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Abstract

In this note, we develop fast and deterministic dimensionality reduction techniques for a
family of subspace approximation problems. We then utilize these dimensionality reduction
techniques in order to help rapidly and accurately approximate the n-widths of point sets. Let
P ⊂ RN be a given set of M points. The techniques developed herein find an O(n logM)-
dimensional subspace that is guaranteed to always contain a near-best fit n-dimensional hyper-

plane H for P with respect to the cumulative projection error
(∑

x∈P ‖x−ΠHx‖p2
)1/p

, for any

chosen p > 2. The deterministic algorithm runs in Õ
(
MN2

)
-time, and can be randomized to

run in only Õ (MNn)-time while maintaining its error guarantees with high probability. In the
important p =∞ case the dimensionality reduction techniques are then combined with efficient
algorithms for computing the John ellipsoid of a data set in order to produce an n-dimensional
subspace whose maximum `2-distance to any point in the convex hull of P is minimized. The
resulting algorithm remains Õ (MNn)-time.

Keywords: Approximation algorithms, subspace approximation, n-widths, dimensionality reduc-
tion, greedy algorithms, least-squares

1 Introduction

Fitting a given point cloud with a low-dimensional affine subspace is a fundamental computational
task in data analysis. In this paper we consider fast algorithms for approximating a given set
of M points, P ⊂ RN , with an n-dimensional affine subspace A ⊂ RN that is a near-best fit.

Here the fitness of A will be measured by d(p)(P,A) := p

√∑
x∈P (d(x,A))p, where d(x,A) is the

Euclidean distance from x to A, and p ∈ R+. Similarly, when p = ∞ the fitness measure will
be d(∞)(P,A) := maxx∈P d(x,A). An n-dimensional affine subspace A ⊂ RN is a near-best fit
for P with respect to this fitness measure if there exists a small constant C ∈ R+ such that
d(p)(P,A) ≤ C · d(p)(P,H) for all n-dimensional affine subspaces H ⊂ RN .1 In this paper we are

∗Contact Author. Supported in part by NSA grant H98230-13-1-0275.
1The approximation constant C may depend (mildly) on both p and |P | = M .
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interested in calculating near-best fit affine subspaces for large and high-dimensional point sets,
P ⊂ RN , as rapidly as possible.

In the case p = 2 the problem above is the well known least-squares approximation problem.
Mathematically, a near-best fit n-dimensional least-squares subspace can be obtained by computing
the top n eigenvectors of XXT for the matrix X ∈ RN×M whose columns are the points in P .
Decades of progress related to the computational eigenvector problem has resulted in many efficient
numerical schemes for this problem (see, e.g., [19, 7], and the references therein). The situation is
more difficult when p 6= 2. None the less, a good deal of work has been done developing algorithms
for other values of p as well.

Examples include methods for approximately solving the case p = 1, which has been proposed
as a means of reducing the effects of statistical outliers on an approximating subspace (see, e.g.,
[15]). However, in this paper we are primarily interested in p > 2, with our main focus being
on the important p = ∞ case. In particular, we develop fast dimensionality reduction techniques
for the subspace approximation problem which can be used in combination with existing solution
methods for any p > 2 [16, 2] in order to reduce their runtimes. For the important case p = ∞
these new dimensionality reduction methods yield a new fast approximation algorithm guaranteed
to find near-optimal solutions.

1.1 Results and Previous Work for the p =∞ Case

The case p = ∞ is closely related to several fundamental computational problems in convex
geometry and has been widely studied (see, e.g., [6, 4, 8, 20, 1, 18], and references therein).
Previous computational methods developed for this case can be grouped into two general cat-
egories: methods based on semi-definite programming relaxations (e.g., [20, 18]), and methods
based on core-set techniques (e.g., [8, 1]). Both approaches have comparative strengths. The
semidefinite programming approach leads to highly accurate approximations. In particular, [18]
demonstrates a randomized approach which computes an n-dimensional subspace A that has
d(∞)(P,A) ≤

√
12 logM ·d(∞)(P,H) for all n-dimensional subspaces H ⊂ RN with high probability.

Furthermore, the approximation factor
√

12 logM is shown to be close to the best achievable in
polynomial time. However, the method requires the solution of a semi-definite program, and so
has a runtime complexity that scales super-linearly in both M and N . This makes the technique
intractable for large sets of points in high dimensional space.

The core-set approach achieves better runtime complexities for small values of n. In [1] a
Õ(MN2n)-time randomized approximation algorithm is developed for the p = ∞ case.2 This
algorithm has the advantage of being linear in both M and N , but quickly becomes computationally
infeasible as the dimension of the approximating subspace, n, grows.

In this paper we develop an Õ(MN2)-time deterministic algorithm which computes an n-
dimensional subspace A that is guaranteed to have d(∞)(P,A) ≤ C

√
n logM · d(∞)(P,H) for all

n-dimensional subspaces H ⊂ RN . Here C ∈ R+ is a small universal constant (e.g., it can be made
less than 10). Furthermore, the algorithm can be randomized to run in only Õ(MNn)-time while
still achieving the same accuracy guarantee with high probability. This improves on the runtime
complexities of existing core-set approaches while simultaneously obtaining accuracies on the order
of existing semi-definite programming methods for small n.

The approximation algorithms for the p =∞ case developed in this paper are motivated by the
following idea: The difficulty of approximating P ⊂ RN with a subspace can be greatly reduced by
first approximating (the convex hull of) P with an ellipsoid, and then approximating the resulting

2Herein, Õ(·)-notation indicates that polylogarithmic factors have been dropped from the associated O-upper
bounds for the sake of readability.
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ellipsoid with an n-dimensional subspace. In fact, fast algorithms for approximating (the convex
hull of) P by an ellipsoid are already known (see, e.g., [11, 14, 17]). And, it is straightforward
to approximate an ellipsoid optimally with an n-dimensional subspace – one may simply use its
n largest semi-axes as a basis. The only deficit in this simple approach is that the accuracy it
guarantees is rather poor. The resulting n-dimensional subspace A may have d(∞)(P,A) as large as√
N ·d(∞)(P,H) for some other n-dimensional subspace H ⊂ RN . This guarantee can be improved,

however, if N (i.e., the dimension of the point set P ) is reduced before the approximating ellipsoid
is computed. Motivated by this idea, we develop new dimensionality reduction algorithms for the
subspace approximation problem below.

