a forward radial
SLEκ trace (parameterized by the disc capacity). Then there is a random conformal
map V defined onD such that V (β(1)) = 0, and up to a time change, V (β(t0−t)), 0 ≤
t ≤ t0, has a distribution, which is absolutely continuous w.r.t. an initial segment of a
whole-plane SLE(κ; κ + 2) trace.

Proof From Theorem 5.1, it suffices to prove the theorem with “an initial segment”
replaced by “a tip segment at time 0”. By rotation symmetry, we may assume that β is
a forward stationary radial SLE(κ; 0) trace. By Corollary 3.3, β(t0 − t), 0 ≤ t ≤ t0,
has the distribution of a backward stationary radial SLE(κ;−4) trace at time t0, say
˜βt0 . Girsanov’s theorem implies that the distribution of ˜βt0 is absolutely continuous
w.r.t. a backward stationary radial SLE(κ;−κ − 6) trace at time t0. This backward
stationary radial SLE(κ;−κ − 6) trace at t0 can then be mapped conformally to a tip
segment of the normalized trace generated by the process. Finally, the reflection IT
maps that tip segment to a tip segment of a whole-plane SLE(κ; κ + 2) trace at time
0 thanks to Theorem 4.6. ��

6 Ergodicity

We will apply Theorems 5.3 and 5.4 to study some ergodic behavior of the tip of a
chordal or radial SLEκ(κ ∈ (0, 4)) trace at a deterministic half plane or disc capacity
time.

Let γ (t), a ≤ t ≤ b, be a simple curve in C such that γ (a) = 0. We may
reparameterize γ using the whole-plane capacity. Let T = cap(γ ). Define v on
[a, b] such that v(a) = −∞ and v(t) = cap(γ ([a, t])), a < t ≤ b. Then v

is a strictly increasing function with v([a, b]) = [−∞, T ]. It turns out that (c.f.
[4]) γ v(t) := γ (v−1(t)),−∞ ≤ t ≤ T , is a whole-plane Loewner trace driven
by some λ ∈ C((−∞, T ]). Let gt ,−∞ < t ≤ T , be the corresponding maps.
Then each g−1

t extends continuously to D∗ and maps T onto γ v([−∞, t]). At
time t , there are two special points on T, which are mapped by g−1

t to the two
ends of γ v([−∞, t]). One is eiλ(t), which is mapped to γ v(t). Let z(t) denote the
point on T which is mapped to γ v(−∞) = 0. Then z(t) satisfies the equation

z′(t) = z(t) e
iλ(t)+z(t)
eiλ(t)−z(t)

,−∞ < t ≤ T . There exists a unique q ∈ C((−∞, T ]) such
that z(t) = eiq(t) and 0 < λ(t) − q(t) < 2π,−∞ < t ≤ T . Then q(t) satisfies the
equation q ′(t) = cot2(q(t)−λ(t)),−∞ < t ≤ T . The number λ(t)−q(t) ∈ (0, 2π)
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has a geometric meaning. It is equal to 2π times the harmonic measure viewed from
∞ of the right side of γ v([−∞, t]) in ̂C\γ v([−∞, t]).

Let κ ≤ 4 and ρ ≥ κ
2 − 2. A whole-plane SLE(κ; ρ) process generates a simple

trace, say γ (t),−∞ ≤ t < ∞, which is parameterized by whole-plane capacity.
Recall the definition in Sect. 3. There are λ, q ∈ C(R) such that λ is the driving
function, q(t) satisfies the equation q ′(t) = cot2(q(t) − λ(t)), and Z(t) := λ(t) −
q(t) ∈ (0, 2π),−∞ < t < ∞, is a reversible stationary diffusion process with SDE:
dZ(t) = √

κdB(t)+ (
ρ
2 + 1) cot2(Z(t))dt . Let μκ;ρ denote the invariant distribution

for (Z(t)). Corollary 8.2 shows that μκ;ρ has a density, which is proportional to

sin2(x)
4
κ
(

ρ
2 +1). Corollary 8.3 shows that (Z(t)) is ergodic. Thus, for any t0 ∈ R and

f ∈ L1(μκ;ρ), almost surely

lim
t→−∞

1

t0 − t

∫ t0

t
f (Z(s))ds =

∫

f (x)dμκ;ρ(x). (6.1)

We will prove that this property is preserved under conformal maps fixing 0, as long
as f is uniformly continuous. The following lemma is obvious.

Lemma 6.1 Let T1, T2 ∈ R. Let Z j ∈ C((−∞, Tj )), j = 1, 2. Suppose that there is
an increasing differentiable function v defined on (−∞, T1) such that v((−∞, T1]) =
(−∞, T2], v′(t) → 1 and Z2(v(t)) − Z1(t) → 0 as t → −∞. Let f ∈ C(R) be
uniformly continuous. Then

lim
t→−∞

1

t0 − t

∫ t0

t
f (Z1(s))ds = lim

t→−∞
1

t0 − t

∫ t0

t
f (Z2(s))ds

as long as either limit exists and lies in R for some/every t0 ∈ (−∞, T1 ∧ T2).

Wewill need some properties ofC-hulls. Let K be a C-hull such that {0} � K . The
following well-known fact follows from Schwarz lemma and Koebe’s 1/4 theorem
(c.f. [1]):

ecap(K ) ≤ max
z∈K |z| ≤ 4ecap(K ). (6.2)

Lemma 6.2 For the above K , |ecap(K )gK (z) − z| ≤ 5ecap(K ) for any z ∈ C\K.

