
A NEW CLASS OF FULLY DISCRETE SPARSE FOURIER TRANSFORMS:

FASTER STABLE IMPLEMENTATIONS WITH GUARANTEES

SAMI MERHI, RUOCHUAN ZHANG, MARK A. IWEN, ANDREW CHRISTLIEB

Abstract. In this paper we consider Sparse Fourier Transform (SFT) algorithms for approximately

computing the best s-term approximation of the Discrete Fourier Transform (DFT) f̂ ∈ CN of any

given input vector f ∈ CN in just (s logN)O(1)-time using only a similarly small number of entries of
f . In particular, we present a deterministic SFT algorithm which is guaranteed to always recover a

near best s-term approximation of the DFT of any given input vector f ∈ CN in O
(
s2 log

11
2 (N)

)
-

time. Unlike previous deterministic results of this kind, our deterministic result holds for both
arbitrary vectors f ∈ CN and vector lengths N . In addition to these deterministic SFT results,
we also develop several new publicly available randomized SFT implementations for approximately

computing f̂ from f using the same general techniques. The best of these new implementations
is shown to outperform existing discrete sparse Fourier transform methods with respect to both
runtime and noise robustness for large vector lengths N .

1. Introduction

Herein we are concerned with the rapid approximation of the discrete Fourier transform f̂ ∈ CN
of a given vector f ∈ CN for large values of N . Though standard Fast Fourier Transform (FFT)
algorithms [7, 4, 24] can accomplish this task in O (N logN)-time for arbitrary N ∈ N, this runtime
complexity may still be unnecessarily computationally taxing when N is extremely large. This is
particularly true when the vector f̂ is approximately s-sparse (i.e., contains only s � N nonzero
entries) as in compressive sensing [8] and certain wideband signal processing applications (see,
e.g., [20]). Such applications have therefore motivated the development of Discrete Sparse Fourier
Transform (DSFT) techniques [11, 9] which are capable of accurately approximating s-sparse DFT

vectors f̂ ∈ CN in just s · logO(1)N -time. When s� N these methods are significantly faster than
standard O (N logN)-time FFT methods, effectively achieving sublinear o(N) runtime complexities
in such cases.

Currently, the most widely used s · logO(1)N -time DSFT methods [10, 14, 12] are randomized

algorithms which accurately compute f̂ with high probability when given sampling access to f . Many
existing sparse Fourier transforms which are entirely deterministic [17, 19, 25, 21, 5], on the other
hand, are perhaps best described as Unequally Spaced Sparse Fourier Transform (USSFT) methods

in that they approximately compute f̂ , with its entries f̂ω indexed by the set B :=
(
−
⌈
N
2

⌉
,
⌊
N
2

⌋]
∩Z,

by sampling its associated trigonometric polynomial

f (x) =
∑
ω∈B

f̂ωe
iωx

Sami Merhi: Department of Mathematics, Michigan State University, East Lansing, MI, 48824, USA (mer-
hisam@math.msu.edu).

Ruochuan Zhang: Department of Mathematics, Michigan State University, East Lansing, MI, 48824, USA
(zhangr12@msu.edu).

Mark A. Iwen: Department of Mathematics, and Department of Computational Mathematics, Science, and Engi-
neering (CMSE), Michigan State University, East Lansing, MI, 48824, USA (markiwen@math.msu.edu).

Andrew Christlieb: Department of Computational Mathematics, Science, and Engineering (CMSE), Michigan
State University, East Lansing, MI, 48824, USA (andrewc@msu.edu).

at a collection of m � N specially constructed unequally spaced points x1, . . . , xm ∈ [−π, π].

These methods have no probability of failing to recover s-sparse f̂ , but can not accurately compute
the DFT f̂ of an arbitrary given vector f ∈ CN due to their need for unequally spaced function
evaluations from f of the form {f(xk)}mk=1.

1

This state of affairs has left a gap in the theory of DSFT methods. Existing deterministic
sparse Fourier transform algorithms currently can efficiently compute the s-sparse DFT f̂ of a
given vector f ∈ CN only if either (i) N is a power of a small prime [22], or else (ii) f̂ω = 0 for
all ω ∈ B with |ω| > N/4 [17, 18]. In this paper this gap is filled by the development of a new
entirely deterministic DSFT algorithm which is always guaranteed to accurately approximate any
(nearly) s-sparse f̂ ∈ CN of any size N when given access only to f ∈ CN . In addition, the method
used to develop this new deterministic DSFT algorithm is general enough that it can be applied
to any fast and noise robust USSFT method of the type mentioned above (be it deterministic, or
randomized) in order to yield a new fast and robust DSFT algorithm. As a result, we are also able
to use the fastest of the currently existing USSFT methods [15, 17, 19, 25, 21, 5, 3] in order to
create new publicly available DSFT implementations herein which are both faster and more robust
to noise than currently existing noise robust DSFT methods for large N .

More generally, we emphasize that the techniques utilized below free developers of SFT methods
to develop more general USSFT methods which utilize samples from the trigonometric polynomial f
above at any points {xk}mk=1 ⊂ [−π, π] they like when attempting to create better DSFT algorithms
in the future. Indeed, the techniques herein provide a relatively simple means of translating any
future fast and robust USSFT algorithms into (still fast) DSFT algorithms.

1.1. Theoretical Results. Herein we focus on rapidly producing near best s-term approximations
of f̂ of the type usually considered in compressive sensing [6]. Let f̂opts ∈ CN denote an optimal

s-term approximation to f̂ ∈ CN . That is, let f̂opts preserve s of the largest magnitude entries of f̂
while setting the rest of its N − s smallest magnitude entires to 0.2 The following DSFT theorem
is proven below.3

Theorem 1. Let N ∈ N, s ∈ [2, N] ∩ N, 1 ≤ r ≤ N
36 , and f ∈ CN . There exists an algorithm that

will always deterministically return an s-sparse vector v ∈ CN satisfying

(1)
∥∥∥f̂ − v

∥∥∥
2
≤
∥∥∥f̂ − f̂opts

∥∥∥
2

+
33√
s
·
∥∥∥f̂ − f̂opts

∥∥∥
1

+ 198
√
s ‖f‖∞N

−r

in just O
(
s2·r

3
2 ·log

11
2 (N)

log(s)

)
-time when given access to f . If returning an s-sparse vector v ∈ CN

that satisfies (1) for each f with probability at least (1 − p) ∈ [2/3, 1) is sufficient, a Monte Carlo

algorithm also exists which will do so in just O
(
s · r

3
2 · log

9
2 (N) · log

(
N
p

))
-time.

Note the quadratic-in-s runtime dependence of the deterministic algorithm mentioned by The-
orem 1. It turns out that there is a close relationship between the sampling points {xk}mk=1 used
by the deterministic USSFT methods [19] employed as part of the proof of Theorem 1 and the
construction of explicit (deterministic) RIP matrices (see [16, 1] for details). As a result, reducing

the quadratic dependence on s of the s2 logO(1)N -runtime complexity of the deterministic DSFT
algorithms referred to by Theorem 1 while still satisfying the error guarantee (1) is likely at least

as difficult as constructing explicit deterministic RIP matrices with fewer than s2 logO(1)N rows

1Note that methods which compute the DFT f̂ of a given vector f implicitly assume that f contains equally spaced
samples from the trigonometric polynomial f above.

2Note that f̂opts may not be unique as there can be ties for the sth largest entry in magnitude of f . This trivial
ambiguity turns out not to matter.

3Theorem 1 is a slightly simplified version of Theorem 5 proven in §4.

2

by subsampling rows from an N × N DFT matrix. Unfortunately, explicitly constructing RIP
matrices of this type is known to be a very difficult problem [8]. This means that constructing an
entirely deterministic DSFT algorithm which is both guaranteed to always satisfy (1), and which

also always runs in s logO(1)N -time, is also likely to be extremely difficult to achieve at present.4

The remainder of this paper is organized as follows: In section 2 we set up notation and establish
necessary background results. Then, in section 3, we describe our method for converting noise
robust USSFT methods into DSFT methods. The resulting approach is summarized in Algorithm 1
therein. Next, Theorem 1 is proven in section 4 using the intermediary results of sections 2 and 3.
An empirical evaluation of several new DSFT algorithms resulting from our proposed approach is
then performed in section 5. The paper is finally concluded with a few additional comments in §6.

2. Notation and Setup

The Fourier series representation of a 2π−periodic function f : [−π, π]→ C will be denoted by

f (x) =
∑
ω∈Z

f̂ωe
iωx

with its Fourier coefficients given by

f̂ω =
1

2π

∫ π

−π
f (x) e−iωx dx.

We let f̂ :=
{
f̂ω

}
ω∈Z

represent the infinite sequence of all Fourier coefficients of f below. Given

two 2π−periodic functions f and g we define the convolution of f and g at x ∈ R to be

(f ∗ g) (x) = (g ∗ f) (x) :=
1

2π

∫ π

−π
g (x− y) f (y) dy.

This definition, coupled with the definition of the Fourier transform, yields the well-known equality

f̂ ∗ gω = f̂ω ĝω ∀ω ∈ Z.

