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Abstract. We present a general class of compressed sensing matrices which are then demonstrated to have
associated sublinear-time sparse approximation algorithms. We then develop methods for constructing specialized
matrices from this class which are sparse when multiplied with a discrete Fourier transform matrix. Ultimately, these
considerations improve previous sampling requirements for deterministic sparse Fourier transform methods.

1. Introduction. This paper considers methods for designing matrices which yield near-
optimal nonlinear approximations to the Fourier transform of a given function, f : [0, 2π]→
C. Suppose that f is a bandlimited function so that f̂ ∈ CN, where N is large. An optimal
k-term trigonometric approximation to f is given by

f opt
k (x) =

k∑
j=1

f̂
(
ω j

)
e
iω jx,

where ω1, . . . , ωN ∈ (−N/2,N/2] ∩ Z are ordered by the magnitudes of their Fourier coeffi-
cients so that ∣∣∣ f̂ (ω1)

∣∣∣ ≥ ∣∣∣ f̂ (ω2)
∣∣∣ ≥ · · · ≥ ∣∣∣ f̂ (ωN)

∣∣∣.
The optimal k-term approximation error is then∥∥∥ f − f opt

k

∥∥∥
2

=
∥∥∥ f̂ − f̂ opt

k

∥∥∥
2
. (1.1)

It has been demonstrated recently that any periodic function, f : [0, 2π] → C, can be accu-
rately approximated via sparse Fourier transform (SFT) methods which run in O(k2 log4 N)
time (see [26, 27] for details). When the function is sufficiently Fourier compressible (i.e.,
when a k which is much less than N yields a small approximation error in Equation (1.1)
above), these methods can accurately approximate f much more quickly than traditional Fast
Fourier Transform (FFT) methods which run in O(N log N) time. Furthermore, these SFT
methods require only O(k2 log4 N) function evaluations as opposed to the N function evalu-
ations required by a standard FFT method.

Although the theoretical guarantees of SFT algorithms appear promising, current algo-
rithmic formulations suffer from several practical shortfalls. Principally, the algorithms cur-
rently utilize number theoretic sampling sets which are constructed in a suboptimal fashion.
In this paper we address this deficiency by developing computational methods for construct-
ing number theoretic matrices of the type required by these SFT methods which are nearly
optimal in size. In the process, we demonstrate that this specific problem is a more con-
strained instance of a much more general matrix design problem with connections to com-
pressed sensing matrix constructions [15, 9, 10, 8, 3], discrete uncertainty principles [18],
nonadaptive group testing procedures [19, 22], and codebook design problems [42, 16, 7] in
signal processing.
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1.1. General Problem Formulation: Compressed Sensing in the Fourier Setting.
Over the past several years, a stream of work in compressed sensing has provided a general
theoretical framework for approximating general functions in terms of their optimal k-term
approximation errors (see [20] and references therein). Indeed, the SFT design problem we
are considering herein also naturally falls into this setting. Consider the following discretized
version of the sparse Fourier approximation problem above: Let ~f ∈ CN be a vector of N
equally spaced evaluations of f on [0, 2π], and define F to be the N × N Discrete Fourier

Transform (DFT) matrix defined by Fi, j = e

−2πi·i· j
N
√

N
. Note that F ~f will be compressible (i.e.,

sparse). Compressed sensing methods allow us to construct an m × N matrix, M, with m
minimized as much as possible subject to the constraint that an associated approximation
algorithm, ∆M : Cm

→ CN, can still accurately approximate any given f̂ = F ~f (and,
therefore, f itself). More exactly, compressed sensing methods allow us to minimize m, the
number of rows inM, as a function of k and N such that∥∥∥∥ ∆M

(
M f̂

)
− f̂

∥∥∥∥
p
≤ Cp,q · k

1
p−

1
q
∥∥∥ f̂ − f̂ opt

k

∥∥∥
q (1.2)

holds for all f̂ ∈ CN in various fixed lp,lq norms, 1 ≤ q ≤ p ≤ 2, for an absolute constant
Cp,q ∈ R (e.g., see [13, 20]). Note that this implies that f̂ will be recovered exactly if it
contains only k nonzero Fourier coefficients. Similarly, it will be accurately approximated by
∆M

(
M f̂

)
any time it is well represented by its largest k Fourier modes.

In this paper we will focus on constructing m ×N compressed sensing matrices,M, for
the Fourier recovery problem which meet the following four design requirements:

1. Small Sampling Requirements: MF should be highly column-sparse (i.e., the
number of columns ofMF which contain nonzero entries should be significantly
smaller than N). Note that wheneverMF has this property we can computeM f̂
by reading only a small fraction of the entries in ~f . Once the number of required
function samples/evaluations is on the order of N, a simple fast Fourier transform
based approach will be difficult to beat computationally.

2. Accurate Approximation Algorithms: The matrixM needs to have an associated
approximation algorithm, ∆M, which allows accurate recovery. More specifically,
we will require an instance optimal error guarantee along the lines of Equation (1.2).

3. Efficient Approximation Algorithms: The matrixM needs to have an associated
approximation algorithm, ∆M, which is computationally efficient. In particular, the
algorithm should be at least polynomial time in N (preferably, o(N log N)-time since
N is presumed to be large and we have the goal in mind of competing with an FFT).

4. Guaranteed Uniformity: Given only k,N ∈ Z+ and p, q ∈ [1, 2], one fixed ma-
trixM together with a fixed approximation algorithm ∆M should be guaranteed to
satisfy the three proceeding properties uniformly for all vectors f̂ ∈ CN.

The remainder of this paper is organized as follows: We begin with a brief survey of
recent sparse Fourier approximation techniques related to compressed sensing in Section 2.
In Section 3 we introduce matrices of a special class which are useful for fast sparse Fourier
approximation and investigate their properties. Most importantly, we demonstrate that any
matrix from this class can be used in combination with an associated fast approximation
algorithm in order to produce a sublinear-time (in N) compressed sensing method. Next, in
Section 4, we present a deterministic construction of these matrices that specifically supports
sublinear-time Fourier approximation. In Section 5 this matrix construction method is cast
as an optimal design problem whose objective is to minimize Fourier sampling requirements.
Furthermore, lemmas are proven which allow the optimal design problem to be subsequently
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formulated as an integer linear program in Section 6. Finally, in Section 7, we empirically
investigate the sizes of the optimized deterministic matrices presented herein.

2. Compressed Sensing and The Restricted Isometry Property. Over the past few
years, compressed sensing has focused primarily on utilizing matrices,M, which satisfy the
Restricted Isometry Principle (RIP) [9] in combination with l1-minimization based approxi-
mation methods [9, 10, 8]. In fact, RIP matrices appear to be the critical partner in the RIP
matrix/l1-minimization pair since RIP matrices can also be used for compressed sensing with
numerous other approximation algorithms besides l1-minimization (e.g., Regularized Orthog-
onal Matching Pursuit [33, 34], CoSaMP [32], Iterative Hard Thresholding [5], etc.). Hence,
we will consider RIP matrices in isolation.
Definition 1. Let p ∈ [1,∞), N, k ∈ N, and ε ∈ (0, 1). An m × N matrixM with complex
entries has the Restricted Isometry Property, RIPp(k,ε), if

(1 − ε) ‖x‖pp ≤ ‖Mx‖pp ≤ (1 + ε) ‖x‖pp

for all x ∈ CN containing at most k nonzero coordinates.

It has been demonstrated that Fourier RIP2(k,ε) matrices of size O
(
k log4 N

ε2

)
× N exist

[38, 39]. More specifically, an m × N submatrix of the N × N Inverse DFT (IDFT) matrix,
F
−1, formed by randomly selecting m rows of F −1 will satisfy the RIP2(k,ε) with high prob-

ability whenever m is Ω
(
k log2 N log2 k

ε2

)
[37]. Such a matrix will clearly satisfy our small

sampling requirement since any m × N submatrix of the N × N IDFT matrix will generate
a vector containing exactly m ones after being multiplied against the N × N DFT matrix.
Furthermore, l1-minimization will yield accurate approximation of Fourier compressible sig-
nals when utilized in conjunction with an IDFT submatrix that has the RIP2. However, these
random Fourier RIP2 constructions have two deficiencies: First, all existing approximation
algorithms, ∆M, associated with Fourier RIP2(k,ε) matrices, M, run in Ω

(
N log N

)
time.

Thus, they cannot generally compete with an FFT computationally. Second, randomly gen-
erated Fourier submatrices are only guaranteed to have the RIP2 with high probability, and
there is no tractable means of verifying that a given matrix has the RIP2. In order to verify
Definition 1 for a given m×N matrix one generally has to compute the condition numbers of
all

(N
k
)

of its m × k submatrices.
Several deterministic RIP2(k,ε) matrix constructions exist which simultaneously address

the guaranteed uniformity requirement while also guaranteeing small Fourier sampling needs
[28, 6]. However, they all utilize the notion of coherence [15] which is discussed in Sec-
tion 2.2. Hence, we will postpone a more detailed discussion of these methods until later.
For now, we simply note that no existing deterministic RIP2(k,ε) matrix constructions cur-
rently achieve a number of rows (or sampling requirements), m, that are o

(
k2 polylog(N)

)
for all k = o

(√
N
)

as N grows large. In contrast, RIP matrix constructions related to highly
unbalanced expander graphs can currently break this “quadratic-in-k bottleneck”.