Proof Since the derivative of ecap(K )gK (z) at ∞ is 1, ecap(K )gK (z) − z extends
analytically to ̂C\K . Applying the maximum modulus principle, we see that
supz∈C\K |ecap(K )gK (z) − z| is approached by a sequence (zn) in C\K that tends
to K . We have |ecap(K )gK (zn)| → ecap(K ) and lim sup |zn| ≤ maxz∈K |z|. The proof
is completed by (6.2) ��

LetW be a conformal map, whose domain contains 0. Let K be aC-hull such that
{0} � K ⊂ . LetK = gK (\K ), and defineWK (z) = gW (K ) ◦W ◦g−1

K (z) for z ∈
K . NowK contains a neighborhood of T inD

∗, and as z → T inK ,WK (z) → T

as well. Let †
K = K ∪ T ∪ IT(K ). Schwarz reflection principle implies that WK

extends to a conformal map on 
†
K such that WK (T) = T.
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Lemma 6.3 There are real constants C0 < 0 and C1,C2 > 0 depending only on 

and W such that if K is a C-hull with {0} � K and satisfies cap(K ) ≤ C1, then

| cap(W (K )) − cap(K ) − log |W ′(0)|| ≤ C1e
1
2 cap(K ); (6.3)

log |W ′
K (z)| ≤ C2e

1
2 cap(K )/| cap(K )|, z ∈ T. (6.4)

Proof SinceW (0) = 0 andW ′(0) �= 0, there is V analytic in a neighborhood′ ⊂ 

of 0 such that V (0) = 0 andW (z) = W ′(0)zeV (z) in′. There exist positive constants
C ≥ 1 and δ ≤ 1

10 such that |z| ≤ δ implies that z ∈ ′ and |V (z)| ≤ C |z|. Thus,

|W (z)| ≥ |W ′(0)||z|e−C|z|, |W (z) − W ′(0)z| ≤ |W ′(0)||z|(eC|z| − 1), |z| ≤ δ.

(6.5)
Suppose K is a C-hull with {0} � K , and satisfies ecap(K ) ≤ δ2 ∧ 1

(320C)2
. From

(6.2) we see that K ⊂ {|z| ≤ 4δ2} ⊂ {|z| ≤ δ} ⊂ . So W (K ) and WK are well
defined. Using (6.2) and the connectedness of K , we may choose z0 ∈ K such that
|z0| = ecap(K ). Using (6.5) we get

|W (z0)| ≥ |W ′(0)||z0|e−C|z0| ≥ |W ′(0)|ecap(K )e−1/5 ≥ 4

5
|W ′(0)|ecap(K ).

Since W (z0) ∈ W (K ), using (6.2) again, we get cap(W (K )) ≥ 1
4 |W (z0)| ≥

1
5 |W ′(0)|ecap(K ). Let α = αW,K = W ′(0)ecap(K )−cap(W (K )). Then we have |α| ≤ 5.

Let R = 1
2e

− 1
2 cap(K ), z1 ∈ {|z| = R}, and z2 = g−1

K (z1). From Lemma 6.2, we
get

|z2 − ecap(K )z1| ≤ 5ecap(K ).

Since R ≥ 1
2 (δ

2)−1/2 ≥ 5, we have

|z2| ≤ (R + 5)ecap(K ) ≤ 2Recap(K ) = e
1
2 cap(K ) ≤ δ ∧ 1

360C
.

Let J denote the Jordan curve g−1
K ({|z| = R}), and UJ denote its interior. Then

J ⊂ {|z| ≤ δ}, which implies that UJ ⊂ {|z| ≤ δ} ⊂ . Since g−1
K maps the annulus

{1 < |z| ≤ R} conformally onto (J ∪ UJ )\K ⊂ \K , we see that {1 < |z| ≤ R} ⊂
K , and so {1/R ≤ |z| ≤ R} ⊂ 

†
K . Let z3 = W (z2). Using (6.5) and 0 ≤ C |z2| ≤ 1,

we get

|z3 − W ′(0)z2| ≤ |W ′(0)||z2|(eC|z2| − 1) ≤ 2C |W ′(0)||z2|2 ≤ 2C |W ′(0)|ecap(K ).

Let z4 = gW (K )(z3). From Lemma 6.2 we get

|z4 − e− cap(W (K ))z3| ≤ 5.
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Combining the above four displayed formulas and that |α| ≤ 5, we get

|z4 − αz1| ≤ 5 + 2C |α| + 5|α| ≤ 30 + 10C ≤ 40C.

Note that z4 = WK (z1). So we get

|WK (z) − αz| ≤ 40C, |z| = R. (6.6)

|α|R − 40C ≤ |WK (z)| ≤ |α|R + 40C, |z| = R. (6.7)

We may find R′ > R such that A := {1/R′ < |z| < R′} ⊂ 
†
K . Then WK

is analytic in A. Since WK is an orientation preserving auto homeomorphism of
T, there is an analytic function VK such that WK (z) = eVK (z)z in A. We have
Re VK (z) = log |WK (z)| − log |z|. Thus, Re VK ≡ 0 on T. Cauchy’s theorem
implies that

∮

|z|=1
VK (z)

z dz = ∮

|z|=R
VK (z)

z dz, which means that
∫ 2π
0 VK (eiθ )dθ =

∫ 2π
0 VK (Reiθ )dθ . So we get

0 =
∫ 2π

0
Re VK (eiθ )dθ =

∫ 2π

0
Re VK (Reiθ )dθ

=
∫ 2π

0
(log |WK (Reiθ )| − log R)dθ.

Using (6.7), we get |α|R − 40C ≤ R ≤ |α|R + 40C , which implies that |1 − |α|| ≤
40C
R . This implies (6.3) since log |α| = log |W ′(0)| + cap(K ) − cap(W (K )) and

1/R = O(e
1
2 cap(K )).

