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Abstract We first prove that, for x € (0,4), a whole-plane SLE(x; x + 2) trace
stopped at a fixed capacity time satisfies reversibility. We then use this reversibility
result to prove that, for « € (0,4), achordal SLE, curve stopped at a fixed capacity
time can be mapped conformally to the initial segment of a whole-plane SLE(k; k +2)
trace. A similar but weaker result holds for radial SLE, . These results are then used
to study the ergodic behavior of an SLE curve near its tip point at a fixed capacity
time. The proofs rely on the symmetry of backward SLE weldings and conformal
removability of SLE, curves for k € (0, 4).

Mathematics Subject Classification 60D - 30C

1 Introduction

The Schramm-Loewner evolution SLE,, introduced by Oded Schramm, generates
random curves in plane domains which are the scaling limits of a number of critical
two dimensional lattice models. Many work have been done to prove the convergence
of various discrete models to SLE with different parameters «. It is also interesting to
study the geometric properties of the SLE curves.

The current paper focuses on studying the tips of two versions of SLE: chordal SLE
and radial SLE at some fixed capacity time. There were previous work on the tips of
SLE, e.g., [3], in which the multifractal spectrum of the SLE tip is studied. This paper
studies the ergodic property of the SLE near its tip. Now we explain it.
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334 D. Zhan

Consider a chordal or radial SLE, (k € (0, 4)) curve §, which is parameterized by
the half-plane or disc capacity. Let /; denote the harmonic measure of the left side of
Blt, 1] in @\ﬂ[r, 1] as seen form oo (ignoring the real line and the rest of the curve).
Let v(7) be the (logarithm) capacity of B([z, 1]). Then as T — —00, hy-1(;) — h
in distribution, where the law of % is given explicitly. Moreover, for nicely-behaved
functions f on [0, 1], the averages of f(hv—l(f)) over T converge to E[ f(h)].

We will use results about backward SLE derived in [13]. The traditional chordal
or radial SLE, is defined by solving a chordal or radial Loewner equation driven
by «/kB(t). Adding a minus sign to the (forward) Loewner equations, we get the
backward Loewner equations. The backward chordal or radial SLE, is then defined
by solving a backward chordal or radial Loewner equation driven by 1/« B(t).

The backward radial SLE(«; p) processes resemble the forward radial SLE(x; p)
processes, and play an important role in this paper. If « € (0,4] and p < -5 —2,a
backward radial SLE(x; p) process induces a random welding ¢ which is an involution
(an auto homeomorphism whose inverse is itself) of the unit disc with exactly two fixed
points such that for w # z, w = ¢(2) iff f;(z) = f;(w) when ¢ is big enough, where
(ft) are the solutions of the backward Loewner equation. It is proven in [13] that,
for k € (0, 4], there is a coupling of two different backward radial SLE(kx; —k — 6)
processes which induce the same welding.

In Sect. 4 of this paper, we use a limit procedure to define a normalized backward
radial SLE(«; p) trace, and prove that, up to a reflection about the unit circle, it
agrees with the forward whole-plane SLE(k; —4 — p) curve (Theorem 4.6). Using the
symmetry of backward radial SLE(x; —« — 6) welding together with the conformal
removability of SLE, curves, we prove in Sect. 5 that, for « € (0, 4), a whole-plane
SLE(k; k 4 2) curve stopped at the time O satisfies reversibility (Theorem 5.1). One
should keep in mind that a whole-plane SLE(k; p) trace grows from 0 with time
interval [—00, 00), and the time 0 is when the curve reaches the capacity of the closed
unit disc.

This reversibility is different from the reversibility of whole-plane SLE, (x < 4)
derived in [18], or more generally, the reversibility of whole-plane SLE, (p)(x <
8,p>—2and p > % —4) derived in [8], where the trace does not stop in the middle,
but goes all the way to co. The methods in [8, 18] used couplings of two SLE processes
and couplings of an SLE process with a Gaussian free field, respectively, which can
not be used to derive the reversibility here. In fact, the reversibility here does not hold
if & + 2 is replaced by any other number.

This reversibility of the stopped whole-plane SLE(«; k + 2) is then used to prove
that, for « € (0, 4), a forward chordal SLE,. curve stopped at a fixed capacity time can
be mapped conformally to an initial segment of a whole-plane SLE(k; k¥ + 2) curve,
and the same is true up to a change of the probability measure for a forward radial
SLE, (Theorems 5.3 and 5.4). In Sect. 6, we use the above conformal relations to
derive ergodic properties of a chordal or radial SLE, curves at a fixed capacity time
(Theorem 6.6). R

Throughout this paper, we use the following symbols and notation. Let C =
CU{oo},D={ze€C:|z| <1},D*=C\D,T={zeC:|z]l=1},andH={z €
C :Imz > 0}.Letcoty(z) = cot(z/2) and sinp(z) = sin(z/2). Let IT(z) = 1/zZ be the
reflections about T. By an interval on T, we mean a connected subset of T. We use B(¢)
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Ergodicity of the tip of an SLE curve 335

to denote a standard real Brownian motion. We use C (J) to denote the space of real val-
Conf
ued continuous functionson J. By f : D — E we mean that f maps D conformally

onto E. By f, Loy f in U we mean that f; converges to f locally uniformly in U.

2 Loewner equations
2.1 Forward equations

We review the definitions and basic facts about (forward) Loewner equations. The
reader is referred to [4] for details.
A set K is called an H-hull if it is a bounded relatively closed subset of H, and H\ K

is simply connected. For every H-hull K, there is a unique gx : H\ K Cg:f H such that
gk (z) —z — 0as z — oo. The number hcap(K) := lim,_, o 2(gx (z) — z) is always
nonnegative, and is called the half plane capacity of K. A set K is called a D-hull if it
is a relatively closed subset of D, does not contain 0, and D\ K is simply connected.

For every D-hull K, there is a unique gx : D\K Cir:f D such that gg(0) = 0 and
g% (0) > 0. The number dcap(K) := log(g) (0)) is always nonnegative, and is called
the disc capacity of K. A set K is called a C-hull if it is a connected compact subset
of C such that C\ K is connected. For every C-hull with more than one point, C\K is

simply connected, and there is a unique gg : @\K Cir:t D* such that gg (0c0) =
and gl (00) = lim; .o z/gx (z) > 0. The real number cap(K) := log(gl (00)) is
called the whole-plane capacity of K. In either of the three cases, let fx = gl_(l.

Let A € C([0, T)), where T € (0, oo]. The chordal Loewner equation driven by A
is

2
081 (2) = m, 0<t<T; go(z) = z.

The radial Loewner equation driven by A is

e+ 2.(2)

381(2) = 81(2)° 0~ g,z 0<t<T; go(@) =z
8t

Let g;,,0 <t < T, be the solutions of the chordal (resp. radial) Loewner equation.
Foreacht € [0, T'), let K, be the set of z € H (resp. € D) at which g; is not defined.
Then for each ¢, K; is an H (resp. D)-hull with hcap(K;) = 2¢ (resp. dcap(K;) = 1)
and gx, = g;. Wecall g; and K;,0 < ¢t < T, the chordal (resp. radial) Loewner maps
and hulls driven by A. We say that the process generates a chordal (resp. radial) trace
B if each g; ! extends continuously to H (resp. D), and B(r) := 8 (A(t)) (resp. =
g (™)), 0 < 1 < T, is a continuous curve in H (resp. D). If the chordal (resp.
radial) trace S exists, then for each ¢, K; is the H-hull generated by S([0, t]), i.e.,
H\K; (resp. D\K;) is the component of H\B ([0, ¢]) (resp. D\B([0, ¢])) which is
unbounded (resp. contains 0). Note that 8(0) = A(0) € R (resp. = 0 ¢ T).
The trace B is called H-simple (resp. D-simple) if it has no self-intersections and
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336 D. Zhan

intersects R (resp. T) only at its one end point, in which case we have K; = 8((0, t])
for 0 <t < T. Since hcap(K;) = 2t (resp. dcap(K;) = t) for all ¢, we say that the
chordal (resp. radial) trace is parameterized by the half-plane (resp. disc) capacity.

A simple property of the chordal (resp. radial) Loewner process is the translation
(resp. rotation) symmetry. Let C € R and A* = A 4 C. Let g/ and K;* be the
chordal (resp. radial) Loewner maps and hulls driven by A*. Then K;* = C + K; and
g5 (z) = C+g(z—C) (resp. K} = ¢!C K, and g/ (z) = ¢! g,(z/€'C)). If A generates
a chordal (resp. radial) trace S, then A* also generates a chordal (resp. radial) trace 8*
such that g* = C + B (resp. = ¢'Cp).

Let k > 0. The chordal (resp. radial) SLE, is defined by solving the chordal (resp.
radial) Loewner equation with A(#) = +/k B(t), and the process a.s. generates a chordal
(resp. radial) trace, which is H(resp. D)-simple if « € (0, 4].

LetT € Rand A € C((—o0, T]). The whole-plane Loewner equation driven by A
is

iA(t
I@&@)=&@§%#§§,rsT;
lim,, o €'g:(2) = z, z#0.

It turns out that the family (g;) always exists, and is uniquely determined by (e!*®)).
Moreover, there is an increasing family of C-hulls (K;) _ oo <; <7 in C with . K; = {0}
suchthatcap(K;) = tand gk, = g;. Wecallg; and K;, —0o < t < T, the whole-plane
Loewner maps and hulls driven by A. We say that the process generates a whole-plane
trace f if each g, ! extends continuously to D¥, and (1) := g, ' (¢*®), —00 <
t < T, is a continuous curve in C. If the whole-plane trace 8 exists, then it extends
continuously to [—oo, T] with 8(—o0) = 0, and for every 7, C\ K; is the unbounded
component of C\ B([—oo0, f]). If B is a simple curve, then K; = B([—o0, t]) for every
t. So we say that the whole-plane trace is parameterized by the whole-plane capacity.

2.2 Backward equations

Now we review the definitions and basic facts about backward Loewner equations.
The reader is referred to [13] for details.

LetT € (0, 00]and A € C([0, T)). The backward chordal Loewner equation driven
by A is

2

WO =g S

0<t<T; folz) =2z

The backward radial Loewner process driven by A is

e+ f(2)

0 fi(2) = =11 Q) O0<r<T: fol)=z.