2.1. Unbalanced Expander Graphs. Recently it has been demonstrated that the rescaled
adjacency matrix of any unbalanced expander graph will be a RIP1 matrix [3, 4].
Definition 2. Let N, k, d ∈ N, and ε ∈ (0, 1). A simple bipartite graph G = (A,B,E) with
|A| ≥ |B| and left degree at least d is a (k, d, ε)-unbalanced expander if, for any X ⊂ A with
|X| ≤ k, the set of neighbors, |N(X)|, of X has size |N(X)| ≥ (1 − ε)d|X|.
Theorem 1. (See [3, 4]). Consider an m × N matrix M that is the adjacency matrix of a
left-regular (k, d, ε)-unbalanced expander, where 1/ε and d are both smaller than N. Then,
there exists an absolute constant C > 1 such that the rescaled matrix,M / d1/p, satisfies the
RIPp(k,Cε) for all 1 ≤ p ≤ 1 + 1/ log N.
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Note that the RIP1 property for unbalanced expanders is with respect to the l1 norm, not
the l2 norm. Nevertheless, matrices with the RIP1 property also have associated approxi-
mation algorithms that can produce accurate sparse approximations along the lines of Equa-
tion (1.2) with p = q = 1. Examples include l1-minimization [3, 4] and Matching Pursuit
[25]. Perhaps most impressive among the approximation algorithms associated with unbal-
anced expander graphs are those which appear to run in o(N log N)-time (see the appendix of
[4]). Considering these results with respect to the four design requirements from Section 1.1,
we can see that expander based RIP methods are poised to satisfy both the second and third
requirements. Furthermore, by combining Theorem 1 with recent explicit constructions of
unbalanced expander graphs [23], we can obtain an explicit RIP1 matrix construction of near-
optimal dimensions (which, among other things, shows that RIP1 matrices may also satisfy
our fourth Section 1.1 design requirement regarding guaranteed uniformity). We have the
following theorem:
Theorem 2. Let ε ∈ (0, 1), p ∈ [1, 1 + 1/ log N], and N, k ∈ N be such that N is greater than
both 1/ε and k. Next, choose any constant parameter α ∈ R+. Then, there exists a constant
c ∈ R+ such that a

O
(
k1+α (

log N log k/ε
)2+2/α

)
×N

matrix guaranteed to have the RIPp(k,ε) can be constructed in O
(
N ·

(
log N/ε

)c(1+1/α)
)
-time.

Proof: Consider Theorem 1.3 in [23] in combination with Theorem 1 above. 2

Theorem 2 demonstrates the existence of deterministically constructible RIP1 matrices
with a number of rows, m, that scales like O

(
k1+α polylog(N)

)
for all k < N and fixed

ε, α ∈ (0, 1).1 Furthermore, the run time complexity of the RIP1 construction algorithm is
modest (i.e., O

(
N2

)
-time). Although a highly attractive result, there is no guarantee that

Guruswami et al.’s unbalanced expander graphs will generally have adjacency matrices,M,
which are highly column-sparse after multiplication against a DFT matrix (see design re-
quirement number 1 in Section 1.1).2 Hence, it is unclear whether expander graph based RIP1
results can be utilized to make progress on our compressed sensing matrix design problem
in the Fourier setting. Nevertheless, this challenging avenue of research appears potentially
promising, if not intractably difficult.

2.2. Incoherent Matrices. As previously mentioned, all deterministic RIP2(k,ε) matrix
constructions (e.g., see [17, 28, 37, 6] and references therein) currently utilize the notion of
coherence [15].
Definition 3. Let µ ∈ [0, 1]. An m×N matrix,M, with complex entries is called µ-coherent
if both of the following properties hold:

1. Every column ofM, denotedM·, j ∈ Cm for 0 ≤ j ≤ N − 1, is normalized so that
‖M·, j‖2 = 1.

2. For all j, l ∈ [0,N) with j , l, the associated columns M·, j,M·,l ∈ Cm have∣∣∣M·, j · M·,l∣∣∣ ≤ µ.
Theorem 3. (See [37]). Suppose that an m×N matrix,M ∈ Cm×N, is µ-coherent. Then,M
will also have the RIP2(k,(k − 1)µ).

1Only values of α that scale like Ω
(
log log N/ log N

)
can result in RIP1 matrices with fewer rows than columns.

2In fact,M multiplied against a DFT matrix need not be exactly sparse. By appealing to ideas from [24], one
can see that it is enough to have a relatively small perturbation ofM be column-sparse after multiplication against a
DFT matrix.
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Matrices with small coherence are of interest in numerous coding theoretic settings. Note
that the column vectors of a real valued matrix with small coherence, µ, collectively form a
spherical code. More generally, the columns of an incoherent complex valued matrix can be
used to form codebooks for various channel coding applications in signal processing [31, 41].
These applications have helped to motivate a considerable amount of work with incoherent
codes (i.e., incoherent matrices) over the past several decades. As a result, a plethora of
µ-coherent matrix constructions exist (e.g., see [42, 16, 7, 6], and references therein).

As we begin to demonstrate in the next section, matrices with low coherence can satisfy
all four Fourier design requirements listed in Section 1.1. However, there are trade-offs. Most
notably, the Welch bound [42] implies that any µ-coherent m ×N matrix,M ∈ Cm×N, must
have a number of rows

m ≥
N

(N − 1)µ2 + 1
.

As a consequence, arguments along the lines of Theorem 3 can only use µ-coherent matrices

to produce RIP2(k,ε) matrices having m = Ω
(
k2/ε2

)
rows. In contrast, O

(
k log4 N

ε2

)
×N Fourier

RIP2(k,ε) matrices are known to exist (see above). Hence, although µ-coherent matrices do
allow one to obtain small Fourier sampling requirements, these sampling requirements all
currently scale quadratically with k instead of linearly.3

Setting aside the quadratic scaling of m with k, we can see that several existing determin-
istic RIP2(k,ε) matrix constructions based on coherence arguments (e.g., [28, 6]) immediately
satisfy all but one of the Fourier design requirements listed in Section 1.1. First, these con-
structions lead to Fourier sampling requirements which, although generally quadratic in the
sparsity parameter k, are nonetheless o(N). Second, these matrices can be used in conjunc-
tion with accurate approximation algorithms (e.g., l1-minimization) since they will have the
RIP2. Third, the deterministic nature of these RIP2 matrices guarantees uniform approxi-
mation results for all possible periodic functions. The only unsatisfied design requirement
pertains to the computational efficiency of the approximation algorithms (see requirement 3
in Section 1.1). As mentioned previously, all existing approximation algorithms associated
with Fourier RIP2(k,ε) matrices run in Ω

(
N log N

)
time. In the next section we will present

a general class of incoherent matrices which have fast approximation algorithms associated
with them. As a result, we will develop a general framework for constructing fast sparse
Fourier algorithms which are capable of approximating compressible signals more quickly
than standard FFT algorithms.

3. A Special Class of Incoherent Matrices. In this section, we will consider binary in-
coherent matrices,M ∈ {0, 1}m×N, as a special subclass of incoherent matrices. As we shall
see, binary incoherent matrices can be used to construct RIP2 matrices (e.g., via Theorem 3),
unbalanced expander graphs (and, therefore, RIPp≈1 matrices via Theorem 1), and nonadap-
tive group testing matrices [19]. In addition, we prove that any binary incoherent matrix can
be modified to have an associated accurate approximation algorithm, ∆M : Cm

→ CN, with
sublinear o(N) run time complexity. This result generalizes the fast sparse Fourier transforms
previously developed in [27] to the standard compressed sensing setup while simultaneously
providing a framework for the subsequent development of similar Fourier results. We will
begin this process by formally defining (K, α)-coherent matrices and then noting some ac-
companying bounds.

3It is worth noting that Bourgain et al. recently used methods from additive combinatorics in combination with
modified coherence arguments to construct explicit m × N matrices, with m = O(k2−ε′ ), which have the Fourier
RIP2(k,m−ε

′

) whenever k = Ω(N1/2−ε′ ) [6]. Here ε′ > 0 is some constant real number. Hence, it is possible to break
the previously mentioned “quadratic bottleneck” for RIP2(k,ε) matrices when k is sufficiently large.
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Definition 4. Let K, α ∈ [1,m] ∩ N. An m × N binary matrix, M ∈ {0, 1}m×N, is called
(K, α)-coherent if both of the following properties hold:

1. Every column ofM contains at least K nonzero entries.
2. For all j, l ∈ [0,N) with j , l, the associated columns,M·, j andM·,l ∈ {0, 1}m, have
M·, j · M·,l ≤ α.

Several deterministic constructions for (K, α)-coherent matrices have been implicitly de-
veloped as part of RIP2 matrix constructions (e.g., see [17, 28]). It is not difficult to see that
any (K, α)-coherent matrix will be α

K -coherent after having its columns normalized. Hence,
the Welch bound also applies to (K, α)-coherent matrices. Below we will both develop tighter
lower row bounds, and provide a preliminary demonstration of the existence of fast o(N)-
time compressed sensing algorithms related to incoherent matrices. This will be done by
demonstrating the relationship between (K, α)-coherent matrices and group testing matrices.

3.1. Group Testing: Lower Bounds and Fast Recovery. Group testing generally in-
volves the creation of testing procedures which are designed to identify a small number of
interesting items hidden within a much larger set of uninteresting items [19, 22]. Suppose we
are given a collection of N items, each of which is either interesting or uninteresting. The
status of each item in the set can then be represented by a boolean vector ~x ∈ {0, 1}N. Inter-
esting items are denoted with a 1 in the vector, while uninteresting items are marked with a 0.
Because most items are uninteresting, ~x will contain at most a small number, d < N, of ones.
Our goal is to correctly identify the nonzero entries of ~x, thereby recovering ~x itself.

Consider the following example. Suppose that ~x corresponds to a list of professional
athletes, at most d of which are secretly using a new performance enhancing drug. Further-
more, imagine that the only test for the drug is an expensive and time consuming blood test.
The trivial solution would be to collect blood samples from all N athletes and then test each
blood sample individually for the presence of the drug. However, this is unnecessarily ex-
pensive when the test is accurate and the number of drug users is small. A cheaper solution
involves pooling portions of each player’s blood into a small number of well-chosen testing
pools. Each of these testing pools can then be tested once, and the results used to identify the
offenders.

