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Abstract. In this short note we propose a simple two-stage sparse phase retrieval strategy that
uses a near-optimal number of measurements, and is both computationally efficient and robust to
measurement noise. In addition, the proposed strategy is fairly general, allowing for a large number
of new measurement constructions and recovery algorithms to be designed with minimal effort.

1. Introduction

Herein we consider the phase retrieval problem of reconstructing a given vector x ∈ CN from
noisy magnitude measurements of the form

(1) bi := |〈pi,x〉|2 + ni,

where pi ∈ CN is a measurement vector, and ni ∈ R represents arbitrary measurement noise, for
i = 1, . . . ,M . In particular, we focus on the setting where the dimension N is either very large, or
else the number of measurements allowed, M , is otherwise severely restricted. In either case, our
inability to gather the M = O(N) measurements required for the recovery of x in general [20] forces
us to consider the possibility of approximating x using only M � N magnitude measurements,
if possible. This is the situation motivating the compressive phase retrieval problem (see, e.g.,
[30, 31, 26, 24, 34, 15, 32, 35]), in which one attempts to accurately approximate x ∈ CN using
only M = o(N) magnitude measurements (1) under the assumption that x is either sparse, or
compressible.

One question regarding the compressive phase retrieval problem is how many measurements are
needed to allow for stable reconstruction of x. Clearly, compressive phase retrieval requires at
least as many measurements as the corresponding classical compressive sensing problem since one
is given less information. Hence, stable compressive phase retrieval requires at least O(s log(N/s))
magnitude measurements1 – but can it be done with M = O(s log(N/s)) measurements? It is
shown in [15] that stable compressive phase retrieval is indeed achievable with M = O(s log(N/s))
measurements for real x if the entries of pi are real independent and identically distributed (i.i.d.)
Gaussians. However, this question was unresolved in the complex case. In this note we extend
the result to the complex case. Furthermore, we do so in a constructive way by providing a com-
putational procedure which can stably reconstruct complex x using only O(s log(N/s)) magnitude
measurements.

Unlike previous sparse phase retrieval approaches, we propose a generic two-stage solution tech-
nique consisting of (i) using the phase retrieval technique of one’s choice to recover compressive
sensing measurements of x, Cx ∈ Cm, followed by (ii) utilizing the compressive sensing method
of one’s choice in order to approximate x from the recovered measurements Cx. As we shall see,
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the generic nature of the proposed sparse phase retrieval procedure not only allows for a relatively
large number of measurement matrices and recovery algorithms to be used, but also allows robust
recovery guarantees for the sparse phase retrieval problem to be proven in the complex setting
essentially “for free” by combining existing robust recovery results from the compressive sensing
literature with robust recovery results for the standard phase retrieval setting. As a result, we
are able to show that O(s log(N/s)) magnitude measurements suffice in order to recover a large
class of compressible vectors with the same quality of error guarantee as commonly achieved in
the compressive sensing literature. Finally, numerical experiments demonstrate that the proposed
approach is also both efficient and robust in practice.

2. Background

In this section we briefly recall selected results from the existing literature on compressive sensing
[14, 17] and phase retrieval [3, 2, 12, 11, 1, 16]. Let ‖x‖0 denote the number of nonzero entries
in a given x ∈ CN , and ‖x‖p denote the standard `p-norm of x for all p ≥ 1, i.e., ‖x‖p :=(∑N

n=1 |xn|p
)1/p

for all x ∈ CN .

2.1. Compressive Sensing. Compressive sensing methods deal with the construction of an m×N
measurement matrix, C, with m minimized as much as possible subject to the constraint that an
associated approximation algorithm, ∆C : Cm → CN , can still accurately approximate any given
vector x ∈ CN . More precisely, compressive sensing methods allow one to minimize m, the number
of rows in C, as a function of s and N such that

(2) ‖ ∆C (Cx)− x ‖p ≤ Cp,q · s
1
p
− 1

q

(
inf

z∈CN ,‖z‖0≤s
‖x− z‖q

)
holds for all x ∈ CN in various fixed `p,`q norms, 1 ≤ q ≤ p ≤ 2, for an absolute constant Cp,q ∈ R
(e.g., see [13, 17]). Note that this implies that x will be recovered exactly if it contains only s
nonzero entries. Similarly, x will be accurately approximated by ∆C (Cx) any time its `q-norm is
dominated by its largest s entries.