We may also write f̂ ∗ g = f̂ ◦ ĝ where ◦ denotes the Hadamard product.
For any N ∈ N, define the Discrete Fourier Transform (DFT) matrix F ∈ CN×N by

Fω,j :=
(−1)ω

N
e
− 2πi·ω·j

N ,

and let B :=
(
−
⌈
N
2

⌉
,
⌊
N
2

⌋]
∩ Z be a set of N integer frequencies centered at 0. Furthermore, let

f ∈ CN denote the vector of equally spaced samples from f whose entries are given by

fj := f

(
−π +

2πj

N

)
for j = 0, . . . , N − 1. One can now see that if

f (x) =
∑
ω∈B

f̂ωe
iωx,

then

(2) F f =: f̂

4Of course deterministic algorithms with error guarantees of the type of (1) do exist for more restricted classes of
periodic functions f . See, e.g., [2, 3, 23] for some examples. These include USSFT methods developed for periodic
functions with structured Fourier support [2] which are of use for, among other things, the fast approximation of
functions which exhibit sparsity with respect to other bounded orthonormal basis functions [13].

3

where f̂ ∈ CN denotes the subset of f̂ with indices in B, and in vector form. More generally, bolded
lower case letters will always represent vectors in CN below.

As mentioned above, f̂ :=
{
f̂ω

}
ω∈Z

is the infinite sequence of all Fourier coefficients of f . For

any subset S ⊆ Z we let f̂ |S ∈ CZ be the sequence f̂ restricted to the subset S, so that f̂ |S has

terms
(
f̂ |S
)
ω

= f̂ω for all ω ∈ S, and
(
f̂ |S
)
ω

= 0 for all ω ∈ Sc := Z \ S. Note that f̂ above is

exactly f̂ |B excluding its zero terms for all ω /∈ B. Thus, given any subset S ⊆ B, we let f̂ |S ∈ CN
be the vector f̂ restricted to the set S in an analogous fashion. That is, for S ⊆ B we will have(
f̂ |S
)
ω

= f̂ω for all ω ∈ S, and
(
f̂ |S
)
ω

= 0 for all ω ∈ B \ S.

Given the sequence f̂ ∈ CZ and s ≤ N , we denote by Ropt
s

(
f̂
)

a subset of B containing s of the

most energetic frequencies of f ; that is

Ropt
s

(
f̂
)

:= {ω1, . . . , ωs} ⊆ B ⊂ Z

where the frequencies ωj ∈ B are ordered such that∣∣∣f̂ω1

∣∣∣ ≥ ∣∣∣f̂ω2

∣∣∣ ≥ · · · ≥ ∣∣∣f̂ωs∣∣∣ ≥ · · · ≥ ∣∣∣f̂ωN ∣∣∣ .
Here, if desired, one may break ties by also requiring, e.g., that ωj < ωk for all j < k with∣∣∣f̂ωj ∣∣∣ =

∣∣∣f̂ωk ∣∣∣. We will then define fopts : [−π, π]→ C based on Ropt
s

(
f̂
)

by

fopts (x) :=
∑

ω∈Ropt
s (f̂)

f̂ωe
iωx.

Any such 2π-periodic function fopts will be referred to as an optimal s-term approximation to f .

Similarly, we also define both f̂opts ∈ CZ and f̂opts ∈ CN to be f̂ |
Ropt
s (f̂) and f̂ |

Ropt
s (f̂), respectively.

2.1. Periodized Gaussians. In the sections that follow the 2π−periodic Gaussian g : [−π, π] →
R+ defined by

(3) g (x) =
1

c1

∞∑
n=−∞

e
− (x−2nπ)2

2c21

with c1 ∈ R+ will play a special role. The following lemmas recall several useful facts concerning
both its decay, and its Fourier series coefficients.

Lemma 1. The 2π−periodic Gaussian g : [−π, π]→ R+ has

g (x) ≤
(

3

c1
+

1√
2π

)
e
− x2

2c21

for all x ∈ [−π, π].

Lemma 2. The 2π−periodic Gaussian g : [−π, π]→ R+ has

ĝω =
1√
2π
e
− c

2
1ω

2

2

for all ω ∈ Z. Thus, ĝ = {ĝω}ω∈Z ∈ `2 decreases monotonically as |ω| increases, and also has

‖ĝ‖∞ = 1√
2π

.

4

Lemma 3. Choose any τ ∈
(

0, 1√
2π

)
, α ∈

[
1, N√

lnN

]
, and β ∈

(
0, α

√
ln(1/τ

√
2π)

2

]
. Let c1 = β

√
lnN
N

in the definition of the periodic Gaussian g from (3). Then ĝω ∈
[
τ, 1√

2π

]
for all ω ∈ Z with

|ω| ≤
⌈

N
α
√
lnN

⌉
.

The proofs of Lemmas 1, 2, and 3 are included in Appendix A for the sake of completeness.
Intuitively, we will utilize the periodic function g from (3) as a bandpass filter below. Looking at
Lemma 3 in this context we can see that its parameter τ will control the effect of ĝ on the frequency
passband defined by its parameter α. Deciding on the two parameters τ, α then constrains β which,
in turn, fixes the periodic Gaussian g by determining its constant coefficient c1. As we shall see, the
parameter β will also determine the speed and accuracy with which we can approximately sample
(i.e., evaluate) the function f ∗ g. For this reason it will become important to properly balance
these parameters against one another in subsequent sections.

2.2. On the Robustness of the SFTs proposed in [19]. The sparse Fourier transforms pre-
sented in [19] include both deterministic and randomized methods for approximately computing
the Fourier series coefficients of a given 2π-periodic function f from its evaluations at m-points
{xk}mk=1 ⊂ [−π, π]. The following results describe how accurate these algorithms will be when they
are only given approximate evaluations of f at these points instead. These results are necessary
because we will want to execute the SFTs developed in [19] on convolutions of the form f ∗ g
below, but will only be able to approximately compute their values at each of the required points
x1, . . . , xm ∈ [−π, π].

Lemma 4. Let s, ε−1 ∈ N \ {1} with (s/ε) ≥ 2, and n ∈ Cm be an arbitrary noise vector. There
exists a set of m points {xk}mk=1 ⊂ [−π, π] such that Algorithm 3 on page 72 of [19], when given
access to the corrupted samples {f(xk) + nk}mk=1, will identify a subset S ⊆ B which is guaranteed
to contain all ω ∈ B with

(4)
∣∣∣f̂ω∣∣∣ > 4

ε ·
∥∥∥f̂ − f̂opt(s/ε)

∥∥∥
1

s
+
∥∥∥f̂ − f̂ |B∥∥∥

1
+ ‖n‖∞

 .

Furthermore, every ω ∈ S returned by Algorithm 3 will also have an associated Fourier series
coefficient estimate zω ∈ C which is guaranteed to have

(5)
∣∣∣f̂ω − zω∣∣∣ ≤ √2

ε ·
∥∥∥f̂ − f̂opt(s/ε)

∥∥∥
1

s
+
∥∥∥f̂ − f̂ |B∥∥∥

1
+ ‖n‖∞

 .

Both the number of required samples, m, and Algorithm 3’s operation count are

(6) O

(
s2 · log4(N)

log
(
s
ε

)
· ε2

)
.

If succeeding with probability (1 − δ) ∈ [2/3, 1) is sufficient, and (s/ε) ≥ 2, the Monte Carlo
variant of Algorithm 3 referred to by Corollary 4 on page 74 of [19] may be used. This Monte Carlo
variant reads only a randomly chosen subset of the noisy samples utilized by the deterministic
algorithm,

{f(x̃k) + ñk}m̃k=1 ⊆ {f(xk) + nk}mk=1 ,

yet it still outputs a subset S ⊆ B which is guaranteed to simultaneously satisfy both of the following
properties with probability at least 1− δ:

(i) S will contain all ω ∈ B satisfying (4), and
5

(ii) all ω ∈ S will have an associated coefficient estimate zω ∈ C satisfying (5).

Finally, both this Monte Carlo variant’s number of required samples, m̃, as well as its operation
count will also always be

(7) O
(
s

ε
· log3(N) · log

(
N

δ

))
.

Using the preceding lemma one can easily prove the following noise robust variant of Theorem 7
(and Corollary 4) from §5 of [19]. The proofs of both results are outlined in Appendix B for the
sake of completeness.

Theorem 2. Suppose f : [−π, π] → C has f̂ ∈ `1 ∩ `2. Let s, ε−1 ∈ N \ {1} with (s/ε) ≥ 2,
and n ∈ Cm be an arbitrary noise vector. Then, there exists a set of m points {xk}mk=1 ⊂ [−π, π]
together with a simple deterministic algorithm A : Cm → C4s such that A ({f(xk) + nk}mk=1) is
always guaranteed to output (the nonzero coefficients of) a degree ≤ N/2 trigonometric polynomial
ys : [−π, π]→ C satisfying

(8) ‖f − ys‖2 ≤
∥∥∥f̂ − f̂opts

∥∥∥
2

+
22ε ·

∥∥∥f̂ − f̂opt(s/ε)

∥∥∥
1√

s
+ 22
√
s
(∥∥∥f̂ − f̂ |B∥∥∥

1
+ ‖n‖∞

)
.

Both the number of required samples, m, and the algorithm’s operation count are always

(9) O

(
s2 · log4(N)

log
(
s
ε

)
· ε2

)
.