Let f;,0 <t < T, be the solutions of the backward chordal (resp. radial) Loewner
equation. Let L, = H\ f;(H) (resp. D\ f;(D)),0 < ¢t < T. Then every L, is an
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Ergodicity of the tip of an SLE curve 337

H (resp. D)-hull with hcap(L;) = 2t (resp. dcap(L;) = t) and fr, = f;. We call
frand L;,0 <t < T, the backward chordal (resp. radial) Loewner maps and hulls
driven by X.

Deﬁne a family of maps f, s, t1, 2 € [0, T'), such that, for any fixed t; € [0, T)
andz € (C\{A(tl)} the function t, — f, 5, (z) is the solution of the first (resp. second)
equation below (with the maximal definition interval):

2

a — _—7
o fio.1 (2) foo (2) — A(t2)

fl] L1 (Z) =z
e 4 f 4 (2)

eik(tz) _ ftz,tl (Z) ’

We call (f,,;,) the backward chordal (resp. radial) Loewner flow driven by A. Note
that we allow that #, to be smaller than ¢ if t; > 0.If r > 11, f3, 4, is defined on the
whole H (resp. D); and this is not the case if r» < f;. The following lemma is obvious.

atz ftz,tl (z) = _ftz,tl (2) ftl,tl (z) =z 2.1

Lemma 2.1 (i) Forany t1,t2,t3 € [0, T), fi3.1, © fi,1y 18 a restriction of fi 1. In
particular, this implies that f;, 1, = ft;;r
(ii) For any fixed ty € [0, T), fiy+1,40,0 < t < T — 1, are the backward chordal
(resp. radial) Loewner maps driven by A(to +1),0 <t < T — t9. Especially,
fio=fi,0=<t<T.
(iii) For any fixed to € [0,T), fio—1.10,0 < t =< to, are the forward chordal (resp.
radial) Loewner maps driven by Aty — 1), 0 <t < 1.

We say that a backward chordal (resp. radial) Loewner process driven by A €
C([0, T')) generates a family of backward chordal (resp. radial) traces 8;,0 <t < T,
if for each fixed #9 € (0, T), the forward chordal (resp. radial) Loewner process
driven by A(fo — 1),0 < t < 19, generates a chordal (resp. radial) trace, which is
/3,0 (tg — t) 0 <t < t. Equivalently, this means that, for each 1y, B, : [0, to] —
H (resp. ]D) is continuous, and or any t, > t; > 0, f;, ;, extends continuously to
H (resp. D) such that B, () = fi,. X (x(rl)) (resp. fi,. (e*))). Taking 1, = t; = ¢,
we get B;(t) = A(t) € R (resp. = ¢/*® e T). Moreover, the equality o © frin =
Jfoo.t0- 12 = 11 = to > 0, holds after the continuation, and so we have

fon By () = Bn(), 1>t >1>0. (2.2)

The backward chordal (resp. radial) SLE, is defined to be the backward chordal
(resp. radial) Loewner process driven by +/k B(t),0 < t < oo. The existence of the
forward chordal (resp. radial SLE, ) trace together with Lemma 2.1 and the trans-
lation (resp. rotation) symmetry implies that the backward chordal (resp. radial)
SLE, process generates a family of backward chordal (resp. radial) traces, which
are H (resp. D)-simple, if « < 4.

Remark One should keep in mind that each §; is a continuous function defined on
[0, t], B:(0) is the tip of B¢, and B;(¢) is the root of B;, which lies on R. The parame-
trization is different from a forward chordal Loewner trace.
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338 D. Zhan

For every H (resp. D)-hull L, g; extends analytically to R\ L (resp. T\ L), and maps
R\ L (resp. T\ L) to an open subset of R (resp. T). The set Sy := R\ gz (R\L) (resp. :=
T\ g2 (T \ L)) is a compact subset of R (resp. T), and is called the support of L. The
map f7, then extends analytically to R\ Sz, (resp. T\ Sz). If (L;)o<;<r are H (resp. D)-
hulls generated by a backward chordal (resp. radial) Loewner process, then each Sy,
is an interval on R (resp. T), and SL,l C SL,2 if 1 < 1 (c.f. Lemmas 2.7 and 3.3 in
[13]). The following is Lemma 3.5 in [13].

Lemma 2.2 Let L;,0 <t < oo, be D-hulls generated by a backward radial Loewner
process. Then | J, St, is equal to either T or T without a single point.

Now we review the welding induced by a backward Loewner process. See Section
3.5 of [13] for details.

Suppose L = B is an H (resp. D)-simple curve. Then Sg is the union of two
intervals on R (resp. T), which intersects at one point, and fg extends continuously
to Sg, and maps the two intervals onto the two sides of 8. Every point on 8 except
the tip point has two preimages. The welding ¢4 induced by f is the involution of Sg
with exactly one fixed point which is the fg-pre-image of the tip of 8, such that for
x #y € Sg,y =¢g(x)ifand only if fg(x) = fg(y).

Suppose a backward chordal (resp. radial) Loewner process generates a family
of H (resp. D)-simple traces (B;)o<:<7. Then for any | < 12, Sﬂt. is contained in
the interior of Sg, , and ¢g, is a restriction of ¢g, . The latter can be seen from
foo.t1 © ft, = fr,- So the process naturally induces a welding ¢ which is an involution
of the open interval (o, 7 Sg, on R (resp. T) such that @[, = ¢, for each z. The
welding has only one fixed point: 1(0) € R (resp. ¢/*(? € T). Consider the radial case
and suppose 7' = oco. Lemma 2.2 and the properties of Sg, ’s imply that T\ |-, -~ Sg,
contains exactly one point, say wo. We call wg the joint point of the process, which
is the only point such that f;(wg) € T for all # > 0. In this case we extend ¢ to an
involution of T with exactly two fixed points: ¢/*© and wy.

3 SLE(k; p) processes

In this section, we review the definitions of the forward and backward radial SLE(«; p)
processes, respectively, as well as the whole-plane SLE(«k; p) process.

Letk > Oand and p € R. Let 0 € {1, —1}. The case 0 = 1 (resp. = —1)
corresponds to the forward (resp. backward) process. Letz # w € T.Choosex, y € R
such that ¢ = z, ¢’y =w,and 0 < x —y < 27. Let A(f) and ¢(¢),0 <t < T, be
the solution of the system of SDE:

[ dr(t) = kdB(t) + 0 § cota(A(1) — q(1))dt,  A(0) = x; G.1)
dq(1) = o cota(q(t) — A(1))dt, q0) =y. '
Ifo =1 (resp. = —1), the forward (resp. backward) radial Loewner process driven by

X is called a forward (resp. backward) SLE(k; p) process started from (z; w). Recall
that cotz(z) = cot(z/2). The appearance of cot; comes from the covering forward
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Ergodicity of the tip of an SLE curve 339

and backward radial Loewner equations. Since cot, has period 27, it is easy to see
that the definition does not depend on the choice of x, y.
Let Z, = A(¢) — q(¢t). Then (%th) is a radial Bessel process of dimension § :=

%0(% + 1) + 1 (see “Appendix B”). Thus, T = o0 ifé > 2; T < oc0if § < 2.

Lemma 3.1 Letx > Oandp < —% —2.Let L;,0 <t < 00, be D-hulls generated by
a backward radial SLE(«; p) process started from (z; w). Then Uzzo Sr, = T\{w}.

Proof Since 0 = —1 for the backward equation, p < —% — 2 implies that § > 2, and
so T = oo. Let f;,0 <t < oo, be the conformal maps generated by the backward
radial SLE(k; p) process. Formula (3.1) in the case ¢ = —1 implies that el =
fi(w),0 <t < oo. This means that w ¢ S;,,0 <t < oo. The conclusion then
follows from Lemma 2.2. O

Assume that § > 2, which means that p > % —2ifo =1land p < —% —2if

o = —1. From Corollary 8.2, (Z;) has a unique stationary distribution ps which has a
density proportional to sins (x)?~!, and the stationary process is reversible. Let (Z;);cr
denote the stationary process. Let y be a random variable with uniform distribution
Ujo,2x) on [0, 277) such that  is independent of (Z). Let g(t) = y — o [, cotz(Z,)d's
and A(1) = (1) + ZiteR Ifo =1 (resp. = —1), the forward (resp. backward)
radial Loewner process driven by i(t), 0 <t < oo, is called a stationary forward
(resp. backward) radial SLE(k; p) process. Equivalently, a stationary forward (resp.
backward) radial SLE(k; p) process is a forward (resp. backward) radial SLE(x; p)
process started from a random pair (€%, 'Yy with (X, x — y) ~ Upor) X ps. If
o = 1, the whole-plane Loewner process driven by A(¢), € R, is called a whole-
plane SLE(x; p) process.

It is easy to verify the following Markov-type relation between a whole-plane
SLE(x; p) process and a forward radial SLE(k; p) process. Recall that IT(z) = 1/z
is the reflection about T. Let g; and K;,t € R, be maps and hulls generated by a
whole-plane SLE(k; p) process. Let #p € R. Then IT o g4/ © gtgl oIt and IT o
810 (Kiy+:\Ky), t = 0, are maps and hulls generated by a stationary forward radial
SLE(k; p) process.

Using the reversibility of the stationary radial Bessel processes of dimension § > 2,
we obtain the following lemma.

Lemma 3.2 Letk > 0and p < —% — 2. Let M(t),t > 0, be a driving function of a
stationary backward radial SLE(k; p) process. Then foranyty > 0, L(to—1),0 <t <
to, is a driving function up to time t( of a stationary forward radial SLE(k; —4 — p)
process; and A(—t), —o0 < t < 0, is a driving function up to time 0 of a whole-plane
SLE(k; —4 — p) process.

Girsanov’s theorem implies that many properties of forward or backward radial
SLE, process carry over to radial SLE(x; p) processes. For example, a forward (resp.
backward) radial SLE(k; p) process generates a forward radial trace (resp. a family of
backward radial traces). If k <4 and p < —’% — 2, then a backward radial SLE(k; p)
process induces a welding, say ¢, of T with two fixed points. Suppose the process is
started from (z; w). From ¢*©) = ¢1@O+20) — ¢ix — 7 we see that z is one fixed
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340 D. Zhan

point of ¢. Lemma 3.1 implies that w is the joint point of the process, and so is the
other fixed point of ¢.