A pooling-based testing procedure as described above can be modeled mathematically as
a boolean matrixM ∈ {0, 1}m×N. Each row ofM corresponds to a subset of the N athletes’
whose blood will be pooled, mixed, and then tested once for the presence of the drug. Hence,
the goal of our nonadaptive group testing can be formulated at follows: Design a matrix,M ∈
{0, 1}m×N, with as few rows as possible so that any boolean vector, ~x ∈ {0, 1}N, containing at
most d nonzero entries can be recovered exactly from the result of the pooled tests, M~x ∈
{0, 1}m. Here all arithmetic is boolean, with the boolean OR operator replacing summation
and the boolean AND operator replacing multiplication. One well studied solution to this
nonadaptive group testing problem is to letM be a d-disjunct matrix.
Definition 5. An m × N binary matrix,M ∈ {0, 1}m×N, is called d-disjunct if for any subset
of d + 1 columns ofM, C = {c1, c2, . . . , cd+1} ⊂ [1,N] ∩N, there exists a subset of d + 1
rows ofM, R = { j1, j2, . . . , jd+1} ⊂ [1,m] ∩N, such that the submatrix

M j1,c1 M j1,c2 . . . M j1,cd+1

M j2,c1 M j2,c2 . . . M j2,cd+1

...
M jd+1,c1 M jd+1,c2 . . . M jd+1,cd+1

 .
is the (d + 1) × (d + 1) identity matrix.4

4This is not the standard statement of the definition. Traditionally, a boolean matrixM is said to be d-disjunct if
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Nonadaptive group testing is closely related to the recovery of “exactly sparse” vectors
~x ∈ RN containing exactly d nonzero entries. In fact, it is not difficult to modify standard
group testing techniques to solve such problems. However, it is not generally possible to
modify these approaches in order to obtain methods capable of achieving the type of ap-
proximation guarantees we are interested in here (i.e., see Equation (1.2)). However, fast
o(N)-time approximation algorithms based on d-disjunct matrices with weaker approxima-
tion guarantees have been developed [14]. Hence, if we can relate (K, α)-coherent matrices to
d-disjunct matrices, we will informally settle the design requirement regarding the existence
of fast approximation algorithms (see the third design requirement in Section 1.1).
Lemma 1. An m ×N (K, α)-coherent matrix,M, will also be b(K − 1)/αc-disjunct.
Proof: Choose any subset of b(K−1)/αc+1 columns fromM, C = {c1, c2, . . . , cb(K−1)/αc+1} ⊂

[1,N]∩N. Consider the columnM·,c1 ∈ {0, 1}
m. BecauseM is a binary (K, α)-coherent ma-

trix, we know that there can be at most α rows, j, for whichM j,c1 = M j,c2 = 1. Hence,
there are at most αb(K − 1)/αc ≤ K − 1 total rows in whichM·,c1 will share a 1 with any
of the other columns listed in C. Since M·,c1 contains at least K ones, there exists a row,
j1 ∈ [1,m] ∩ N, containing a 1 in column c1 and zeroes in all of C − {c1}. Repeating this
argument with c2, . . . , cb(K−1)/αc+1 replacing c1 above proves the lemma. 2

Any m ×N d-disjunct matrix must have m = Ω
(
min{d2 logd N,N}

)
[12]. Furthermore,

near-optimal explicit d-disjunct measurement matrix constructions of size O(d2 log N) × N
exist [36]. Of more interest here, however, is that the lower bound for d-disjunct matrices to-
gether with Lemma 1 provides a lower bound for (K, α)-coherent matrices. More specifically,
we can see that any m ×N (K, α)-coherent matrix must have m = Ω

(
min

{
K2

α2 logK/α N,N
})

.

3.2. Properties of Binary Incoherent Matrices. We begin this section by presenting a
simple sublinear-time recovery algorithm, ∆M, which is guaranteed to satisfy an approxima-
tion guarantee along the lines of Equation 1.2 for all (K, α)-coherent matrices,M, and vectors
~x ∈ CN. In what follows we will generalize recovery methods and matrix constructions from
[27]. We will give self-contained arguments whenever possible, although it will be necessary
on occasion to state generalized results from [27] whose proofs we omit.

Before we can continue we must establish some notation. For any given ~x ∈ CN and
subset S ⊆ [0,N) ∩ N, we will let ~xS ∈ C

N be equal to ~x on the indexes in S and be zero
elsewhere. Thus,

(
~xS

)
i =

{
xi if i ∈ S
0 otherwise .

Furthermore, for a given integer k < N, we will let Sopt
k ⊂ [0,N) ∩N be the first k element

subset of [0,N) ∩N in lexicographical order with the property that |xs| ≥ |xt| for all s ∈ Sopt
k

and t ∈ [0,N) ∩ N − Sopt
k . Thus, Sopt

k contains the indexes of k of the largest magnitude
entries in ~x. Finally, we will define ~xopt

k to be ~xSopt
k

, an optimal k-term approximation to ~x.
The following lemma provides the basis of our sublinear-time recovery method.
Lemma 2. Suppose M is a (K, α)-coherent matrix. Let n ∈ [0,N) ∩ N, k ∈

[
1, K

α

]
∩ N,

ε ∈ (0, 1], c ∈ [2,∞) ∩N, and ~x ∈ CN. Finally, letM(K,n) be the K × N submatrix ofM
created by selecting the first K rows ofM with nonzero entries in the nth column. Then, if K >

the boolean OR of any d of its columns does not contain any other column [19, 22]. However, these two definitions
are essentially equivalent. The d-disjunct condition is also equivalent to the (d + 1)-strongly selective condition
utilized by compressed sensing algorithms based on group testing matrices [14].
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c ·(kα/ε),
(
M(K,n) · ~x

)
j will be contained in the interval

(
xn −

ε
∥∥∥∥~x−~xopt

(k/ε)

∥∥∥∥
1

k , xn +
ε
∥∥∥∥~x−~xopt

(k/ε)

∥∥∥∥
1

k

)
for

more than c−2
c · K values of j ∈ [0,K) ∩N.

Proof: See Appendix A. 2

Consider Lemma 2 with c = 4 for a given m×N (K, α)-coherent matrixM, k ∈ [1,K/α]∩
N, and ε ∈ (0, 1]. Let ~x ∈ CN and suppose that

xn > 2δ = 2


ε
∥∥∥∥~x − ~xopt

(k/ε)

∥∥∥∥
1

k

 (3.1)

for some n ∈ [0,N) ∩ N. We will begin describing our sublinear-time recovery method by
demonstrating a means of identifying n using only the measurementsM~x ∈ Cm together with
some additional linear measurements based on a modification of our binary incoherent matrix
M. This technique, first utilized in [14], will ultimately allow us to develop the sublinear-
time approximation schemes we seek. However, we require several definitions before we can
continue with our demonstration.

LetA ∈ Rm×N and C ∈ Rm̃×N be real matrices. Then, their row tensor product,A ~ C,
is defined to be the (m · m̃) ×N matrix whose entries are given by

(A ~ C)i, j = Ai mod m, j · C (i−(i mod m))
m , j.

We will use the row tensor product ofM with the
(
1 + dlog2 Ne

)
×N bit test matrix [14, 22]

to help us identify n from Equation 3.1.5 The
(
1 + dlog2 Ne

)
× N bit test matrix, BN, is

defined by

(BN)i, j =

{
1 if i = 0
(i − 1)th bit in the binary expansion of j if i ∈

[
1, dlog2 Ne

] (3.2)

for 0 ≤ i ≤ dlog2 Ne and 0 ≤ j < N. For example, B8 has the form

B8 =


1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

 .
We will now demonstrate that (M ~BN) ~x contains enough information for us to identify any
n ∈ [0,N) ∩N satisfying Equation 3.1.

Notice thatM ~ BN containsM as a submatrix. This is due to the first row of all ones
in BN. Similarly, the second row of BN ensures thatM ~ BN will contain another m × N
submatrix which is identical toM, except with all of its even columns zeroed out. We will
refer to this m ×N submatrix ofM ~BN asModd. We can see that

Modd = M ~ (BN)1 =
(
~0 M·,1 ~0 M·,3 ~0 M·,5 ~0 . . .

)
.

5We could also use the number theoreticNλ,s1 matrices defined in Section 5 of [27] here in place of the bit test
matrix. More generally, any 1-disjunct matrix with an associated fast decoding algorithm could replace the bit test
matrix throughout this section. Note that a fast O(t)-time binary tree decoder can be built for any t × N 1-disjunct
matrix anytime one has access to Ω(N) memory.
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Furthermore, we define

Meven := M − M ~ (BN)1 = M − Modd.

Clearly, if we are given (M ~BN) ~x, we will also haveM~x, Modd~x, andMeven~x ∈ Cm. We
can use this information to determine whether n from Equation 3.1 is even or odd as follows.

Lemma 2 with c = 4 guarantees that more than K/2 distinct elements ofM~x ∈ Cm will
be of the form (

M~x
)

j = xn · M j,n + γ (3.3)

for some j ∈ [1,m] and γ ∈ C with
∣∣∣γ∣∣∣ ≤ δ (see Equation 3.1). Suppose n is odd. Then, for

each j satisfying Equation 3.3, we will have∣∣∣(Meven~x
)

j

∣∣∣ ≤ δ < |xn| −
∣∣∣γ∣∣∣ ≤ ∣∣∣(Modd~x

)
j

∣∣∣ .
Similarly, if n is even, then for each such j we will have∣∣∣(Modd~x

)
j

∣∣∣ ≤ δ < |xn| −
∣∣∣γ∣∣∣ ≤ ∣∣∣(Meven~x

)
j

∣∣∣ .
Therefore, we can correctly determine n mod 2 by comparing

∣∣∣(Modd~x
)

j

∣∣∣ with
∣∣∣(Meven~x

)
j

∣∣∣
whenever both Equations 3.1 and 3.3 hold. Of course, there is nothing particularly spe-
cial about the lowest order bit of the binary representation of n. More generally, we can
correctly determine the ith bit of n ∈ [0,N) ∩ N by comparing

∣∣∣(M ~ (BN)i+1 ~x
)

j

∣∣∣ with∣∣∣[(M − M ~ (BN)i+1) ~x
]

j

∣∣∣ whenever both Equations 3.1 and 3.3 hold.
We now know that we can correctly determine n whenever both Equations 3.1 and 3.3

hold by finding its binary representation one bit at a time. Furthermore, Lemma 2 with c ≥ 4
guarantees that more than K/2 of the j ∈ [1,m] will satisfy Equation 3.3 for any given n.
Hence, we can correctly reconstruct every n for which Equation 3.1 holds more than K/2
times by attempting to decode n’s binary representation for all j ∈ [1,m]. Furthermore,
because c ≥ 4, Lemma 2 guarantees that more than half of the K entries ofM(K,n) · ~x can
accurately estimate xn once n has been found. This is enough to guarantee that the imaginary
part of xn will be accurately estimated by the median of the imaginary parts of all K entries of
M(K,n) · ~x. Of course, the real part of xn can also be estimated in a similar fashion. Hence,
given bothM andM~x ∈ Cm, Lemma 2 ensures that computing 2 medians of K elements of
M(K,n) · ~x will allow us to accurately estimate xn for any given n ∈ [0,N) ∩ N. Utilizing
these methods we obtain Algorithm 1.