If succeeding with probability (1−δ) ∈ [2/3, 1) is sufficient, and (s/ε) ≥ 2, a Monte Carlo variant
of the deterministic algorithm may be used. This Monte Carlo variant reads only a randomly chosen
subset of the noisy samples utilized by the deterministic algorithm,

{f(x̃k) + ñk}m̃k=1 ⊆ {f(xk) + nk}mk=1 ,

yet it still outputs (the nonzero coefficients of) a degree ≤ N/2 trigonometric polynomial, ys :
[−π, π]→ C, that satisfies (8) with probability at least 1− δ. Both its number of required samples,
m̃, as well as its operation count will always be

(10) O
(
s

ε
· log3(N) · log

(
N

δ

))
.

We now have the necessary prerequisites in order to discuss our general strategy for constructing
several new fully discrete SFTs.

3. Description of the Proposed Approach

In this section we assume that we have access to an SFT algorithm A which requires m function
evaluations of a 2π-periodic function f : [−π, π]→ C in order to produce an s-sparse approximation

to f̂ . For any non-adaptive SFT algorithm A the m points {xk}mk=1 ⊂ [−π, π] at which A needs to
evaluate f can be determined before A is actually executed. As a result, the function evaluations
{f(xk)}mk=1 required by A can also be evaluated before A is ever run. Indeed, if the SFT algorithm
A is both nonadaptive and robust to noise it suffices to approximate the function evaluations
{f(xk)}mk=1 required by A before it is executed.5 These simple ideas form the basis for the proposed
computational approach outlined in Algorithm 1.

5We hasten to point out, moreover, that similar ideas can also be employed for adaptive and noise robust SFT
algorithms in order to approximately evaluate f in an “on demand” fashion as well. We leave the details to the
interested reader.

6

Algorithm 1: A Generic Method for Discretizing a Given SFT Algorithm A
Input : Pointer to vector f ∈ CN , sparsity s ≤ N , nodes {xk}mk=1 ⊂ [−π, π] at which the

given SFT algorithm A needs function evaluations, and α, β satisfying Lemma 3

Output: R̂s, a sparse approximation of f̂ ∈ CN
1 Initialize R̂, R̂s ← ∅
2 Set c1 = β

√
lnN
N in the definition of periodic Gaussian g from (3), and c2 = α

√
lnN
2

3 for j from 1 to dc2e do
4 q = −

⌈
N
2

⌉
+ 1 + (2j − 1)

⌈
N

α
√
lnN

⌉
5 Modulate g to be g̃q(x) := e−iqxg(x)

6 for each point x ∈ {xk}mk=1 do
7 Use f to approximately compute (g̃q ∗ f)(x) as per §3.1

8 end

9 Run given SFT algorithm A using the approximate function evaluations {(g̃q ∗ f)(xk)}mk=1

in order to find an s-sparse Fourier approximation, R̂temp ⊂ Z× C, of ̂̃gq ∗ f .

10 for each (frequency,Fourier coefficient) pair (ω, cω) ∈ R̂temp do

11 if ω ∈
[
q −

⌈
N

α
√
lnN

⌉
, q +

⌈
N

α
√
lnN

⌉)
∩B then

12 R̂ = R̂ ∪
{(
ω, cω

/ (̂̃gq)
ω

)}
13 end

14 end

15 end

16 Choose the s frequencies ω with (ω, c̃ω) ∈ R̂ having the largest |c̃ω|, and put those (ω, c̃ω) in R̂s

17 Return R̂s

The objective of Algorithm 1 is to use a nonadaptive and noise robust SFT algorithm A which
requires off-grid function evaluations in order to approximately compute the DFT of a given vector
f ∈ CN , f̂ = F f . Note that computing f̂ is equivalent to computing the Fourier series coefficients
of the degree N trigonometric interpolant of f . Hereafter the 2π-periodic function f : [−π, π]→ C
under consideration will always be this degree N trigonometric interpolant of f . Our objective

then becomes to approximately compute f̂ using A. Unfortunately, our given input vector f only
contains equally spaced function evaluations of f , and so does not actually contain the function
evaluations {f(xk)}mk=1 required by A. As a consequence, we are forced to try to interpolate these
required function evaluations {f(xk)}mk=1 from the available equally spaced function evaluations f .

Directly interpolating the required function evaluations {f(xk)}mk=1 from f for an arbitrary degree
N trigonometric polynomial f using standard techniques appears to be either too inaccurate, or
else too slow to work well in our setting.6 As a result, Algorithm 1 instead uses f to rapidly
approximate samples from the convolution of the unknown trigonometric polynomial f with (several
modulations of) a known filter function g. Thankfully, all of the evaluations {(g ∗ f)(xk)}mk=1 can
be approximated very accurately using only the data in f in just O(m logN)-time when g is chosen
carefully enough (see §3.1 below). The given SFT algorithm A is then used to approximate the
Fourier coefficients of g ∗ f for each modulation of g using these approximate evaluations. Finally,

f̂ is then approximated using the recovered sparse approximation for each ĝ ∗ f combined with our
a priori knowledge of ĝ.

6Each function evaluation f(xk) needs to be accurately computed in just O(logcN)-time in order to allow us to
achieve our overall desired runtime for Algorithm 1.

7

3.1. Rapidly and Accurately Evaluating f ∗ g. In this section we will carefully consider the
approximation of (f ∗ g) (x) by a severely truncated version of the semi-discrete convolution sum

(11)
1

N

N−1∑
j=0

f

(
−π +

2πj

N

)
g

(
x+ π − 2πj

N

)
for any given value of x ∈ [−π, π]. Our goal is to determine exactly how many terms of this finite
sum we actually need in order to obtain an accurate approximation of f ∗g at an arbitrary x-value.
More specifically, we aim to use as few terms from this sum as absolutely possible in order to ensure,
e.g., an approximation error of size O(N−2).

Without loss of generality, let us assume that N = 2M + 1 is odd – this allows us to express B,
the set of N Fourier modes about zero, as

B :=

(
−
⌈
N

2

⌉
,

⌊
N

2

⌋]
∩ Z = [−M,M] ∩ Z.

In the lemmas and theorems below the function f : [−π, π] → C will always denote a degree-N
trigonometric polynomial of the form

f (x) =
∑
ω∈B

f̂ωe
iωx.

Furthermore, g will always denote the periodic Gaussian as defined above in (3). Finally, we will
also make use of the Dirichlet kernel DM : R→ C, defined by

DM (y) =
1

2π

M∑
n=−M

e
iny =

1

2π

∑
n∈B

e
iny.

The relationship between trigonometric polynomials such as f and the Dirichlet kernel DM is
the subject of the following lemma.

Lemma 5. Let h : [−π, π]→ C have ĥω = 0 for all ω /∈ B, and define the set of points {yj}2Mj=0 ={
−π + 2πj

N

}2M

j=0
. Then,

2π (h ∗DM) (x) = h (x) =
2π

N

2M∑
j=0

h (yj)DM (x− yj)

holds for all x ∈ [−π, π].

Proof. By the definition of DM , we trivially have 2π
(
D̂M

)
ω

= χB (ω) ∀ω ∈ Z. Thus,

ĥ = 2π · ĥ ◦ D̂M = 2π · ĥ ∗DM

where, as before, ◦ denotes the Hadamard product, and ∗ denotes convolution. This yields h (x) =
2π (h ∗DM) (x) and so establishes the first equality above. To establish the second equality above,
recall from (2) that for any ω ∈ B we will have

ĥω =
(−1)ω

N

2M∑
j=0

h

(
−π +

2πj

N

)
e
−2πijω
N =

1

N

2M∑
j=0

h (yj) e
−iωyj ,

since h is a trigonometric polynomial. Thus, given x ∈ [−π, π] one has

h (x) =
∑
ω∈B

ĥωe
iωx =

1

N

2M∑
j=0

(
h (yj)

∑
ω∈B

e
iω(x−yj)

)
=

2π

N

2M∑
j=0

h (yj)DM (x− yj) .

8

We now have the desired result. �

We can now write a formula for g ∗ f which only depends on N evaluations of f in [−π, π].

Lemma 6. Given the set of equally spaced points {yj}2Mj=0 =
{
−π + 2πj

N

}2M

j=0
one has that

(g ∗ f) (x) =
1

N

2M∑
j=0

f (yj)

∫ π

−π
g (x− u− yj)DM (u) du

for all x ∈ [−π, π].

Proof. By Lemma 5, we have

(g ∗ f) (x) =
1

2π

∫ π

−π
g (x− y) f (y) dy =

1

N

∫ π

−π
g (x− y)

2M∑
j=0

f (yj)DM (y − yj) dy

=
1

N

2M∑
j=0

f (yj)

∫ π

−π
g (x− u− yj)DM (u) du.

The last equality holds after a change of variables since g and DM are both 2π−periodic. �

The next two lemmas will help us bound the error produced by discretizing the integral weights
present in the finite sum provided by Lemma 6 above. More specifically, they will ultimately allow
us to approximate the sum in Lemma 6 by the sum in (11).

Lemma 7. Let x ∈ [−π, π] and yj = −π + 2πj
N for some j = 0, . . . , 2M . Then,∫ π

−π
g (x− u− yj)DM (u) du =

∑
n∈B

ĝne
in(x−yj).

Proof. Recalling that 2π
(
D̂M

)
ω

= χB (ω) for all ω ∈ Z we have that∫ π

−π
g (x− u− yj)DM (u) du = 2π (DM ∗ g) (x− yj) =

∑
n∈Z

ĝnχB (n) ein(x−yj) =
∑
n∈B

ĝne
in(x−yj).

�

Lemma 8. Denote I (a) :=
∫ a
−a e

−x2dx for a > 0; then

π
(

1− e−a2
)
< I2 (a) < π

(
1− e−2a2

)
.