Corollary 3.3 Let k > 0 and p < —5 — 2. Let (B;) be a family of back-
ward radial traces generated by a stationary backward radial SLE(x; p) process.
Let B be a stationary forward radial SLE(k; —4 — p) trace. Then for every fixed
to € (0, 00), B1,(t), 0 < t < to, has the same distribution as B(to —t),0 <t < 1.

Remark One special value of p is —4. Theorem 6.8 in [13] implies that, if k € (0, 4], a
stationary backward radial SLE(k; —4) process is a stationary backward radial SLE,
process, i.e., the process driven by A(f) = X + +/k B(t), where X is a random variable
uniformly distributed on [0, 27) and independent of B(¢). So the above corollary
provides a connection between a family of stationary backward radial SLE, traces
and a stationary forward radial SLE, trace.

We are especially interested in the backward radial SLE(k; —« — 6) processes. The
proposition below is Corollary 4.8 in [13].

Proposition 3.4 Let k > 0 and zo # z00o € T. Let f; and L;,0 < t < 00, be the
backward radial SLE(k; —k — 6) maps and hulls started from (zg, Zo0). Let W be a
Mobius transformation with W (D) = H, W(zo) = 0, and W (ze0) = 00. Then there
is a strictly increasing function v with v ([0, 00)) = [0, 00) such that wH (Ly@)),0 <
t < oo, are the H-hulls driven by a backward chordal SLE, process.

That the range of v is [0, co) is a part of the statement of Corollary 4.8 in [13]: up
to a time change, W7(L,) is a (complete) backward chordal SLE, process. See the
end of the proof of a similar proposition: Theorem 4.6 in [13].

The symbol WH(L) is defined in Section 2.3 of [13]. Theorem 2.20 in [13] ensures
that for aD-hull L and a Mébius transformation W from ID onto H with W~ (c0) ¢ S,
there is a unique Mdbius transformation W from I onto H such that WZ (L) is an
H-hull, and WE o £ = fgvﬂL (1) © W holds in . The WH(L) is then defined to be
the H-hull WX (L). Since zo is the joint point of the process, W1(00) = 200 ¢ S,
for each ¢, and so WX and WH(Lt) are well defined.

Write W; = WLt 0 <t < oo.LetAbethe driving function for the backward radial
Loewner process (L;). Let A be the driving function for the backward chordal process
(WH(Ly)) = Woy(Lo@y))- Then (4.10) in [13] implies that W, (¢/*®) = %(v(z)). In
fact, in (4.10) of [13], the W satisfies that W@ = W (e'?), and the A* (1) corresponds to
the A(v(?)) here. Let f; (resp. f;), fu.1 (resp. fi,.1;), and (B;) (resp. B;), 0 <t < oo,
be the backward radial (resp. chordal) Loewner maps, flows, and traces driven by
A (resp. ). Then we have W; o i = ﬁ)—l(t) o W in D for any ¢ > 0. Applying this
equality to t = 1 ap\d t = t1, where 1, > t; > 0, and using Lemma 2.1, we get
‘1/12 o fonolfy = fv*l(tz),v*‘(zl) o Wy o f; in D, which implies that Wy, o f;, 1, =
So-1p).0-1y) © Wy in D, and so

B (1) = Tty Go(01) = Fryty © W (€70
= Wat) © futoe @) = Wy (Buy (0(1)))-

Thus, the proposition above implies the following corollary.
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Corollary 3.5 Let « > 0 and zp # 7z € T. Let 5;,0 < t < 00, be the back-
ward radial SLE(k; —k — 6) traces started from (20, Zoo). Then there exist a strictly
increasing function v with v([0, 00)) = [0, 00), and a family of Mobius transforma-
tions (Wy)s>0 with W;(D) = H, such that ,3, = Wyuy o Buy o v,0 < t < oo, are
backward chordal traces generated by a backward chordal SLE, process.

The following proposition is Theorem 6.1 in [13].

Proposition 3.6 Letk € (0,4]. Letz1 # z2 € T. There is a coupling of two backward
radial SLE(k; —k — 6) processes, one started from (z1; z2), the other started from
(z2; z1), such that the two processes induce the same welding.

Remark If § = %U(% + 1) + 1 € (1, 2), we may define a forward (resp. backward)
radial SLE(x; p) process in the case ¢ = 1 (resp. 0 = —1) such that the time interval
of the process is [0, 00). First, the second remark in “Appendix B” says that a radial
Bessel process (X;) of dimension § > O started from (x — y)/2 can be defined for
all > 0. Second, the transition density of (X;) given by Proposition (8.1) (which is
also true in the case § € (0, 2)) shows that, if § > 1, then cot(X,),0 <t < 00, is
locally integrable. Thus, if § > 1, wemay letg(t) =y —o fot cotr(Zg)ds and A(t) =
q(t)+7Z;,0 <t < oo, where Z; = ZX%,, and use A as the driving function to define
a forward (resp. backward) radial SLE(x; p) process. The corresponding stationary
processes are similarly defined. Lemma 3.2 still holds thanks to the reversibility of the
stationary radial Bessel process in the case § € (1, 2). But Girsanov’s theorem does
not apply beyond the time that A(¢) — ¢(¢) hits {0, 27}.

4 Normalized backward radial Loewner trace

In general, a backward chordal (resp. radial) Loewner process does not naturally gener-
ate a single curve even if the backward chordal (resp. radial) traces (8;) exist, because
they may not satisfy 8;, C B, when #; < f,. A normalization method was intro-
duced in [13] to define a normalized backward chordal Loewner trace (under certain
conditions). In this section we will define a normalized backward radial Loewner trace.

Lemmad4.1 Let » € C([0,00)), and (fi,.1,) be the backward radial Loewner
flow driven by M. Define Fi, s, = €2fn4,t2 > t1 > 0. Then for every fixed
to € [0, 00), Fy sy converges locally uniformly in D as t — oo to a conformal map,

denoted by Fuo 1y, which satisfies that Fe 1,(0) = 0, F(;OJO (0) = e, and
Foo,tz o ftz,tl = oo,y == 0. (41)

Moreover, let Gy = ITOFO_O,I_S oltand Ky = C\Ito Fs _s(D), —00 < s < 0. Then
Gy and K are whole-plane Loewner maps and hulls driven by A(—s), —oo < s < 0.

Proof Lemma 2.1(ii) implies that, if , > #; > 0, then f, ; is a conformal map
on D with f, ,(0) = 0 and f , (0) = e~2=1) Thus, every F,, ,, is a conformal
map on [ that satisfies F;, ;,(0) = 0 and Ft’z’tl (0) = e''. Koebe’s distortion theorem
(c.f. [1]) implies that, for every fixed #1, (Fy, 1 )i,>r, 1S @ normal family. Let S be a
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countable unbounded subset of [0, 00), and write S>; = {x € S : x > t} for every
t > 0. Using a diagonal argument, we can find a positive sequence #, — oo such that
for any x € §, (F}, x) converges locally uniformly in D. Let F , denote the limit.
Lemma 7.2 implies that Fu , is a conformal map on DD, and satisfies Fi x(0) = 0
and F}, . (0) = e*.

Letxy > x1 € S. From f; x, © fr,.x; = fi,.x; We conclude that Foo x, © fry.x, =
Foox,- For t € [0, 00), choose x € S>; and define the conformal map Foo; =
Foox o fx,, onD. Lemma 2.1(1) and Feo x; © fxy,x; = Foo,x, fOr xo > x1 € S imply
that the definition of F ; does not depend on the choice of x € S>,, and (4.1) holds.

From (2.1) we see that f;, ;, commutes with the reflection IT(z) = 1/z. Since
f,;%] = fi.n, using (4.1) we get G5, = f_g, —s, 0 Gy, if 51 < 52 < 0. From (2.1) we
see that G satisfies the equation

e 4 Gy(z)

56 =0 F5 "6 o)

—00 <5 <0. “4.2)

Let foo,,(z) = Foo (e '2),t > 0. Then each Foo, is a conformal map defined
Cara

on e'D, and satisfies foo,,(O) = 0 and F +0) =1.Ast — o0,e'D — C (cf.
=
z € e'D. Thus, for every r > 0, there exists fp € R such that, if 7 > fg, then
|foo,[| < 2r on {|z| < r}. Therefore, every sequence (f,), which tends to oo, contains
a subsequence (#,,) such that F\oo,tnk converges locally uniformly in C. Applying
Lemma 7.2, we see that the limit function is a conformal map on C, which fixes 0 and

Definition 7.1). Koebe’s distortion theorem implies that |Foo,t(z)| for

o S = lu_ .
has derivative 1 at 0. Such conformal map must be the identity. Hence Foot 5 id

in C as t — oo. Applying Lemma 7.2 again, we see that e’ F t(z) U idin C as
t — o0. Thus, limg—, _ €*G4(z) = z for any z € C\{0}, which together with (4.2)
implies that G5, —oo < s < 0, are whole-plane Loewner maps driven by A(—s). The
K are the corresponding hulls because K = (C\GS_1 D).

Itremains to show that, forany ¢ € [0, 00), Fy ; 1—u> FsrinDasx — oco. Assume
that this is not true for some #y € [0, 00). Since (Fy 1) x>s, 1S a normal family, there
exists x, — oo such that Fy, , converges locally uniformly in D to a function other
than Fo 4. Let Foo 1, denote the limit. Let § = NU {#p}. By passing to a subsequence,

Lu
we may assume that, for every t € S, Fy, 1 — Foo,, in . Now we may repeat the
above construction to define Fi ; for every ¢ € [0, 00). The previous argument shows
that It o F _,olr,—00 <t < 0, are the whole- plane Loewner maps driven by

A(—t), —oo < t < 0. Since the same is true for IT o F_ _, o IT, we get FOo = Foos

. . lLu
for every ¢, which contradicts that FOOJO # Foo,ro- Thus, Fy ; e Feorin D as
X — OQ. O

Lemma 4.2 Let A € C([0, 00)). Let (Foo,t)1>0 be given by the above lemma. Suppose
the backward radial Loewner process driven by ) generates a family of backward
radial Loewner traces B;,0 <t < oo, and

Vg € [0,00), 3ty € (19, 00), By, ([0, to]) C D. 4.3)
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Then every Fuo; extends to a continuous function D — C, and there is a continuous
curve B(t),0 <t < oo, with lim,_, », B(t) = 00 such that

B() = Foo.1y(Bry (1), 1021 =0; (4.4)

and foranyt > 0, Foo + (D) is the component of C\B([t, 00)) that contains 0. Further-
more, y(s) := IT(B(—s)), —00 < s <0, is the whole-plane Loewner trace driven by
A(=s).