Let |z| = R. From (6.6), we get |eVK (z) − α| ≤ 40C
R . Since |α| ≥ 1 − 40C

R , we
have |eVK (z)| ≥ 1 − 80C

R ≥ 1
2 as R ≥ 160C . So there exists α̃ ∈ C with α = eα̃ such

that |VK (z) − α̃| ≤ 2|eVK (z) − α| ≤ 80C
R . From ||α| − 1| ≤ 40C

R , we get |Re α̃| =
| log |α|| ≤ 80C

R . Thus, |VK (z)− iIm α̃| ≤ 160C
R if |z| = R. Let ˜VK = VK ◦ exp. Then

˜VK is analytic in the vertical strip ˜A := exp−1(A) = {− log R′ < Re z < log R′},
and is pure imaginary on iR. Thus, ˜VK (−z) = −˜VK (z). This implies that, on the two
vertical lines {Re z = log R} and {Re z = − log R}, |˜VK (z) − iIm α̃| ≤ 160C

R . Since
˜VK has period 2π i , the inequality holds in the strip {− log R ≤ Re z ≤ log R}. We
may apply Cauchy’s integral formula, and get |˜V ′

K (z)| ≤ 160C
R log R for z ∈ iR. Since

˜VK (z) = VK ◦ exp, eVK (z) = WK (z)
z and WK (T) = T, we get

∣

∣

∣W ′
K (z) − WK (z)

z

∣

∣

∣ = |˜V ′
K (log z)| ≤ 160C

R log R
, z ∈ T.

This implies (6.4) since log R ≥ | cap(K )|/4 and 1/R = O(e
1
2 cap(K )). ��

Now suppose γ (t),−∞ ≤ t < T , is a simple whole-plane Loewner trace driven
by λ ∈ C((−∞, T )). Let  be a domain that contains γ . Let W be a conformal map
defined on  such that W (0) = 0. Let β(t) = W (γ (t)),−∞ ≤ t < T . Define v on
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[−∞, T ) such that v(−∞) = −∞ and v(t) = cap(β([−∞, t])) for −∞ < t < T .
Let ˜T = v(T ) and γ̃ (t) = β(v−1(t)),−∞ ≤ t < ˜T . Then γ̃ is a simple whole-plane
Loewner trace, say driven by ˜λ ∈ C((−∞, ˜T )). Let (gt ) and (g̃t ) be the whole-
plane Loewner maps driven by λ and˜λ, respectively. Then, g−1

t (eiλ(t)) = γ (t) and
g̃−1
t (ei˜λ(t)) = γ̃ (t). Let z(t) and z̃(t) be such that g−1

t (z(t)) = 0 and g̃−1
t (̃z(t)) = 0.

Choose q ∈ C((−∞, T )) and q̃ ∈ C((−∞, ˜T )) such that z(t) = eiq(t), z̃(t) =
eiq̃(t), λ(t)−q(t) ∈ (0, 2π), and˜λ(t)− q̃(t) ∈ (0, 2π). Let Z = λ−q and ˜Z =˜λ− q̃ .

Let Kt = γ ([−∞, t]) and ˜Kt = γ̃ ([−∞, t]). Recall that gt = gKt and g̃t = g
˜Kt
.

For−∞ < t < T , lett = Kt ,
†
t = 

†
Kt
, andWt = WKt . ThenWt is a conformal

map defined on 
†
t ⊃ T such that Wt (T) = T. Since W (Kt ) = ˜Kv(t), we have

Wt = g̃v(t) ◦ W ◦ g−1
t in t . Since g

−1
t (eiλ(t)) = γ (t) and g̃−1

v(t)(e
i˜λ(v(t))) = γ̃ (v(t))

when both g−1
t and g̃v(t) extends continuously to D

∗ ∪ T, and W (γ (t)) = γ̃ (v(t)),

we get Wt (eiλ(t)) = ei˜λ(v(t)). Similarly, since g−1
t (eiq(t)) = 0 = g̃−1

v(t)(e
iq̃(v(t))) and

W (0) = 0, we have Wt (eiq(t)) = eiq̃(v(t)). Thus, we get

˜Z(v(t)) =˜λ(v(t)) − q̃(v(t)) =
∫ λ(t)

q(t)
|W ′

t (e
is)|ds. (6.8)

The following lemma is well known. For the proof, onemay apply, e.g., Proposition
4.4(ii) in [13]. We now omit the details.

Lemma 6.4 For any t ∈ (−∞, T ), v′(t) = |W ′
t (e

iλ(t))|2.
Applying Lemma 6.3 to K = γ ([−∞, t]) and using (6.8) and Lemma 6.4, we get

lim
t→−∞ |˜Z(v(t)) − Z(t)| = 0, lim

t→−∞ v′(t) = 1, lim
t→−∞ v(t) − t = log |W ′(0)|.

(6.9)
Lemma 6.1 implies that, if f is continuous on [0, 2π ], then

lim
t→−∞

1

t0 − t

∫ t0

t
f (Z(s))ds = lim

t→−∞
1

t0 − t

∫ t0

t
f (˜Z(s))ds, t0 ∈ (−∞, T ∧ ˜T ),

if either limit exists. Using (6.1) we obtain the following proposition.