Proof. Let a > 0 and observe that

I2 (a) =

∫ a

−a

∫ a

−a
e
−x2−y2dxdy >

∫∫
{x2+y2≤a2}

e
−(x2+y2)dxdy = π

(
1− e−a2

)
.

The first equality holds by Fubini’s theorem, and the inequality follows simply by integrating
a positive function over a disk of radius a as opposed to a square of sidelength 2a. A similar
argument yields the upper bound. �

We are now ready to bound the difference between the integral weights present in the finite sum
provided by Lemma 6, and the g (x− yj)-weights present in the sum (11).

9

Lemma 9. Choose any τ ∈
(

0, 1√
2π

)
, α ∈

[
1, N√

lnN

]
, and β ∈

(
0, α

√
ln(1/τ

√
2π)

2

]
. Let c1 = β

√
lnN
N

in the definition of the periodic Gaussian g so that

g (x) =
N

β
√

lnN

∞∑
n=−∞

e
− (x−2nπ)2N2

2β2 lnN .

Then for all x ∈ [−π, π] and yj = −π + 2πj
N ,∣∣∣∣g (x− yj)−

∫ π

−π
g (x− u− yj)DM (u) du

∣∣∣∣ < N1−β
2

18

β
√

lnN
.

Proof. Using Lemma 7 we calculate∣∣∣∣g (x− yj)−
∫ π

−π
g (x− u− yj)DM (u) du

∣∣∣∣ =

∣∣∣∣∣g (x− yj)−
∑
n∈B

ĝne
in(x−yj)

∣∣∣∣∣ =

∣∣∣∣∣∑
n∈Bc

ĝne
in(x−yj)

∣∣∣∣∣
≤ 1√

2π

∑
|n|>M

e
− c

2
1n

2

2 (Using Lemma 2)

≤ 2√
2π

∫ ∞
M
e
− c

2
1n

2

2 dn

=

√
2

π

∫ ∞
M
e
−β

2n2 lnN

2N2 dn.

Upon the change of variable v = βn
√
lnN√
2N

, we get that∣∣∣∣g (x− yj)−
∫ π

−π
g (x− u− yj)DM (u) du

∣∣∣∣ ≤
√

2

π

√
2N

β
√

lnN

∫ ∞
βM
√
lnN√

2N

e
−v2dv

=
2N

β
√
π lnN

1

2

∫ ∞
−∞

e
−v2dv −

∫ βM
√
lnN√

2N

−βM
√
lnN√

2N

e
−v2dv

<

N

β
√
π lnN

(
√
π −

√
π

(
1− e−

β2M2 lnN

2N2

))

=
N

β
√

lnN

(
1−

√
1−N−

β2M2

2N2

)
where the last inequality follows from Lemma 8. Noting now that

y ∈ [0, 1] =⇒ 1−
√

1− y ≤ y,

and that N
M = 2 + 1

M ∈ (2, 3] for all M ∈ Z+, we can further see that

N

β
√

lnN

(
1−

√
1−N−

β2M2

2N2

)
≤ N

β
√

lnN
N−

β2M2

2N2 ≤ N1−β
2

18

β
√

lnN

also always holds. �

With the lemmas above we can now prove that (11) can be used to approximate (g ∗ f) (x) for
all x ∈ [−π, π] with controllable error.

10

Theorem 3. Let p ≥ 1. Using the same values of the parameters from Lemma 9 above, one has∣∣∣∣∣∣(g ∗ f) (x)− 1

N

2M∑
j=0

f (yj) g (x− yj)

∣∣∣∣∣∣ ≤ ‖f‖p
β
√

lnN
N

1−β
2

18
− 1
p

for all x ∈ [−π, π].

Proof. Using Lemmas 6 and 9 followed by Holder’s inequality, we have∣∣∣∣∣∣(g ∗ f) (x)− 1

N

2M∑
j=0

f (yj) g (x− yj)

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1

N

2M∑
j=0

f (yj)

(
g (x− yj)−

∫ π

−π
g (x− u− yj)DM (u) du

)∣∣∣∣∣∣
≤ 1

N

2M∑
j=0

|f (yj)|
N1−β

2

18

β
√

lnN
≤ N

−β2
18

β
√

lnN
‖f‖pN

1− 1
p .

�

To summarize, Theorem 3 tells us that (g ∗ f) (x) can be approximately computed in O (N)-time
for any x ∈ [−π, π] using (11). This linear runtime cost may be reduced significantly, however, if
one is willing to accept an additional trade-off between accuracy and the number of terms needed
in the sum (11). This trade-off is characterized in the next lemma.

Lemma 10. Let x ∈ [−π, π], p ≥ 1, γ ∈ R+, and κ := dγ lnNe + 1. Set j′ := arg minj |x− yj |.
Using the same values of the other parameters from Lemma 9 above, one has∣∣∣∣∣∣ 1

N

2M∑
j=0

f (yj) g (x− yj)−
1

N

j′+κ∑
j=j′−κ

f (yj) g (x− yj)

∣∣∣∣∣∣ ≤ 2‖f‖p N
− 2π2γ2

β2

for all β ≥ 4 and N ≥ β2.

Proof. Appealing to Lemma 1 and recalling that c1 = β
√
lnN
N we can see that

g (x) ≤
(

3N

β
√

lnN
+

1√
2π

)
e
− x2N2

2β2 lnN .

Using this fact we have that

g
(
x− yj′±k

)
≤
(

3N

β
√

lnN
+

1√
2π

)
e
−(x−yj′±k)

2
N2

2β2 lnN ≤
(

3N

β
√

lnN
+

1√
2π

)
e
− (2k−1)2π2

2β2 lnN

for all k ∈ ZN . As a result, one can now bound∣∣∣∣∣∣ 1

N

2M∑
j=0

f (yj) g (x− yj)−
1

N

j′+κ∑
j=j′−κ

f (yj) g (x− yj)

∣∣∣∣∣∣
above by (

3

β
√

lnN
+

1

N
√

2π

)N−2κ−1∑
k=κ+1

(∣∣f (yj′−k)∣∣+
∣∣f (yj′+k)∣∣) e− (2k−1)2π2

2β2 lnN ,(12)

where the yj-indexes are considered modulo N as appropriate.
11

Our goal is now to employ Holder’s inequality on (12). Toward that end, we will now bound the

q-norm of the vector h :=

e−(κ+`− 1
2)

2
2π2

β2 lnN

N−2κ−1

`=1

. Letting a := q
(

4
β2 lnN

)
we have that

‖h‖qq =
N−2κ−1∑
`=1

e
−π

2

2 (κ+`− 1
2)

2
a <

∞∑
`=κ

e
−π

2

2
`2a ≤

∫ ∞
κ−1

e
−π

2x2

2
a dx

≤
√

1

2πa
− 1

π
√

2a

∫ π(κ−1)
√

a
2

−π(κ−1)
√

a
2

e
−u2 du ≤

√
1

2πa
e
−aπ

2

2
(κ−1)2 ≤ β

2

√
lnN

2πq
N
− 2qπ2γ2

β2 ,

where we have used Lemma 8 once again. As a result we have that

‖h‖q ≤
(
β2 lnN

8π

) 1
2q

q
− 1

2qN
− 2π2γ2

β2 ≤
(
β2 lnN

8π

) 1
2q

N
− 2π2γ2

β2

for all q ≥ 1. Applying Holder’s inequality on (12) we can now see that (12) is bounded above by

2

(
3

β
√

lnN
+

1

N
√

2π

)
‖f‖p

(
β2 lnN

8π

) 1
2
− 1

2p

N
− 2π2γ2

β2 .

The result now follows. �

We may now finally combine the truncation and estimation errors in Theorem 3 and Lemma 10
above in order to bound the total error one incurs by approximating (g ∗ f) (x) via a truncated
portion of (11) for any given x ∈ [−π, π].

Theorem 4. Fix x ∈ [−π, π], p ≥ 1 (or p = ∞), N
36 ≥ r ≥ 1, and g : [−π, π] → R+ to be the

2π−periodic Gaussian (3) with c1 :=
6
√

ln(Nr)

N . Set j′ := arg minj |x− yj | where yj = −π + 2πj
N for

all j = 0, . . . , 2M . Then,∣∣∣∣∣∣∣∣(g ∗ f) (x)− 1

N

j′+
⌈

6r√
2π

lnN
⌉
+1∑

j=j′−
⌈

6r√
2π

lnN
⌉
−1

f (yj) g (x− yj)

∣∣∣∣∣∣∣∣ ≤ 3
‖f‖p
N r

.

As a consequence, we can see that (g ∗ f) (x) can always to computed to within O (‖f‖∞N−r)-error

in just O (r logN)-time for any given f ∈ CN once the
{
g (x− yj)

}j′+⌈ 6r√
2π

lnN
⌉
+1

j=j′−
⌈

6r√
2π

lnN
⌉
−1

have been

precomputed.

Proof. Combining Theorem 3 and Lemma 10 we can see that∣∣∣∣∣∣∣∣(g ∗ f) (x)− 1

N

j′+
⌈

6r√
2π

lnN
⌉
+1∑

j=j′−
⌈

6r√
2π

lnN
⌉
−1

f (yj) g (x− yj)

∣∣∣∣∣∣∣∣ ≤ ‖f‖p
(

1

β
√

lnN
N

1−β
2

18
− 1
p + 2 N

− 2π2γ2

β2

)

where β = 6
√
r ≥ 6, N ≥ 36r = β2, and γ = 6r√

2π
= β

√
r√

2π
. �

We are now prepared to bound the error of the proposed approach when utilizing the SFTs
developed in [19].