Proof For every 19 € [0, 00), using (4.3) we may pick #; € (fp, 00) such that
B ([0, 1o]) C D, and define B(t) = Foo,fy © By, (1), t € [0, tp]. From (2.2) and (4.1)
we see that the definition of 8 does not depend on #y and #{, and 8 is continuous on
[0, o).

Let Ly, s, = D\fi,, (D), > t; = 0. Then L, ,, is the D-hull generated by
Bn ([t1, 2]), i.e., D\Ly, 4, is the component of D\ By, ([#1, 2]) that contains 0. Hence
Ly, ND C By, (11, 12]).

Let Gy and K5, —00 < s < 0, be given by the previous lemma. Then (Kj)
is an increasing family with ﬂs<0 Ky = {0}). If s < 51 <0, from Foo—5, =
Foo,—sy © fegy,—s; and f_y, _ (D) = D\L_g, _,, we see that K, \K,, = IT o
FOO,—SZ (L—Sz,—sl)-

Fix tp > t; > 0. Choose T > t, such that 87 ([0, £2]) C D. Then B(#2) = Foo,1 ©

Conf
Br(t2). Since fr, : D 2 ID\L7, LT is the D-hull generated by Br([t1, T1),

and 1, € [11, T], we see that Br(12) ¢ fr., (D). So B(12) ¢ Feo,r © fr,, (D) =
Foo,1; (D). This implies that, if s < 51 < 0, then y(s2) = IT(B(—s2)) € C\IT o
Foo,—5; (D) = Kj,. Thus, y((—o0, s]) C K for every s < 0. Since (), Ks; = {0},
we get limg_, o ¥ (s) = 0. -

Define y(—o0) = 0. Let s < 0. Let z9 € K. If zo = 0, then z9 = y(—00) €
y ([—00, s1). Now suppose zo # 0. Since (Ky) is increasing and [, K5 = {0}, there
is 59 < s such thatzg ¢ K. Thus, zg € K;\Ky, = IT 0 FOOQ,SO(L:SO,,S). From zg €
K, we see that wo 1= F'_ o Ir(z0) € L_g,—s ND. Since L_g, _ is the D-hull
generated by B_;,([—s, —so]), there is 1 € [—s, —so] such that wg = B, (t1). Thus,

20 = IT 0 Foo,—5y(B—s(t1)) = y(=11) € y([—00,s]). Thus, 0K C y([—00,s]),
Conf ~
which implies that d K ; is locally connected. Since I o Foo —go I : D* 2 C\K;, we

see that Fiy, ; extends continuously to D for each ¢ > 0 (c.f. [10]). The equality (4.1)
holds after continuation, which together with (2.2) and the definition of g implies (4.4).
Setting #; = t = —s, we see that y(s) = IT o Fo ((e*) = G71(e/*=%). Thus,
y(s), —oo < s < 0,is the whole-plane Loewner trace driven by A(—s), —oo < s < 0.
This implies that lim;_, o B(¢) = IT(limg_, _ Y (5)) = 00.

Finally, from the properties of the whole-plane Loewner trace, we see that for any
s >0, G;I(D*) is the component of @\y([—oo, s]) that contains 0. Since G_; =
IT o FO;}, oIt and y(—t) = IT(B(t)), we see that, for any t > 0, F (D) is the
component of C\B([t, c0)) that contains IT(co) = 0. O

Definition 4.3 The 8(r),0 < t < o0, given by the lemma is called the normalized
backward radial Loewner trace driven by X.
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If the backward radial Loewner traces §; are all D-simple traces, then (4.3) clearly
holds because we may always choose t; = fg + 1. Moreover, (4.4) implies that for any
to > 0, B restricted to [0, #p) is simple. Thus, the whole curve § is simple. This implies
further that Fio (D) = C\B([¢, 00)) for any ¢ > 0. In particular, Fo o maps two arcs
on T with two common end points onto the two sides of . Let ¢ be the welding
induced by the process. The equality Fio 0 = Foor © f; implies that, if y = ¢ (x) then
Foo,0(x) = Fso,0(y) € B. The two fixed points of ¢ are mapped to the two ends of
such that ¢/*(¥) is mapped to 8(0) € C, and the joint point is mapped to occ.

We will prove that (4.3) holds in some other cases. We say that an H (resp. D)-hull
K is nice if Sk is an interval on R (resp. D), and fx extends continuously to Sx and
maps the interior of Sk into H (resp. D). This means that d K N H (resp. 9K N D) is
the image of an open curve in H (resp. D), whose two ends approach R (resp. T). It
is easy to see that, if K is a nice H-hull, and W is a M&bius transformation such that
W(MH) =D and 0 ¢ W(K), then W(K) is a nice D-hull.

Lemmad4.4 Letk > 4andp < —% —2. Let (L) be D-hulls generated by a backward
radial SLE(k; p) process. Then for every fixed ty € (0, 00), a.s. Ly, is nice.

Proof Theorem 6.1 in [17] shows that, if (H;) are H-hulls generated by a (forward)
chordal SLE, process, then for any stopping time 7' € (0, 00), a.s. Hr is anice H-hull.
From the equivalence between chordal SLE, and radial SLE, (Proposition 4.2 in [6]),
we conclude that, if (K;) are D-hulls generated by a forward radial SLE, process,
then for any deterministic point zo € T and any stopping time 7' € (0, co) such that
20 ¢ K7, as. Kr is a nice D-hull. This further implies that, for any stopping time
T € (0, 00), on the event that T ¢ Kr,a.s. Ky is a nice D-hull. Let (L?) be H-hulls
generated by a backward radial SLE, process. The above result in the case that T
is a deterministic time together with Lemma 2.1 and the rotation symmetry of radial
Loewner processes implies that, for any fixed #y € (0, 00), on the event that S L9 # T,

a.s. L% is a nice D-hull.

By rotation symmetry, we may assume that the backward radial SLE(k; p) process
which generates (L;) is started from (1; wp). Fix fp € (0, 00). Girsanov’s theo-
rem implies that the distribution of (L;)o<;<s, 1S absolutely continuous w.r.t. that
of (L?)oftgo given by the last paragraph conditioned on the event that f,o(u)o) eT
for 0 <t < ty. Since ftg(u)o) € T is equivalent to wg € T\SL,O, which implies that
Sr,, # T, the proof is completed. O

Proposition 4.5 Letk > 0 and p < —%5 —2. Then condition (4.3) almost surely holds
for a backward radial SLE(k; p) process.

Proof The result is clear if k < 4 since the traces are D-simple. Now assume that
K > 4. Suppose the process is started from (zo; wo). Lemma 3.1 implies that Sz, C
T\{wo}. So fi,(wo) ¢ L_,O Since L, is the D-hull generated by B;,, we have f;, (wo) ¢
B ([0, 19]). The Markov property of Brownian motion and the fact that eld) = fr(wo)
for all ¢ imply that, conditioned on A(¢),0 < t < t9, the maps fi,4,1,¢ = 0, are
generated by a backward radial SLE(«k; p) process started from (et0), Sio(wo)). Let
Ligti10 = }D)\thOﬂJ0 (D). Lemma 4.4 implies that, for every #; > fy, a.s. L;, 4, is nice.
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Lemma 3.1 implies that the probability that By, ([0, #o]) N'T is contained in the interior
of S, ,, tends to 1 as 7, — oo.
If Ly, 4 is nice and B, ([0, #o]) N T is contained in the interior of SLt1 o’ then

B ([0, 00]) = fr1.10(Bio ([0, 201)) = fL,, ., (Bro ([0, 10])) C D.

In fact, if z € B;, ([0, 7p]) N D, then obviously fLrwo (z) e Dyif z € B4y ([0, 10D N'T,
then f7, . (z) € D follows from that L, ;, is nice and z lies in the interior of Sz, .
Thus, as t; — oo, the probability that g, ([0, fp]) C D tends to 1. This means that,
for every fixed #p > 0, a.s. there exists a (random) #; > # such that 8, ([0, tp]) C D.
Thus, on an event with probability 1, (4.3) holds for every fy € N. Since g, ([0, #p]) C
B ([0,n]) C Diftp < n € N, we see that (4.3) holds on that event. This completes
the proof. O

Thus, a normalized backward radial SLE(k; p) trace can be well defined for any
k >0and p < —’% — 2. Combining Lemmas 3.2 and 4.2, we obtain the following
theorem.

Theorem 4.6 Let k > 0 and p < —% — 2. Let B(t),0 <t < oo, be a normalized
stationary backward radial SLE(k; p) trace. Then y (s) := IT(B(—s)), —00 < s <0,
is a whole-plane SLE(k; —4 — p) trace stopped at time 0.

5 Conformal images of the tips

Theorem 5.1 Letk € (0,4). Let y(s), —oo < s < 0, be awhole-plane SLE(k; k +2)
trace stopped at time 0. Then after an orientation reversing time change, the curve
y(s) — y(0), —oo < s < 0, has the same distribution as y (s), —oo < s < 0.

Proof Theorem 4.6 shows that g(t) := IT(y(—t)),0 < t < oo, is a normalized

stationary backward radial SLE(x; —x — 6) trace, which is a simple curve with

C
B(0co) = oo, and there is Foo 0 : D 33 C\B such that F ¢(0) = 0, F/ 0(O) =1,

and Fio 0(x) = Fso,0(y) implies that y = x or y = ¢(x), where ¢ is the weld-
ing induced by the stationary backward radial SLE(k; —« — 6) process. Proposition
3.6 implies that this process can be coupled with another stationary backward radial
SLE(k; —k_— 6) process, which induces the same welding, but has a different joint
point. Let ,8 and Fo 0 be the normalized trace and map for the second process. Let
y(s) = IT(ﬁ( 5)), —0o < s < 0. Theorem 4.6 implies that ¥ is also a whole-plane
SLE(k; k + 2) trace stopped at time O.