In light of the preceding discussion, we can see that Algorithm 1 will be guaranteed to
identify all n ∈ [0,N) ∩N that satisfy Equation 3.1 more than K

2 times each. Lemma 2 can
then be used to estimate xn for each of these n values. The end result is that all relatively large
entries in ~x will be identified and accurately estimated. By formalizing the discussion above,
we obtain the following result, the proof of which is analogous to the proof of Theorem 7 in
Section 5 of [27].
Theorem 3. Suppose M is an m × N (K, α)-coherent matrix. Furthermore, let ε ∈ (0, 1],
k ∈

[
1,K · ε4α

)
∩N, and ~x ∈ CN. Then, Algorithm 1 will output a ~zS ∈ C

N satisfying

∥∥∥~x − ~zS

∥∥∥
2
≤

∥∥∥~x − ~x opt
k

∥∥∥
2

+
22ε

∥∥∥∥~x − ~xopt
(k/ε)

∥∥∥∥
1

√
k

.

Algorithm 1 can be implemented to run in O
(
m log N

)
time.
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Algorithm 1 APPROXIMATE ~x
1: Input: An m ×N (K, α)-coherent matrix,M, and (M ~BN) ~x ∈ Cmdlog2 Ne+m

2: Output: ~zS ≈ ~xS, an approximation to ~x opt
k

3: Initialize multiset S← ∅, ~z← ~0N, ~b← ~0dlog2 Ne

IDENTIFY ALL n ∈ [0,N) ∩N THAT SATISFY EQUATION 3.1
4: for j from 1 to m do
5: for i from 0 to dlog2 Ne − 1 do
6: if

∣∣∣(M ~ (BN)i+1 ~x
)

j

∣∣∣ > ∣∣∣(M~x − M ~ (BN)i+1 ~x
)

j

∣∣∣ then
7: bi ← 1
8: else
9: bi ← 0

10: end if
11: end for
12: n←

∑dlog2 Ne−1
i=0 bi2i

13: S← S ∪ {n}
14: end for

ESTIMATE ~xS ≈ ~x
opt

k USING LEMMA 2

15: for each n value belonging to S with multiplicity > K
2 do

16: Re {zn} ← median of multiset
{
Re

{(
M(K,n) · ~x

)
h
} ∣∣∣ 1 ≤ h ≤ K

}
17: Im {zn} ← median of multiset

{
Im

{(
M(K,n) · ~x

)
h
} ∣∣∣ 1 ≤ h ≤ K

}
18: end for
19: Sort nonzero ~z entries by magnitude so that |zn1 | ≥ |zn2 | ≥ |zn3 | ≥ . . .
20: S← {n1,n2, . . . ,n2k}

21: Output: ~zS

The runtime of Algorithm 1 can be accounted for as follows: Lines 4 through 14 can be
implemented to run in O(m log N) time since their execution time will be dominated by the
time required to read each entry of (M ~BN) ~x ∈ Cmdlog2 Ne+m. Counting the multiplicity
of the O(m) entries in S in line 15 can be done by sorting S in O(m log m) time, followed
by one O(m)-time scan of the sorted data. Lines 16 and 17 will each be executed a total of
O(m/K) times apiece. Furthermore, lines 16 and 17 can each be executed in O(K log K) time
assuming that eachM(K,n) submatrix is known in advance.6 Thus, the total runtime of lines
4 through 18 will also be O(m log N). Finally, line 19 requires that at most O(m/K) items be
sorted, which can likewise be accomplished in O(m log N) time. Therefore, the total runtime
of Algorithm 1 will be O(m log N).

The following theorem summarizes several important properties of (K, α)-coherent ma-
trices with respect to general sparse approximation problems.
Theorem 4. LetM be an m×N (K, α)-coherent matrix. Then, all of the following statements
will hold:

1. Let ε ∈ (0, 1], k ∈
[
1,K · ε4α

)
∩N. There exists an approximation algorithm based on

M ~ BN, ∆M : Cmdlog2 Ne+m
→ CN, that is guaranteed to output a vector ~zS ∈ C

N

6If each M(K,n) submatrix is not computed once in advance this runtime will be O(m log m) instead of
O(K log K).
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satisfying

∥∥∥~x − ~zS

∥∥∥
2
≤

∥∥∥~x − ~x opt
k

∥∥∥
2

+
22ε

∥∥∥∥~x − ~xopt
(k/ε)

∥∥∥∥
1

√
k

(3.4)

for all ~x ∈ CN. Most importantly, ∆M can be evaluated in O
(
m log N

)
-time.

2. Define the m × N matrix W by normalizing the columns of M so that Wi, j =

Mi, j/
√
‖M·, j‖1. Then, the matrixW will be α

K -coherent.
3. Furthermore, the m×N matrixW defined above will have the RIP2(k,(k−1)α/K).7

4. Define the m ×N matrixW byWi, j =Mi, j/
(
‖M·, j‖1

) 1
p . Then, the matrixW will

have the RIPp(k,C(k − 1)α/K) for all 1 ≤ p ≤ 1 + 1
log N , where C is an absolute

constant larger than 1/2.
5. M is b(K − 1)/αc-disjunct.
6. M has at least m = Ω

(
min

{
(K2/α2) logK/α N,N

})
rows.

Proof: The proof of each part is as follows.
1. See Theorem 3.
2. The proof follows easily from the definitions.
3. The proof follows from part 2 together with Theorem 3.
4. Note that we can considerM to be the adjacency matrix of a bipartite graph, G =

(A,B,E), with |A| = N and |B| = m. Each element of A will have degree at least K.
Furthermore, for any X ⊂ A with |X| ≤ k we can see that the set of neighbors of X
will have

|N(X)| ≥
|X|−1∑
j=0

(K − jα) ≥ |X| · K ·
(
1 −

α(|X| − 1)
2K

)
.

Hence, M is the adjacency matrix of a (k,K, (k − 1)α/2K)-unbalanced expander
graph. The result now follows from the proof of Theorem 1 in [3].

Finally, the proof of parts 5 and 6 follow from Lemma 1 and the subsequent discussion in
Section 3.1, respectively. 2

To the best of our knowledge, the part 1 of Theorem 4 is the first deterministic sublinear-
time Compressed Sensing (CS) result which both achieves an approximation guarantee along
the lines of Equation (1.2), and has a runtime complexity which scales quadratically with
sparsity, k.8 The first deterministic sublinear-time CS results based on group testing matrices
[14] obtained weaker min-max types of error guarantees over classes of compressible signals.
Furthermore, the runtime of the resulting deterministic methods depended on the compress-
ible signal class over which one was working. Fast deterministic CS algorithms based on
expander graphs yield algorithms which require fewer measurements (i.e., a matrixM with

fewer rows), but their runtime complexities scale like k2+Ω
( log log N

log N

)
· polylog(N).9 Random-

ized sublinear-time CS algorithms which obtain sparse approximation guarantees along the
lines of Equation (1.2) for all signals simultaneously with high probability also exist (e.g.,

7It is worth noting that modified (K, α)-coherent matrices can also be used as Johnson-Lindenstrauss embed-
dings. See [30] together with [2] to learn more about the near equivalence of Johnson-Lindenstrauss embeddings
and RIP2 matrices.

8Part 6 of Theorem 4 implies that the number of rows in our matrices, m, must always scale quadratically in k.
9Consider the appendix of [4] together with Theorem 2 and the subsequent discussion.
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see [21]). These methods match the k2
· polylog(N) runtime complexity of part 1 of The-

orem 4 while utilizing random matrices with fewer rows. However, none of the (random)
matrices known to work in connection with [21, 4, 14] have small Fourier sampling require-
ments. Hence, the binary incoherent matrices considered herein are the only current option
for obtaining sublinear-time methods with uniform recovery guarantees in the Fourier set-
ting. Finally, we note that one may construct randomized sublinear-time CS methods based
on binary incoherent matrices that both have O

(
k · log4 N

)
runtime complexities, and satisfy

Equation 3.4 for each ~x ∈ CN with high probability (see the appendix in [1]).
Recall that explicit constructions of (K, α)-coherent matrices exist [17, 28]. It is worth

noting that RIP2 matrix constructions based on these (K, α)-coherent matrices are optimal in
the sense that any RIP2 matrix with binary entries must have a similar number of rows [11].
More interestingly, Theorem 4 formally demonstrates that (K, α)-coherent matrices satisfy all
the Fourier design requirements in Section 1.1 other than the first one regarding small Fourier
sampling requirements. In the sections below we will consider an optimized number theo-
retic construction for (K, α)-coherent matrices along the lines of the construction implicitly
utilized in [28, 27]. As we shall demonstrate, these constructions have small Fourier sampling
requirements. Hence, they will satisfy all four desired Fourier design requirements.

4. A (K, α)-Coherent Matrix Construction. Let FN denote the N ×N unitary discrete
Fourier transform matrix,

(FN)i, j =
e
−2πi·i· j

N

√
N
.