12

4. An Error Guarantee for Algorithm 1 when Using the SFTs Proposed in [19]

Given the 2π−periodic Gaussian g : [−π, π] → R+ (3), consider the periodic modulation of g,
g̃q : [−π, π]→ C, for any q ∈ Z defined by

g̃q (x) = e
−iqxg (x) .

One can see that

g̃q (x) = e
−iqx

∞∑
ω=−∞

ĝωe
iωx =

∞∑
ω=−∞

ĝωe
i(ω−q)x =

∞∑
ω̃=−∞

ĝω̃+qe
iω̃x,

so that the Fourier series coefficients of g̃q are those of g, shifted by q; that is,(̂̃gq)
ω

= ĝω+q.

In line 9 of Algorithm 1, we provide the SFT Algorithm in [19] with the approximate evaluations
of {(g̃q ∗ f) (xk)}mk=1 , namely, {(g̃q ∗ f) (xk) + nk}mk=1, where, by Theorem 4, the perturbations nk
are bounded, for instance, by

|nk| ≤ 3
‖f‖∞
N r

∀ k = 1, . . . ,m.

With this in mind, let us apply Lemma 4 to the function g̃q ∗ f . We have the following lemma.

Lemma 11. Let s ∈ [2, N] ∩ N, and n ∈ Cm be the vector containing the total errors incurred
by approximating g̃q ∗ f via a truncated version of (11), as per Theorem 4. There exists a set
of m points {xk}mk=1 ⊂ [−π, π] such that Algorithm 3 on page 72 of [19], when given access to
the corrupted samples {(g̃q ∗ f) (xk) + nk}mk=1 , will identify a subset S ⊆ B which is guaranteed to
contain all ω ∈ B with∣∣∣(̂̃gq ∗ f)

ω

∣∣∣ > 4

(
1

s
·
∥∥∥∥̂̃gq ∗ f − (̂̃gq ∗ f)opts

∥∥∥∥
1

+ 3 ‖f‖∞N
−r
)

=: 4δ̃.

Furthermore, every ω ∈ S returned by Algorithm 3 will also have an associated Fourier series
coefficient estimate zω ∈ C which is guaranteed to have∣∣∣(̂̃gq ∗ f)

ω
− zω

∣∣∣ ≤ √2δ̃.

Next, we need to guarantee that the estimates of ̂̃gq ∗ f returned by Algorithm 3 of [19] will yield

good estimates of f̂ itself. We have the following.

Lemma 12. Let s ∈ [2, N] ∩ N. Given a 2π−periodic function f : [−π, π] → C, the periodic
Gaussian g, and any of its modulations g̃q (x) = e−iqxg (x), one has∥∥∥∥̂̃gq ∗ f − (̂̃gq ∗ f)opts

∥∥∥∥
1

≤ 1

2

∥∥∥f̂ − f̂opts

∥∥∥
1
.

Proof. Recall the definition of Ropt
s

(
f̂
)

as the subset of B containing the s most energetic frequen-

cies of f̂ , and observe that

1

2

∥∥∥f̂ − f̂opts

∥∥∥
1

=
1

2

∑
ω∈B\Ropt

s (f̂)

∣∣∣f̂ω∣∣∣ ≥ ∑
ω∈B\Ropt

s (f̂)

∣∣∣(̂̃gq)
ω
· f̂ω
∣∣∣

13

since, by Lemma 2, ĝω <
1
2 for all ω, and consequently,

(̂̃gq)
ω

= ĝω+q <
1
2 for all ω. Moreover,∑

ω∈B\Ropt
s (f̂)

∣∣∣(̂̃gq)
ω
· f̂ω
∣∣∣ ≥ ∑

ω∈B\Ropt
s

(
̂̃gq∗f

)
∣∣∣(̂̃gq)

ω
· f̂ω
∣∣∣ =

∥∥∥∥̂̃gq ∗ f − (̂̃gq ∗ f)opts

∥∥∥∥
1

.

�

Let us combine the guarantees above into the following lemma.

Lemma 13. Let s ∈ [2, N] ∩ N, and n ∈ Cm be the vector containing the total errors incurred
by approximating g̃q ∗ f via a truncated version of (11), as per Theorem 4. There exists a set
of m points {xk}mk=1 ⊂ [−π, π] such that Algorithm 3 on page 72 of [19], when given access to
the corrupted samples {(g̃q ∗ f) (xk) + nk}mk=1 , will identify a subset S ⊆ B which is guaranteed to
contain all ω ∈ B with∣∣∣(̂̃gq ∗ f)

ω

∣∣∣ > 4

(
1

2s
·
∥∥∥f̂ − f̂opts

∥∥∥
1

+ 3 ‖f‖∞N
−r
)

=: 4δ.

Furthermore, every ω ∈ S returned by Algorithm 3 will also have an associated Fourier series
coefficient estimate zω ∈ C which is guaranteed to have∣∣∣(̂̃gq)

ω
· f̂ω − zω

∣∣∣ ≤ √2δ.

The lemma above implies that for any choice of q in line 4 of Algorithm 1, we are guaranteed to

find all ω ∈
[
q −

⌈
N

α
√
lnN

⌉
, q +

⌈
N

α
√
lnN

⌉)
∩B with∣∣∣f̂ω∣∣∣ > max

ω̃

4δ(̂̃gq)
ω̃

≥ 4δ

τ

where α and τ are as defined in Lemma 3. Moreover, the Fourier series coefficient estimates zω
returned by Algorithm 3 will satisfy∣∣∣∣∣∣f̂ω − zω(̂̃gq)

ω

∣∣∣∣∣∣ ≤ max
ω̃

√
2δ(̂̃gq)
ω̃

≤
√

2δ

τ
.

Following Theorem 3, which guarantees a decay of N−r in the total approximation error, let us

set β = 6
√
r for 1 ≤ r ≤ N

36 . Recall from Lemma 3 the choice of β ∈
(

0, α

√
ln(1/τ

√
2π)

2

]
where τ is

to be chosen from
(

0, 1√
2π

)
. Thus, we must choose α ∈

[
1, N√

lnN

]
so that

6
√
r ≤ α

√
ln
(
1/τ
√

2π
)

2
⇐⇒ α ≥ 6

√
2r

ln
(
1/τ
√

2π
) .

We may remove the dependence on τ simply by setting, e.g., τ = 1
3 . Then α = O (

√
r).

We are now ready to state the recovery guarantee of Algorithm 1 and its operation count.

Theorem 5. Let N ∈ N, s ∈ [2, N] ∩ N, and 1 ≤ r ≤ N
36 as in Theorem 4. If Algorithm 3 of [19]

is used in Algorithm 1 then Algorithm 1 will always deterministically identify a subset S ⊆ B and
a sparse vector v|S ∈ CN satisfying

(13)
∥∥∥f̂ − v|S

∥∥∥
2
≤
∥∥∥f̂ − f̂opts

∥∥∥
2

+
33√
s
·
∥∥∥f̂ − f̂opts

∥∥∥
1

+ 198
√
s ‖f‖∞N

−r.

14

Algorithm 1’s operation count is then

O

(
s2 · r

3
2 · log

11
2 (N)

log(s)

)
.

If returning a sparse vector v|S ∈ CN that satisfies (13) with probability at least (1−p) ∈ [2/3, 1)
is sufficient, a Monte Carlo variant of the deterministic Algorithm 3 in [19] may be used in line 9
of Algorithm 1. In this case Algorithm 1’s operation count is

O
(
s · r

3
2 · log

9
2 (N) · log

(
N

p

))
.

Proof. Redefine δ in the proof of Theorem 7 in [19] as

δ =
1

τ

(
1

2s
·
∥∥∥f̂ − f̂opts

∥∥∥
1

+ 3 ‖f‖∞N
−r
)

= 3

(
1

2s
·
∥∥∥f̂ − f̂opts

∥∥∥
1

+ 3 ‖f‖∞N
−r
)
,

and observe that any ω ∈ B =
[
−
⌈
N
2

⌉
,
⌊
N
2

⌋)
∩ Z that is reconstructed by Algorithm 1 will have a

Fourier series coefficient estimate vω that satisfies∣∣∣vω − f̂ω

∣∣∣ =
∣∣∣vω − f̂ω∣∣∣ ≤ √2 · δ.

We can thus bound the approximation error by∥∥∥f̂ − v|S
∥∥∥
2
≤
∥∥∥f̂ − f̂ |S

∥∥∥
2

+
∥∥∥f̂ |S − v|S

∥∥∥
2
≤
∥∥∥f̂ − f̂ |S

∥∥∥
2

+ 2
√
s · δ

=

√√√√∥∥∥f̂ − f̂opts

∥∥∥2
2

+
∑

ω∈Ropt
s (f̂)\S

∣∣∣f̂ω∣∣∣2 − ∑
ω̃∈S\Ropt

s (f̂)

∣∣∣f̂ω̃∣∣∣2 + 2
√
s · δ.