1.2 Dimensionality Reduction Results and Previous Work

An algorithm is a dimensionality reduction method for the subspace approximation problem if, for
any P ⊂ RN , it finds a low-dimensional subspace that is guaranteed to contain a near-best fit
n-dimensional hyperplane H. Such dimensionality reduction methods can be regarded as a “weak”
approximate solution methods for the subspace approximation problem in the following sense. They
produce subspaces whose dimensions are larger than n (i.e., larger than the target dimension of
the desired best-fit hyperplane), but solving the problem restricted to these subspaces will yield a
near-optimal solution. Thus dimensionality reduction methods – when sufficiently fast – allow the
subspace approximation problem to be simplified before more time intensive solution methods are
employed. For example, if a low-dimensional subspace has been found, which still contains a near-
best fit solution, high-dimensional data (i.e., with N large) can be projected onto that subspace in
order to reduce its complexity before solving. Hence, fast dimensionality reduction algorithms can
be used to help speed up existing solutions methods for p > 2 (e.g., by reducing the input problem
sizes for methods based on solving convex programs [2].)

Several dimensionality reduction techniques have been developed for the subspace approxima-
tion problem over the past several years (see, e.g., [1, 3, 5] and references therein). These methods
are all based on sampling techniques and either have runtime complexities that scale exponentially
in n, or embedding subspace dimensions that scale exponentially in p. In [3], for example, an
MNnO(1)-time randomized algorithm is given which is guaranteed, with high probability, to return
an Õ(np+3)-dimensional subspace that itself contains another n-dimensional subspace, A, whose fit,
d(p)(P,A), is the near-best possible for any p ∈ [1,∞). Although useful for small p, these methods
quickly become infeasible as p increases.

In this paper a different dimensionality reduction approach is taken that reduces the problem,
for any p ≥ 2, to a small number of least-squares problems. The idea is to greedily approximate
a large portion of the input data P with a fast least-squares method. It turns out that a large
portion of P is always well-approximated, for any p > 2, by P ’s best-fit n-dimensional least-
squares subspace. Then, the previously worst-approximated points in P can be iteratively fit by
least-squares subspaces until all of P has eventually been approximated well, with respect to any
desired p > 2, by the union of O(logM) least-squares subspaces. Using this idea, a deterministic
Õ(MN2)-time algorithm can be developed which is always guaranteed to return an O(n logM)-
dimensional subspace that itself contains another n-dimensional subspace, A, whose fit, d(p)(P,A),
is the near-best possible for any p ∈ [2,∞]. Furthermore, this algorithm can be randomized to
run in only Õ(MNn)-time while still achieving the same accuracy guarantees as the deterministic
variant with high probability.
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1.3 Organization

The remainder of this paper is organized as follows: In Section 2 notation is established and
necessary theory is reviewed. Then, in Section 3, the dimensionality reduction results are developed
for any p > 2. Finally, in Section 4, our improved dimensionality reduction result for the case p =∞
is used to illustrate a fast and simple subspace approximation algorithm for the p = ∞ subspace
approximation problem.

2 Preliminaries: Notation and Setup

For any matrix X ∈ RN×M we will denote the jth column of X by Xj ∈ RN . The transpose of
a matrix, X ∈ RN×M , will be denoted by XT ∈ RM×N , and the singular values of any matrix
X ∈ RN×M will always be ordered as σ1(X) ≥ σ2(X) ≥ · · · ≥ σmin(N,M)(X) ≥ 0. The Frobenius

norm of X ∈ RN×M is defined as

‖X‖F :=

√√√√ M∑
j=1

N∑
i=1

|Xi,j |2 =

√√√√min(N,M)∑
l=1

σ2
l (X). (1)

A key ingredient of our results is the following perturbation bounds for singular values (see, e.g.,
[9]).

Theorem 1 (Weyl). Let A,B ∈ RM×N , and q = min{M,N}. Then,

σi+j−1(A+B) ≤ σi(A) + σj(B)

holds for all i, j ∈ {1, . . . , q} with i+ j ≤ q + 1.

Given an ñ-dimensional subspace S ⊆ RN , we will denote the set of all n-dimensional affine
subspaces of S by Γn (S). Here, of course, we assume that N ≥ ñ ≥ n. Given an affine subspace
A ∈ Γn (S), we will denote the offset of A by

aA := arg min
x∈A

‖x‖2, (2)

and the n-dimensional subspace of S that is parallel to A by

SA := A− aA :=
{
x− aA

∣∣ x ∈ A} . (3)

Note that aA ∈ S⊥A . Thus, we may define the projection operator onto A, ΠA : RN → A, by

ΠAx := ΠSAx + aA. (4)

Here ΠSA is the orthogonal projection onto SA.

2.1 A Family of Distances

Given a subset T ⊂ RN and an affine subspace A ∈ Γn(S) we will want to consider the “distance”
of T from A, defined by

d(∞)(T,A) := sup
x∈T
‖x−ΠAx‖2. (5)
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Let S be an ñ ≥ n subspace of RN . We can now define the Euclidean Kolmogorov n-width of T in
this setting by

d(∞)
n (T,S) := inf

A∈Γn(S)
d(∞)(T,A) = inf

A∈Γn(S)
sup
x∈T

‖x−ΠAx‖2. (6)

Finally, we note that there will always be (at least one) optimal affine subspace, Aopt ∈ Γn(S),
with

d(∞)(T,Aopt) = d(∞)
n (T,S) (7)

when T is “sufficiently nice” (e.g., when T is either finite, or convex and compact).3

When T = {t1, . . . , tM} ⊂ R
N is finite, we may define a vector eA ∈ RM for any given

A ∈ Γn
(
R
N
)

by
(eA)j := ‖tj −ΠAtj‖2 . (8)

Thus, when T is finite we can see that

d(∞)
n (T,S) = inf

A∈Γn(S)
‖eA‖∞ , (9)

and the least squares approximation error over all subspaces in Γn(S) is given by

d(2)
n (T,S) = inf

A∈Γn(S)
‖eA‖2 . (10)

These two quantities can be seen as extreme instances of the infinite family of approximation errors
given by

d(p)
n (T,S) := inf

A∈Γn(S)
‖eA‖p , (11)

for any parameter 2 ≤ p ≤ ∞. Note that, analogously to (6), one has

d(p)
n (T,S) := inf

A∈Γn(S)
d(p)(T,A), (12)

where
d(p)(T,A) := ‖eA‖p . (13)

Finally, as above, we note that there will always be at least one optimal affine subspace, Aopt ∈
Γn(S), with

d(p)(T,Aopt) = d(p)
n (T,S) (14)

when T is finite.