Proposition 6.5 Let κ ≤ 4 and ρ ≥ κ
2 − 2. Let γ (t),−∞ ≤ t < ∞, be a whole-

plane SLE(κ; ρ) trace. Suppose that W is a random conformal map with (random)
domain  � 0 such that W (0) = 0. Let T be such that γ ([−∞, T )) ⊂ . Let
γ̃ be a reparametrization of W (γ (t)),−∞ ≤ t < T , such that γ̃ (−∞) = 0 and
cap(γ̃ ([−∞, t])) = t for −∞ < t < ˜T . Let h(t) ∈ (0, 1) denote the harmonic
measure of the right side of γ̃ ([−∞, t]) in ̂C\γ̃ ([−∞, t]) viewed from ∞. Then for
any f ∈ C([0, 2π ]) and t0 ∈ (−∞, ˜T ), almost surely

lim
t→−∞

1

t0−t

∫ t0

t
f (2πh(s))ds =

∫ 2π

0
f (x)dμκ;ρ(x)=

∫ 2π
0 f (x) sin2(x)

4
κ
(

ρ
2 +1)dx

∫ 2π
0 sin2(x)

4
κ
(

ρ
2 +1)dx

.
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Combining the above proposition with Theorems 5.3 and 5.4, we obtain the fol-
lowing theorem.

Theorem 6.6 Let κ ∈ (0, 4) and t0 ∈ (0,∞). Let β be a chordal or radial SLEκ

trace. For 0 ≤ t < t0, let v(t) = cap(β([t, t0])) and h(t) be the harmonic measure of
the left side of β([t, t0]) in ̂C\β([t, t0]) viewed from ∞. Then for any f ∈ C([0, 1]),
almost surely

lim
t→t−0

1

v(t) − v(0)

∫ t

0
f (h(s))dv(s) =

∫ 2π
0 f (x) sin2(x)

8
κ
+2dx

∫ 2π
0 sin2(x)

8
κ
+2dx

.

Remark 1. We can now conclude that Theorem 5.1 does not hold with κ +2 replaced
by any other ρ ≥ κ

2 − 2. If this is not true, then Theorem 5.4 also holds with κ + 2
replaced by such ρ. Then Theorem 6.6 holds in the radial case with the exponent
8
κ

+ 2 replaced by 4
κ
(
ρ
2 + 1), which is obviously impossible.

2. Fubini’s Theorem implies that Theorem 6.6 still holds if the deterministic number
t0 is replaced by a positive random number t0, whose distribution given β is
absolutely continuous with respect to the Lebesgue measure. We do not expect
that the theorem holds if the conditional distribution of t0 does not have a density.
In fact, if the conditional distribution of t0 is absolutely continuous with respect to
the natural parametrization introduced by Lawler and Sheffield [7], then we expect
that β behaves like a two-sided radial SLEκ process, which is a radial SLE(κ; 2)
process, near β(t0), and Theorem 6.6 is expected to hold with 8

κ
+ 2 replaced by

8
κ
.

Let κ ∈ (0, 4]. A whole-plane SLE(κ; ρ) trace γ generates a simple curve. Com-
bining the reversibility property derived in [18] with theMarkov-type relation between
whole-plane SLEκ and radial SLEκ processes, we see that, if β is a radial SLEκ , there
is a conformal map V defined onDwith V (0) = 0, which maps β to an initial segment
of a whole-plane SLEκ trace. Applying Proposition 6.5, we obtain the following.

Theorem 6.7 Let κ ∈ (0, 4]. Let β be a radial SLEκ trace. For 0 ≤ t < ∞, let
v(t) = cap(β([t,∞])) and h(t) be the harmonic measure of the left side of β([t,∞])
in ̂C\β([t,∞]) viewed from ∞. Then for any f ∈ C([0, 2π ]), almost surely

lim
t→∞

1

v(t) − v(0)

∫ t

0
f (h(s))dv(s) =

∫ 2π
0 f (x) sin2(x)

4
κ dx

∫ 2π
0 sin2(x)

4
κ dx

.
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Appendix A: Carathéodory convergence

Definition 7.1 Let (Dn)
∞
n=1 and D be domains in a Rieman surface R. We say that

(Dn) converges to D in the Carathéodory topology, and write Dn
Cara−→ D, if
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(i) for every compact set K ⊂ D, there exists n0 ∈ N such that K ⊂ Dn if n ≥ n0;
(ii) for every point z0 ∈ ∂D, there exists zn ∈ ∂Dn for each n such that zn → z0.

Remark A sequence of domains may converge to two different domains. For example,

let Dn = C\((−∞, n]). Then Dn
Cara−→ H, and Dn

Cara−→ −H as well. But two different
limit domains of the same domain sequence must be disjoint from each other, because
if they have nonempty intersection, then one contains some boundary point of the
other, which implies a contradiction.

Lemma 7.2 Let R and S be two Riemann surfaces. Let Dn, n ∈ N, and D be domains

in R such that Dn
Cara−→ D. Let fn map Dn conformally into S, n ∈ N. Suppose ( fn)

converges locally uniformly in D. Assume that the limit function f is not constant in

D. Then f is a conformal map, f (Dn)
Cara−→ f (D), and f −1

n
l.u.−→ f −1 in f (D).

Remark The lemma generalizes the Carathéodory kernel theorem (Theorem 1.8, [10])
so that the domains do not have to be simply connected. A simpler version (in the case
R and S are C or ̂C) was introduced in [16], and used in the author’s other papers, but
no proof has been given so far. For completeness, we include the proof here.

