Standard Response Questions. Show all work to receive credit. Please BOX your final answer.

1. (4 points) Find the most general antiderivative of $f(x)=2 \sec ^{2}(x)-x^{5}$.

Solution:

$$
\int 2 \sec ^{2}(x)-x^{5} d x=2 \tan (x)-\frac{1}{6} x^{6}+C
$$

2. (4 points) Evaluate: $\int_{1}^{4} \frac{t^{3}+\sqrt{t}}{t^{2}} d t$.

Solution:

$$
\begin{aligned}
\int_{1}^{4} \frac{t^{3}+\sqrt{t}}{t^{2}} d t & =\int_{1}^{4} t+t^{-3 / 2} d t \\
& =\left[\frac{1}{2} t^{2}-2 t^{-1 / 2}\right]_{1}^{4} \\
& =\left[\frac{1}{2}(16)-2\left(\frac{1}{2}\right)\right]-\left[\frac{1}{2}-2\right] \\
& =[7]-\left[-\frac{3}{2}\right]=17 / 2
\end{aligned}
$$

3. (6 points) Let $F(x)=\int_{\cos x}^{1} \sqrt{5-t^{2}} d t$. Find $F^{\prime}(x)$ without actually finding $\mathbf{F}(\mathbf{x})$.

Solution:

$$
\begin{aligned}
F(x) & =\int_{\cos x}^{1} \sqrt{5-t^{2}} d t \\
F(x) & =-\int_{1}^{\cos x} \sqrt{5-t^{2}} d t \\
F^{\prime}(x) & =-\sqrt{5-\cos ^{2} x} \cdot(-\sin x) \\
F^{\prime}(x) & =\sin x \cdot \sqrt{5-\cos ^{2} x}
\end{aligned}
$$

4. (7 points) Find the absolute maximum and the absolute minimum values of

$$
f(x)=\sin x+\cos x \quad \text { on the interval }[0, \pi]
$$

Solution:

$$
f^{\prime}(x)=\cos x-\sin x
$$

so the only critical point of f on the interval $[0, \pi]$ occurs at $x=\pi / 4$ at which $f^{\prime}=0$. Testing all the critical points and the end points we see that

$$
\begin{aligned}
f(0) & =0+1=1 \\
f(\pi / 4) & =\sqrt{2} / 2+\sqrt{2} / 2=\sqrt{2} \\
f(\pi) & =0-1=-1
\end{aligned}
$$

So the absolute maximum is $\sqrt{2}$ and the absolute minimum is -1 .
5. Let $f(x)= \begin{cases}x+2 & \text { if }-2 \leq x<0 \\ x-1 & \text { if } 0 \leq x \leq 2\end{cases}$
(a) (3 points) Sketch the graph of $f(x)$.

(b) (2 points) Use your sketch in part (a) to find the absolute maximum and absolute minimum values of f on $[-2,2]$, if they exist.

Absolute Minimum $=\quad-1$
Absolute Maximum $=$ DNE

Absolute Minimum $=-1$
Absolute Maximum = DNE
(c) (2 points) If an absolute extremum does not exist, explain why does this not contradict the statement of the Extreme Value Theorem.

Solution: The nonexistence of Absolute Maximum does not contradict the Extreme Value Theorem because the f is not continuous on [-2,2].
6. Suppose:

$$
f(x)=\frac{x^{2}}{x-1}, \quad f^{\prime}(x)=\frac{x(x-2)}{(x-1)^{2}}, \quad f^{\prime \prime}(x)=\frac{2}{(x-1)^{3}}
$$

(a) (1 point) What is the domain for f ?

Solution: $(-\infty, 1) \cup(1, \infty)$
(b) (3 points) Write the equations for all vertical, horizontal, and slant asymptotes, if they exist.

Solution:

$$
\begin{aligned}
& V A: x=1 \\
& H A: N O N E \\
& S A: y=x+1
\end{aligned}
$$

(c) (4 points) Identify the intervals over which $f(x)$ is increasing / decreasing. Write your answer in interval notation in the boxes below.

Solution: Breaking up the real numbers at critical points and asymptotes and testing each subinterval we have

so therefore f is
increasing on $(-\infty, 0) \cup(2, \infty)$ and
decreasing on $(0,1) \cup(1,2)$
(d) (2 points) Identify all points (x, y) where $\mathrm{f}(\mathrm{x})$ attains its local maximum or minimum. Write your answer in the boxes below.

Solution:

f has a local minimum at $(x, y)=(2,4)$
f has a local maximum at $(x, y)=(0,0)$
(e) (2 points) Identify the intervals over which $f(x)$ is concave up / concave down. Write your answer in interval notation in the boxes below.
Solution: Breaking up the real numbers at possible inflection points and asymptotes and testing each subinterval we have

so therefore f is concave up on $(1, \infty)$ and concave down on $(-\infty, 1)$.
(f) (2 points) Sketch the curve of $y=f(x)$. Parts (a)-(e) may be helpful.

Solution:

7. A total of $225 \mathrm{ft}^{2}$ of material is used to make a box with no top and a square base.
(a) (6 points) Express the volume of the tank, V, only in terms of x, the length of the base.
Solution: From the fact that $225 \mathrm{ft}^{2}$ of material is to be used we can determine

$$
\begin{aligned}
x^{2}+4 x y & =225 \\
4 x y & =225-x^{2} \\
y & =\frac{225-x^{2}}{4 x}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& V=x^{2} \cdot y \\
& V=x^{2} \cdot\left(\frac{225-x^{2}}{4 x}\right) \\
& V=\frac{225 x-x^{3}}{4}
\end{aligned}
$$

(b) (8 points) Find the maximum volume of such a tank for $x \in(0,15]$.