2.2 Symmetry, Ellipsoids, and Properties of n-widths

Let P = {p1, . . . ,pM} ⊂ RN , and define

p̄ :=
1

M
·
M∑
j=1

pj . (15)

3This follows from the fact that Stiefel manifolds are compact, together with the fact that only offsets, aA ∈ RN ,
contained in the ball of radius supx∈T ‖x‖2 are ever relevant to minimizing d(∞)(T, ·). Thus, the set of relevant affine

subspaces under consideration is compact when T is bounded. Finally, d(∞)(T, ·) : Γn (S)→ R+, T ⊂ RN fixed, will
be continuous when T is sufficiently well behaved (e.g., either finite, or compact and convex).
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We will let P̄ ⊂ RN denote the following symmetrized translation of P ,

P̄ := (P − p̄) ∪ (p̄− P ) ∪ {0} :=
{
pj − p̄

∣∣ pj ∈ P} ∪ {p̄− pj
∣∣ pj ∈ P} ∪ {0}. (16)

We will say that P is symmetric if and only if P = P̄ . Furthermore, we will denote the convex
hull of P by CH(P ). The following theorem due to Fritz John [10] guarantees the existence of an
ellipsoid that approximates CH

(
P̄
)

well.

Theorem 2 (John). Let K ⊂ RN be a compact and convex set with nonempty interior that is
symmetric about the origin (so that K = −K). Then, there is an ellipsoid centered at the origin,
E ⊂ RN , such that E ⊆ K ⊆

√
N · E.

Given P ⊂ R
N , an ellipsoid which is nearly as good an approximation to CH

(
P̄
)

as the
ellipsoid guaranteed by Thoerem 2 can be computed in polynomial time (see, e.g., [11, 14, 17]).
More specifically, one can compute an ellipsoid E such that E ⊆ CH

(
P̄
)
⊆
√

(1 + ε)N · E in
O(MN2(logN + 1/ε))-time for any ε ∈ (0,∞) [17]. Finally, in the following Lemma, we summarize
a few facts concerning the n-widths of finite sets, convex hulls, and ellipsoids that will be useful for
establishing our results (proofs are included in Appendix A for the sake of completeness).

Lemma 1. Let P = {p1, . . . ,pM} ⊂ RN , and E ⊂ RN be the ellipsoid{
x ∈ RN

∣∣ xTQx ≤ 1
}
,

where Q ∈ RN×N is symmetric and positive definite. Then,

1. d
(∞)
n

(
P − x,RN

)
= d

(∞)
n

(
P,RN

)
for all x ∈ RN , and n = 1, . . . , N .

2. P̄ will have an optimal n-dimensional subspace (i.e., with aAopt = 0) for all n = 1, . . . , N .

3. d
(∞)
n

(
P̄ ,RN

)
≤ 2 · d(∞)

n

(
P,RN

)
for all n = 1, . . . , N .

4. d
(∞)
n (B,RN ) ≤ d(∞)

n (C,RN ) for all B ⊆ C ⊂ RN , and n = 1, . . . , N .

5. d
(∞)
n (CH(P ),RN ) = d

(∞)
n (P,RN ) for all n = 1, . . . , N .

6. d
(∞)
n (E ,RN ) =

√
1

σN−n+1(Q) for all n = 1, . . . , N . Consequently, an optimal n-dimensional

subspace for E is spanned by the eigenvectors of Q associated with σN (Q), . . . , σN−n+1(Q).

We will assume hereafter, without loss of generality, that P = {p0, . . . ,pM} ⊂ RN both spans
R
N and is symmetric.4 Note that these assumptions are rather mild in practice. If P is not initially

symmetric we will simply approximate P̄ by a subspace instead. A translation of our approximating
subspace for P̄ will then still approximate the original set P well by parts (1) − (4) of Lemma 1.
If P initially does not span RN , we will replace each element of P with the coordinates of its
orthogonal projection into the span of P , reducing N accordingly. Any such change of basis for P
will lead to no loss of accuracy in our solution. Finally, we will always denote 0 by p0 for notational
convenience.

4Here p0 := 0 has been added to P , if not initially present, so that P contains its mean.

6



3 Dimensionality Reduction Results

In this section we establish our main theorems regarding dimensionality reduction. As we shall see,
the main idea behind the proofs of both Theorems 3 and 4 below is to use existing fast least-squares
methods in order to quickly approximate the point set P in a greedy fashion. To see how this works,
note that P ’s best-fit least squares subspace will generally fail to approximate all of P to within

d
(p)
n

(
P,RN

)
-accuracy when p > 2. However, it will generally approximate a large fraction of P

sufficiently well. Furthermore, we can easily tell which portion of P is approximated best.
Hence, we may employ the following greedy approach: we (i) approximate P with its best-fit

least squares subspace, (ii) identify the half of its points fit the best, (iii) remove them from P ,
and then (iv) repeat the process again on the remaining portion of P . After O(logM) repetitions
we end up with a collection of at most O(logM) least squares subspaces whose collective span
is guaranteed to contain a near-optimal n-dimensional approximation to all of P with respect to

d
(p)
n

(
P,RN

)
.