Define W = It o i*:oo,o o F o o IT. Then W : (C\y g: (C\y and satisfies
that W (00) = oo and W' (00) = l Since the two backward radial SLE(k; —« — 6)
processes induce the same welding, we see that Foo 0(x) = Foo,0(y) iff Foo,o(x) =
Foo,0(y). Thus, W extends continuously to y. The work in [2] shows that the boundary
of a Holder domain is conformally removable; while the work in [12] shows that, for
k € (0,4), achordal SLE, trace is the boundary of a Holder domain, which together
with the Girsanov’s theorem and the equivalence between chordal SLE, and radial
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SLE, implies that aradial SLE(k; p) trace is conformally removable for « € (0, 4) and
p = 5—2(whichistrueif p = «x+2). The Markov-type relation between whole-plane
SLE(k; k+2) and radial SLE(x'; ¥ +2) processes implies that y ([g, 0]) is conformally
removable for any 7y € (—o0, 0), and so is the whole curve y = y ([—o00, 0]). Thus,
W extends to a conformal map defined on C such that W(y) = ¥. Since W(o0) = o0
and W/(oc0) = 1, we have W(z) = z + C for some constant C € C. This means
that y = y + C, where both curves are viewed as sets. Since both curves are simple,
W maps end points of y to end points of . Now 0 is an end point of both curves.
Since Fi 0 and 1?00,0 map the joint points of the two processes, respectively, to co,
and the two joints points are different, W does not fixed 0. So W maps the other end
point of y: y(0) to 0, which implies that C = —y(0) and the orientations of ¥ and
W(y) = y — y(0) are opposite to each other. Thus, the whole-plane SLE(x; k + 2)
trace y up to time O is an orientation reversing time-change of y — y (0) up to time 0,
which completes the proof. O

Remark This theorem says that a whole-plane SLE(x; k +2)(x € (0, 4)) trace stopped
at whole-plane capacity time O satisfies reversibility. So a tip segment of the trace at
time O has the same shape as an initial segment of the trace.

Lemma 5.2 Let k > 0. Let B be a forward chordal SLE, trace. Let ty € (0, 00) be
fixed. Then there is a whole-plane SLE(k; k + 2) process, which generates hulls (Kj)
andatrace 'y, and a random conformal map W defined on H such that W (H) = @\K s0
for some random so < 0 and W (B(t)) = y(v(t)),0 <t < 19, where v is a random
strictly increasing function with v([0, to]) = [so, O].

Proof Let A be the driving function for . Lemma 2.1 and the translation symmetry
implies that there is a backward chordal SLE, process, which generates backward
chordal traces (,gt) such that ,gto(lo —1t) = B@) — A(1y),0 <t < ty. Corollary
3.5 implies that there exist a stationary backward radial SLE(x; —k — 6) process
generating backward radial traces (E,), a family of Mobius transformations (V;) with
V:(H) = D for each ¢, and a strictly increasing function u with u([0, c0)) = [0, 00),
such that V;, (,Ez] 1)) = ,B\u(,,)(u (1)) for any t; > t > 0. In particular, it follows that
Vi (B(1) = 3(10)) = Bugy ulto — 1)), 0 < 1 < 1.

Let B be the normalized backward radial trace generated by that stationary backward
radial SLE(k; —« — 6) process, which exists thanks to Proposition 4.5. Lemmas 4.1
and 4.2 state that there exists a family of conformal maps Fu s, ¢ > 0, defined on
D, with continuation to D, such that B\(t) = Foo,ty (B, (t)) forany t; >t > 0. In
particular, we have

Foouutt) Vig (B(X) = 1(10))) = Foo.utip) Butio) Wt — 1)) = Blulto — 1)),
0<t<r.

Theorem 4.6 states that y(s) := IT(E(—S)), —o0 < s < 0, is a whole-plane
SLE(k; k +2) trace stopped at time 0. Lemma 4.1 states that K := C\ I o Fip,—(ID)
are the corresponding hulls. Then we have IT(Foou()(Viy(B(t) — A(t0)))) =
y(—u(ty —1)),0 <t < to. Now it is easy to check that W (z) := IT(Feo,u(tg) (V1o (z —
A(t)))), v(t) := —u(ty — t), and 59 := —u(ty) satisfy the desired properties. O
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Theorem 5.3 Let k € (0,4) and tg € (0, 00). Let B(t),t > 0, be a forward chordal
SLE, trace (parameterized by the half-plane capacity). Then there is a random con-
formal map V defined on H such that V (B(ty)) = 0, and V(B(tg —1)),0 <t < ty, is
an initial segment of a whole-plane SLE (i ; k + 2) trace, up to a time change.

Proof Lemma 5.2 states that we can map B(fo —t), 0 <t < 1y, conformally to a tip
segment of a whole-plane SLE(k; k +2) trace at time 0. Then we may apply Theorem
5.1. O

We may derive a similar but weaker result for radial SLE.

Theorem 5.4 Let k € (0,4) and ty € (0, 00). Let f(t),t > 0, be a forward radial
SLE, trace (parameterized by the disc capacity). Then there is a random conformal
map V defined on D such that V(B(1)) = 0, and up to a time change, V (B(ty—t)), 0 <
t < ty, has a distribution, which is absolutely continuous w.r.t. an initial segment of a
whole-plane SLE(k; k + 2) trace.

Proof From Theorem 5.1, it suffices to prove the theorem with “an initial segment”
replaced by “a tip segment at time (0. By rotation symmetry, we may assume that 8 is
a forward stationary radial SLE(k; 0) trace. By Corollary 3.3, B(fp — 1),0 < t < 1o,
has the distribution of a backward stationary radial SLE(x; —4) trace at time f, say
By, Girsanov’s theorem implies that the distribution of f, is absolutely continuous
w.r.t. a backward stationary radial SLE(k; —x — 6) trace at time #y. This backward
stationary radial SLE(x; —k — 6) trace at #y can then be mapped conformally to a tip
segment of the normalized trace generated by the process. Finally, the reflection I
maps that tip segment to a tip segment of a whole-plane SLE(k; k 4 2) trace at time
0 thanks to Theorem 4.6. O

6 Ergodicity

We will apply Theorems 5.3 and 5.4 to study some ergodic behavior of the tip of a
chordal or radial SLE, (x € (0, 4)) trace at a deterministic half plane or disc capacity
time.

Let y(t),a < t < b, be a simple curve in C such that y(a) = 0. We may
reparameterize y using the whole-plane capacity. Let T = cap(y). Define v on
[a, b] such that v(a) = —oo and v(t) = cap(y([a,t])),a < t < b. Then v
is a strictly increasing function with v([a, b]) = [—oo, T]. It turns out that (c.f.
[4]) y°(t) := y(v~'(t)), —00 < t < T, is a whole-plane Loewner trace driven
by some A € C((—oo, T]). Let g, —00 < t < T, be the corresponding maps.
Then each g, ! extends continuously to D* and maps T onto y?([—o0, t]). At
time 7, there are two special points on T, which are mapped by g, ' to the two
ends of yV([—00, t]). One is ¢/*®), which is mapped to yV(¢). Let z(¢) denote the
point on T which is mapped to yV(—oo0) = 0. Then z(z) satisfies the equation
Z@t) = Z(I)%—f%;’ —00 < t < T. There exists a unique g € C((—o0, T]) such
that z(r) = ¢4 and 0 < A(r) — q(t) < 2w, —00 < t < T. Then ¢(¢) satisfies the
equation ¢’(t) = cota(g(t) — A(t)), —oo < t < T. The number A(r) — g (1) € (0, 27)
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has a geometric meaning. It is equal to 27 times the harmonic measure viewed from
oo of the right side of y?([—o0, t]) in C\y " ([—o0, t]).

Let« < 4and p > 5 — 2. A whole-plane SLE(x; p) process generates a simple
trace, say y(t), —0o < t < oo, which is parameterized by whole-plane capacity.
Recall the definition in Sect. 3. There are A,q € C(R) such that A is the driving
function, ¢ (¢) satisfies the equation ¢’(r) = cota(q(t) — A(¢)), and Z(¢) := A(¢) —
q(t) € (0,27), —00 < t < 00, is a reversible stationary diffusion process with SDE:
dZ(t) = J/kdB(t) + (‘2—’ + 1) cota(Z(2))dt. Let puy, , denote the invariant distribution
for (Z(t)). Corollary 8.2 shows that ., has a density, which is proportional to

sinj (x)%(gH). Corollary 8.3 shows that (Z(t)) is ergodic. Thus, for any #y € R and
f e Ll(,u,c;p), almost surely

. 1
lim
t——00 tO —t

4]
/ F(Z(s))ds =/f(x)duk;p(x)- (6.1)
t

We will prove that this property is preserved under conformal maps fixing 0, as long
as f is uniformly continuous. The following lemma is obvious.

Lemma 6.1 Let T1, T, € R. Let Z; € C((—00, Tj)), j = 1, 2. Suppose that there is
an increasing differentiable function v defined on (—oo, T1) such that v((—oo, T1]) =
(=00, 1,V (t) — 1 and Zr(v(t)) — Z1(t) — Oast — —oo. Let f € C(R) be
uniformly continuous. Then

. 1
lim
t——00 t() —t

to 1 fo
/ F(Zi(s))ds = lim —/ F(Za(s))ds
t t—>—00fy—1 J;

as long as either limit exists and lies in R for some/every tg € (—o0, T1 A T5).

We will need some properties of C-hulls. Let K be a C-hull such that {0} ; K. The
following well-known fact follows from Schwarz lemma and Koebe’s 1/4 theorem

(c.f. [1]):

oCap(K) < ma}? lz| < 4cP(K) (6.2)
7€

Lemma 6.2 For the above K, |e“®K) gx () — z| < 5¢°K) for any z € C\K.

