Standard Response Questions. Show all work to receive credit. Please BOX your final answer.

1. (8 points) Calculate the following limits.
(a) $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x^{2}-4 x+3}$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{x^{2}-1}{x^{2}-4 x+3} & =\lim _{x \rightarrow 1} \frac{(x-1)(x+1)}{(x-3)(x-1)} \\
& =\lim _{x \rightarrow 1} \frac{(x+1)}{(x-3)}=\frac{2}{-2}=-1
\end{aligned}
$$

(b) $\lim _{x \rightarrow 2} \frac{x+3}{(x-2)^{2}}$

Solution:

$$
\lim _{x \rightarrow 2^{-}} \frac{x+3}{(x-2)^{2}}=+\infty \quad \lim _{x \rightarrow 2^{+}} \frac{x+3}{(x-2)^{2}}=+\infty
$$

So therefore $\lim _{x \rightarrow 2} \frac{x+3}{(x-2)^{2}}=+\infty$
2. (6 points) Use the graph of $f(x)$ below to calculate the following limits.
(a) $\lim _{x \rightarrow 5} f(x)=3$
(b) $\lim _{x \rightarrow 7^{-}} f(x)=-1$
(c) $\lim _{x \rightarrow 7} f(x)=$ DNE

3. (8 points) Calculate the derivative of the following functions.
(a) $f(x)=4 x^{3}+\sqrt[3]{x^{2}}+\frac{2}{x^{2}}+\sec x$

Solution:

$$
f^{\prime}(x)=12 x^{2}+\frac{2}{3} x^{-1 / 3}-\frac{4}{x^{3}}+\sec x \tan x
$$

(b) $h(x)=\sin \left(x^{2}+1\right)$

Solution:

$$
h^{\prime}(x)=\cos \left(x^{2}+1\right) \cdot(2 x)
$$

4. (6 points) $f(x)=\sqrt{x-3}$. Use the limit definition of derivative to show that $f^{\prime}(x)=\frac{1}{2 \sqrt{x-3}}$

Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{x+h-3}-\sqrt{x-3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{x+h-3}-\sqrt{x-3}}{h} \cdot\left(\frac{\sqrt{x+h-3}+\sqrt{x-3}}{\sqrt{x+h-3}+\sqrt{x-3}}\right) \\
& =\lim _{h \rightarrow 0} \frac{h}{h} \cdot\left(\frac{1}{\sqrt{x+h-3}+\sqrt{x-3}}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h-3}+\sqrt{x-3}} \\
& =\frac{1}{2 \sqrt{x-3}}
\end{aligned}
$$

5. (10 points) The graph below shows the velocity $v(t)$ of particle moving in a straight line.

(a) What is the maximum speed? (Recall: speed $=\mid$ velocity $\mid)$.

Solution: 2

(b) What is the maximum velocity?

Solution: 1

(c) When is the particle moving forward (i.e. in the positive direction). Use interval notation.

Solution: $(1,5)$
(d) When is the particle speeding up? Use interval notation.

Solution: $(1,2) \cup(5,6) \cup(8,9)$
(e) When is the particle moving at a constant velocity? Use interval notation.

Solution: $(2,4) \cup(6,8)$
6. (4 points) Use the definition of continuity to determine if $f(x)$ is continuous at $x=1$. State your conclusion and explain your reasoning.

$$
f(x)= \begin{cases}x^{2}+2 & x<1 \\ 4 & x=1 \\ 2 x+1 & x>1\end{cases}
$$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} x^{2}+2=3 \\
& \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} 2 x+1=3
\end{aligned}
$$

So $\lim _{x \rightarrow 1} f(x)=3$ and yet $f(1)=4$ therefore f is not continuous at $x=1$.
7. Suppose that y and x satisfy the implicit equation $y^{2}=3 x y-x^{3}$.
(a) (6 points) Find the the derivative $\frac{d y}{d x}$.

Solution:

$$
\begin{aligned}
2 y \cdot y^{\prime} & =3 y+3 x \cdot y^{\prime}-3 x^{2} \\
(2 y-3 x) y^{\prime} & =3 y-3 x^{2} \\
\frac{d y}{d x} & =\frac{3 y-3 x^{2}}{2 y-3 x}
\end{aligned}
$$

(b) (2 points) Find an equation of the tangent line through the point $(-4,4)$.

Solution:

$$
\left.\frac{d y}{d x}\right|_{(x, y)=(-4,4)}=\frac{12-3(16)}{8+12}=\frac{-36}{20}=\frac{-9}{5}
$$

So therefore an equation of the tangent line can be given by

$$
y-4=\frac{-9}{5}(x+4)
$$

8. (6 points) Two boats start sailing from the same point. One boat travels north at $12 \mathrm{~km} / \mathrm{h}$ and the other travels east at $9 \mathrm{~km} / \mathrm{h}$. At what rate is the distance between the boats increasing two hours later?