There are a wide variety of measurement matrices C ∈ Cm×N with m = O(s log(N/s)) that have
associated approximation algorithms, ∆C , which are computationally efficient, numerically robust,
and able to achieve error guarantees of the form (2) for all x ∈ CN . For example, this is true of
“most” random matrices C ∈ Cm×N with i.i.d. subgaussian random entries [4, 17]. Similarly, one
may construct such a C ∈ Cm×N with high probability by selecting a set of m = O(s log4N) rows
uniformly at random from an N × N discrete Fourier transform matrix (or, more generally, from
any “sufficiently flat” N ×N unitary matrix) [17]. In either case, one may then use a large number
of approximation algorithms, ∆C , that will achieve error guarantees along the lines of (2), including
convex optimization techniques [8, 9, 10], iterative hard thresholding [7], (regularized) orthogonal
matching pursuit [33, 25, 28, 29], and the CoSaMP algorithm [27], to name just a few.

More generally, any matrix with the robust null space property [13] will have an associated
approximation algorithm that is both computationally efficient and numerically robust. Let S ⊆
{1, 2, ..., N}, and x ∈ CN . Then, xS will denote x with all entries not in S set to zero. That is,

(xS)j :=

{
0, if j /∈ S,
xj , if j ∈ S.

The robust null space property can now be defined as follows.

Definition 1. Let s,m,N ∈ N be such that s < m < N . We will say that the matrix C ∈ Cm×N

satisfies the `2-robust null space property of order s with constants 0 < ρ < 1 and τ > 0 if

‖xS‖1 ≤ ρ‖xSc‖1 + τ‖Cx‖2
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holds for all x ∈ CN and S ⊂ {1, 2, ..., N} with cardinality |S| ≤ s, where Sc denotes the complement
of S.

In particular, the following robust compressive sensing result for matrices with the null space
property is a restatement of Theorem 4.22 from [17].

Theorem 1. Suppose that the matrix C ∈ Cm×N satisfies the `2-robust null space property of order
s with constants 0 < ρ < 1 and τ > 0. Then, for any x ∈ CN , the vector

(3) x̃ := arg min
z∈CN

‖z‖1 subject to ‖Cz− y‖2 ≤ η,

where y := Cx + e for some e ∈ Cm with ‖e‖2 ≤ η, will satisfy

(4) ‖x− x̃‖2 ≤
C√
s
·
(

inf
z∈CN ,‖z‖0≤s

‖x− z‖1
)

+Dη

for some constants C,D ∈ R+ that only depend on ρ and τ .

Many matrices exist with the `2-robust null space property including, e.g., “most” randomly
constructed subgaussian and subsampled discrete Fourier transform matrices (as per above). Thus,
in some sense it is not difficult to find a matrix C ∈ Cm×N to which Thoerem 1 will apply.
Furthermore, x̃ from (3) can be computed efficiently via convex optimization techniques. See [17]
for details.

2.2. Phase Retrieval. Noisy phase retrieval problems involve the reconstruction of a given vector
x ∈ CN , up to a global phase factor, from magnitude measurements of the form

(5) bi := |〈pi,x〉|2 + ni,

where pi ∈ CN and ni ∈ R for i = 1, . . . ,M . Vectorizing (5) yields

(6) b := |Px|2 + n,

where b,n ∈ RM , P ∈ CM×N , and | · |2 : CM → RM computes the component-wise squared
magnitude of each vector entry. Thus, the primary objective of phase retrieval is to construct a
recovery algorithm, ΦP : RM → CN , that satisfies a relative error guarantee such as, e.g.,

(7) min
θ∈[0,2π]

(∥∥ ΦP (b)− eiθx
∥∥
2

‖x‖2

)q
≤ CP ·

‖n‖2√
M‖x‖22

for a particular measurement matrix P ∈ CM×N , q ∈ [1, 2], and approximation factor CP ∈ R+

(which may depend on P).
Several recovery algorithms achieve error guarantees along the lines of (7) while using at most

M = O(N logN) measurements, including both PhaseLift [12, 11] as well as a more recent graph-
theoretic and frame-based approach [1]. In particular, the following robust phase retrieval result is
a variant of Theorem 1.3 from [11].2

Theorem 2. Let P ∈ CM×N have its M rows be independently drawn either uniformly at random
from the sphere of radius

√
N in CN , or else as complex normal random vectors from N (0, IN/2)+

iN (0, IN/2). Then, ∃ universal constants B̃, C̃, D̃ ∈ R+ such that the PhaseLift procedure ΦP :
RM → CN satisfies

(8) min
θ∈[0,2π]

∥∥∥ ΦP (b)− eiθx
∥∥∥
2
≤ C̃ · ‖n‖1

M‖x‖2
2Equation (1.8) in Theorem 1.3 is technically incorrect as stated in [11]. See [22] for a corrected and simplified

proof of Theorem 2 as stated herein.
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for all x ∈ CN with probability 1−O(e−B̃M ), provided that M ≥ D̃N . Here b,n ∈ RM are as in
(6).