(14)

In order to make additional progress on (14) we must consider the possible magnitudes of f̂ entries

at indices in S\Ropt
s

(
f̂
)

and Ropt
s

(
f̂
)
\S. Careful analysis (in line with the techniques employed

in the proof of Theorem 7 of [19]) indicates that∑
ω∈Ropt

s (f̂)\S

∣∣∣f̂ω∣∣∣2 − ∑
ω̃∈S\Ropt

s (f̂)

∣∣∣f̂ω̃∣∣∣2 ≤ s · (8
√

2 + 8
)2
· δ2.

Therefore, in the worst possible case equation (14) will remain bounded by∥∥∥f̂ − v|S
∥∥∥
2
≤
√∥∥∥f̂ − f̂opts

∥∥∥2
2

+ s ·
(

8
√

2 + 8
)2
· δ2 + 2

√
s · δ ≤

∥∥∥f̂ − f̂opts

∥∥∥
2

+ 22
√
s · δ.

The error bound stated in (13) follows.

The runtimes follow by observing that c2 = O
(
α · log

1
2 (N)

)
= O

(
r

1
2 · log

1
2 (N)

)
as chosen

in line 2 of Algorithm 1, and for every choise of q in line 4 of Algorithm 1, all of the evaluations
{(g̃q ∗ f)(xk)}mk=1 can be approximated very accurately in just O(mr logN)-time, where the number
of samples m is on the orders described in Theorem 2. �

We are now ready to empirically evaluate Algorithm 1 with several different SFT algorithms A
used in its line 9.

15

5. Numerical Evaluation

In this section we evaluate the performance of three new discrete SFT Algorithms resulting from
Algorithm 1: DMSFT-4, DMSFT-6,7 and CLW-DSFT.8 All of them were developed by utilizing
different SFT algorithms in line 9 of Algorithm 1. Here DMSFT stands for the Discrete Michigan
State Fourier Transform algorithm. Both DMSFT-4 and DMSFT-6 are implementations of Algo-
rithm 1 that use a randomized version of the SFT algorithm GFFT [25] in their line 9.9 The only
difference between DMSFT-4 and DMSFT-6 is how accurately each one estimates the convolution
in line 7 of Algorithm 1: for DMSFT-4 we use κ = 4 in the partial discrete convolution in Lemma 10
when approximating g̃q ∗ f at each xk, while for DMSFT-6 we always use κ = 6. The CLW-DSFT
stands for the Christlieb Lawlor Wang Discrete Sparse Fourier Transform algorithm. It is an
implementation of Algorithm 1 that uses the SFT developed in [5] in its line 9, and κ varying
between 12 and 20 for its line 7 convolution estimates (depending on each input vector’s Fourier
sparsity, etc.). All of DMSFT-4, DMSFT-6 and CLW-DSFT were implemented in C++ in order
to empirically evaluate their runtime and noise robustness characteristics.

We also compare these new implementations’ runtime and robustness characteristics with FFTW
3.3.410 and sFFT 2.011. FFTW is the highly optimized FFT implementation which runs inO(N logN)-
time for input vectors of length N . All the standard discrete Fourier Transforms in the numerical
experiments are performed using FFTW 3.3.4 with FFTW MEASURE plan. The sFFT 2.0 is
a randomized discrete sparse Fourier Transform algorithm written in C++ which is both stable
and robust to noise. It was developed by Indyk et al. in [12]. Note that DMSFT-4, DMSFT-6,
CLW-DSFT, and sFFT 2.0 are all randomized algorithms designed to approximate discrete DFTs
that are approximately s-sparse. This means that all of them take both sparsity s and size N of
the DFT’s f̂ ∈ CN they aim to recover as parameters. In contrast, FFTW can not utilize exist-
ing sparsity to its advantage. Finally, all experiments are run on a Linux CentOS machine with
2.50GHz CPU and 16 GB of RAM.

5.1. Experiment Setup. For the execution time experiments each trial input vector f ∈ CN

was generated as follows: First s frequencies were independently selected uniformly at random
from [0, N) ∩ Z, and then each of these frequencies was assigned a uniform random phase with
magnitude 1 as its Fourier coefficient. The remaining frequencies’ Fourier coefficients were then set
to zero to form f̂ ∈ CN . Finally, the trial input vector f was then formed via an inverse DFT.

For each pair of s and N the parameters in each randomized algorithm were chosen so that
the probability of correctly recovering all s energetic frequencies was at least 0.9 per trial input.
Every data point in a figure below corresponds to an average over 100 runs on 100 different trial
input vectors of this kind. It is worth mentioning that the parameter tuning process for DMSFT-4
and DMSFT-6 requires significantly less effort than for both CLW-DSFT and sFFT 2.0 since the
DMSFT variants only have two parameters (whose default values are generally near-optimal).

5.2. Runtime as Input Vector Size Varies. In Figure 1 we fixed the sparsity to s = 50 and
ran numerical experiments on 8 different input vector lengths N : 216, 218, ..., 230. We then plotted
the running time (averaged over 100 runs) for DMSFT-4, DMSFT-6, CLW-DSFT, sFFT 2.0, and
FFTW.

As expected, the runtime slope of all the SFT algorithms (i.e. DMSFT-4, DMSFT-6, CLW-
DSFT, and sFFT 2.0) is less than the slope of FFTW as N increases. Although FFTW is fastest

7The code for both DMSFT variants is available at https://sourceforge.net/projects/aafftannarborfa/.
8The CLW-DSFT code is available at www.math.msu.edu/~markiwen/Code.html.
9Code for GFFT is also available at www.math.msu.edu/~markiwen/Code.html.
10This code is available at http://www.fftw.org/
11This code is available at https://groups.csail.mit.edu/netmit/sFFT/

16

Figure 1. Runtime Comparison at Sparsity (s) Fixed at 50

Figure 2. Runtime Comparison at Bandwidth (N) Fixed at 226

for vectors of small size, it becomes the slowest algorithm when the vector size N is greater than
220. Among the randomized algorithms, sFFT 2.0 is the fastest one when N is less than 222, but
DMSFT-4, DMSFT-6, and CLW-DSFT all outperform sFFT 2.0 with respect to runtime when the
input vector’s sizes are large enough. The CLW-DSFT implementation becomes faster than sFFT
2.0 when N is approximately 221 while DMSFT-4 and DMSFT-6 have better runtime performance
than sFFT 2.0 when N is greater than 223.

5.3. Runtime as Sparsity Varies. In Figure 2 we fix the input vector lengths to N = 226

and run the numerical experiments on 7 different values of sparsity s: 50, 100, 200, 400, 1000,
2000, and 4000. As expected, the FFTW’s runtime is constant as we increase the sparsity. The
runtimes of DMSFT-4, CLW-DSFT, and sFFT 2.0 are all essentially linear in s. Here DMSFT-6
has been excluded for ease of viewing/reference – its runtimes lie directly above those of DMSFT-4
when included in the plot. Looking at Figure 2 we can see the CLW-DSFT’s runtime increases
more rapidly with s than that of DMSFT-4 and sFFT 2.0. The runtime of CLW-DSFT becomes
the slowest one when sparsity is around 1000. DMSFT-4 and sFFT 2.0 have approximately the

17

Figure 3. Robustness to Noise (Bandwidth (N) = 222, Sparsity (s) = 50).

same runtime slope as s increases, and they both have good performance when the sparsity is
large. However, DMSFT-4 maintains consistently better runtime performance than sFFT 2.0 for
all sparsity values, and is the only algorithm in the plot that still faster than FFTW when the
sparsity is 4000. Indeed, when the sparsity is 4000 the average runtime of DMSFT-4 is 2.68s and
the average runtime of DMSFT-6 is 2.9s. Both of them remain faster than FFTW (3.47s) and sFFT
2.0 (3.96s) for this large sparsity (though only DMSFT-4 has been included in the plot above).

5.4. Robustness to Noise. In our final set of experiments we test the noise robustness of DMSFT-
4, DMSFT-6, CLW-DSFT, sFFT 2.0, and FFTW for different levels of Gaussian noise. Here the size
of each input vector is N = 222 and sparsity is fixed at s = 50. The test signals are then generated
as before, except that Gaussian noise is added to f after it is constructed. More specifically, we first
generate f and then set f = f + n where each entry of n, nj , is an i.i.d. mean 0 random complex
Gaussian value. The noise vector n is then rescaled to achieve each desired signal-to-noise ratio
(SNR) considered in the experiments.12

Recall that the the randomized algorithms compared herein (DMSFT-4, DMSFT-6, CLW-DSFT,
and sFFT 2.0) are all tuned to guarantee exact recovery of s-sparse functions with probability at
least 0.9 in all experiments. For our noise robustness experiments this ensures that the correct
frequency support, S, is found for at least 90 of the 100 trial signals used to generate each point
plotted in Figure 3. We use average L1 error to measure the noise robustness of each algorithm for
each of these at least 90 trial runs. The average L1 error is defined as

Average L1 Error =
1

s

∑
ω∈S

∣∣f̂ω − zω∣∣
where S is the true frequency support of the input vector f , f̂ω are the true input Fourier coefficients
for all frequencies ω ∈ S, and zω are their recovered approximations from each algorithm. Figure 3
graphs the averaged average L1 error over the at least 90 trial signals where each method correctly
identified S.

It can be seen in Figure 3 that DMSFT-4, DMSFT-6, sFFT 2.0, and FFTW are all robust to
noise. As expected, FFTW has the best performance in this test. DMSFT-4 and DMSFT-6 are

12The SNR is defined as SNR = 20 log ‖f‖2‖n‖2
, where f is the length N input vector and n is the length N noise

vector.