We are now ready to begin proving Theorems 3 and 4. We start by proving Lemma 2, which
demonstrates that ordering the points of P properly results in a predictable decay of their distances

from the best-fit least squares subspace for P with respect to d
(p)
n

(
P,RN

)
. Thus, points which are

well approximated with respect to d
(p)
n

(
P,RN

)
by the best-fit least squares subspace for P are easy

to identify via sorting. Next, Lemmas 3 and 4 use Lemma 2 to establish that a best-fit least squares

subspace for P will approximate most of P near-optimally with respect to d
(p)
n

(
P,RN

)
(Lemma 3

deals with p = ∞, and Lemma 4 with p ∈ (2,∞)). Finally, Lemmas 3 and 4 are used in order to
establish Theorems 3 and 4, respectively.

Lemma 2. Let P = {p0 := 0,p1, . . . ,pM} ⊂ RN be symmetric, n ∈ {1, . . . , N}, and p ∈ (2,∞].
Then there is an O

(
MN2

)
-time5 algorithm that outputs an n-dimensional subspace S ⊂ RN such

that for m ∈ {1, . . . ,M} one has

‖plm −ΠSplm‖22 ≤
M

1− 2
p

M −m+ 1
·
(
d(p)
n

(
P,RN

) )2
, (17)

where the `i > 0, i = 1, . . . ,M , are chosen to satisfy

0 = ‖p0 −ΠSp0‖2 ≤ ‖pl1 −ΠSpl1‖2 ≤ ‖pl2 −ΠSpl2‖2 ≤ · · · ≤ ‖plM −ΠSplM ‖2. (18)

Proof: Denote the matrix whose columns are the points in P by X ∈ RN×M . That is, let

X := (p1, . . . ,pM ) . (19)

Let A(p)
opt ∈ Γn(RD) be an optimal n-dimensional subspace for P satisfying

d(p)
(
P,A(p)

opt

)
= d(p)

n

(
P,RN

)
. (20)

It is not difficult to see that we will have X = Y + E, where Y,E ∈ RN×M have the following

properties: the column span of Y is contained in A(p)
opt, and the vector e whose entries are the

`2-norms of the columns of E has `p-norm at most d
(p)
n

(
P,RN

)
. It follows from Hölder’s inequality

using p
2 and p

p−2 that

min(N,M)∑
l=1

σ2
l (E) = ‖E‖2F = ‖e‖22 ≤ ‖e‖2p‖I‖1+ 2

p−2
≤M1− 2

p ·
(
d(p)
n

(
P,RN

) )2
, (21)

5We assume here that M ≥ N ≥ logM . We also note that this runtime complexity can be improved substantially
by utilizing randomized low-rank approximation algorithms. See Remark 1 for more details.
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where I ∈ RM is the vector whose entries are all one. Note that Y has rank at most n so that

σn+1(Y ) = · · · = σmin(N,M)(Y ) = 0. (22)

Applying Theorem 1 we now learn that

σn+l(X) ≤ σl(E) (23)

for all l ∈ {1, . . . , N − n}.
Let Xn be the best rank n approximation to X with respect to Frobenius norm,

Xn := arg min
L∈RN×M
rank L= n

‖X − L‖F . (24)

Let S be the n-dimensional subspace spanned by the columns of Xn. We have that

‖X −Xn‖2F =

min(N,M)∑
l=n+1

σ2
l (X) ≤M1− 2

p ·
(
d(p)
n

(
P,RN

) )2
(25)

due to (21) and (23). Thus, for each positive integer k there can be at most k (nonzero) columns
of X, pj ∈ P , with the property that

‖pj −ΠSpj‖22 ≥
M

1− 2
p

k
·
(
d(p)
n

(
P,RN

) )2
. (26)

Setting k = M −m+ 1, we see that (17) must hold in order for (25) to hold.
To finish, we note that the subspace S above is spanned by the n left singular vectors of

X associated with its n largest singular values. These can be computed deterministically in
O (NM ·min{N,M})-time as part of the full singular value decomposition of X, although signifi-
cantly faster (randomized) approximation algorithms exist (see, e.g., [19, 7]). The stated runtime
complexity follows given our assumption that M ≥ N ≥ logM .

We may now use Lemma 2 to prove that a best-fit least squares subspace for P will also
approximate most of P near-optimally with respect to d(∞).

Lemma 3. Let ξ ∈ (1,∞), P = {p0 := 0,p1, . . . ,pM} ⊂ RN be symmetric, and n ∈ {1, . . . , N}.
Then, there is an O

(
MN2

)
-time6 algorithm which outputs both an n-dimensional subspace S ⊂ RN ,

and a symmetric subset P ′ ⊂ P with |P ′| ≥ d(1− 1/ξ)Me+ 1, such that

d(∞)(P ′,S) <
√
ξ · d(∞)

n

(
P,RN

)
. (27)

Proof: We first order the nonzero elements of P according to (18), and then set

P ′ :=
{
p0,pl1 ,pl2 , . . . ,pld(1−1/ξ)Me

}
⊂ P. (28)

If P ′ is not symmetric, continue to add additional points from P until it is (i.e., by adding the
negation of each current point in P ′ to P ′). Applying Lemma 2 with m = d(1 − 1/ξ)Me, we see
that

‖pd(1−1/ξ)Me −ΠSpd(1−1/ξ)Me‖22 ≤ ξ ·
(
d(∞)
n

(
P,RN

))2
. (29)

6Again, we assume that M ≥ N ≥ logM .
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Thus there can be at most bM/ξc (nonzero) columns of X, pj ∈ P , with the property that

‖pj −ΠSpj‖22 ≥ ξ ·
(
d(∞)
n

(
P,RN

))2
. (30)

By the ordering (18), the associated indices j must be contained in {`d(1−1/ξ)Me+1, . . . , `M}, hence
P ′ ⊂ P will satisfy (27).

By Lemma 2, a suitable set S can be found in O (NM ·min{N,M})-time. Having computed
(the singular value decomposition of) Xn, the ordering in (18) can then be determined in O(NM +
M logM)-time. Finally, the symmetry of P ′ can be ensured in O(NM logM)-time by, e.g., ordering
the points of P ′ lexicographically, and then performing a binary search for the negation of each
point in order to ensure its inclusion. The stated runtime complexity follows given our assumption
that M ≥ N ≥ logM .