Proof Cauchy–Goursat theorem implies that f is analytic. We first prove that f is
one-to-one. Assume that f is not one-to-one. Then there exist z1 �= z2 ∈ D such that
f (z1) = f (z2) := w0. Since f is not constant, f −1(w0) has no accumulation points
in the domain D. Let (V, ψ) be a chart for S such that w0 ∈ V and ψ(w0) = 0.
We may find charts (U1, φ1) and (U2, φ2) for R such that z j ∈ Uj ⊂ D, f (Uj ) ⊂
V, φ j (z j ) = 0, φ j (Uj ) ⊃ D, φ−1

j (T) ∩ f −1(w0) = ∅, j = 1, 2, and U1 ∩ U2 = ∅.
Since Dn

Cara−→ D, we have φ−1
j (D) ⊂ Dn, j = 1, 2, if n is big enough. Thus, for

j = 1, 2, ψ ◦ fn ◦φ−1
j tends uniformly on D to ψ ◦ f ◦φ−1

j , which has a zero at 0 and

has no zero on T. Rouché’s theorem implies that when n is big enough, ψ ◦ fn ◦ φ−1
j

has zero(s) in D for j = 1, 2, which implies that f −1
n (w0) intersects both U1 and U2.

This contradicts that each fn is one-to-one, and U1 ∩U2 = ∅. So f is one-to-one.

Let En = f (Dn), n ∈ N, and E = f (D) be domains in S. Since fn
l.u.−→ f in

D, we have fn ◦ f −1 l.u.−→ id in E . Let K ⊂ E be a closed ball, which means that
there is a chart (V, ψ) for S such that K ⊂ V ⊂ E and ψ(K ) = {|z| ≤ r0} for
some r0 > 0. We may choose r1 > r0 such that ψ(V ) ⊃ {|z| ≤ r1}. Let K ′ =
ψ−1({|z| ≤ r1}). Applying Rouché’s theorem to the Jordan curve {|z| = r1} and the
functions ψ ◦ fn ◦ f −1 ◦ ψ−1(z) − z0 and z − z0, where z0 ∈ {|z| ≤ r0}, we see
that when n is big enough, ψ ◦ fn ◦ f −1 ◦ ψ−1(z) − z0 has a zero in {|z| < z1} for
every z0 ∈ {|z| ≤ r0}, which implies that K = ψ−1({|z| ≤ r0}) ⊂ fn(Dn) = En .
Since every compact subset of E can be covered by finitely many closed balls in E ,
condition (i) in Definition 7.1 holds for En and E .

Let gn = f −1
n , n ∈ N, and g = f −1. Now we prove that gn

l.u.−→ g in E . Assume
that this is not true. By passing to a subsequence, we may find a sequence (wn) in
E with wn → w0 ∈ E such that g(w0) is not any subsequential limit of (gn(wn)).
Let (V, ψ) be a chart for S such that w0 ∈ V ⊂ E and ψ(w0) = 0. Let r1 > 0 be
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such that {|z| ≤ r1} ⊂ ψ(V ); and let r0 ∈ (0, r1). Since wn → w0, there is n0 ∈ N

such that ψ(wn) ∈ {|z| ≤ r0} for n ≥ n0. The argument in the previous paragraph
shows that, there is n1 ∈ N such that, if n ≥ n1, then for every z ∈ {|z| ≤ r0}, there
is z′ ∈ {|z| < r1} such that ψ ◦ fn ◦ g ◦ ψ−1(z′) = z. Taking z = ψ(wn), we see that
gn(wn) ∈ g ◦ψ−1({|z| < r1}) for n ≥ n0 ∨n1. Since r1 > 0 can be chosen arbitrarily
small and ψ−1(0) = w0, this contradicts that g(w0) is not any subsequential limit of

(gn(wn)). Thus, gn
l.u.−→ g in E .

It remains to prove that condition (ii) in Definition 7.1 holds for En and E . Assume
that this is not true. By passing to a subsequence, we may assume that there exist
w0 ∈ ∂E and a domain V with w0 ∈ V ⊂ S such that V ∩ ∂En = ∅ for each n. Let
w′
0 ∈ E ∩ V . Since condition (ii) in Definition 7.1 holds for En and E , if n is big

enough, then w′
0 ∈ En , which implies that V ⊂ En because V ∩ ∂En = ∅ and V is

connected. By removing finitely many terms, we may assume that V ⊂ En for each

n. By considering a smaller V , we may further assume that there is ψ : V Conf
� 2D

such that ψ(w0) = 0. We will restrict our attention to V and derive a contradiction.
So we may assume that V = 2D, ψ = id, and w0 = 0.

It is well known that there is an increasing function h(r) defined on (0, 1) with
h(0+) = 0 such that the probability that a planar Brownian motion started from 0
hits T before disconnecting rT from T is less than h(r). Pick r0 ∈ (0, 1/5) such that
h(r0) + h(5r0) < 1.

Since w0 = 0 ∈ ∂E , may find w1 ∈ E ∩ V such that |w1| < 0.1 ∧ r0. Let
s ∈ (0, 0.1) be such that U2 := {|w − w1| < s} ⊂ E . Let U1 = {|w − w1| < s/2}.
Since gn

l.u.−→ g inU2, fromwhat we have derived, condition (i) in Definition 7.1 holds
for gn(U2) and g(U2). Thus, there is n0 ∈ N such that gn(w1) ∈ g(U1) ⊂ g(U1) ⊂
gn(U2) when n ≥ n0. This implies that, if n,m ≥ n0, then fn ◦ gm(w1) ∈ U2, i.e.,
| fn ◦ gm(w1) − w1| < s < 0.1, and so | fn ◦ gm(w1)| < 0.2.

That gn
l.u.−→ g in E also implies that g′

n(w1) → g′(w1) ∈ C\{0}. So there is
n1 ≥ n0 such that, if n,m ≥ n1 then |( fn ◦ gm)′(w1)| ∈ (0.9, 1.1). Fix n,m ≥ n1. Let
W = fn ◦ gm and w2 = W (w1). Recall that |w1| < 0.1 and |w2| < 0.2. So w1 + D

and w2 + D are contained in 2D = V ⊂ En ∩ Em . Let 1 = fm(gm(w1 + D) ∩
gn(w2 + D)) ⊂ w1 + D and 2 = fn(gm(w1 + D) ∩ gn(w2 + D)) ⊂ w2 + D. Then

w j ∈  j , j = 1, 2, and W : 1
Conf
� 2.