18

both more robust to noise when compared to sFFT 2.0. As for CLW-DSFT, it cannot guarantee
a 0.9 probability of correctly recovering S when the SNR is less than 40 and so is not plotted for
those SNR values. This is due to the base energetic frequency identification methods of [21, 5]
being inherently ill conditioned, though the CLW-DSFT results look better when compared to the
true f̂ with respect to, e.g., earth mover’s distance. Frequencies are often estimated incorrectly by
CLW-DSFT at higher noise levels, but when they are they are usually at least close enough to the
true frequencies to be informative.

6. Conclusion

Let A be a sublinear-time sparse FFT algorithm which utilizes unequally spaced samples from
a given periodic function f : [−π, π] → C in order to rapidly approximate its sequence of Fourier

series coefficients f̂ ∈ `2. In this paper we propose a generic method of transforming any such
algorithm A into a sublinear-time sparse DFT algorithm which rapidly approximates f̂ from a
given input vector f ∈ CN . As a result we are able to construct several new sublinear-time sparse
DFT algorithms from existing sparse Fourier algorithms which utilize unequally spaced function
samples [25, 19, 21, 5]. The best of these new algorithms is shown to outperform existing discrete
sparse Fourier transform methods with respect to both runtime and noise robustness for large
vector lengths N . In addition, we also present several new theoretical discrete sparse FFT robust
recovery guarantees. These include the first known theoretical guarantees for entirely deterministic
and discrete sparse DFT algorithms which hold for arbitrary input vectors f ∈ CN .

References

[1] J. Bailey, M. A. Iwen, and C. V. Spencer. On the design of deterministic matrices for fast recovery of fourier
compressible functions. SIAM Journal on Matrix Analysis and Applications, 33(1):263–289, 2012.

[2] S. Bittens. Sparse fft for functions with short frequency support. University of Göttingen, 2016.
[3] S. Bittens, R. Zhang, and M. A. Iwen. A deterministic sparse fft for functions with structured fourier sparsity.

arXiv preprint arXiv:1705.05256, 2017.
[4] L. Bluestein. A linear filtering approach to the computation of discrete fourier transform. IEEE Transactions on

Audio and Electroacoustics, 18(4):451–455, 1970.
[5] A. Christlieb, D. Lawlor, and Y. Wang. A multiscale sub-linear time fourier algorithm for noisy data. Applied

and Computational Harmonic Analysis, 40:553 – 574, 2016.
[6] A. Cohen, W. Dahmen, and R. DeVore. Compressed sensing and best k-term approximation. Journal of the

American mathematical society, 22(1):211–231, 2009.
[7] J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex fourier series. Mathematics

of computation, 19(90):297–301, 1965.
[8] S. Foucart and H. Rauhut. A mathematical introduction to compressive sensing. Birkhäuser Basel, 2013.
[9] A. C. Gilbert, P. Indyk, M. Iwen, and L. Schmidt. Recent developments in the sparse fourier transform: a

compressed fourier transform for big data. IEEE Signal Processing Magazine, 31(5):91–100, 2014.
[10] A. C. Gilbert, S. Muthukrishnan, and M. Strauss. Improved time bounds for near-optimal sparse fourier repre-

sentations. In Optics & Photonics 2005, pages 59141A–59141A. International Society for Optics and Photonics,
2005.

[11] A. C. Gilbert, M. J. Strauss, and J. A. Tropp. A tutorial on fast fourier sampling. IEEE Signal Processing
Magazine, 25(2):57–66, 2008.

[12] H. Hassanieh, P. Indyk, D. Katabi, and E. Price. Simple and practical algorithm for sparse fourier transform.
Proc. of SODA, January, 2012.

[13] X. Hu, M. Iwen, and H. Kim. Rapidly computing sparse legendre expansions via sparse fourier transforms.
Numerical Algorithms, 74(4):1029 – 1059, 2017.

[14] M. Iwen, A. Gilbert, M. Strauss, et al. Empirical evaluation of a sub-linear time sparse dft algorithm. Commu-
nications in Mathematical Sciences, 5(4):981–998, 2007.

[15] M. A. Iwen. A deterministic sub-linear time sparse fourier algorithm via non-adaptive compressed sensing meth-
ods. In Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms, pages 20–29. Society
for Industrial and Applied Mathematics, 2008.

19

[16] M. A. Iwen. Simple deterministically constructible rip matrices with sublinear fourier sampling requirements. In
CISS, pages 870–875, 2009.

[17] M. A. Iwen. Combinatorial sublinear-time Fourier algorithms. Foundations of Computational Mathematics,
10:303 – 338, 2010.

[18] M. A. Iwen. Notes on lemma 6. Preprint at www. math. msu. edu/ ~ markiwen/ Papers/ Lemma6_ FOCM_ 10. pdf ,
2012.

[19] M. A. Iwen. Improved approximation guarantees for sublinear-time Fourier algorithms. Applied and Computa-
tional Harmonic Analysis, 34:57–82, 2013.

[20] J. Laska, S. Kirolos, Y. Massoud, R. Baraniuk, A. Gilbert, M. Iwen, and M. Strauss. Random sampling for
analog-to-information conversion of wideband signals. In Design, Applications, Integration and Software, 2006
IEEE Dallas/CAS Workshop on, pages 119–122. IEEE, 2006.

[21] D. Lawlor, Y. Wang, and A. Christlieb. Adaptive sub-linear time fourier algorithms. Advances in Adaptive Data
Analysis, 5(01):1350003, 2013.

[22] L. Morotti. Explicit universal sampling sets in finite vector spaces. Applied and Computational Harmonic Anal-
ysis, 2016.

[23] G. Plonka and K. Wannenwetsch. A deterministic sparse fft algorithm for vectors with small support. Numerical
Algorithms, 71(4):889–905, 2016.

[24] L. Rabiner, R. Schafer, and C. Rader. The chirp z-transform algorithm. IEEE transactions on audio and elec-
troacoustics, 17(2):86–92, 1969.

[25] I. Segal and M. Iwen. Improved sparse fourier approximation results: Faster implementations and stronger
guarantees. Numerical Algorithms, 63:239 – 263, 2013.

Appendix A. Proof of Lemmas 1, 2 and 3

We will restate each lemma before its proof for ease of reference.

Lemma 14 (Restatement of Lemma 1). The 2π−periodic Gaussian g : [−π, π]→ R+ has

g (x) ≤
(

3

c1
+

1√
2π

)
e
− x2

2c21

for all x ∈ [−π, π].

Proof. Observe that

c1g (x) =

∞∑
n=−∞

e
− (x−2nπ)2

2c21 = e
− x2

2c21 + e
− (x−2π)2

2c21 + e
− (x+2π)2

2c21 +
∑
|n|≥2

e
− (x−2nπ)2

2c21

≤ 3e
− x2

2c21 +

∫ ∞
1
e
− (x−2nπ)2

2c21 dn+

∫ ∞
1
e
− (x+2nπ)2

2c21 dn

holds since the series above have monotonically decreasing positive terms, and x ∈ [−π, π].
Now, if x ∈ [0, π] and n ≥ 1, one has

e
− (2n+1)2π2

2c21 ≤ e
− (x+2nπ)2

2c21 ≤ e
− 4n2π2

2c21 ≤ e
− (x−2nπ)2

2c21 ≤ e
− (2n−1)2π2

2c21 ,

which yields

c1g (x) ≤ 3e
− x2

2c21 + 2

∫ ∞
1
e
−π

2(2n−1)2

2c21 dn = 3e
− x2

2c21 +
1

2

(∫ ∞
−∞

e
−π

2m2

2c21 dm−
∫ 1

−1
e
−π

2m2

2c21 dm

)

= 3e
− x2

2c21 +
c1√
2π
− 1

2

∫ 1

−1
e
−π

2m2

2c21 dm.

20

Using Lemma 8 to bound the last integral we can now get that

c1g (x) ≤ 3e
− x2

2c21 +
c1√
2π
− 1

2

√
2c1
π

√√√√π

(
1− e

− π2

2c21

)
= 3e

− x2

2c21 +
c1√
2π

1−

√√√√(1− e
− π2

2c21

)
≤ 3e

− x2

2c21 +
c1√
2π
e
− π2

2c21 ≤ 3e
− x2

2c21 +
c1√
2π
e
− x2

2c21 .

Recalling now that g is even we can see that this inequality will also hold for all x ∈ [−π, 0] as
well. �

Lemma 15 (Restatement of Lemma 2). The 2π−periodic Gaussian g : [−π, π]→ R+ has

ĝω =
1√
2π
e
− c

2
1ω

2

2

for all ω ∈ Z. Thus, ĝ = {ĝω}ω∈Z ∈ `2 decreases monotonically as |ω| increases, and also has

‖ĝ‖∞ = 1√
2π

.

Proof. Starting with the definition of the Fourier transform, we calculate

ĝω =
1

c1

∞∑
n=−∞

1

2π

∫ π

−π
e
− (x−2nπ)2

2c21 e
−iωx dx

=
1

c1

∞∑
n=−∞

1

2π

∫ π

−π
e
− (x−2nπ)2

2c21 e
−iω(x−2nπ) dx

=
1

c1

∞∑
n=−∞

1

2π

∫ π−2nπ

−π−2nπ
e
− u2

2c21 e
−iωu du

=
1

2πc1

∫ ∞
−∞

e
− u2

2c21 e
−iωu du

=
c1
√

2π

2πc1
e
− c

2
1ω

2

2

=
e
− c

2
1ω

2

2

√
2π

.