Finally, it is important to note that the PhaseLift procedure from Theorem 2 can be computed via
semidefinite programming techniques. Thus, it is computationally tractable for modest dimensions,
N . See [12, 11] for details.

3. A Simple Two-Stage Technique for Sparse Phase Retrieval

In this section we consider using noisy magnitude measurements of the form

(9) b := |PCx|2 + n,

where P ∈ Cm̃×m is any phase retrieval matrix with an associated recovery algorithm ΦP : Rm̃ →
Cm that has an error guarantee along the lines of (7), and C ∈ Cm×N is any compressive sensing
matrix with an associated approximation algorithm ∆C : Cm → CN that has an error guarantee like
(2). In this situation the composition of the two recovery algorithms, ∆C ◦ΦP : Rm̃ → CN , should
accurately approximate x ∈ CN , up to a global phase factor, from b whenever x is sufficiently
sparse or compressible. This leads us to the following intuitive observation.

Proposition 1. Let A = PC where C ∈ Cm×N has the robust null space property and P ∈ Cm̃×m

is a stable phase retrieval matrix. Then, A has the stable compressive phase retrieval property.

More specifically, the following compressive phase retrieval result follows easily from Theorems 1
and 2.

Theorem 3. Let P ∈ Cm̃×m have its m̃ rows be independently drawn either uniformly at random
from the sphere of radius

√
m in Cm, or else as complex normal random vectors from N (0, Im/2)+

iN (0, Im/2). Furthermore, suppose that C ∈ Cm×N satisfies the `2-robust null space property of
order s with constants 0 < ρ < 1 and τ > 0. Then, there exists a phase retrieval procedure,
ΦP : Rm̃ → Cm, and a compressive sensing recovery algorithm, ∆C : Cm → CN , such that

(10) min
θ∈[0,2π]

∥∥∥eiθx−∆C (ΦP (b))
∥∥∥
2
≤ C√

s
·
(

inf
z∈CN ,‖z‖0≤s

‖x− z‖1
)

+D · ‖n‖1
m̃‖Cx‖2

holds for all x ∈ CN with probability 1−O(e−Bm̃), provided that m̃ ≥ E ·m. Here b,n ∈ Rm̃ are
as in (9), and B,E ∈ R+ are universal constants, while C,D ∈ R+ are constants that only depend
on ρ and τ .

Considering the number of magnitude measurements required by Theorem 3, we note that m̃ =
O(s log(N/s)) such measurements will suffice to achieve (10) for all x ∈ CN with high probability
whenever C ∈ Cm×N is, e.g., a random matrix with i.i.d. subgaussian random entries. In this
situation C will also likely have both (i) the `2-robust null space property of order s with constants
0 < ρ < 1 and τ > 0, and (ii) a small restricted isometry constant of order 2s, δ2s < 1 (see, e.g.,
§6.2 and §9.1 of [17] for details). As a consequence, C will also satisfy

(11)
1

τ
· max
S⊂{1,...,N},|S|=s

(‖xS‖1 − ρ‖xSc‖1) ≤ ‖Cx‖2 ≤
√

1− δ2s
(
‖x‖2 +

‖x‖1√
2s

)
for all x ∈ CN with high probability (w.h.p.).3 Considering the Theorem 3 error guarantee (10)
in light of (11), we can now see that Theorem 3 implies that all sufficiently compressible vectors
with, e.g.,

(12)
1√
m̃
≤ 1

τ
· max
S⊂{1,...,N},|S|=s

(‖xS‖1 − ρ‖xSc‖1)

3The lower bound is a simple consequence of Definition 1. For the upper bound see, e.g., Exercise 6.6 in [17].
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will also satisfy

(13) min
θ∈[0,2π]

∥∥∥eiθx−∆C (ΦP (b))
∥∥∥
2
≤ C√

s
·
(

inf
z∈CN ,‖z‖0≤s

‖x− z‖1
)

+D‖n‖2

w.h.p. whenever C is a random matrix with i.i.d. subgaussian entries.
Finally, it is interesting to note that the two-stage approach outlined in this section also confers

some computational advantages. Mainly, the phase retrieval recovery algorithm ΦP : Rm̃ → Cm

only needs to recover a vector of length m = O(s log(N/s)). This allows phase retrieval approaches
based on, e.g., semidefinite programming to efficiently approximate significantly larger vectors
x ∈ CN than otherwise possible when N � s.