Remark 1. The runtime complexity quoted in Lemma 2 and consequently also Lemma 3 and
Lemma 4 is dominated by the time required to compute Xn (24) via the full singular value decomposi-
tion of X (19). However, computing Xn this way is computationally wasteful when n� min{N,M}.
Note that it suffices to find a O(n)-dimensional matrix, X̃n ∈ RN×M , with the property that

‖X − X̃n‖F ≤ C · ‖X −Xn‖F (31)

for a suitably small constant C. Taking S̃ to be the column span of X̃n in the proof of Lemma 3

then produces a similarly sized subset P ′ ⊂ P satisfying d(∞)(P ′, S̃) ≤ C
√
ξ · d(∞)

n

(
P,RN

)
. A

tremendous number of methods have been developed for rapidly computing an X̃n as above (see,
e.g., [19, 7]). In particular, we note here that there exists a modest absolute constant C ∈ R+ such
that a randomly constructed matrix X̃n of rank max{2n, 7} will satisfy (31) with probability > 0.9.7

Furthermore, this matrix can always be constructed in O(NMn+Nn2)-time.

An argument similar to the proof of Lemma 3 now allows us to prove that a best-fit least
squares subspace for P will also approximate most of P near-optimally with respect to d(p), for any
p ∈ (2,∞).

Lemma 4. Let p ∈ (2,∞), ξ ∈ (1,M/2], P = {p0, . . . ,pM} ⊂ R
N be symmetric, and n ∈

{1, . . . , N}. Then, there is an O
(
MN2

)
-time8 algorithm which outputs both an n-dimensional

subspace S ⊂ RN , and a symmetric subset P ′ ⊂ P with |P ′| ≥ d(1− 1/ξ)Me+ 1, such that

d(p)(P ′,S) ≤
√

2ξ · d(p)
n

(
P,RN

)
. (32)

Proof: We again order the nonzero elements of P according to (18), and then define P ′ as above

7See Theorem 10.7 from [7] for more details concerning the constant C, etc.. Also, note that the probability of
satisfying (31) can be boosted as close to 1 as desired by constructing several different X̃n matrices independently,
and then choosing the most accurate one.

8Again, we assume that M ≥ N ≥ logM .
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in (28). From Lemma 2 with m = d(1− 1/ξ)Me we obtain that

(d(p)(P ′,S))p =
m∑
j=1

‖p`j −ΠSp`j‖
p
2 (33)

≤
m∑
j=1

(
M

1− 2
p

M − j + 1
·
(
d(p)
n

(
P,RN

))2
)p/2

(34)

= M
p
2
−1
(
d(p)
n

(
P,RN

))p M∑
j=M−m+1

j−p/2 (35)

≤M
p
2
−1
(
d(p)
n

(
P,RN

))p ∫ M

M−m
x−p/2dx (36)

=

(
1− m

M

)1− p
2 − 1

p
2 − 1

(
d(p)
n

(
P,RN

))p
. (37)

Set δ := m/M−(1− 1/ξ) < 1/M . It is not difficult to see that 1/ξ−δ ∈ (0, 1) since ξ ∈ (1,M/2].
Thus, (

1− m

M

)1− p
2

=

(
1

ξ
− δ
)1− p

2

<

(
ξ

1− ξ
M

) p
2
−1

≤ (2ξ)
p
2
−1, (38)

which now allows us to bound (37) as follows:

(d(p)(P ′,S))p ≤
(
1− m

M

)1− p
2 − 1

p
2 − 1

(
d(p)
n

(
P,RN

))p
<

(2ξ)
p
2
−1 − 1

p
2 − 1

·
(
d(p)
n

(
P,RN

))p
. (39)

Now let fξ : [2,∞)→ R+ be defined by

fξ(p) :=


(

(2ξ)
p
2−1−1
p
2
−1

) 1
p

if p > 2√
ln(2ξ) if p = 2

. (40)

One can see that fξ is continuous on [2,∞) via l’Hopital’s rule. Furthermore, the Taylor series

expansion of (2ξ)
p
2
−1 reveals that

fξ(p) =

(
ln(2ξ) ·

∞∑
n=0

(
(p2 − 1) ln(2ξ)

)n
(n+ 1)!

) 1
p

≤
(

ln(2ξ) · (2ξ)
p
2
−1
) 1
p

=

(
ln(2ξ)

2ξ

) 1
p

·
√

2ξ (41)

for all p ∈ [2,∞). Thus, (39) yields (32) as desired. As the set P ′ is constructed in the same way
as in the proof of Lemma 3, the runtime analysis given there carries over directly.

Remark 2. Note that the ordered distances (18) between the points in P and the subspace S from
Lemma 3 satisfy ∥∥∥pld(1−1/ξ)Me −ΠSpld(1−1/ξ)Me

∥∥∥
2
≤
√
ξ · d(∞)

n

(
P,RN

)
. (42)

We can use this information to bound d
(∞)
n

(
P,RN

)
from above and below. Set

α :=
‖plM −ΠSplM ‖2∥∥∥pld(1−1/ξ)Me −ΠSpld(1−1/ξ)Me

∥∥∥
2

. (43)
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We now have

d(∞)
n

(
P,RN

)
≤ ‖plM −ΠSplM ‖2 = α ·

∥∥∥pld(1−1/ξ)Me −ΠSpld(1−1/ξ)Me

∥∥∥
2
≤ α

√
ξ ·d(∞)

n

(
P,RN

)
. (44)

Thus, computing α allows us to estimate d
(∞)
n

(
P,RN

)
. If α is sufficiently small, S will itself be a

passible approximation to an optimal subspace Aopt. Similarly, if the P ′ ⊂ P and S from Lemma 4
satisfy

d(p)(P,S) ≤ α · d(p)(P ′,S) (45)

for a modest α ∈ R+, then we may infer that S is a near-optimal subspace for P .

Lemmas 3 and 4 now allow us to establish the main results of this section. We will first prove
the main dimensionality reduction result for the p =∞ case.