Proof Since the derivative of K)o (7) at 0o is 1, ePKgr(z) — z extends
analytically to C\K. Applying the maximum modulus principle, we see that
SUP_eC\ K |ecP(K) g (7) — z| is approached by a sequence (z,) in C\K that tends
to K. We have |e“®P®) gy (z,)] — ¢“®X) and lim sup |z,| < max.cx |z|. The proof
is completed by (6.2) O

Let W be a conformal map, whose domain 2 contains 0. Let K be a C-hull such that
{0} ; K C Q.Let Qg = gg (R2\K), and define Wg (z) = gw (k) oWogI_(l(Z) forz €
Q. Now Qg contains a neighborhood of T in D*, and as z — Tin Qg, Wg(z) - T
as well. Let QJ;{ = Qg UT U IT(2k). Schwarz reflection principle implies that Wg

extends to a conformal map on Q;( such that Wk (T) = T.
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Lemma 6.3 There are real constants Cy < 0 and C1, Cy > 0 depending only on Q
and W such that if K is a C-hull with {0} ; K and satisfies cap(K) < Cj, then

| cap(W (K)) — cap(K) — log |[W'(0)]| < Cye?c®(K); (6.3)

log |W) (2)] < C2e2®®) /| cap(K)|, z e T. (6.4)

Proof Since W(0) = 0 and W’(0) # 0, there is V analytic in a neighborhood Q' C
of 0 such that V(0) = 0 and W (z) = W’/ (0)ze" @ in &'. There exist positive constants
C>1land$ < % such that |z| < § implies that z € Q' and |V (z)| < C|z|. Thus,

(W@ = [WO)lzle ™, W) — W (O)z] < WOzl = 1), [z <8.
(6.5)
Suppose K is a C-hull with {0} S K, and satisfies eSPK) < §2 A m. From
(6.2) we see that K C {|z] < 482} C {|z] < 8} C Q. So W(K) and Wx are well
defined. Using (6.2) and the connectedness of K, we may choose zg € K such that
lzol = ) Using (6.5) we get

4
W)l = W (O)llzole™ 0! = W/ ()P E e = W (0) ™).

LW/ (0)[e¥®5) . Let o = oy, x = W'(0)ecaPE)=caP(WK) Then we have |a| < 5.

Let R = %e’%cap(m,zl € {|z] = R}, and z5 = g,}l(zl). From Lemma 6.2, we
get

Since W(z9) € W(K), using (6.2) again, we get cap(W(K)) > 31|W(Zo)| >

cap(K) cap(K)

lzo — e z1| < Se

Since R > %(82)_1/2 > 5, we have

1
<(R+5 cap(K) 2R cap(K) _ %cap(K) <SA ——.
lz2] < (R+5)e <2Re e R v Te

Let J denote the Jordan curve g,}l({lzl = R}), and Uy denote its interior. Then
J C {|z] < 8}, which implies that U; C {|z| < 8} C 2. Since g}l maps the annulus
{1 < |z] < R} conformally onto (J U Uj)\K C Q\K, we see that {1 < |z] < R} C
Qg,andso{l/R < |z| < R} C QI(.Letz3 = W(z2). Using (6.5)and 0 < C|z2| < 1,
we get

|23 = W0)z2| < W O)]|z21(e2 = 1) < 2CIW/(0)[[22f® < 2C|W'(0) [P 5.

Let z4 = gw(k)(z3). From Lemma 6.2 we get

|74 — e~ CPWED 1) < 5,
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Combining the above four displayed formulas and that || < 5, we get
|z4 —azi] <54 2C|a| + 5| <30+ 10C < 40C.
Note that z4 = Wk (z1). So we get

Wk (z) —az| <40C, |z| = R. (6.6)
l|R — 40C < |Wk (2)| < |a|R +40C, |z| = R. 6.7)

We may find R > R such that A := {1/R’" < |z| < R’} C Q} Then Wg
is analytic in A. Since W is an orientation preserving auto homeomorphism of
T, there is an analytic function Vi such that Wg(z) = e"¥@z in A. We have
Re Vi (z) = log|Wk(z)| — log|z|. Thus, ReVg = 0 on T. Cauchy’s theorem
implies that §__, VKZ(Z)dz = .=z VKZ(Z)dz, which means that fozn Vi (e'9)do =

T Vi (Re'?)db. So we get

2 ) 2 )
0 :/ Re Vi (¢!%)do :/ Re Vi (Re'?)do
0 0
27 )
= / (log | Wk (Re'?)| — log R)d6.
0

Using (6.7), we get |¢|R — 40C < R < |a|R + 40C, which implies that |1 — ||| <
4OTC. This implies (6.3) since log |a| = log|W’(0)| + cap(K) — cap(W(K)) and
1/R = O(e? @Ky,

Let |z| = R. From (6.6), we get |¢"K@ — | < %€ Since [a| > 1 — € we
have |eV’<(Z)| >1-— % > % as R > 160C. So there exists @ € C with o = ¢% such
that |V (2) — @] < 2[e"*® — | < 89C From ||la| — 1] < %€, we get [Red| =
|log || < 89C  Thus, |Vk (2) —ilm@| < 160€ if |z| = R. Let Vg = Vg oexp. Then
Vi is analytlc in the vertical strip A= exp_l(A) = {—logR < Rez < log R},
and is pure imaginary on i R. Thus, VK( 7) = —VK (z). This implies that, on the two
vertical lines {Rez = log R} and {Rez = —log R}, |Vk (z) — iIm@&| < %. Since
Vi has period 2mi, the inequality holds in the strip {—log R < Rez < log R}. We

may apply Cauchy’s integral formula, and get IVI/< @ =< Rllﬁ(?gCR for z € iR. Since

Vi (z) = Vg oexp, ek = WKT(Z) and Wk (T) = T, we get

Wk (2) ~ 160C
w’ _ =1V, < T.
¥ (2) Z [V (logz)| < Rlog R Z €
This implies (6.4) since log R > | cap(K)|/4 and 1/R = O (e ®(K)). O

Now suppose y(t), —oo <t < T, is a simple whole-plane Loewner trace driven
by A € C((—oo, T)). Let 2 be a domain that contains y. Let W be a conformal map
defined on €2 such that W(0) = 0. Let B(t) = W(y(t)), —oo <t < T. Define v on
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[—o0, T) such that v(—o0) = —oo0 and v(t) = cap(,B([ 00, t])) for—oco <t < T.
LetT = v(T)and Y (¢) = ﬂ(v_l(t)) —00 <t < T.Then y is a simple whole-plane
Loewner trace, say driven by %ecC (( 00, T)) Let (g;) and (g;) be the whole-
plane Loewner maps driven by A and x, respectlvely Then, g, L ) = y(r) and

271 (&™) = F(1). Let z(t) and Z(¢) be such that g; ' (z(1)) = 0 and g, ' G(1)) = 0.
Choose q € C((=00,T)) and g € C((—o0, 7)) such that z(1) = e’q(t) () =
9D At)—q@) € (0, 27), andk(t) Gt) € (0,27).LetZ =A—gand Z = A—7.
Let K; = y([—o0, t]) and Kt = Y ([—oo0, t]). Recall that g, = gk, and g; = 8K,
For —oo <t < T,letQ; = Q,, Q[T = Q;, and W; = Wg,. Then W; is a conformal
map defined on Q,T D T such that W,(’]T) T. Since W(K;) = Ev(,), we have
Wi = Zoy o Wog; " in ©;. Since g, ' (")) = y (1) and g ~_l (EM(”(’))) =y (v())
when both g[l and §v(~,) extends continuously to D* U T, and W(y(t)) = y(v(1)),
we get Wy (e*0) = ™) Similarly, since g; ! (¢/4?)) = 0 = §17(})(ei5(”(t>)) and
W (0) = 0, we have W, (¢!41®)) = ¢/4®) Thus, we get
(1)

Z@(@) = 2((®) — @) = / |W/(e'*)|ds. (6.8)
q

(1)

The following lemma is well known. For the proof, one may apply, e.g., Proposition
4.4(ii) in [13]. We now omit the details.

Lemma 6.4 Foranyt € (—oo, T), v'(t) = |W/(e*1)],
Applying Lemma 6.3 to K = y([—o0, t]) and using (6.8) and Lemma 6.4, we get

lim |Z(w() —Z@®)| =0, lim v () =1, lim v()—t=log|W (0)|.
t——00 t——00 t——00

(6.9)
Lemma 6.1 implies that, if f is continuous on [0, 277 ], then

lim to € (—oo, T A T),

t—— oot

/ f(Z(s)ds =

if either limit exists. Using (6.1) we obtain the following proposition.

K

Proposition 6.5 Let «k < 4 and p > 5= 2. Let y(t), —00 <t < 00, be a whole-
plane SLE(k; p) trace. Suppose that W is a random conformal map with (random)
domain Q2 > 0 such that W(0) = 0. Let T be such that y([—oco,T)) C Q. Let
y be a reparametrization of W (y (t)), —oo < t < T, such that y(—o0) = 0 and
cap(y([—o0,t])) = ¢ for —o0 < t < T. Let h(t) € (0, 1) denote the harmonic
measure of the right side of y([—00, t]) in (C\)/([ o0, t]) viewed from oo. Then for
any f € C([0,2x]) and ty € (—o0, T) almost surely

7 o i LICES)
lim —/ fQRmh(s))ds = F)d e p(x) = Jo 2];(%) sz(f)p ? dx
’ b sinp (x)« (2t Dgx

t——00 to—
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Combining the above proposition with Theorems 5.3 and 5.4, we obtain the fol-
lowing theorem.

Theorem 6.6 Let k € (0,4) and ty € (0, 00). Let B be a chordal or radial SLE,
trace. For 0 <t < to, let v(t) = cap(B([t, t0])) and h(t) be the harmonic measure of
the left side of B([t, to]) in @\ﬂ([l, to]) viewed from oo. Then for any f € C([0, 1]),
almost surely

0 T f(x) sina(x)* +2dx

m/ fh(s))dv(s) =

127 sing (x) & 2dx

Remark 1. We can now conclude that Theorem 5.1 does not hold with « + 2 replaced
by any other p > 5 — 2. If this is not true, then Theorem 5.4 also holds with « + 2
replaced by such p Then Theorem 6.6 holds in the radial case with the exponent
% + 2 replaced by %(g + 1), which is obviously impossible.

2. Fubini’s Theorem implies that Theorem 6.6 still holds if the deterministic number
to is replaced by a positive random number 7y, whose distribution given B is
absolutely continuous with respect to the Lebesgue measure. We do not expect
that the theorem holds if the conditional distribution of 7y does not have a density.
In fact, if the conditional distribution of 7 is absolutely continuous with respect to
the natural parametrization introduced by Lawler and Sheffield [7], then we expect
that 8 behaves like a two-sided radial SLE, process, which is a radial SLE(«; 2)

I;rocess, near (7o), and Theorem 6.6 is expected to hold with % + 2 replaced by

LKet k € (0,4]. A whole-plane SLE(x; p) trace y generates a simple curve. Com-
bining the reversibility property derived in [ 18] with the Markov-type relation between
whole-plane SLE,. and radial SLE, processes, we see that, if § is a radial SLE,, there
is a conformal map V defined on D with V (0) = 0, which maps 8 to an initial segment
of a whole-plane SLE, trace. Applying Proposition 6.5, we obtain the following.

