Name:

\qquad PID: \qquad

Section: \qquad Instructor: \qquad

DO NOT WRITE BELOW THIS LINE. Go to the next page.

Page	Problem	Score	Max Score
1	1		5
	2		5
	3		5
	4		5
	5		5
2	6		5
	7		5
	8		5
	9		5
	10		5
3	11a		8
	11b		4
	12		10
4	13a		6
	13b		6
	13c		6
	13d		4
5	14a		8
	14b		8
	14c		8
6	15		8
	16		8
7	17		8
	18		12
8	19		12
9	20		12
10	21a		2
	21b		2
	21c		2
	21d		2
	21e		2
	21f		4
	21g		4
	21h		4
Total Score			200

Name: \qquad PID: \qquad

Section:

\qquad

Instructor:

READ THE FOLLOWING INSTRUCTIONS.

- Do not open your exam until told to do so.
- No calculators, cell phones or any other electronic devices can be used on this exam.
- Clear your desk of everything excepts pens, pencils and erasers.
- If you need scratch paper, use the back of the previous page.
- Without fully opening the exam, check that you have pages 1 through 10 .
- Fill in your name, etc. on these first two pages.
- Show all your work. Write your answers clearly! Include enough steps for the grader to be able to follow your work. Don't skip limits or equal signs, etc. Include words to clarify your reasoning.
- Do first all of the problems you know how to do immediately. Do not spend too much time on any particular problem. Return to difficult problems later.
- If you have any questions please raise your hand and a proctor will come to you.
- There is no talking allowed during the exam.
- You will be given exactly 120 minutes for this exam.

I have read and understand the above instructions:

1. Evaluate $\lim _{x \rightarrow-1} \frac{x^{2}+2 x+1}{x+1}$
(a) 1
(b) -1
(c) 2
(d) 0
(e) None of the above.
2. Evaluate $\lim _{x \rightarrow-1} \frac{x+1}{|x+1|}$
(a) 1
(b) -1
(c) 2
(d) 0
(e) None of the above.
3. Find c so that $f(x)=\left\{\begin{array}{ll}\frac{\sin \left(3 x+x^{2}\right)}{x} & \text { if } x \neq 0 \\ c & \text { if } x=0\end{array}\right.$ is continuous.
(a) $c=3$
(b) $c=2$
(c) $c=1$
(d) $c=-1$
(e) None of the above.
4. The graph of $f(t)$ is shown below. If $F(x)=\int_{0}^{x} f(t) d t$, for what value of x is $F(x)$ an absolute maximum on $[0,5]$?
(a) $x=0$
(b) $x=1$
(c) $x=2$
(d) $x=3$
(e) None of the above.

5. Evaluate $\int x\left(2 x^{2}+1\right)^{3} d x$
(a) $\frac{1}{16}\left(2 x^{2}+1\right)^{4}+C$
(b) $\frac{1}{12}\left(2 x^{2}+1\right)^{4}+C$
(c) $\frac{1}{8}\left(2 x^{2}+1\right)^{4}+C$
(d) $\frac{1}{4}\left(2 x^{2}+1\right)^{4}+C$
(e) None of the above.

Fill in the Blanks. No work needed. Only possible scores given are 0,3 , and 5 .
6. If $f(x)=x^{2} \sin x$ then $f^{\prime}(x)=$ \qquad
7. The vertical asymptote(s) of $f(x)=\frac{1-x}{x+2}$ are \qquad . The horizontal asymptote(s) of $f(x)$ are \qquad -
8. $\frac{d}{d t}\left(\frac{(t+\tan t)^{2}}{\sqrt{t}}\right)=$
9. A function which satisfies $y^{\prime}(x)=4 x$ and $y(1)=5$ is given by $y(x)=$ \qquad
10. Let f and g be differentiable functions such that

$$
\begin{array}{lcl}
f(0)=2 & f^{\prime}(0)=3 & f^{\prime}(2)=4 \\
g(0)=2 & g^{\prime}(0)=-1 & g^{\prime}(2)=5
\end{array}
$$

If $h(x)=g(f(x))$ then $h^{\prime}(0)=$ \qquad

Extra Work Space.

11. $(8+4=12$ points) Throughout this problem y is defined implicitly as a function of x.
(a) Find the slope of the tangent line to the curve $y^{2}+7 x=x^{2} y+9$ at the point $(1,2)$.

Answer:
(b) Write the equation of the tangent line to the curve at the point $(1,2)$.