Theorem 3. Let ξ ∈ (1,∞), P = {p0, . . . ,pM} ⊂ RN be symmetric, and n ∈ {1, . . . , N}. Then,

there is an O
(

ξ
ξ−1 ·MN2 +N · n2 log2

ξM
)

-time algorithm which outputs an at most (n ·dlogξMe)-
dimensional subspace S ⊂ RN with

d(∞)
n (P,S) ≤

(
1 +

√
ξ
)
· d(∞)

n

(
P,RN

)
. (46)

Proof: Let S ⊂ RD be an ñ-dimensional subspace with ñ ≥ n, and A ∈ Γn(RD). We have that

d(∞)
n (P,S) ≤ max

pj∈P
‖pj −ΠSΠApj‖2 (47)

≤ max
pj∈P

(‖pj −ΠSpj‖2 + ‖ΠSpj −ΠSΠApj‖2) (48)

≤ max
pj∈P

‖pj −ΠSpj‖2 + max
pj∈P

‖pj −ΠApj‖2. (49)

The fact that this holds for all A ∈ Γn(RD) now immediately implies that

d(∞)
n (P,S) ≤ d(∞)(P,S) + d(∞)

n

(
P,RN

)
. (50)

It remains to make a good choice for the subspace S. More precisely, we would like to find a

subspace S with d(∞)(P,S) ≤
√
ξ · d(∞)

n

(
P,RN

)
so that we can obtain (46) from (50).

Appealing to Lemma 3, we note that we can find a sufficiently accurate n-dimensional subspace,
S1, for a large symmetric subset P ′ ⊂ P with |P ′| ≥ d(1 − 1/ξ)Me + 1. It remains to find a
similarly accurate subspace for the rest of P . Set P2 := (P − P ′) ∪ {0}, noting that P2 will be
a symmetric point set with |P2| ≤ M/ξ. We may now apply Lemma 3 to P2 in order to find a
second n-dimensional subspace, S2, which approximates all but at most M/ξ2 elements of P2 to

within the desired
√
ξ · d(∞)

n

(
P,RN

)
-accuracy. More generally, we can see that iterating Lemma 3

at most dlogξMe-times in this fashion will produce a collection of at most dlogξMe different n-

dimensional subspaces, S1, . . . ,SdlogξMe, which will collectively approximate all of P to the desired√
ξ · d(∞)

n

(
P,RN

)
-accuracy. We now set

S := span
(
S1 ∪ · · · ∪ SdlogξMe

)
. (51)
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It is not difficult to see that S will be at most (n · dlogξMe)-dimensional. Furthermore, the at
most dlogξMe applications of Lemma 3 will induce a runtime of complexity of

O

dlogξMe−1∑
j=0

NM ·min{N,M/ξj}
ξj

 = O

(
ξ

ξ − 1
·MN2

)
. (52)

Finally, we note that an orthonormal basis for S can be computed in O
(
N · n2 log2

ξM
)
-time via

Gram–Schmidt. The stated result follows.

A similar argument now allows us to prove a dimensionality reduction result for the p ∈ (2,∞)
case.

Theorem 4. Let ξ ∈ (1,∞), P = {p0, . . . ,pM} ⊂ RN be symmetric, and n ∈ {1, . . . , N}. Then,

there is an O
(

ξ
ξ−1 ·MN2 +N · n2 log2

ξM
)

-time algorithm which outputs an at most (n ·dlogξMe)-
dimensional subspace S ⊂ RN such that

d(p)
n (P,S) ≤

(
1 + dlogξMe1/p

√
2ξ
)
· d(p)

n

(
P,RN

)
. (53)

Proof: Let S ⊂ RD be an ñ-dimensional subspace with ñ ≥ n, and A ∈ Γn(RD). We have that

d(p)
n (P,S) ≤

∑
pj∈P

‖pj −ΠSΠApj‖p2

1/p

≤

∑
pj∈P

‖pj −ΠSpj‖p2

1/p

+

∑
pj∈P

‖pj −ΠApj‖p2

1/p

.

The fact that this holds for all A ∈ Γn(RD) now again implies that

d(p)
n (P,S) ≤ d(p)(P,S) + d(p)

n

(
P,RN

)
. (54)

The subspace S is now chosen in the same fashion as in the proof of Theorem 3. That is, S
is taken to be the span of the union of the at most dlogξMe recursively constructed subspaces

S1, . . . ,SdlogξMe discussed therein (i.e., see (51)).

Consider the recursive partition P =
⋃dlogξMe
i=1 Pi used to construct the subspaces S1, . . . ,SdlogξMe

in the proof of Theorem 3. Each n-dimensional subspace Si will approximate Pi well in the sense
of d(p) by Lemma 4. That is,

d(p)(Pi,Si) ≤
√

2ξ · d(p)
n

(
Pi−1,R

N
)

(55)

holds for all 1 ≤ i ≤ dlogξMe (here, P0 := P ). Using (55) we can see that

(d(p)(P,S))p =

dlogξMe∑
i=1

(d(p)(Pi,S))p ≤
dlogξMe∑
i=1

(d(p)(Pi,Si))p (56)

≤ (2ξ)p/2 ·
dlogξMe∑
i=1

(
d(p)
n

(
Pi−1,R

N
))p

(57)

≤ dlogξMe(2ξ)p/2 ·
(
d(p)
n

(
P,RN

))p
. (58)

The desired bound (53) now follows from (54) and (58). As the construction of S is the same as
for Theorem 3, the runtime analysis there carries over. The stated result follows.
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Remark 3. Recalling Remark 1, we note that the runtime complexities quoted in both Theorems 3
and 4 can be reduced by using faster randomized row-rank approximation methods in Lemmas 3
and 4, respectively. Furthermore, we point out that one can use the ideas from Remark 2 in order

to guarantee a, e.g., 2
√
ξ · d(∞)

n

(
P,RN

)
-accurate approximation to P with potentially fewer than

dlogξMe applications of Lemma 3. This can be achieved by terminating the iterative applications of
Lemma 3 described in the proof of Theorem 3 once α from (43) falls below 2. Similarly, the iterative
applications of Lemma 4 described in the proof of Theorem 4 can be terminated without seriously
degrading accuracy as soon as α := d(p)(P,S)/d(p)(P ′,S) falls below a user prescribed threshold.
Finally, it worth noting that the accuracy of Theorem 3 (and Theorem 4) can be improved in practice
by replacing P \ P ′ with (I −ΠS) (P \ P ′) after each iteration of Lemma 3 (or Lemma 4). This
allows subsequent iterations to strictly improve on the progress made in previous iterations.