Let r j = dist(w j , ∂ j ). Since |W ′(w1)| ∈ (0.9, 1.1), Koebe’s 1/4 theorem implies
that r2 < 4.4r1. Let I1 = W−1(w2+T)∩(w1+D) and I2 = (w1+T)∩W−1(w2+D).
Then I1 and I2 are disjoint subsets of ∂1. For k = 1, 2, let hk be the harmonic
measure of Ik in 1 viewed from w1. Then h1 + h2 ≤ 1. Note that ∂1\I1 ⊂ T,
and I1 contains a connected component, which touches both w1 + T and w1 + r1T.
So h1 ≥ 1 − h(r1). Let I ′

2 = W (I2) = W (w1 + T) ∩ (w2 + D) ⊂ ∂2. Then
∂2\I ′

2 ⊂ T, and I ′
2 contains a connected component, which touches both w2 + T

and w2 + r2T. From conformal invariance of harmonic measures, h2 is equal to
the harmonic measure of I ′

2 in 2 viewed from w2, which is at least 1 − h(r2).
Thus, we have 1 ≥ h1 + h2 ≥ (1 − h(r1)) + (1 − h(r2)), from which follows
that 1 ≤ h(r1) + h(r2). If r1 < r0, since h is increasing and r2 < 4.4r1, we get
h(r1) + h(r2) ≤ h(r0) + h(5r0) < 1, which is a contradiction. So r1 ≥ r0.
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So we conclude that, for any n,m ≥ n1, fm ◦ gn is well defined and analytic on
U0 := {|w − w1| < r0}. Fix m = n1. Since fn1 ◦ gn(w1) → fn1 ◦ g(w1) and ( fn1 ◦
gn)′(w1) → ( fn1 ◦g)′(w1), Koebe’s distortion theorem implies that ( fn1 ◦gn|U0)n≥n1

is a normal family. Since fn1 ◦gn l.u.−→ fn1 ◦g in E∩U0, we see that fn1 ◦gn converges
locally uniformly in U0, as n → ∞, and the limit is an analytic extension of fn1 ◦ g

from E ∩ U0 to U0. Thus, g extends analytically to E ′ := E ∪ U0, and gn
l.u.−→ g in

E ′. Since |w1| < r0, we have w0 = 0 ∈ U0 ∩ ∂E . Thus, z0 := g(w0) ∈ ∂D. Let K be

a compact subset of U0, whose interior K̊ contains w0. Since gn
l.u.−→ g in U0, from

what we have derived, condition (i) in Definition 7.1 holds for gn(U0) and g(U0).
Thus, z0 ∈ g(K̊ ) ⊂ g(K ) ⊂ gn(U0) ⊂ Dn when n is big enough, which contradicts

that z0 ∈ ∂Dn and Dn
Cara−→ D as g(K̊ ) is an open set. The contradiction completes

the proof. ��

Remark The only place that we use the connectedness is that f is not constant implies
f −1(w0) has no accumulation points. Thus, wemay define Carathéodory convergence
of open sets in a Riemann surface. Lemma 7.2 still holds when Dn and D are not
domains, if the condition that f is not constant is replaced by that f is not locally
constant.

Appendix B: Radial Bessel processes

Let δ ∈ R. Consider the SDE:

dXt = dBt + δ − 1

2
cot(Xt )dt, X0 ∈ (0, π). (8.1)

The solution is called a radial Bessel process of dimension δ. The name comes from
the fact that the process arises in the definition of radial SLE(κ; ρ) processes, and
(Xt ) behaves like a Bessel process of dimension δ when it is close to 0 or π . Let
[0, T ) denote the time interval for (Xt ). Define h(x) = ∫ x

π/2 sin(t)
1−δdt, 0 < x < π .

Itô’s formula (c.f. [11]) shows that h(Xt ), 0 ≤ t < T , is a local martingale. Note
that h((−1, 1)) = R if δ ≥ 2; and is bounded if δ < 2. A simple argument shows
that, if δ ≥ 2, then T = ∞; if δ < 2, then T < ∞ and limt→T Xt ∈ {0, π}. Let
Yt = cos(Xt ), 0 ≤ t < T . Itô’s formula shows that

dYt = −
√

1 − Y 2
t d B(t) − δ

2
Ytdt, 0 ≤ t < T . (8.2)

Suppose δ ≥ 2. We will derive the transition densities of (Yt ) and (Xt ). Observe
that if the process (Yt ) has a smooth transition density p(t, x, y), then it satisfies the
Kolmogorov’s backward equation:

∂t p = 1 − x2

2
∂2x p − δ

2
x∂x p. (8.3)
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Below we will solve (8.3) using the eigenvalue method, and prove that some solution
is the transition density of (Yt ).

Let λ ∈ R. Consider the ODE:

(1 − x2)p′′(x) − δx p′(x) − 2λp(x) = 0. (8.4)

If λ = λn = − n
2 (n + δ − 1), n ∈ N ∪ {0}, the above equation has a solution, which

is the Gegenbauer polynomial C (α)
n (x) (c.f. [9]) with degree n and index α := δ

2 − 1
2 .

Thus, pn(t, x) := e− n
2 (n+δ−1)tC

( δ
2− 1

2 )
n (x), n ∈ N ∪ {0}, solve (8.3) for t, x ∈ R.