Recall that we want an m×N matrixM with the property thatMFN contains nonzero values
in as few columns as possible. In addition, we wantM to be a binary (K, α)-coherent matrix
so that we can utilize the sublinear-time approximation technique provided by Theorem 4. It
appears to be difficult to achieve both of these goals simultaneously as stated. Hence, we will
instead optimize a construction recently utilized in [27] which solves a trivial variant of this
problem.

Let Ñ,N ∈ N with Ñ > N. We will say that an m × Ñ matrix, M̃, is (K, α)N-coherent if
the m ×N submatrix of M̃ formed by its first N columns is (K, α)-coherent. In what follows
we will consider ourselves to be working with (K, α)N-coherent matrices whose first N rows
match a given m ×N (K, α)-coherent matrix,M, of interest. Note that this slight generaliza-
tion will not meaningfully change anything previously discussed. For example, we may apply
Theorem 4 to the submatrix formed by the first N columns of any given (K, α)N-coherent ma-
trix, M̃, thereby effectively applying Theorem 4 to M̃ in the context of approximating vectors
belonging to a fixed N-dimensional subspace ofCÑ. The last Ñ−N columns of any (K, α)N-
coherent matrix M̃ will be entirely ignored throughout this paper with one exception: We
will hereafter consider it sufficient to guarantee that M̃FÑ (as opposed to MFN) contains
nonzero values in as few columns as possible. This modification will not alter the sparse
Fourier approximation guarantees (i.e., see Equation (1.1)) obtainable via Theorem 4 in any
way when the functions being approximated are N-bandlimited. However, allowing Ñ to be
greater than N will help us obtain small Fourier sampling requirements.

Let M̃ be an m × Ñ (K, α)N-coherent matrix. It is useful to note that the column spar-
sity we desire in M̃FÑ is closely related to the discrete uncertainty principles previously
considered in [18].
Theorem 5. (See [18]). Suppose ~y ∈ CÑ contains Ñt nonzero entries, while ŷ = ~y T

FÑ
contains Ñω nonzero entries. Then, ÑtÑω ≥ Ñ. Furthermore, ÑtÑω = Ñ holds if and only

12



if ~y is a scalar multiple of a cyclic permutation of the binary picket fence sequence in CÑ

containing v equally-spaced nonzero elements

(IIIv)u =

{
1 if u ≡ 0 mod Ñ

v
0 otherwise

,

where v ∈ N divides Ñ.
We will build m × Ñ (K, α)N-coherent matrices,M, below whose rows are each a per-

muted binary picket fence sequence.10 In this case Theorem 5 can be used to bound the
number of columns of M̃FÑ which contain nonzero entries. This, in turn, will bound the
number of function samples required in order to approximate a given periodic bandlimited
function.

We create an m× Ñ (K, α)N-coherent matrixM as follows: Choose K pairwise relatively
prime integers

s1 < · · · < sK

and let Ñ =
∏K

j=1 s j > N. Next, we produce a picket fence row, r j,h, for each j ∈ [1,K] ∩N
and h ∈ [0, s j) ∩ Z. Thus, the nth entry of each row r j,h is given by

(r j,h)n = δ
(
(n − h) mod s j

)
=

{
1 if n ≡ h mod s j
0 otherwise , (4.1)

where n ∈ [0, Ñ) ∩ Z. We then formM by setting

M =



r1,0
r1,1
...
r1,s1−1
r2,0
...
r2,s2−1
...
rK,sK−1



. (4.2)

For an example measurement matrix see Figure 4.1.
Lemma 4. An m × Ñ matrix M as constructed in Equation (4.2) will be (K, blogs1

Nc)N-
coherent with m =

∑K
j=1 s j.

Proof: Choose any two distinct integers, l , n, from [0,N). LetM·,l andM·,n denote the lth

and nth columns ofM, respectively. The inner product of these columns is

M·,l · M·,n =

K∑
j=1

δ
(
(n − l) mod s j

)
.

The sum above is at most the maximum α for which
∏α

j=1 s j ≤ N by the Chinese Remainder
Theorem. Furthermore, this value is itself bounded above by blogs1

Nc. The equation for m
immediately follows from the construction ofM above. 2

The following Lemma is a consequence of Theorem 5.

10We will refer to any sequence IIIv
∈ C

Ñ defined as in Theorem 5 as a “binary picket fence sequence”.
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—————————————————————————

n ∈ [0, Ñ) 0 1 2 3 4 5 6 . . .

n ≡ 0 (mod 2)
n ≡ 1 (mod 2)
n ≡ 0 (mod 3)
n ≡ 1 (mod 3)
n ≡ 2 (mod 3)
...

n ≡ 1 (mod 5)
...



1 0 1 0 1 0 1 . . .
0 1 0 1 0 1 0 . . .
1 0 0 1 0 0 1 . . .
0 1 0 0 1 0 0 . . .
0 0 1 0 0 1 0 . . .

...
0 1 0 0 0 0 1 . . .

...


FIG. 4.1. Measurement Matrix,M, Using s1 = 2, s2 = 3, s3 = 5, . . .

—————————————————————————

Lemma 5. LetM be an m × Ñ matrix as constructed in Equation (4.2). Then,MFÑ will
contain nonzero entries in exactly m − K + 1 =

(∑K
j=1 s j

)
− K + 1 columns.

Proof: Fix j ∈ [1,K] ∩N. Each picket fence row, r j,h ∈ {0, 1}Ñ, contains Ñ/s j ones. Thus,
rT

j,hFÑ contains s j nonzero entries for all h ∈ [0, s j)∩Z. Furthermore, rT
j,hFÑ contains nonzero

values in the same entries for all h ∈ [0, s j) ∩ Z since all r j,h rows (with j fixed) are cyclic
permutations of one another. Finally, let l, j ∈ [1,K] ∩N with j , l and suppose that rT

j,hFÑ

and rT
l,gFÑ both have nonzero values in the same entry. This can only happen if

h
Ñ
s j

= g
Ñ
sl

for a pair of integers 0 ≤ h < s j and 0 ≤ g < sl. However, since s j and sl are relatively prime,
Euclid’s lemma implies that this can only happen when h = g = 0. The result follows. 2

We can now see that the matrix construction presented in this section satisfies all four
of our Fourier design requirements. In the next sections we will consider methods for opti-
mizing the relatively prime integer values, s1, . . . , sK, used to construct our (K, α)N-coherent
matrices. In what follows we will drop the slight distinction between (K, α)N-coherent and
(K, α)-coherent matrices for ease of discussion.

5. Optimizing the (K, α)-Coherent Matrix Construction. Note that K appears as part
of a ratio involving α in each statement of Theorem 4. Hence, we will focus on constructing
(K, α)-coherent matrices in which K is a constant multiple of α in this section. For a given
value of D ∈ (1,∞) we can optimize the methods from Section 4 for constructing a (Dα, α)-
coherent matrix with a small number of rows by reformulating the matrix design problem as
an optimization problem (see Figure 5.1). In this section we will develop concrete bounds for
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—————————————————————————

Minimize

m =

Kα=dDαe∑
j=1

s j (5.1)

subject to the following constraints:
I. s1 < · · · < sK.
II.

∏α
j=1 s j < N ≤

∏α+1
j=1 s j.

III. s1, · · · , sK are pairwise relatively prime.

—————————————————————————

FIG. 5.1. Matrix Design Optimization Problem for given N, D, and α values

the number of rows, m as a function of D, N, and α, that will appear in any m×N (K = Dα, α)-
coherent matrix constructed as per Section 4. These bounds will ultimately allow us to cast
the matrix optimization problem in Figure 5.1 as an integer linear program in Section 6.

Define p0 = 1 and let pl be the lth prime natural number. Thus, we have

p0 = 1, p1 = 2, p2 = 3, p3 = 5, p4 = 7, . . . (5.2)

Suppose that S = {s1, . . . , sK} is a solution to the optimization problem presented in Figure 5.1
for given values of α, D, and N. Let pqS be the largest prime number appearing in the prime
factorization of any element of S. Finally, let

q = max
{
qS

∣∣∣ S solves the optimization problem in Figure 5.1
}
.

The following lemma bounds q as a function of N, D, and α.
Lemma 6. Suppose s1, s2, · · · , sK satisfy all three constraints in Figure 5.1. Set m̃ =

∑K
j=1 s j.

Next, let pt be the smallest prime number greater than 2 for which

pt · (K − α − 1) + (K − α − 1) (K − α − 2) + (α + 1) N
1
α+1 > m̃

holds. Then, q < t + K − α − 1.11

Proof: Let s′1, s
′

2, · · · , s
′

K be a solution to the optimization problem presented in Figure 5.1.
Set m =

∑K
j=1 s′j. Note that there must exist at least one prime, pl̃ ∈ [pt, pt+K−α−1), which is

not a prime factor of any s′j value. If no such prime exists, then the sum of s′1, s
′

2, · · · , s
′

K must
be

m ≥
K−α−2∑

j=0

pt+ j +

α+1∑
j=1

s′j.

11Asymptotically, one can always choose α so that t is O
(
K · log2

K N
)
. See Section 5.1 for more information

regarding the asymptotic behavior of achievable m values.
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The second constraint in Figure 5.1 together with the arithmetic-geometric mean inequality
tells that we must always have

(α + 1) N
1
α+1 ≤ (α + 1) ·

α+1∏
j=1

s′j


1
α+1

≤

α+1∑
j=1

s′j. (5.3)

Furthermore, it is not difficult to see that
K−α−2∑

j=0

pt+ j ≥

K−α−2∑
j=0

(
pt + 2 j

)
≥ pt · (K − α − 1) + (K − α − 1) (K − α − 2) (5.4)

since pt > 2. Thus, if every prime in [pt, pt+K−α−1) appears as a prime factor in some s′j, then

m ≥ pt · (K − α − 1) + (K − α − 1) (K − α − 2) + (α + 1) N
1
α+1 > m̃,

violating our assumption concerning the optimality of s′1, s
′

2, · · · , s
′

K. This proves our claim
regarding the existence of at least one prime, pl̃ ∈ [pt, pt+K−α−1), which is not a prime factor
of any s′j value.