Remark 4. It is interesting to note that the greedy method utilized in Section 3 is closely related to
the meta algorithm outlined in [5] when p ∈ (2,∞). As a result, it may be possible to improve the
dlogξMe1/p-factor in (53) by combining Lemma 4 with the proof techniques of Theorem 11.2 in [5].
Verifying this with a rigorous proof is left as future work.

4 A Fast Algorithm for p =∞ Subspace Approximation

In this section we demonstrate that the dimensionality reduction results developed above can be
combined with computational techniques for computing the John ellipsoid of a point set in order
to produce a fast approximation algorithm for the p =∞ problem. The following result establishes
the speed and accuracy of this approach.

Theorem 5. Let P = {p0, . . . ,pM} ⊂ RN be symmetric, and n ∈ {1, . . . , N}. Then, one can
calculate an A ∈ Γn

(
R
N
)

with

d(∞) (P,A) ≤ C
√
n · logM · d(∞)

n

(
P,RN

)
(59)

in O
(
MN2 +Mn2 · log2M · log(n logM)

)
-time. Here C ∈ R+ is an absolute constant.

Before proving Theorem 5 we will need an intermediate lemma. Lemma 5 shows that the
projection of the dataset P onto its Theorem 3 subspace S, P ′ := ΠSP , will be approximated
near-optimally by an n-dimensional subspace obtained from its John ellipsoid.

Lemma 5. Suppose that P ′ = {p0, . . . ,pM} ⊂ S ∈ Γm̃
(
R
N
)

is symmetric. Let ε ∈ (0,∞),
ξ ∈ (1,∞), and n ∈ {1, . . . , N} be such that n ≤ m̃ ≤ ndlogξMe. Then, one can calculate an
H ∈ Γn (S) with

d(∞)
(
P ′,H

)
≤
√

(1 + ε)m̃ · d(∞)
n

(
P ′,S

)
(60)

in O
(
MN · n logξM +Mn2 · log2

ξM ·
(
log(n logξM) + 1/ε

))
-time.

Proof: Let BS be an orthonormal basis of S (assumed to be provided). We will also work with P ′

expressed in terms of its BS coordinates, P ′′ ⊂ Rm̃. Compute an ellipsoid E :=
{
x
∣∣ xTQx ≤ 1

}
⊂

R
m̃ such that

E ⊆ CH
(
P ′′
)
⊆
√

(1 + ε)m̃ · E (61)

in O
(
Mm̃2(log m̃+ 1/ε)

)
-time [17]. Next, let A′E ⊂ Rm̃ be the subspace spanned by the n eigen-

vectors of Q associated with σm̃(Q), . . . , σm̃−n+1(Q), and let AE ⊂ S ⊂ RN be A′E re-expressed as
an n-dimensional subspace of the span of BS . Finally, let A′opt ∈ Γn

(
R
m̃
)

be an optimal subspace

for CH (P ′′), so that d(∞)
(
CH (P ′′) ,A′opt

)
= d

(∞)
n

(
CH (P ′′) ,Rm̃

)
.
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We can now see that

d(∞) (P ′,AE) = d(∞) (P ′′,A′E) (Change of Coordinates)

= d(∞) (CH (P ′′) ,A′E) (Proof of Lemma 1 Parts (4)&(5))

≤ d(∞)
(√

(1 + ε)m̃ · E ,A′E
)

(Proof of Part (4) of Lemma 1)

=
√

(1 + ε)m̃ · d(∞) (E ,A′E) (Scalability of d(∞))

≤
√

(1 + ε)m̃ · d(∞)
(
E ,A′opt

)
(Part (6) of Lemma 1)

≤
√

(1 + ε)m̃ · d(∞)
(
CH (P ′′) ,A′opt

)
(Proof of Part (4) of Lemma 1)

=
√

(1 + ε)m̃ · d(∞)
n

(
P ′′,Rm̃

)
(Part (5) of Lemma 1).

(62)

After noting that d
(∞)
n

(
P ′′,Rm̃

)
= d

(∞)
n (P ′,S), we can see that (62) implies that

d(∞)
(
P ′,AE

)
≤
√

(1 + ε)m̃ · d(∞)
n

(
P ′,S

)
. (63)

Thus, we have achieved (60).
The runtime complexity can be accounted for as follows: Computing P ′′ from P ′ can be done in

O(MN ·n logξM)-time, after which A′E can be found in O
(
M · n2 log2

ξM ·
(
log(n logξM) + 1/ε

))
-

time via [17]. Finally, a basis for AE can be computed in O(N · n2 logξM)-time once A′E is known.
The stated runtime complexity follows.

We are now prepared to prove Theorem 5.

Proof of Theorem 5: Choose ε ∈ (0,∞) and ξ ∈ (1,∞). Compute S ∈ Γm̃
(
R
N
)
, with n ≤ m̃ ≤

ndlogξMe, via Theorem 3/Remark 3. Let P ′ := ΠSP ⊂ S ⊂ RN be the projection of P onto S.
Finally, compute a subspace H ∈ Γn (S) satisfying (60) via Lemma 5.