Answer:

$$
y=
$$

12. (10 points) Use the definition of the derivative as a limit to calculate $f^{\prime}(x)$ for $f(x)=\frac{2}{x-3}$. (There will be no credit for other methods.)

$$
f^{\prime}(x)=
$$

13. $(6+6+6+4=22$ points) Let $f(x)=x+2 \cos (x)$ on the interval $[0,2 \pi]$.
(a) Find the intervals within $[0,2 \pi]$ on which f is increasing and the intervals on which f is decreasing.

Answer:
f is increasing on:
f is decreasing on:
(b) Find the intervals within $[0,2 \pi]$ on which f is concave up and the intervals on which f is concave down.

Answer:

f is concave up on:
f is concave down on:

(c) Indicate the y-intercept, any local maxes/mins, and inflection points.

Answer:
\(\left.\left.$$
\begin{array}{|l|}\hline f \text { has } y \text {-intercept at: } \\
(x, y)=\end{array}
$$ \right\rvert\, \begin{array}{l}f has local max(s) at:

x=\end{array}\right]\)| $x=$ |
| :--- |
| f has local min(s) at: |
| $x=$ |

(d) Locate the absolute maximum of f on $[0,2 \pi]$.

Answer:

$$
\begin{aligned}
& f \text { has an absolute max at: } \\
& x=
\end{aligned}
$$

14. $(8+8+8=24$ points) Evaluate the following integrals:
(a) $\int \frac{x^{3}}{\sqrt{1+2 x^{4}}} d x$

Answer:

(b) $\int \frac{\sec \left(\frac{x}{2}\right) \tan \left(\frac{x}{2}\right)}{\sqrt{\sec \left(\frac{x}{2}\right)}} d x$

Answer:

(c) $\int_{8}^{11} x \sqrt{x-7} d x$
15. (8 points) Use the Fundamental Theorem of Calculus to find the derivative of $F(x)=\int_{\pi}^{\sqrt{x}} \frac{2 \sin \left(t^{2}\right)-1}{\sqrt{t^{4}+1}} d t$

Answer:

$$
F^{\prime}(x)=
$$

16. (8 points) Estimate $\int_{1}^{4} \frac{2 x-1}{\sqrt{x}} d x$ using areas of 3 rectangles of equal width, with heights of the rectangles determined by the height of the curve at left endpoints (Do not simplify).

Answer:

17. (8 points) Use a linear approximation to estimate $\sqrt[3]{26}$.

Hint: Is 26 close to a number whose cube root is well-known?

Answer:

$$
\sqrt[3]{26} \approx
$$

18. (12 points) Find the area of the region enclosed by the graphs of the equations $y=2 x^{2}+x-2$ and $y=x^{2}-x+1$.

Answer:

Area $=$
19. (12 points) The top of a 13 foot ladder, leaning against a vertical wall, is slipping down the wall at the rate of 2 feet per second. How fast is the bottom of the ladder sliding along the ground away from the wall when the bottom of the ladder is 5 feet away from the base of the wall?

Answer:

$$
\mathrm{ft} / \mathrm{s}
$$

20. (12 points) A cylinder is inscribed in a right circular cone of height 4 inches and radius (at the base) equal to 3 inches. What are the dimensions of such a cylinder that has maximum volume?

You MUST verify that you have found the maximum.
Hint: Recall the formula for volume of a cylinder: $V=\pi r^{2} h$

Answer:
radius $=$
21. $(2+2+2+2+2+4+4+4=22$ points $)$

The graph to the right shows the velocity $v(t)$ in meters per second of a particle moving on a horizontal coordinate line, for t in seconds within the closed interval $[0,8]$.

(a) When is the particle moving forward?

Answer:

(b) When is the particle's speed decreasing?

Answer:

$$
t \in
$$

s
(c) When is the particle's acceleration positive?

Answer:

```
t \in \sim S
```

(d) When is the particle's acceleration the greatest?

Answer:

$$
t=
$$

(e) When does the particle move at its greatest speed?

Answer:

(f) What is the change in the particle's position from $t=2$ to $t=6$?

Answer:

Change in position $=$
(g) What is the total distance the particle travels from $t=2$ to $t=6$?

Answer:
Distance traveled $=$ m
(h) If the particle is at the origin at $t=2$ use linear approximation to estimate its position at $t=3 / 2$

Answer:
$s(3 / 2) \approx$