The last two assertions now follow easily. �

Lemma 16 (Restatement of Lemma 3). Choose any τ ∈
(

0, 1√
2π

)
, α ∈

[
1, N√

lnN

]
, and β ∈(

0, α

√
ln(1/τ

√
2π)

2

]
. Let c1 = β

√
lnN
N in the definition of the periodic Gaussian g from (3). Then

ĝω ∈
[
τ, 1√

2π

]
for all ω ∈ Z with |ω| ≤

⌈
N

α
√
lnN

⌉
.

Proof. By Lemma 2 above it suffices to show that

1√
2π
e
−
c21

(⌈
N

α
√

lnN

⌉)2

2 ≥ τ,
21

which holds if and only if

c21

(⌈
N

α
√

lnN

⌉)2

≤ 2 ln

(
1

τ
√

2π

)

c1 ≤

√
2 ln

(
1

τ
√
2π

)
⌈

N
α
√
lnN

⌉ .

Thus, it is enough to have

c1 ≤

√
2 ln

(
1

τ
√
2π

)
N

α
√
lnN

+ 1
=

α

√
2 ln

(
1

τ
√
2π

)
lnN

N + α
√

lnN
,

or,

c1 =
β
√

lnN

N
≤
α

√
2 ln

(
1

τ
√
2π

)
lnN

2N
≤
α

√
2 ln

(
1

τ
√
2π

)
lnN

N + α
√

lnN
.

This, in turn, is guaranteed by our choice of β. �

Appendix B. Proof of Lemma 4 and Theorem 2

We will restate Lemma 4 before its proof for ease of reference.

Lemma 17 (Restatement of Lemma 4). Let s, ε−1 ∈ N \ {1} with (s/ε) ≥ 2, and n ∈ Cm be an
arbitrary noise vector. There exists a set of m points {xk}mk=1 ⊂ [−π, π] such that Algorithm 3 on
page 72 of [19], when given access to the corrupted samples {f(xk) + nk}mk=1, will identify a subset
S ⊆ B which is guaranteed to contain all ω ∈ B with

(15)
∣∣∣f̂ω∣∣∣ > 4

ε ·
∥∥∥f̂ − f̂opt(s/ε)

∥∥∥
1

s
+
∥∥∥f̂ − f̂ |B∥∥∥

1
+ ‖n‖∞

 .

Furthermore, every ω ∈ S returned by Algorithm 3 will also have an associate Fourier series
coefficient estimate zω ∈ C which is guaranteed to have

(16)
∣∣∣f̂ω − zω∣∣∣ ≤ √2

ε ·
∥∥∥f̂ − f̂opt(s/ε)

∥∥∥
1

s
+
∥∥∥f̂ − f̂ |B∥∥∥

1
+ ‖n‖∞

 .

Both the number of required samples, m, and Algorithm 3’s operation count are

(17) O

(
s2 · log4(N)

log
(
s
ε

)
· ε2

)
.

If succeeding with probability (1 − δ) ∈ [2/3, 1) is sufficient, and (s/ε) ≥ 2, the Monte Carlo
variant of Algorithm 3 referred to by Corollary 4 on page 74 of [19] may be used. This Monte Carlo
variant reads only a randomly chosen subset of the noisy samples utilized by the deterministic
algorithm,

{f(x̃k) + ñk}m̃k=1 ⊆ {f(xk) + nk}mk=1 ,

yet it still outputs a subset S ⊆ B which is guaranteed to simultaneously satisfy both of the following
properties with probability at least 1− δ:

(i) S will contain all ω ∈ B satisfying (15), and
(ii) all ω ∈ S will have an associated coefficient estimate zω ∈ C satisfying (16).

22

Finally, both this Monte Carlo variant’s number of required samples, m̃, as well as its operation
count will also always be

(18) O
(
s

ε
· log3(N) · log

(
N

δ

))
.

Proof. The proof of this lemma involves a somewhat tedious and uninspired series of minor mod-
ifications to various results from [19]. In what follows we will outline the portions of that paper
which need to be changed in order to obtain the stated lemma. Algorithm 3 on page 72 of [19] will
provide the basis of our discussion.

In the first paragraph of our lemma we are provided with m-contaminated evaluations of f ,
{f(xk) + nk}mk=1, at the set of m points {xk}mk=1 ⊂ [−π, π] required by line 4 of Algorithm 1 on
page 67 of [19]. These contaminated evaluations of f will then be used to approximate the vector

Gλ,K ψ̃A ∈ Cm in line 4 of Algorithm 3. More specifically, using (18) on page 67 of [19] one can see

that each
(
Gλ,K ψ̃A

)
j
∈ C is effectively computed via a DFT

(19)
(
Gλ,K ψ̃A

)
j

=
1

sj

sj−1∑
k=0

f

(
−π +

2πk

sj

)
e

−2πikhj
sj

for some integers 0 ≤ hj < sj . Note that we are guaranteed to have noisy evaluations of f at

each of these points by assumption. That is, we have f (xj,k) + nj,k for all xj,k := −π + 2πk
sj

,

k = 0, . . . , sj − 1.

We therefore approximate each
(
Gλ,K ψ̃A

)
j

via an approximate DFT as per (19) by

Ej :=
1

sj

sj−1∑
k=0

(f (xj,k) + nj,k) e
−2πikhj

sj .

One can now see that

(20)

∣∣∣∣Ej − (Gλ,K ψ̃A)j
∣∣∣∣ =

∣∣∣∣∣∣ 1

sj

sj−1∑
k=0

nj,ke
−2πikhj

sj

∣∣∣∣∣∣ ≤ 1

sj

sj−1∑
k=0

|nj,k| ≤ ‖n‖∞

holds for all j. Every entry of both Es1 ,K ψ̃A and Gλ,K ψ̃A referred to in Algorithm 3 will therefore
be effectively replaced by its corresponding Ej estimate. Thus, the lemma we seek to prove is
essentially obtained by simply incorporating the additional error estimate (20) into the analysis of

Algorithm 3 in [19] wherever an Es1 ,K ψ̃A or Gλ,K ψ̃A currently appears.
To show that lines 6 – 14 of Algorithm 3 will identify all ω ∈ B satisfying (15) we can adapt

the proof of Lemma 6 on page 72 of [19]. Choose any ω ∈ B you like. Lemmas 3 and 5 from [19]
together with (20) above ensure that both∣∣∣Ej − f̂ω∣∣∣ ≤ ∣∣∣∣Ej − (Gλ,K ψ̃A)j

∣∣∣∣+

∣∣∣∣(Gλ,K ψ̃A)j − f̂ω
∣∣∣∣

≤ ‖n‖∞ +
ε ·
∥∥∥f̂ − f̂opt(s/ε)

∥∥∥
1

s
+
∥∥∥f̂ − f̂ |B∥∥∥

1
(21)

23

and ∣∣∣Ej′ − f̂ω∣∣∣ ≤ ∣∣∣∣Ej′ − (Es1 ,K ψ̃A)j′
∣∣∣∣+

∣∣∣∣(Es1 ,K ψ̃A)j′ − f̂ω
∣∣∣∣

≤ ‖n‖∞ +
ε ·
∥∥∥f̂ − f̂opt(s/ε)

∥∥∥
1

s
+
∥∥∥f̂ − f̂ |B∥∥∥

1
(22)

hold for more than half of the j and j′-indexes that Algorithm 3 uses to approximate f̂ω. The rest
of the proof of Lemma 6 now follows exactly as in [19] after the δ at the top of page 73 is redefined

to be δ :=
ε·
∥∥∥f̂−f̂opt(s/ε)

∥∥∥
1

s +
∥∥∥f̂ − f̂ |B∥∥∥

1
+ ‖n‖∞, each

(
Gλ,K ψ̃A

)
j

entry is replaced by Ej , and each(
Es1 ,K ψ̃A

)
j′

entry is replaced by Ej′ .

Similarly, to show that lines 15 – 18 of Algorithm 3 will produce an estimate zω ∈ C satisfying
(16) for every ω ∈ S one can simply modify the first few lines of the proof of Theorem 7 in Appendix

F of [19]. In particular, one can redefine δ as above, replace the appearance of each
(
Gλ,K ψ̃A

)
j

entry by Ej , and then use (21). The bounds on the runtime follow from the last paragraph of
the proof of Theorem 7 in Appendix F of [19] with no required changes. To finish, we note that
the second paragraph of the lemma above follows from a completely analogous modification of the
proof of Corollary 4 in Appendix G of [19].

�

B.1. Proof of Theorem 2. To get the first paragraph of Theorem 2 one can simply utilize the
proof of Theorem 7 exactly as it is written in Appendix F of [19] after redefining δ as above, and

then replacing the appearance of each
(
Gλ,K ψ̃A

)
j

entry with its approximation Ej . Once this has

been done, equation (42) in the proof of Theorem 7 can then be taken as a consequence of Lemma 4
above. In addition, all references to Lemma 6 of [19] in the proof can then also be replaced with
appeals to Lemma 4 above. To finish, the proof of Corollary 4 in Appendix G of [19] can now be
modified in a completely analogous fashion in order to prove the second paragraph of Theorem 2.

Acknowledgements

M.A. Iwen, R. Zhang, and S. Merhi were all supported in part by NSF DMS-1416752. The
authors would like to thank Aditya Viswanathan for helpful comments and feedback on the first
draft of the paper.

24