Solution:

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
2 a a^{\prime}+2 b b^{\prime} & =2 c c^{\prime} \\
2(18)(9)+2(24)(12) & =2\left(\sqrt{18^{2}+24^{2}}\right) c^{\prime} \\
(18)(9)+(24)(12) & =\left(\sqrt{18^{2}+24^{2}}\right) c^{\prime} \\
c^{\prime} & =\frac{(18)(9)+(24)(12)}{\sqrt{18^{2}+24^{2}}} \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

Multiple Choice. Circle the best answer. No work needed. No partial credit available.
9. (4 points) Suppose $f(x)=|x+3|$. For which value of x is f not differentiable?
A. $x=3$
B. $x=1$
C. $x=-3$
D. $x=0$
E. f is differentiable everywhere.
10. (4 points) Suppose $f(x)$ is a continuous function with values given by the table below.

x	0	1	2	3	4	5
$f(x)$	10.1	3.4	2.9	-1.5	0	0.8

In which interval must there be a c for which $f(c)=3$?
A. $(0,1)$
B. $(1,2)$
C. $(2,3)$
D. $(3,4)$
E. $(4,5)$
11. (4 points) If $f(x)$ is a differentiable function, which of the following statements about $f^{\prime}(1)$ is true?
(I) $f^{\prime}(1)$ is the y-value at $x=1$.
(II) $f^{\prime}(1)$ is the average rate of change at $x=1$.
(III) $f^{\prime}(1)$ is the instantaneous rate of change at $x=1$.
(IV) $f^{\prime}(1)$ is the slope of the secant line at $x=1$.
(V) $f^{\prime}(1)$ is the slope of the tangent line at $x=1$.
A. (I) only
B. (II) only
C. (III) only
D. (II) and (IV)
E. (III) and (V)
12. (4 points) Consider the graph $y=f(x)$ shown to the right. Which of the following is a graph of its derivative?

13. (4 points) Let $f(x)= \begin{cases}x^{2}, & x \leq 2 \\ 2 x, & x>2\end{cases}$

Which of the following statements is true?
A. The function f is differentiable, but not continuous, at $x=2$.
B. The function f is continuous and differentiable at $x=2$.
C. The function f is undefined at $x=2$.
D. The function f is neither continuous nor differentiable at $x=2$.
E. The function f is continuous, but not differentiable, at $x=2$.
14. (4 points) Calculate: $\lim _{x \rightarrow 1^{-}} \frac{x^{2}-1}{|x-1|}$
A. 2
B. 1
C. $\frac{0}{0}$
D. -2
E. DNE
15. (4 points) Determine the average rate of change of the function $f(t)=2+\sin t$ over the interval $\left[0, \frac{\pi}{2}\right]$.
A. $\frac{3 \sqrt{3}}{\pi}$
B. $-\frac{1}{\pi}$
C. $\frac{\pi}{12}$
D. $\frac{2}{\pi}$
E. 0
16. (4 points) The velocity $v(t)$ of a particle is shown in the graph below. Which of the following statements is true about the particle motion at $t=2$?
A. The particle is moving backward and speeding up at $t=2$.
B. The particle is moving backward and slowing down at $t=2$.
C. The particle is moving forward and speeding up at $t=2$.
D. The particle is moving forward and slowing down at $t=2$.
E. None of the above.

17. (4 points) Let $f(1)=2, f^{\prime}(1)=3, g(1)=4$, and $g^{\prime}(1)=5$. Calculate the following derivative:

$$
\left.\frac{d}{d x} \frac{f(x)}{1+g(x)}\right|_{x=1}
$$

A. $\frac{1}{5}$
B. $-\frac{1}{5}$
C. $-\frac{5}{36}$
D. $\frac{5}{36}$
E. None of the above.

More Challenging Question(s). Show all work to receive credit.
18. (6 points) Calculate: $\lim _{x \rightarrow 0^{+}} \frac{\sin \sqrt{x}}{\sin (4 x)}$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \frac{\sin \sqrt{x}}{\sin (4 x)} & =\lim _{x \rightarrow 0^{+}} \frac{\sin \sqrt{x}}{\sin (4 x)} \cdot \frac{4 x}{4 x} \cdot \frac{\sqrt{x}}{\sqrt{x}} \\
& =\lim _{x \rightarrow 0^{+}} \frac{\sin \sqrt{x}}{\sqrt{x}} \cdot \frac{4 x}{\sin (4 x)} \cdot \frac{\sqrt{x}}{4 x} \\
& =(1) \cdot(1) \cdot \lim _{x \rightarrow 0^{+}} \frac{1}{4 \sqrt{x}}=+\infty
\end{aligned}
$$

19. (6 points) Calculate the derivative of $f(x)=\sin ^{2}\left(\frac{\tan x}{x^{3}}\right)$.

Solution:

$$
f^{\prime}(x)=2 \sin \left(\frac{\tan x}{x^{3}}\right) \cdot \cos \left(\frac{\tan x}{x^{3}}\right) \cdot\left(\frac{\sec ^{2}(x) \cdot\left(x^{3}\right)-\tan (x) \cdot\left(3 x^{2}\right)}{x^{6}}\right)
$$

20. (2 points) True or False (circle one): $\frac{d}{d x}\left(\pi^{4}\right)=4 \pi^{3}$

Solution: False