Now suppose that some s′j′ contains a prime factor, pl′ , with l′ ≥ t + K−α−1. Substitute
the largest currently unused prime, pl̃ ∈ [pt, pt+K−α−1), for pl′ in the prime factorization of s′j′
to obtain a smaller value, s′

j̃
. If we can show that s′1, s

′

2, · · · , s
′

K with s′
j̃

substituted for s′j′ still
satisfies all three Figure 5.1 constraints after reordering, we will again have a contradiction
to the assumed minimality of our original solution. In fact, it is not difficult to see that all
constraints other than II above will trivially be satisfied by construction. Furthermore, if
s′

j̃
> s′α+1, then Constraint II will also remain satisfied and we will violate our assumption that

the s′j values originally had a minimal sum.
Finally, the second case where pt ≤ pl̃ ≤ s′

j̃
< s′α+1 could only occur if originally

K∑
j=α+2

s′j ≥
K−α−1∑

j=1

(
pt + 2 j

)
= pt · (K − α − 1) + (K − α) (K − α − 1) . (5.5)

When combined with Equation (5.3) above, Equation (5.5) reveals that if s′
j̃
< s′α+1 then we

must have originally had

K∑
j=1

s′j ≥ (α + 1) N
1
α+1 + pt · (K − α − 1) + (K − α) (K − α − 1) > m̃.

However, in this case the assumed minimality of s′1, s
′

2, . . . , s
′

K would again have been vio-
lated. 2

We will now establish a slightly more refined result than that of Lemma 6.
Lemma 7. Suppose s1, s2, · · · , sK satisfy all three constraints in Figure 5.1. Set m̃ =

∑K
j=1 s j.

Let L =
∏v

i=1 pi for any desired v ∈ N, and let φ(L) =
∏v

i=1(pi − 1). Next, let pt be the
smallest prime number greater than 2 for which

pt · (K − α − 1) + (K − α − 1) (K − α − 2) +

(
L − 2φ(L) − 2v

)
(φ(L) + v)

⌊
K−α−2
φ(L)+v

⌋(⌊
K−α−2
φ(L)+v

⌋
− 1

)
2

+
(
L − 2φ(L) − 2v

) ⌊K − α − 2
φ(L) + v

⌋ (
K − α − 1 − (φ(L) + v)

⌊
K − α − 2
φ(L) + v

⌋)
+ (α + 1) N

1
α+1 > m̃
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holds. Then, q < t + K − α − 1.
Proof: We will prove this lemma by modifying our proof of Lemma 6. In particular, we will
modify formulas (5.4) and (5.5). Note that amongst any L consecutive numbers, there are at
most φ(L) + v prime numbers. Hence, we have that pi+w(φ(L)+v) ≥ pi + wL for all w ∈ N.
Thus, we may replace formula (5.4) with

K−α−2∑
j=0

pt+ j ≥ pt · (K − α − 1) + (K − α − 1) (K − α − 2)

+

(
L − 2φ(L) − 2v

)
(φ(L) + v)

⌊
K−α−2
φ(L)+v

⌋(⌊
K−α−2
φ(L)+v

⌋
− 1

)
2

+
(
L − 2φ(L) − 2v

) ⌊K − α − 2
φ(L) + v

⌋ (
K − α − 1 − (φ(L) + v)

⌊
K − α − 2
φ(L) + v

⌋)
.

Note that amongst any L consecutive numbers, a maximal subset of pairwise relatively prime
numbers has at most φ(L)+v numbers. Hence, we may also replace formula (5.5) by a similar
expression. For a more detailed proof see [1]. 2

The following corollary of Lemma 6 provides a simple initial upper bound on the largest
prime factor that may appear in any solution to the optimization problem presented in Fig-
ure 5.1.
Corollary 8. Let r be such that

∏α
j=1 pr+ j < N ≤

∏α+1
j=1 pr+ j, and set m̃ =

∑K
j=1 pr+ j. Next, let

pt be the smallest prime larger than 2 for which

pt · (K − α − 1) + (K − α − 1) (K − α − 2) + (α + 1) N
1
α+1 > m̃

holds. Then, q < t + K − α − 1.
Proof: It is not difficult to see that

s1 = pr+1, s2 = pr+2, · · · , sK = pr+K (5.6)

collectively satisfy all three constraints in Figure 5.1. Applying Lemma 6 yields the stated
result. 2

Similarly, one can obtain the following corollary from Lemma 7.
Corollary 9. Let r be such that

∏α
j=1 pr+ j < N ≤

∏α+1
j=1 pr+ j, and set m̃ =

∑K
j=1 pr+ j. Let

L =
∏v

i=1 pi for any v ∈ N, and let φ(L) =
∏v

i=1(pi − 1). Next, let pt be the smallest prime
larger than 2 for which

pt · (K − α − 1) + (K − α − 1) (K − α − 2) +

(
L − 2φ(L) − 2v

)
(φ(L) + v)

⌊
K−α−2
φ(L)+v

⌋(⌊
K−α−2
φ(L)+v

⌋
− 1

)
2

+
(
L − 2φ(L) − 2v

) ⌊K − α − 2
φ(L) + v

⌋ (
K − α − 1 − (φ(L) + v)

⌊
K − α − 2
φ(L) + v

⌋)
+ (α + 1) N

1
α+1 > m̃

holds. Then, q < t + K − α − 1.
The following lemma provides upper and lower bounds for the members of any valid

solution to the optimization problem in Figure 5.1 as functions of N, D, and α. This lemma
is critical to the formulation of the optimization problem in Figure 5.1 as an integer linear
program in Section 6.
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Lemma 10. The following bounds hold for any valid solution, S = {s1, s2, . . . , sK}, to the
optimization problem in Figure 5.1:

1. s1 < · · · < sK.
2. s1 ≥ 2, s2 ≥ 3, . . . , sK ≥ pK.
3. s1 < N

1
α and sα+1 > N

1
α+1 .

4. Let t ∈ N be defined as in Lemma 6, Lemma 7, Corollary 8, or Corollary 9. Then,
sK < pt+K−α−1.

Proof: Assertion (1) is a restatement of Constraint I in Figure 5.1. The second assertion fol-
lows immediately from the fact that the ordered s j values must be pairwise relatively prime
(i.e., Constraint III). The third assertion follows easily from Constraint II. Assertion (4) fol-
lows from an argument analogous to the proof of Lemma 6. That is, if sK ≥ pt+K−α−1, then
we may substitute sK with the largest prime in [pt, pt+K−α−1) which is not currently a prime
factor of s1, . . . , sK and thereby derive a contradiction. 2

The following lemmas provide concrete lower bound for m in terms of N, D, and α (see
Equation (5.1) in Figure 5.1). These lemmas will ultimately allow us to judge the possible
performance of any solution to our optimization problem based solely on the value of α
whenever N and D are fixed.
Lemma 11. Any solution to the optimization problem in Figure 5.1 must have

m ≥ KN
1
α+1 + (K − α) (K − α − 1) .

Proof: We know that sα+2 > sα+1 > N
1
α+1 from Lemma 10. Hence, we can see that

K∑
j=α+2

s j ≥

K−α−1∑
j=1

(
N

1
α+1 + 2 j

)
≥ (K − α − 1) N

1
α+1 + (K − α) (K − α − 1) .

Combining this lower bound with Equation (5.3) proves the lemma. 2

Corollary 12. Let L =
∏v

i=1 pi for any desired v ∈ N, and let φ(L) =
∏v

i=1(pi − 1). Any
solution to the optimization problem in Figure 5.1 must have

m > KN
1
α+1 + (K − α) (K − α − 1) +

(
L − 2φ(L) − 2v

)
(φ(L) + v)

⌊
K−α−2
φ(L)+v

⌋(⌊
K−α−2
φ(L)+v

⌋
− 1

)
2

+
(
L − 2φ(L) − 2v

) ⌊K − α − 2
φ(L) + v

⌋ (
K − α − 1 − (φ(L) + v)

⌊
K − α − 2
φ(L) + v

⌋)
.

Proof: See [1]. 2

In the next section we investigate asymptotic bounds of m in terms of D and N. This
will, among other things, allow us to judge the quality of our matrices with respect to the
lower bound in part 6 of Theorem 4.

5.1. Asymptotic Upper and Lower Bounds. In this section we will utilize standard
Vinogradov notation for the sake of readability.12 We begin by proving an asymptotic lower
bound for the number of rows in any (K, α)-coherent matrix created as per Section 4. Recall

12Let g, f : R+
→ R

+. In Vinogradov notion “ f (x) � g(x)” is equivalent to f (x) = O(g(x)), “ f (x) � g(x)” is
equivalent to g(x)� f (x), and “ f (x) ∼ g(x)” means that limx→∞ f (x)/g(x) = 1.
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that we have fixed K to be a multiple of α so that K = Kα = dDαe for some D ∈ (1,∞). We
have the following lower bound for m as a function of D and N.
Lemma 13. Suppose that 2 ≤ D ≤ N1−τ, where τ > 0 is some fixed constant. For any
solution to the optimization problem in Figure 5.1, where α can freely be chosen, one has

m�
D2(log N)2

log(D log N)

for sufficiently large values of D log N.
Proof: Let Q = D log N. Suppose that S = {s1, . . . sK} is a solution to the optimization
problem in Figure 5.1, where α can be freely chosen and K = Kα = dDαe. By Constraints (I)
and (II) in Figure 5.1,

K∑
i=1

log si >
⌊ Dα
α + 1

⌋
log N ≥

Q
4
.

Let q = qS be the largest natural number such that pq |
∏K

i=1 si. For 1 ≤ i ≤ q, let wi be the
integer such that pwi

i ‖
∏K

i=1 si. Since a + b ≤ ab for a, b ∈N, it follows from Lemma 14 that

q∑
i=1

pwi
i ≤

K∑
i=1

si �
Q2

log Q

as Q → ∞. This implies that for 1 ≤ i ≤ q, we have pwi
i ≤

CQ2

log Q , where C is some absolute
positive constant. Therefore,

∑
pi≤

√
CQ2
log Q

wi log pi ≤

∞∑
w=2

∑
p≤

(
CQ2
log Q

)1/w

w log p�
∑

2≤w≤ log(CQ2)−log log Q
log 2

wQ2/w

(log Q)1/w �
Q√

log Q
.