Theorem 6.7 Let k € (0,4]. Let B be a radial SLE, trace. For 0 < t < oo, let
v(1) = cap(B([z, oo])) and h(t) be the harmonic measure of the left side of B([t, 00])
in C\B([t, o)) viewed from oco. Then for any f € C([0, 2x]), almost surely

T f(x) 51n2(x) dx

fozn sinp (x) dx

O
[Jim )=o) (0)/ f(h(s))dv(s) =
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Appendix A: Carathéodory convergence

Definition 7.1 Let (D,)>2, and D be domains in a Rieman surface R. We say that

(D,) converges to D in the Carathéodory topology, and write D, Corg D, if
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(i) for every compact set K C D, there exists ng € N such that K C D,, if n > no;
(ii) for every point zg € d D, there exists z, € d D, for each n such that z,, — zo.

Remark A sequence of domains may converge to two different domains. For example,

let D,, = C\((—o0, n]). Then D, Carg H, and D, €% _H as well. But two different
limit domains of the same domain sequence must be disjoint from each other, because
if they have nonempty intersection, then one contains some boundary point of the
other, which implies a contradiction.

Lemma 7.2 Let R and S be two Riemann surfaces. Let D,,, n € N, and D be domains

in R such that D, Carg D. Let f, map D, conformally into S,n € N. Suppose ( f,)

converges locally uniformly in D. Assume that the limit function f is not constant in
Cara

D. Then f is a conformal map, f(D,) — f(D), and fn_1 Loy f~Vin f(D).

Remark The lemma generalizes the Carathéodory kernel theorem (Theorem 1.8, [10])
so that the domains do not have to be simply connected. A simpler version (in the case
R and S are C or @) was introduced in [16], and used in the author’s other papers, but
no proof has been given so far. For completeness, we include the proof here.

Proof Cauchy—Goursat theorem implies that f is analytic. We first prove that f is
one-to-one. Assume that f is not one-to-one. Then there exist z; # z> € D such that
f(z1) = f(z2) := wp. Since f is not constant, f ~!(wp) has no accumulation points
in the domain D. Let (V, ¢) be a chart for S such that wg € V and ¥ (wg) = 0.
We may find charts (Uy, ¢1) and (Ua, ¢) for R such thatz; € U; C D, f(U;) C
V.$j(zj) =0,¢;(U) DD, ¢7 (M N f~ (wo) =0, j =1,2,and Uy N U5 = 0.
Since D, Carg D, we have ¢/_1(ﬁ) C D,,j = 1,2, if n is big enough. Thus, for
j=1,2,%of, o¢/71 tends uniformly on D to ¢ o f o¢;l , which has a zero at 0 and
has no zero on T. Rouché’s theorem implies that when n is big enough, v o f}, o ¢;1

has zero(s) in D for j = 1, 2, which implies that fn_l(wo) intersects both U; and U;.
This contradicts that each f;, is one-to-one, and U; N Uy = @. So f is one-to-one.

Let E, = f(D,),n € N, and E = f(D) be domains in S. Since f, LY fin

D, we have f, o f~! Loy idin E. Let K C E be a closed ball, which means that
there is a chart (V, y) for S such that K C V C E and ¥(K) = {|z| < ro} for
some rg > 0. We may choose r; > rg such that (V) D {|z] < r}. Let K/ =
¥~ 1({|z| < r1}). Applying Rouché’s theorem to the Jordan curve {|z| = r1} and the
functions ¥ o f, o =1 o ¥~ 1(z) — zo and z — zo, where zg € {|z| < ro}, we see
that when 7 is big enough, ¥ o f, o f~' o ¥ ~1(z) — zo has a zero in {|z| < z1} for
every zo € {|z| < ro}, which implies that K = ¢~ ({|z] < ro}) C fu(Dy) = E,.
Since every compact subset of E can be covered by finitely many closed balls in E,
condition (i) in Definition 7.1 holds for E,, and E.

Lu, .
Let g, = fn’l,n e N,and g = f~!. Now we prove that g, = g in E. Assume
that this is not true. By passing to a subsequence, we may find a sequence (wy) in
E with w, — wqo € E such that g(wo) is not any subsequential limit of (g, (w,)).

Let (V, ¢) be a chart for S such that wg € V C E and ¥ (wg) = 0. Let r; > 0 be
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such that {|z| < ri} C ¥(V); and let rg € (0, r1). Since w,, — wo, there is ng € N
such that ¥ (w,) € {|z] < ro} for n > ny. The argument in the previous paragraph
shows that, there is n; € N such that, if n > ny, then for every z € {|z| < ro}, there
isz €{lz] <ri}suchthaty o f,0ogo w_l(z’) = z. Taking z = ¥ (wy,), we see that
gn(wy) € goy ' ({|z| < r1}) forn > ngVny. Since r; > 0 can be chosen arbitrarily
small and 1/,—1 (0) = wo, this contradicts that g(wg) is not any subsequential limit of

(22 (wy)). Thus, g, ~% ¢ in E.

It remains to prove that condition (ii) in Definition 7.1 holds for E,, and E. Assume
that this is not true. By passing to a subsequence, we may assume that there exist
wo € 0E and a domain V with wyg € V C S such that VN9 E,, = ¢ for each n. Let
w6 € E N V. Since condition (ii) in Definition 7.1 holds for E, and E, if n is big
enough, then w6 € E,, which implies that V C E,, because V N JE, = P and V is

connected. By removing finitely many terms, we may assume that V C E,, for each

Conf
n. By considering a smaller V, we may further assume that there is ¢ : V 2 2D

such that ¥ (wg) = 0. We will restrict our attention to V and derive a contradiction.
So we may assume that V = 2D, ¢ = id, and wg = 0.

It is well known that there is an increasing function % (r) defined on (0, 1) with
h(0T) = 0 such that the probability that a planar Brownian motion started from 0
hits T before disconnecting »T from T is less than & (r). Pick ro € (0, 1/5) such that
h(rg) + h(5rg) < 1.

Since wg = 0 € 0FE, may find w; € E NV such that |lwi| < 0.1 A rg. Let
s € (0,0.1) be such that U, := {|lw — wi| < s} C E.Let U1 = {|lw — w1| < s/2}.

Since g, l—“) g in U3, from what we have derived, condition (i) in Definition 7.1 holds
for g, (Up) and g(U>). Thus, there is ng € N such that g, (w;) € g(U;) C g(m) C
gn(Uz) when n > ng. This implies that, if n, m > ng, then f, o g(wy) € U, i.e.,
| fnogm(wy) —wi] <s <0.1,and so | f;; o gm(w1)| < 0.2.

That g, LY g in E also implies that g, (w;) — g'(w1) € C\{0}. So there is
ny > ng such that, if n, m > ny then |(f, o gm) (w1)| € (0.9, 1.1). Fixn, m > n;. Let
W = f, o g, and wy = W(wj). Recall that |w;| < 0.1 and |wz| < 0.2. So w; + D
and wy + D are contained in 2D = V C E, N E,. Let Q1 = f(gn(w; + D) N

gn(w2 + D)) Cwy +Dand 2 = f,(gm (w1 +D) N gy(wz + D)) C wy + D. Then
Conf
w;€Q),j=12adW:Q - Q.

Letr; = dist(w;, 082;). Since [W'(wy)| € (0.9, 1.1), Koebe’s 1/4 theorem implies
thatry < 4.4r;.LetI; = W (wp+T)N(wi+D) and I = (wi +T)NW ! (wy +D).
Then I; and I, are disjoint subsets of d€2;. For k = 1,2, let h; be the harmonic
measure of I in 21 viewed from w;. Then &y + hy < 1. Note that 9Q21\/; C T,
and /; contains a connected component, which touches both w; + T and w; + rT.
Sohy = 1—=nh(r). Let I} = W(h) = W(w; + T) N (w2 + D) C 9. Then
02\l C T, and I, contains a connected component, which touches both wy + T
and wy + mT. From conformal invariance of harmonic measures, /> is equal to
the harmonic measure of Ié in €, viewed from w;, which is at least 1 — h(rp).
Thus, we have 1 > hy + hy > (1 — h(r1)) + (1 — h(rp)), from which follows
that 1 < h(ry) + h(rp). If r;1 < ro, since h is increasing and r» < 4.4ry, we get
h(r1) + h(rz) < h(rg) + h(5rg) < 1, which is a contradiction. So r; > rg.
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So we conclude that, for any n, m > ny, f;, o g, is well defined and analytic on
Up = {|lw — wi| < ro}. Fix m = ny. Since f,, o go(w1) = fu, o g(wy) and (fy, o
gn) (w1) = (fy, 0g) (w1), Koebe’s distortion theorem implies that (f,,, 0 gnlvg)nzn,

. . . lLu. .
is anormal family. Since f,,, 0 g, = fn 08 in ENUp, we see that f;, o g, converges
locally uniformly in Uy, as n — 00, and the limit is an analytic extension of f,, o g

. lu, .
from E N Uy to Uy. Thus, g extends analytically to E’ := E U Uy, and g, = gin
E’. Since |w;| < rg, we have wg = 0 € UpNAIE. Thus, zg := g(wg) € dD.Let K be

a compact subset of Uy, whose interior K contains wo. Since g, 1—u> g in Uy, from
what we have derived, condition (i) in Definition 7.1 holds for g,(Upy) and g(Up).
Thus, zg € g(K) C g(K) C g,(Up) C D, when n is big enough, which contradicts

that zo € 0D,, and D, C—m; D as g(I% ) is an open set. The contradiction completes
the proof. O

Remark The only place that we use the connectedness is that f is not constant implies
£~ Y(wp) has no accumulation points. Thus, we may define Carathéodory convergence
of open sets in a Riemann surface. Lemma 7.2 still holds when D,, and D are not
domains, if the condition that f is not constant is replaced by that f is not locally
constant.