Fix an arbitrary A ∈ Γn (S), noting that ΠAΠS = ΠA since A ⊂ S. Then, there exists a y ∈ P
such that

‖ΠSy −ΠAy‖2 = ‖ΠSy −ΠAΠSy‖2 = d(∞)
(
P ′,A

)
≥ d(∞)

n

(
P ′,S

)
. (64)

Now fix an arbitrary x ∈ P . Combining (60) and (64), we can see that

‖ΠSx−ΠHx‖22 = ‖ΠSx−ΠHΠSx‖22 (Since H ⊂ S)

≤
(
d(∞) (P ′,H)

)2
(Def. of d(∞))

≤ (1 + ε)m̃ ·
(
d

(∞)
n (P ′,S)

)2
(Using (60))

≤ (1 + ε)m̃ · ‖ΠSy −ΠAy‖22 (Using (64))

≤ (1 + ε)m̃ ·
(
‖ΠSy −ΠAy‖22 + ‖ΠS⊥y‖

2
2

)
= (1 + ε)m̃ ·

(
‖ΠS (y −ΠAy)‖22 + ‖ΠS⊥ (y −ΠAy)‖22

)
(Since A ⊂ S)

= (1 + ε)m̃ · ‖y −ΠAy‖22 (Pythagoras)

≤ (1 + ε)m̃ ·
(
d(∞) (P,A)

)2
(Def. of d(∞)).

(65)

The fact that (65) holds for all A ∈ Γn (S) now implies that

‖ΠSx−ΠHx‖2 ≤
√

(1 + ε)m̃ · d(∞)
n (P,S) . (66)

Continuing, we now have that

‖x−ΠHx‖2 =
√
‖ΠS (x−ΠHx)‖22 + ‖ΠS⊥ (x−ΠHx)‖22 (Pythagoras)

=
√
‖ΠSx−ΠHx‖22 + ‖ΠS⊥x‖

2
2 (Since H ⊂ S)

≤
√

(1 + ε)m̃ ·
(
d

(∞)
n (P,S)

)2
+
(
d(∞) (P, S)

)2
(By (66), Def. d(∞)).

(67)
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Recalling that S was provided by Theorem 3, we obtain

‖x−ΠHx‖2 ≤
√

(1 + ε)
(
1 +

√
ξ
)2
m̃ ·

(
d

(∞)
n (P,RN )

)2
+ ξ
(
d

(∞)
n (P,RN )

)2
. (68)

The fact that (68) holds for all x ∈ P yields (59).
The runtime complexity can be accounted for as follows: Computing S via Theorem 3 can

be accomplished in O
(

ξ
ξ−1 ·MN2 +N · n2 log2

ξM
)

-time. Computing P ′ from P can be done in

O(MN · n logξM)-time. Finally, computing H ∈ Γn (S) via Lemma 5 can be accomplished in

O
(
MN · n logξM +Mn2 · log2

ξM ·
(
log(n logξM) + 1/ε

))
-time.

Remark 5. The more precise accuracy bound in terms of the parameters ε and ξ derived in the proof
of the theorem predicts that one can find a set A that satisfies

d(∞) (P,A) ≤
(√

(1 + ε)
(
1 +

√
ξ
)2
ndlogξMe+ ξ

)
· d(∞)

n

(
P,RN

)
(69)

in O
( ξ
ξ−1 ·MN2+Mn2·log2

ξM ·
(
log(n logξM) + 1/ε

) )
-time. Choosing ε small and ξ to minimize the

accuracy bound to find that one can achieve C < 10. Finally, we note that the runtime complexity
quoted in Theorem 5 can be reduced, along the lines of Remark 1, by using a fast randomized
least-squares method instead of a deterministic SVD method.
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A Proof of Lemma 1

We present the proof of each part below:

1. This follows directly from the fact that d(∞)(P − x,A) = d(∞)
(
P,A−ΠS⊥A

x
)

for all A ∈
Γn
(
R
N
)

and x ∈ RN .

16



2. Let A ∈ Γn
(
R
N
)

be such that d(∞)(P̄ ,A) = d
(∞)
n (P̄ ,RN ). Suppose aA is nonzero. Partition

P̄ into three parts:

(a) P̄1 :=
{
p ∈ P̄

∣∣ 〈p,aA〉 = 0
}

(b) P̄2 :=
{
p ∈ P̄

∣∣ 〈p,aA〉 > 0
}

(c) P̄3 :=
{
p ∈ P̄

∣∣ 〈p,aA〉 < 0
}

If p ∈ P1 then ‖p − ΠAp‖22 = ‖p − ΠSAp‖22 + ‖aA‖22. This is minimized for all p ∈ P1

when ‖aA‖2 = 0. Next, note that p ∈ P3 if and only if −p ∈ P2, and that p ∈ P3 means
‖p−ΠAp‖2 > ‖(−p)−ΠA(−p)‖2. Thus, we can decrease d(∞)(P̄ ,A) by making aA shorter
(a contradiction).

3. Let A ∈ Γn
(
R
N
)

be such that d(∞)(P,A) = d
(∞)
n (P,RN ). We have that

‖p̄− pj −ΠSA (p̄− pj) ‖2 = ‖pj − p̄−ΠSA (pj − p̄) ‖2 =
∥∥∥pj −ΠSApj −ΠS⊥A

p̄
∥∥∥

2
(70)

≤ ‖pj −ΠApj‖2 + ‖p̄−ΠAp̄‖2. (71)

Noting that ‖p̄ − ΠAp̄‖2 ≤ d(∞)(P,A) – see part five below for an analogous calculation –
concludes the proof.

4. This follows directly from the fact that d(∞)(B,A) ≤ d(∞)(C,A) for all A ∈ Γn
(
R
N
)
.

5. Part four implies d
(∞)
n (P,RN ) ≤ d

(∞)
n (CH(P ),RN ) since P ⊆ CH(P ). To obtain the other

inequality, we recall that every x ∈ CH(P ) has αj ∈ [0, 1], j = 1, . . . ,M , such that

x =
M∑
j=1

αj · pj , (72)

and
M∑
j=1

αj = 1. (73)

Hence, we can see that

‖x−ΠAx‖2 =

∥∥∥∥∥∥
M∑
j=1

αj · (pj −ΠSApj − aA)

∥∥∥∥∥∥
2

≤
M∑
j=1

αj · ‖pj−ΠApj‖2 ≤ d(∞)(P,A) (74)

holds for all x ∈ CH(P ), and A ∈ Γn
(
R
N
)
. It now follows that d

(∞)
n (CH(P ),RN ) ≤

d
(∞)
n (P,RN ).

6. Part two tells us that there will be an optimal subspace, since E is symmetric. Thus, standard
results concerning the n-widths of ellipsoids apply (see, e.g., [12, 13]).
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