The functions C (α)
n (x), n ∈ N ∪ {0} form a complete orthogonal system w.r.t. the

inner product 〈 f, g〉α− 1
2

:= ∫ 1
−1(1−x2)α− 1

2 f (x)g(x)dx such that 〈C (α)
n ,C (α)

m 〉α− 1
2

=
0 when n �= m, and

〈C (α)
n ,C (α)

n 〉α− 1
2

= π�(2α + n)

22α−1(α + n)n!�(α)2
∼ n2α−2. (8.5)

Moreover,

‖C (α)
n ‖∞ := max−1≤x≤1

|C (α)
n (x)| = �(n + 2α)

n!�(2α)
∼ n2α−1. (8.6)

For t > 0, x, y ∈ [−1, 1], define

p(Y )(t, x, y) =
∞
∑

n=0

(1 − y2)
δ
2−1C

(

δ
2− 1

2

)

n (x)C

(

δ
2− 1

2

)

n (y)

∫ 1
−1(1 − y2)

δ
2−1C

(

δ
2− 1

2

)

n (y)2dy

exp
(

−n

2
(n + δ − 1)t

)

.

(8.7)
From (8.5) and (8.6) we see that the above series converges uniformly on [−1, 1].
Proposition 8.1 If δ ≥ 2, the transition density for (Yt ) is p(Y )(t, x, y) given by (8.7),
and the transition density for (Xt ) is p(X)(t, x, y) = p(Y )(t, cos x, cos y) sin y.

Proof It suffices to derive the the transition density for (Yt ). Let f (x) be a polynomial,

and an = 〈 f,C ( δ
2− 1

2 )
n 〉 δ

2−1/〈C
( δ
2− 1

2 )
n ,C

( δ
2− 1

2 )
n 〉 δ

2−1, n ∈ N ∪ {0}. Then all but finitely

many an’s are zero, and f = ∑∞
n=0 anC

( δ
2− 1

2 )
n . Define f (t, x) = ∑∞

n=0 an pn(t, x).
Then f (t, x) solves (8.3) with f (0, x) = f (x). Suppose (Yt ) solves (8.2) with initial
value x0. Fix t0 > 0. Itô’s formula togetherwith the boundedness of f (t, x) on [0, t0]×
[−1, 1] shows that M(t) := f (t0 − t,Yt ), 0 ≤ t < t0, is a bounded martingale. Since
limt→t0 M(t) = f (Yt0), the optional stopping theorem together with the definition of
p(Y )(t, x, y) implies that

Ex0 [ f (Yt0)] = M(0) = f (t0, x0) =
∫ 1

−1
f (y)p(Y )(t0, x0, y)dy.

Since this holds for any polynomial f , the proof is finished. ��
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Corollary 8.2 Let δ ≥ 2. Then (Yt ) has a unique stationary distribution which has a
density

p(Y )(x) = (1 − x2)
δ
2−1

∫ 1
−1(1 − y2)

δ
2−1dy

, x ∈ (−1, 1); (8.8)

and (Xt ) has a unique stationary distribution which has a density p(X)(x) =
p(Y )(cos x) sin x, x ∈ (−π, π). Moreover, the stationary processes (Yt ) and (Xt )

are reversible.

Proof This follows from the previous proposition and the orthogonality of C
( δ
2− 1

2 )
n

w.r.t. 〈·〉 δ
2−1. Note that C

( δ
2− 1

2 )

0 ≡ 1 and (1 − x2)
δ
2−1 p(Y )(t, x, y) = (1 −

y2)
δ
2−1 p(Y )(t, y, x). ��
Note that p(Y )(y) is also the term for n = 0 in (8.7). Using (8.5) and (8.6), we see

that there is a constant C depending on δ such that

∣

∣

∣p(Y )(t, x, y) − p(Y )(y)
∣

∣

∣ ≤ Ce− δ
2 t , x, y ∈ [−1, 1]. (8.9)

Thus, p(Y )(t, x, y) → p(Y )(y) as t → ∞ uniformly in x, y ∈ [−1, 1]. So we obtain
the following corollary.

Corollary 8.3 Let δ ≥ 2. Then the stationary processes (Yt ) and (Xt ) are mixing,
and so are ergodic.

We now study the transition densities in the case δ < 2. Recall that [0, T ) is the
time interval for (Yt ). We say that p̃(Y )(t, x, y) is the transition density of (Yt ) if for
any f ∈ C([−1, 1]),

Ex [1T>t f (Yt )] =
∫ 1

−1
f (y) p̃(Y )(t, x, y)dy, x, y ∈ (−1, 1), t > 0. (8.10)

The integral
∫ 1
−1 p̃(t, x, y)dy = Ex [T > t] may be less than 1.

Wewill need functions,which solve (8.3) for x ∈ (−1, 1) and vanish at x ∈ {−1, 1}.
It is easy to see that if p(x) = (1 − x2)1− δ

2 q(x), then p(x) solves (8.4) in (−1, 1) iff
q(x) solves

(1 − x2)q ′′(x) − (4 − δ)xq ′(x) − (2λ + 2 − δ)q(x) = 0, −1 < x < 1.

If λ = − 1
2 (n + 1)(n + 2− δ), n ∈ N ∪ {0}, the above equation has a solution C ( 32− δ

2 )
n .

Thus,

p̃n(t, x) :=
(

1 − x2
)1− δ

2
C

(

3
2− δ

2

)

n e− 1
2 (n+1)(n+2−δ)t

solves (8.3) for x ∈ (−1, 1) and vanishes at x ∈ {−1, 1}.
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Note that C
( 32− δ

2 )
n , n ∈ N ∪ {0}, form a complete orthogonal system w.r.t. 〈·〉1− δ

2
.