Include units! Use techniques of calculus to justify that your answer is a maximum.

Solution:

$$
V^{\prime}=\frac{225-3 x^{2}}{4}
$$

And so the only critical point of V in $(0,15]$ is at $x=\sqrt{75}=5 \sqrt{3}$ (where $\left.V^{\prime}=0\right)$. We can then determine the sign of the derivative on this interval

and using the first derivative test we see that V is maximized when $x=5 \sqrt{3}$. So the maximum volume is

$$
V=\frac{225(5 \sqrt{3})-(5 \sqrt{3})^{3}}{4} \mathrm{ft}^{3}
$$

Multiple Choice. Circle the best answer. No work needed. No partial credit available.
8. (4 points) Newton's method can be used to approximate $\sqrt[5]{33}$ by finding the root of which of the following functions?
A. $f(x)=x^{5}+33$
B. $f(x)=\sqrt[5]{x}-33$
C. $f(x)=\sqrt[5]{x}+33$
D. $f(x)=x^{5}-33$
E. $f(x)=x-(33)^{5}$
9. (4 points) Using three equally-spaced rectangles of equal width, find the upper sum approximation of the area between the curve $y=\frac{1}{x}$ and the x-axis from $x=2$ to $x=8$.
A. $\frac{13}{12}$
B. $\frac{11}{4}$
C. $\frac{11}{6}$
D. $\frac{39}{24}$
E. 3
10. (4 points) Using a linear approximation with $a=64$, find an estimate of $\sqrt{63}$
A. $8+\frac{1}{16}$
B. $8-\frac{1}{8}$
C. $8-\frac{1}{16}$
D. $8+\frac{1}{8}$
E. 8
11. (4 points) Suppose $\int_{-1}^{2} f(x) d x=6$ and $\int_{-1}^{3} f(x) d x=8$. Find $\int_{3}^{2} 5 f(x) d x$.
A. 70
B. -10
C. -14
D. 10
E. 2
12. (4 points) If the conclusion of the Mean Value Theorem is applied to the function $f(x)=\frac{1}{x-1}$ on the interval $[2,5]$, which of the following values of c is correct?
A. $c=1+\frac{2}{\sqrt{3}}$
B. $c=\frac{7}{3}$
C. $c=3$
D. c does not exist
E. None of the above.
13. (4 points) Which of these equations is the solution to the initial value problem

$$
y^{\prime}=\sin x, \quad y(0)=2
$$

A. $y=-\cos (x)+3$
B. $y=-\cos (x)+2$
C. $y=\cos (x)+3$
D. $y=\cos (x)+1$
E. $y=\cos (x)$
14. (4 points) Which of the following is the equation of a horizontal asymptote for the curve $y=\frac{3 x+\sqrt{x}}{x(1-2 x)}$?
A. $y=0$
B. $y=3$
C. $y=3 / 2$
D. $y=-3 / 2$
E. $y=-3$
15. (4 points) $\int_{0}^{3}|x-1| d x=$
A. 3
B. $\frac{9}{2}$
C. $\frac{5}{2}$
D. 5
E. $\frac{7}{2}$
16. (4 points) Which of the following definite integrals is equivalent to the following limit of a Riemann sum?

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt[3]{2+\frac{4 i}{n}} \cdot \frac{4}{n}
$$

A. $\int_{2}^{6} \sqrt[3]{2+x} d x$
B. $\int_{2}^{6} \sqrt[3]{x} d x$
C. $\int_{2}^{6} \sqrt[3]{2+4 x} d x$
D. $\int_{2}^{6} 4 \sqrt[3]{2+4 x} d x$
E. None of the above.

More Challenging Question(s). Show all work to receive credit.
17. Below is the graph of the function $\mathbf{y}=\mathbf{f}(\mathbf{t})$ and is formed by two adjacent semi-circles of radius 1 :

Consider the function $g(x)$ defined by $g(x)=\int_{0}^{x} f(t) d t$, for all $0 \leq x \leq 4$.
(a) (2 points) Calculate: $g(0)=0, g(1)=\pi / 4, g(2)=\pi / 2, g(3)=\pi / 4$ and $g(4)=0$
(b) (2 points) List the critical point(s) of $g(x)$ and determine if each is a local minimum, a local maximum or neither for g.

Solution: $g^{\prime}(x)=f(x)$ and so $g(x)$ has a critical point at $x=2$. Since the derivative changes from positive to negative by the first derivative test we know this is a local maximum
(c) (2 points) $g(2)=\frac{\pi}{2}$, and $g(0)=g(4)=0$.

Thus, $g(x)$ achieves its global maximum in the interval $[0,4]$ at $x=2$
(d) (4 points) List the inflection points of $g(x)$.

Solution: Since $g^{\prime \prime}(x)=f^{\prime}(x)$ then the inflection points of g are the local mins/maxes of f which occur at ($1, \frac{\pi}{4}$) and ($3, \frac{\pi}{4}$)
(e) (4 points) Sketch the graph of $g(x)$.