Since
∑q

i=1 wi log pi =
∑K

i=1 log si ≥
Q
4 , we have that∑

pi>
√

CQ2
log Q

wi log pi � Q

for sufficiently large values of Q. Let

W =
∑

pi>
√

CQ2
log Q

wi.

We have that wi ∈ {0, 1} when pi >
√

CQ2

log Q . Also, whenever wi ≥ 1, it follows that log pi ≤

log CQ2

log Q � log Q. Thus, for sufficiently large values of Q, we have W ≥ C′Q
log Q , where C′ is

some absolute positive constant. By the Prime Number Theorem,

K∑
i=1

si ≥

q∑
i=1

pwi
i ≥

∑
i≤ C′Q

log Q

pi �
∑

i≤ C′Q
log Q

i log i�
Q2

log Q
=

D2(log N)2

log(D log N)
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for sufficiently large values of Q = D log N. 2

Part 6 of Theorem 4 informs us that m must be Ω
(
D2 logD N

)
for any m×N (dDαe, α)-

coherent matrix. On the other hand, Lemma 13 above tells us that any m×N (K, α)-coherent

matrix constructed via Section 4 must have m = Ω
(

D2(log N)2

log(D log N)

)
. Note that the lower bounds

for matrices constructed as per Section 4 are worse by approximately a factor of log N. This
is probably an indication that the (K = dDαe, α)-coherent matrix construction in Section 4 is
suboptimal. Certainly suboptimality of the construction in Section 4 would not be surprising
given that the construction is addressing a more constrained design problem (i.e., we demand
small Fourier sampling requirements).

Next we show that the asymptotically best main term for m in the optimization problem
in Figure 5.1 can be obtained by taking each s j to be a prime. This proves that the asymptotic
lower bound given in Lemma 13 is tight.
Lemma 14. Suppose that 2 ≤ D ≤ N1−τ, where τ > 0 is some fixed constant. If we are able
to select the value for α, the optimization problem in Figure 5.1 can be solved by taking the
s j to be primes in such a way that guarantees that

m�
D2(log N)2

log(D log N)

as D log N→∞.
Proof: Let Q = D log N. Since we restrict to the case that 1 ≤ D ≤ N1−τ, it follows that as
Q → ∞, we also have that N → ∞. Let r = max

(⌈
Q

log Q

⌉
, 9

)
. Note that log r > 2. Also,

by the Prime Number Theorem, pr+1 ∼ Q ≤ N1−τ log N as Q → ∞. We will assume that Q
is large enough that pr+1 < N. Choose α ∈ N such that

∏α
j=1 pr+ j < N ≤

∏α+1
j=1 pr+ j. For

1 ≤ i ≤ Kα = dDαe, let si = pr+i. Note that our elements si already satisfy the conditions in
Figure 5.1. We are left to establish a bound on α and then estimate

∑Kα
i=1 si.

Note that α ≤ β whenever
∏β+1

j=1 pr+ j ≥ N, which is equivalent to
∑β+1

j=1 log pr+ j ≥ log N.

Let β =
⌈ 2 log N

log r

⌉
. We have that pk ≥ k for k ≥ 1. Hence, we have that

β+1∑
i=1

log pr+i ≥

β+1∑
i=1

log(r + i) ≥
∫ r+β+1

r
log x dx

= (β + 1)(log(r + β + 1) − 1) + r log
(
1 +

β + 1
r

)
> (β + 1)(log(r + β + 1) − 1) > β(log r − 1) >

2 log N
log r

·
log r

2
= log N.

Note that as Q→ ∞, r + Kβ �
Q

log Q . Thus, since α ≤ β, we have by [29, Lemma 6] and the
Prime Number Theorem that

Kα∑
i=1

pr+i ≤

Kβ∑
i=1

pr+i ≤ C1

p2
r+Kβ

log pr+Kβ
≤ C2

(
(r + Kβ) log(r + Kβ)

)2

log
(
(r + Kβ) log(r + Kβ)

) ,
for some absolute constants C1 and C2. As Q→∞,

m�

(
(r + Kβ) log(r + Kβ)

)2

log
(
(r + Kβ) log(r + Kβ)

) � Q2

log Q
=

D2(log N)2

log(D log N)
. 2
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Although Lemma 14 shows that simply using primes for our s j values is asymptotically
optimal, it is important to note that the convergence of such primes-only solutions to the
optimal value as D log N → ∞ is likely very slow. For real world values of N and D the
more general criteria that the s j values be pairwise relatively prime can produce significantly
smaller m values. This is demonstrated empirically in Section 7. However, Lemma 14 also
formally justifies the idea that the s j values can be restricted to smaller subsets of relatively
prime integers (e.g., the prime numbers) before solving the optimization problem in Fig-
ure 5.1 without changing the asymptotic performance of the generated solutions. This idea
can help make the (approximate) solution of the optimization problem in Figure 5.1 more
computationally tractable in practice.

6. Formulation of the Matrix Design Problem as an Integer Linear Program. In this
section the optimization problem in Figure 5.1 is formulated as an Integer Linear Program
(ILP). This allows the problem to be solved via existing optimization techniques for ILPs
which are guaranteed to find an optimal solution whenever one exists (e.g., see [35, 40]).
These methods can work well in practice despite the fact that their worst case computa-
tional complexities scale exponentially with the number of ILP variables (i.e., roughly like
O

(
2K log(K log K)

)
in our worst case setting). Furthermore, many of these methods work by

producing approximate solutions which progressively converge toward the optimal solution
over time. Hence, approximate solutions with accompanying error bounds can be discovered
even when the true optimal solution can not be found quickly.

To formulate the problem as an ILP, we define K = Kα = dDαe and B = pt+K−α−1 as
in Part 4 of Lemma 10. Let s j,i ∈ {0, 1} for j ∈ [1,K] ∩ N and i ∈ [1,B] ∩N. We then let

s j =

B∑
i=1

s j,i · i and, for k ∈ [1, t + K − α − 1] ∩N, define

δk,i =

{
1 if pk | i
0 otherwise . (6.1)

Then, for a given α, we can minimize Equation (5.1) by minimizing

m =

K∑
j=1

s j =

K∑
j=1

B∑
i=1

s j,i · i (6.2)

subject to the following linear constraints:
1.

∑B
i=1 s j,i = 1 for all j ∈ [1,K] ∩N.

2. s j,i ∈ {0, 1} for all j ∈ [1,K] ∩N and i ∈ [1,B] ∩N.
3.

∑B
i=1(i · s j+1,i − i · s j,i) ≥ 1 for all j ∈ [1,K − 1] ∩N.

4.
∑α

j=1
∑B

i=1 s j,i · ln i < ln N ≤
∑α+1

j=1
∑B

i=1 s j,i · ln i.
5. s j,i = 0 for all j ∈ [1,K] ∩N and i ∈ [1, pi − 1] ∩N.
6.

∑K
j=1

∑B
i=1 δk,i · s j,i ≤ 1 for all k ∈ [1, t + K − α − 1] ∩N.

The first and second constraint together state that for each j, s j,i is non-zero for exactly
one value of i ∈ [1,B] ∩N, implying that s j = i. This in turn, by the third constraint, implies
that s1 < s2 < · · · < sK, which is Constraint I in Figure 5.1. Upon applying the natural
logarithm in Constraint II in Figure 5.1 to convert a nonlinear constraint to a linear constraint,
one obtains something equivalent to our fourth constraint above. The fifth constraint above
simply forces s j ≥ p j, which will be true for any solution to the optimization problem in
Figure 5.1. The last constraint ensures that s1, . . . , sK are pairwise relatively prime, which is
Constraint III in Figure 5.1. Hence, the optimization problem in this section is equivalent to
the optimization problem in Figure 5.1.
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FIG. 7.1. On the Left: The minimal Fourier sampling requirements, m − Kα + 1 minimized over all feasible
α ∈ [1, 14] ∩ N, for any possible m × 214

(
K =

⌈ (k−1)α
ε

⌉
, α

)
-coherent matrix constructed via Section 4. Here

ε was fixed to be 4/
(
6 +
√

7
)
≈ 0.463, and the sparsity parameter, k, was varied between 2 and 11. On the

Right: The minimal Fourier sampling requirements, m − Kα + 1 minimized over all feasible α ∈ [1, 22] ∩N, for
any possible m × 222

(
K =

⌈ (k−1)α
ε

⌉
, α

)
-coherent matrix constructed via Section 4. Here ε was again fixed to be

4/
(
6 +
√

7
)
≈ 0.463, and the sparsity parameter, k, was varied between 2 and 19.

7. Numerical Experiments. In this section we investigate the optimal Fourier sampling
requirements related to m×N (K = dDαe , α)-coherent matrices, optimized over the α param-
eter, for several values of D and N. This is done for given values of D ∈ (1,∞) and N ∈ N
by solving the optimization problem in Figure 5.1 via the ILP presented in Section 6 for all
feasible values of α ∈

[
1, log2 N

]
∩N.13 The solution yielding the smallest Fourier sampling

requirement, m − Kα + 1 from Lemma 5, for the given D and N values (minimized over all
α values) is the one reported for experiments in this section. Each ILP was solved with IBM
ILOG OPL-CPLEX with parameters generated using Microsoft Visual Studio. Examples of
the actual files ran can be downloaded from the contact author’s website.14

In order to make our numerical experiments more meaningful we computed optimal
incoherent matrices which also have the RIP2 (see part 3 of Theorem 4). Hence, we set
D = k−1

ε for a given sparsity value k ∈ [1,N] ∩N and ε ∈ (0, 1). In all experiments the value
of εwas fixed to be slightly less than 3/

(
4 +
√

6
)
≈ 0.465 which ensures that l1-minimization

can be utilized with the produced RIP2 matrices for accurate Fourier approximation (e.g., see
Theorem 2.7 in [37]).