Appendix B: Radial Bessel processes

Let § € R. Consider the SDE:

dX; =dB; + cot(X;)dt, Xop € (0,m). 8.1)

The solution is called a radial Bessel process of dimension §. The name comes from
the fact that the process arises in the definition of radial SLE(«x; p) processes, and
(X;) behaves like a Bessel process of dimension 6 when it is close to O or 7. Let
[0, T') denote the time interval for (X;). Define h(x) = f;/z sin()'%dr, 0 < x < .
1t6’s formula (c.f. [11]) shows that h(X;),0 < r < T, is a local martingale. Note
that 2((—1, 1)) = R if § > 2; and is bounded if § < 2. A simple argument shows
that,if § > 2, then T = o0;if § < 2,then T < oo and lim,_.7 X; € {0, 7}. Let
Y; =cos(X;),0 <t < T.Itd’s formula shows that

b
dY, = —\/1 = Y2dB(t) — EY,dt, 0<t<T. (8.2)

Suppose § > 2. We will derive the transition densities of (Y;) and (X;). Observe
that if the process (Y;) has a smooth transition density p(¢, x, y), then it satisfies the
Kolmogorov’s backward equation:

1 —x? B
5 32p — —xdyp. (8.3)

2

op=
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Below we will solve (8.3) using the eigenvalue method, and prove that some solution
is the transition density of (Y;).
Let A € R. Consider the ODE:

(1= x2)p"(x) —8xp'(x) — 2ap(x) = 0. (8.4)

Ifr=x, = —%(n 4+ 6 — 1), n € N U {0}, the above equation has a solution, which

is the Gegenbauer polynomial C,S“) (x) (c.f. [9]) with degree n and index o := % — %

Thus, py(t x) 1= e~ 30H5-Drc37D () 1 € NU {0}, solve (8.3) for £, x € R,

The functions C,(Za)(x), n € N U {0} form a complete orthogonal system w.r.t. the
inner product (£, g),,_ := [ (=x2)%=2 £(x)g(x)dx such that (C\*, c,$;”>>a7% -
0 when n # m, and

7l Qa + n) a2

C Oy 1 = 8.5
o Coat = 331G 1 il @) )
Moreover,
I'n+2a) B
(@) . () _ ~ p2a—1
1€ Moo == _max |C ()| = T 0w . (8.6)

Fort > 0,x,y € [—1, 1], define

]

P =3 e ey,

n
P 1 L (%7%) : exp (—E(n +5— 1)t) .
f,l(l_y )2 Cn ()’) dy
8.7)
From (8.5) and (8.6) we see that the above series converges uniformly on [—1, 1].

Proposition 8.1 If§ > 2, the transition density for (Y;) is pY(t, x, y) given by (8.7),
and the transition density for (X;) is p®)(t, x, y) = p¥) (¢, cos x, cos y) sin y.

Proof It suffices to derive the the transition density for (¥;). Let f (x) be a polynomial,
s_1 s_1 s_1
and a, = (f, C.2 2)>%_1/(C§2 D ol 2)>%_1, n € N U {0}. Then all but finitely
s_1

many a,’s are zero, and f = > °7 anC,(,2 2 Define Ft,x) =202 anpn(t, x).
Then f (¢, x) solves (8.3) with f(0, x) = f(x). Suppose (¥;) solves (8.2) with initial
value xg. Fix tp > 0.1td’s formula together with the boundedness of f (¢, x) on [0, #p] x
[—1, 1] shows that M (¢) := f(t9 —¢t,Y;),0 <t < 1y, is a bounded martingale. Since
lim; 4 M(t) = f(Yy), the optional stopping theorem together with the definition of
p(Y) (t, x, y) implies that

1
B £ (il = M) = ft0.30) = [ 01"t 30. 9.
Since this holds for any polynomial f, the proof is finished. O
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Corollary 8.2 Let § > 2. Then (Y;) has a unique stationary distribution which has a
density

, xe (=11 (8.8)

and (X;) has a unique stationary distribution which has a density p™® (x) =
pW(cosx)sinx, x € (—m, ). Moreover, the stationary processes (Y;) and (X;)
are reversible.

s_1
Proof This follows from the previous proposition and the orthogonality of C,(,2 2

s_1
wrt (). Note that CP P =1 and (1 — )1V xy) = (1 —
S

¥y pMa,y, ). O

Note that p¥)(y) is also the term for n = 0 in (8.7). Using (8.5) and (8.6), we see
that there is a constant C depending on § such that

PV x y)— pM ()| < Cem ', xyel-1.11. (8.9)

Thus, pY (1, x, y) = p®¥)(y) ast — oo uniformly in x, y € [—1, 1]. So we obtain
the following corollary.

Corollary 8.3 Let § > 2. Then the stationary processes (Y;) and (X;) are mixing,
and so are ergodic.

We now study the transition densities in the case § < 2. Recall that [0, T) is the
time interval for (¥;). We say that pY) (¢, x, y) is the transition density of (¥;) if for

1
Eﬂhyﬂﬂﬂ=/¥ﬂwﬁ”mxdﬂx nye(=LD,t>0. (810

The integral f_ll p(t, x,y)dy = E,[T > t] may be less than 1.

We will need functions, which solve (8.3) forx € (—1, 1) and vanishatx € {—1, 1}.
It is easy to see that if p(x) = (1 — xz)l_%q(x), then p(x) solves (8.4) in (—1, 1) iff
q(x) solves

(1— xz)q//(x) —@=8xqg (X)) — Q2L +2-8)qg(x)=0, —1<x<1.

3_98
Ifr = —%(n + D (n+2—3),n € NU{0}, the above equation has a solution C,(,2 2

Thus,
= 2\~ (%_%) — S () (n2-8)
Dn(t, x) = (1—x) C, e 2T
solves (8.3) for x € (—1, 1) and vanishes at x € {—1, 1}.
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G-9
Note that C,,

So we define

,n € NU {0}, form a complete orthogonal system w.r.t. (-)17% .

3_34 3_3
iy -3 L= e Dy
> - 3.8
n=0 fi1<1—y2>1-%cn(2 2>(y>2dy

X exp (—%(n+1)(n+2—8)t). 8.11)

. _ G5 G-5 ~G-%
Let P be a polynomial, and a, = (P, C, )1_%/(Cn ,Cy

3.3
{0}. Then all but finitely many a,’s are zero, and P = > anC,i2 ) Define
ft,x) = Zflo:O a, pn(t, x). Then f(z, x) solves (8.3) for x € (—1, 1), vanishes at
X € {—L, 1}, and satisfies f(O,x) = f&x) = (1 — x2)1’%P(x2. Fix ty > 0. Define
M; := f(to—1t,Y;),0 <t < T.Then M; is a martingale with M7 = 0. The optional
stoping theorem implies that

)1_%,1’1 e NU

1
o751 f (Yi)] = Exo [M7 1] = Mo = (10, x0) = / 1 FP (t0, x0, y)dy.
Thus (8.10) holds for f(x) = (1 — xz)l_% P(x). Then a denseness argument show
that (8.10) holds for any f € C([—1, 1]). So we obtain the following proposition.

Proposition 8.4 Let § < 2. The transition density of (Y;) is pY (¢, x, y) given by
(8.11), and the transition density of (X;) is ﬁ(Y) (t,cos x, cosy)sin y.

Note that the term for n = 0 in (8.11) is
(1- xz)l_%
f—]l (1- y2)17

Using (8.5) and (8.6), we see that there is a constant C depending on § such that

0, x) = e220r (8.12)

I

dy

1V x. ) = PP 0| < Cem O xy e (—1,1). (8.13)

Since [T > 11 = [1, p)(1, x, y)dy, using the fact that C* (y) = 2ay is odd
we see that there is a constant C depending on § such that

POIT > 1] — 2501, %) < Ce 24D x e (—1,1). (8.14)
So we obtain the following corollary.
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Corollary 8.5 Let 6 < 2, and T be the lifetime for (Y;) or (X;). Then for any initial
values, PO[T > 1] and PO[T > 1] are bounded above by a constant depending

on § times e_%(z_‘s)’, and for any a < %(2 —8), EM[eT] and EX)[e4T] are finite.

Remark 1. Gregory Lawler has a method to prove Corollary 8.2 without finding the
transition density (Appendix A, [5]). The idea is to use Girsanov’s theorem to
compare a radial Bessel process of dimension § > 2 with a Brownian motion. His
method also works for some functions other than % cot(x).

2. We may define a radial Bessel process (X;) with dimension § € [0, 2) such that
the time interval is [0, 00). First, we define (¥;) to be the solution of the SDE:
dY; = —q((Y;)dB(t) — %Y,dt with Yo € (-1, 1), where g(x) = /(1 — x2) v 0.
Since ¢ is Holder 1/2 continuous, the existence and uniqueness of the strong
solution defined on [0, co) follow from Theorems 1.7 and 3.5 in §IX of [11]. If
§ > 0, then (Y;) stays on [—1, 1], and so solves (8.2). Then the process (X;) is
defined by X; = arccos(Y;). Proposition (8.1) and its two corollaries also hold for
8 € (0, 2) because the functions p,(¢, x, y) solve (8.3) for all x € R. Lawler’s
argument does not work in this case since Girsanov’s theorem does not apply.

3. We may also consider the transition density of the process (Y;), which solves the
SDE

8 s
dY, = —J1 = Y2dB(t) — Z*(Y, + Ddi — (Y, = Ddt, Yo e (=1 1).

If 54 = §— = &, this SDE becomes (8.2). If §;,6— > 0, then (Y;) stays in

s_ 1

[—1, 1], and the transition density is given by (8.7) revised such that C,(l2 2
AT R

is replaced by the Jacobi polynomial P,f 213 1), the weight (1 — yz)%—1 is

) S—
replaced by (1 — y)TJr_l(l + y)T_l, and the number n 4+ § — 1 is replaced

by n + % — 1. Such (Y;) has a unique stationary distribution with density

1) S
proportional to (1 —x) i (14x) 7 ~!, and the corresponding stationary process

is reversible, mixing and ergodic. One may also use the Jacobi polynomials to
express the transition density of the process (Y;) killed after it hits {—1, 1} in the
case 84 or §_ is less than 2, which resembles (8.11). Such process (Y;) was studied
in Section 4 of [15].
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