4. Empirical Evaluation

We now present representative results demonstrating the numerical robustness and efficiency
of the proposed two-step strategy. For the results in this section, we use PhaseLift [12, 11] and
Basis Pursuit [9] to solve the phase retrieval and compressive sensing problems in steps (i) and
(ii), respectively. Moreover, we use complex Gaussian phase retrieval matrices P and real Gaussian
compressive sensing matrices C. Matlab code used to generate the numerical results – implemented
using the optimization software packages TFOCS [6, 5] and CVX [19, 18] – is freely available at
[23].

In each of the following results, we recover sparse, unit-norm complex vectors whose non-zero
indices are independently and randomly chosen, and, whose non-zero entries are i.i.d. standard
complex Gaussians.
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Robustness to Additive Noise: N = 1024, s = 5, m̃ = 371

Figure 1. Robustness to additive noise: N = 1024, s = 5, m̃ = d14s log(N/s)e.

Figure 1 illustrates the robustness of the recovery procedure to additive noise. We add i.i.d.
zero-mean Gaussian noise at several signal-to-noise ratios (SNRs) to m̃ = d14s log(N/s)emagnitude
measurements (N = 1024, s = 5, m̃ = 371) and record relative reconstruction errors in decibels.
Each data point on the graph was obtained by averaging the results of 100 trials. We observe that
the reconstruction error in every case is approximately equal to the added noise level, confirming
the robust recovery properties of the proposed method.

5



1 2 3 4 5
10

20

30

40

50

60

70

80

90

100

Sparsity, s

Measurements Reqd. for Reconstruction: N=64

 

 

N
o
.
o
f
M
ea
su
re
m
en
ts

PhaseLift+BP
CPRL

(a) Minimum number of measurements

1 2 3 4 5
10

−2

10
−1

10
0

10
1

10
2

Sparsity, s

A
v
g
.
ru
n
ti
m
e
(i
n
se
cs
.)

Runtime: N=64, Noiseless Measurements

 

 

CPRL
PhaseLift+BP

(b) Runtime comparison

Figure 2. Runtime performance and minimum number of measurements required:
N = 64, noiseless measurements

Next, we demonstrate efficiency by plotting the average runtime and minimum number of mea-
surements necessary for successful reconstruction. For the purposes of this discussion, we classify
a reconstruction as successful if the relative `2-norm error in the recovered signal is less than 10−5.
We also provide comparisons with Compressive Phase Retrieval via Lifting (CPRL) [30], an exist-
ing framework for sparse phase retrieval. Simulations were performed on a laptop computer with
an Intel R©CoreTM i3-3120M processor, 4GB RAM and Matlab R2014a. We first consider the re-
construction of an s-sparse signal (N = 64) from perfect (noiseless) measurements. The minimum
number of measurements4 required for successful reconstruction is plotted in Figure 2a, while the
corresponding runtime, averaged over 100 trials, is plotted in Figure 2b. Figure 2a was generated
by starting with a small number of measurements, m̃, and incrementing this number to ensure suc-
cessful reconstruction in at least 95 of the 100 trials. We notice that the PhaseLift+BP formulation
requires a small number of additional measurements when compared to CPRL. This is potentially
only the case for small values of s since Theorem 3 shows that O(s log(N/s)) measurements suf-
fice for the PhaseLift+BP formulation. Moreover, since the PhaseLift+BP solution is obtained by
solving a smaller SDP, the average runtime is significantly smaller (by several orders of magnitude)
than CPRL, as shown in Figure 2b.

5. Discussion

It is interesting to note that the compressive phase retrieval strategy discussed herein also imme-
diately implies the existence of stable sublinear-time compressive phase retrieval algorithms. These
can be achieved by combining the phase retrieval technique of one’s choice with a o(N)-time com-
pressive sensing method (see, e.g., [21]) in order to create a o(N)-time compressive phase retrieval
algorithm. In addition, we conclude by noting that random combinations of a random set of rows
from a Fourier matrix will also exhibit the stable compressive phase retrieval property by Proposi-
tion 1/Theorem 3. This is of particular interest due to the special role that Fourier measurements
play in many applications.

4For the PhaseLift+BP implementation, we fixed the compressive sensing problem dimension to be
m = d1.75s log(N/s)e.
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