Three variants of the optimization problem in Figure 5.1 were solved in order to deter-
mine the minimal Fourier sampling requirements associated with three types of

(⌈
(k−1)α
ε

⌉
, α

)
-

coherent matrices created via Section 4. These three types include the:
1. Relatively Prime optimization problem exactly as stated in Figure 5.1 and reformu-

lated in Section 6.
2. Powers of Primes optimization problem. Here the s j values are further restricted to

each be a power of a different prime number.
3. Primes optimization problem. Here each s j value is further restricted to simply be a

prime number.
These different variants allow some trade off between computational complexity and the min-
imality of the generated incoherent matrices. See Figure 7.1 for a comparison of the solutions
to these optimization problems for two example values of N.

In creating the solutions graphed in Figure 7.1 computer memory was the primary con-
straining factor. For each of the two values of N the sparsity, k, was increased until computer

13It is important to note that many values of α can be disqualified as optimal without solving an ILP by comparing
previous solutions to the lower bounds given in Lemma 11 and Corollary 12.

14http://www.math.duke.edu/∼markiwen/DukePage/code.htm
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memory began to run out during the solution of one of the required ILPs.15 All ILPs which
ran to completion did so in less than 90 minutes (most finishing in a few minutes or less). Not
surprisingly, the relatively prime solutions always produce smaller Fourier sampling require-
ments than the more restricted powers of primes solutions, with the tradeoff being that they
are generally more difficult to solve. Similarly, the powers of primes solutions always led to
smaller Fourier sampling requirements than the even more restricted primes solutions.

For the sake of comparison, the left plot in Figure 7.1 also includes Fourier sampling
results for RIP2(k,ε < 0.465) matrices created via random sampling based incoherence argu-
ments for each sparsity value. These random Fourier sampling requirements were calculated
by choosing rows from a 214

× 214 inverse DFT matrix, F −1, uniformly at random without
replacement. After each row was selected, the µ-coherence of the submatrix formed by the
currently selected rows was calculated (see Definition 3). As soon as the coherence became
small enough that Theorem 3 guaranteed that the matrix would have the RIP2(k,ε < 0.465)
for the given value of k, the total number of inverse DFT rows selected up to that point was
recorded as a trial Fourier sampling value. This entire process was repeated 100 times for
each value of k. The smallest Fourier sampling value achieved out of these 100 trials was
then reported for each sparsity k in the left plot of Figure 7.1.

Looking at the plot of the left in Figure 7.1 we can see that the randomly selected subma-
trices guaranteed to have the RIP2 require fewer Fourier samples than the deterministic ma-
trices constructed herein. Hence, if Fourier sampling complexity is one’s primary concern,
randomized matrix design techniques should be utilized. However, it is important to note
that such randomly constructed Fourier matrices cannot currently be utilized in combination
with o(N)-time Fourier approximation algorithms. Our deterministic incoherent matrices, on
the other hand, have associated sublinear-time approximation algorithms (see the first part of
Theorem 4).

Finally, we conclude this paper by noting that heuristic solutions methods can almost
certainly be developed for solving the optimization problem in Figure 5.1. Such methods
are often successful at decreasing memory usage and computation time while still producing
near-optimal results. We leave further consideration of such approaches as future work.
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Appendix A. Proof of Lemma 2.
We will prove a slightly more general variant of Lemma 2. Below we will work with

(K, cmin, α)-coherent matrices.
Definition 6. Let K ∈ [1,N] ∩ N and cmin, α ∈ R+. An m × N positive real matrix,M ∈
[0,∞)m×N, is called (K, cmin, α)-coherent if both of the following properties hold:

1. Every column ofM contains at least K nonzero entries.
2. All nonzero entries are at least as large as cmin.
3. For all j, l ∈ [0,N) with j , l, the associated columns, M·, j andM·,l ∈ [0,∞)m,

haveM·, j · M·,l ≤ α.
Clearly, any (K, α)-coherent matrix will also be (K, 1, α)-coherent. Other examples of

(K, cmin, α)-coherent matrices include “corrupted” or “noisy” (K, α)-coherent matrices, as
well as matrices whose columns are spherical code words from the first orthant of Rm. In
what follows,M ∈ [0,∞)m×N will always refer to a given m × N (K, cmin, α)-coherent ma-
trix. Let n ∈ [0,N) ∩N. We defineM(K,n) to be the K ×N matrix created by selecting the
K rows ofM with the largest entries in its nth column. Furthermore, we defineM′(K,n) to
be the K × (N − 1) matrix created by deleting the nth column ofM(K,n). Thus, if

M j1,n ≥ M j2,n ≥ . . . ≥ M jm,n

then

M(K,n) =


M j1
M j2
...
M jK

 (A.1)

and

M
′(K,n) =


M j1,1 M j1,2 . . . M j1,n−1 M j1,n+1 . . . M j1,N
M j2,1 M j2,2 . . . M j2,n−1 M j2,n+1 . . . M j2,N

...
M jK ,1 M jK ,2 . . . M jK ,n−1 M jK ,n+1 . . . M jK ,N

 . (A.2)

The following two lemmas are required for the proof of Lemma 2.

Lemma 15. SupposeM is a (K, cmin, α)-coherent matrix. Let n ∈ [0,N)∩N, k ∈
[
1,

K·c2
min
α

]
∩

N, and ~x ∈ CN−1. Then, at most kα
c2

min
of the K entries ofM′(K,n) · ~x will have magnitude

greater than or equal to cmin
k · ‖~x‖1.

Proof: We have that∣∣∣∣∣∣
{

j
∣∣∣∣∣ ∣∣∣(M′(K,n) · ~x

)
j

∣∣∣ ≥ cmin · ‖~x‖1
k

}∣∣∣∣∣∣ ≤ k ·
∥∥∥M′(K,n) · ~x

∥∥∥
1

cmin · ‖~x‖1
≤

k
cmin

· ‖M
′(K,n)‖1.

Focusing now onM′(K,n), we can see that

‖M
′(K,n)‖1 = max

l∈[1,N−1]∩N

∥∥∥(M′(K,n))·,l
∥∥∥

1

≤ max
l∈[0,N)∩N−{n}

〈 1
cmin

(M(K,n))·,n , (M(K,n))·,l
〉
≤

α
cmin

. (A.3)

The result follows. 2
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Lemma 16. SupposeM is a (K, cmin, α)-coherent matrix. Let n ∈ [0,N)∩N, k̃ ∈
[
1,

K·c2
min
α

]
∩

N, S ⊂ [0,N) ∩N with |S| ≤ k̃, and ~x ∈ CN−1. Then,M′(K,n) · ~x andM′(K,n) ·
(
~x − ~xS

)
will differ in at most k̃α

c2
min

of their K entries.

Proof: Let ~1 ∈ CN−1 be the vector of all ones. We have that∣∣∣∣∣{ j
∣∣∣∣∣ (
M
′(K,n) · ~x

)
j ,

(
M
′(K,n) ·

(
~x − ~xS

))
j

}∣∣∣∣∣ =

∣∣∣∣∣{ j
∣∣∣∣∣ (
M
′(K,n) · ~xS

)
j , 0

}∣∣∣∣∣
which is less than or equal to ∣∣∣∣∣{ j

∣∣∣∣∣ (
M
′(K,n) · ~1S

)
j
≥ cmin

}∣∣∣∣∣
since all the nonzero entries ofM′(K,n) are at least as large as cmin. Applying Lemma 15
with ~x = ~1S and k =

∥∥∥~1S

∥∥∥
1

= |S| finishes the proof. 2

By combining the two Lemmas above we are able to bound the accuracy with which we
can approximate any entry of an arbitrary complex vector ~x ∈ CN using only the measure-
ments from a (K, cmin, α)-coherent matrix. We are now equipped to prove a slight generaliza-
tion of Lemma 2.
Lemma 17. SupposeM is a (K, cmin, α)-coherent matrix. Let n ∈ [0,N)∩N, k ∈

[
1,

K·c2
min
α

]
∩

N, ε ∈ (0, 1], c ∈ [2,∞) ∩ N, and ~x ∈ CN. If K > c · (kα/c2
minε) then

(M(K,n)·~x) j

(M(K,n)) j,n
will

be contained in the interval
(
xn −

ε
∥∥∥∥~x−~xopt

(k/ε)

∥∥∥∥
1

k , xn +
ε
∥∥∥∥~x−~xopt

(k/ε)

∥∥∥∥
1

k

)
for more than c−2

c · K values of

j ∈ [0,K) ∩N.
Proof: Define ~y ∈ CN−1 to be ~y = (x0, x1, . . . , xn−1, xn+1, . . . , xN−1). We have

M(K,n) · ~x = xn · (M(K,n))·,n +M′(K,n) · ~y.

Applying Lemma 16 with k̃ = (k/ε) demonstrates that at most kα
ε·c2

min
entries of M′(K,n) ·

~y differ from their corresponding entries in M′(K,n) ·
(
~y − ~yopt

(k/ε)

)
. Of the remaining K −

kα
ε·c2

min
entries of M′(K,n) · ~y, at most kα

ε·c2
min

will have magnitudes greater than or equal to

ε · cmin

∥∥∥∥~y − ~yopt
(k/ε)

∥∥∥∥
1
/k by Lemma 15. Hence, at least

K − 2
(

kα
ε · c2

min

)
>

c − 2
c
· K

entries ofM′(K,n) · ~y will have a magnitude no greater than

ε · cmin

∥∥∥∥~y − ~yopt
(k/ε)

∥∥∥∥
1

k
≤

ε · cmin

∥∥∥∥~x − ~xopt
(k/ε)

∥∥∥∥
1

k
.

Therefore,
(M(K,n)·~x) j

(M(K,n)) j,n
will approximate xn to within the stated accurracy for more than c−2

c ·K
values j ∈ [1,K] ∩N. 2
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