So we define

p̃(Y )(t, x, y) =
∞
∑

n=0

(

1 − x2
)1− δ

2 C

(

3
2− δ

2

)

n (x)C

(

3
2− δ

2

)

n (y)

∫ 1
−1(1 − y2)1− δ

2C

(

3
2− δ

2

)

n (y)2dy

× exp

(

−1

2
(n + 1)(n + 2 − δ)t

)

. (8.11)

Let P be a polynomial, and an = 〈P,C
( 32− δ

2 )
n 〉1− δ

2
/〈C ( 32− δ

2 )
n ,C

( 32− δ
2 )

n 〉1− δ
2
, n ∈ N ∪

{0}. Then all but finitely many an’s are zero, and P = ∑∞
n=0 anC

( 32− δ
2 )

n . Define
˜f (t, x) = ∑∞

n=0 an p̃n(t, x). Then ˜f (t, x) solves (8.3) for x ∈ (−1, 1), vanishes at

x ∈ {−1, 1}, and satisfies ˜f (0, x) = f (x) := (1 − x2)1− δ
2 P(x). Fix t0 > 0. Define

˜Mt := ˜f (t0 − t,Yt ), 0 ≤ t ≤ T . Then ˜Mt is a martingale with ˜MT = 0. The optional
stoping theorem implies that

Ex0 [1T>t0
˜f (Yt0)] = Ex0 [MT∧t0 ] = M0 = ˜f (t0, x0) =

∫ 1

−1
f (y) p̃(Y )(t0, x0, y)dy.

Thus (8.10) holds for f (x) = (1 − x2)1− δ
2 P(x). Then a denseness argument show

that (8.10) holds for any f ∈ C([−1, 1]). So we obtain the following proposition.

Proposition 8.4 Let δ < 2. The transition density of (Yt ) is p̃(Y )(t, x, y) given by
(8.11), and the transition density of (Xt ) is p̃(Y )(t, cos x, cos y) sin y.

Note that the term for n = 0 in (8.11) is

p̃(Y )(t, x) :=
(

1 − x2
)1− δ

2

∫ 1
−1

(

1 − y2
)1− δ

2 dy
e− 1

2 (2−δ)t . (8.12)

Using (8.5) and (8.6), we see that there is a constant C depending on δ such that

| p̃(Y )(t, x, y) − p̃(Y )(t, x)| ≤ Ce−(3−δ)t , x, y ∈ (−1, 1). (8.13)

Since P
(Y )
x [T > t] = ∫ 1

−1 p̃
(Y )(t, x, y)dy, using the fact that C (α)

1 (y) = 2αy is odd
we see that there is a constant C depending on δ such that

|P (Y )
x [T > t] − 2 p̃(Y )(t, x)| ≤ Ce− 3

2 (4−δ)t , x ∈ (−1, 1). (8.14)

So we obtain the following corollary.
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Corollary 8.5 Let δ < 2, and T be the lifetime for (Yt ) or (Xt ). Then for any initial
values, P

(Y )[T > t] and P
(X)[T > t] are bounded above by a constant depending

on δ times e− 1
2 (2−δ)t , and for any a < 1

2 (2 − δ), E
(Y )[eaT ] and E

(X)[eaT ] are finite.
Remark 1. Gregory Lawler has a method to prove Corollary 8.2 without finding the

transition density (Appendix A, [5]). The idea is to use Girsanov’s theorem to
compare a radial Bessel process of dimension δ ≥ 2 with a Brownian motion. His
method also works for some functions other than δ−1

2 cot(x).
2. We may define a radial Bessel process (Xt ) with dimension δ ∈ [0, 2) such that

the time interval is [0,∞). First, we define (Yt ) to be the solution of the SDE:
dYt = −q(Yt )dB(t) − δ

2Ytdt with Y0 ∈ (−1, 1), where q(x) = √

(1 − x2) ∨ 0.
Since q is Hölder 1/2 continuous, the existence and uniqueness of the strong
solution defined on [0,∞) follow from Theorems 1.7 and 3.5 in §IX of [11]. If
δ ≥ 0, then (Yt ) stays on [−1, 1], and so solves (8.2). Then the process (Xt ) is
defined by Xt = arccos(Yt ). Proposition (8.1) and its two corollaries also hold for
δ ∈ (0, 2) because the functions pn(t, x, y) solve (8.3) for all x ∈ R. Lawler’s
argument does not work in this case since Girsanov’s theorem does not apply.

3. We may also consider the transition density of the process (Yt ), which solves the
SDE

dYt = −
√

1 − Y 2
t d B(t) − δ+

4
(Yt + 1)dt − δ−

4
(Yt − 1)dt, Y0 ∈ (−1, 1).

If δ+ = δ− = δ, this SDE becomes (8.2). If δ+, δ− > 0, then (Yt ) stays in

[−1, 1], and the transition density is given by (8.7) revised such that C
( δ
2− 1

2 )
n

is replaced by the Jacobi polynomial P
(

δ+
2 −1, δ−

2 −1)
n , the weight (1 − y2)

δ
2−1 is

replaced by (1 − y)
δ+
2 −1(1 + y)

δ−
2 −1, and the number n + δ − 1 is replaced

by n + δ++δ−
2 − 1. Such (Yt ) has a unique stationary distribution with density

proportional to (1− x)
δ+
2 −1(1+ x)

δ−
2 −1, and the corresponding stationary process

is reversible, mixing and ergodic. One may also use the Jacobi polynomials to
express the transition density of the process (Yt ) killed after it hits {−1, 1} in the
case δ+ or δ− is less than 2, which resembles (8.11). Such process (Yt )was studied
in Section 4 of [15].
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