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Outline: Coherent Interferometry (CINT) and its
applications

1. Kirchhoff migration

2. Incoherent interferometry

3. Decoherence frequency and length; Coherent interferometry

4. Adaptive estimation of Ωd and Xd

5. Optimal illumination and waveform design

6. Optimal subspace selection
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Array imaging
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The array imaging configuration with the central wavelength λ0 as unit of
length.
The random fluctuations in the propagation speed (on the right) are
generated by random Fourier series. The correlation length is comparable
to the central wavelength (for maximum wave-medium interaction) and
the standard deviation is about 3%.
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Passive traces (array data)

All sources emit the same pulse at the same time instant. Locating the
sources using the array data is the passive array imaging problem.
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Active traces (array data)

Note that multiple scattering arrivals are invisible in the random medium.
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Kirchhoff or travel time migration

Assume that the background velocity is known. Denote the deterministic

background Green’s function by Ĝ0(x, y,ω) = eiωτ(x,y)

4π|x−y| . We can use the

following imaging functional for the reflectivity ρ(yS):

IKM(yS) =
∑
xs,xr

P(xr, xs, τ(xs, y
S) + τ(yS, xr))

Here τ(x, y) = |x − y|/c0 is the travel time from x to y when the speed
of propagation is c0.
This does not work in clutter because the deterministic travel time
cannot deal with the delay spread in the traces. The delay spread is due
to the scattering from the random inhomogeneities.
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Incoherent Interferometry

Delay spread manifests itself in the frequency domain as random phases.
To avoid this random phase problems in Kirchhoff migration imaging we
mimic physical time reversal by computing cross-correlations of data
traces, the interferograms, and summing

IINT (yS) =
∑

xr,xr′

P(xr, ·) ∗t P(xr′ , −·)|τ(xr,yS)−τ(xr′ ,y
S)

The interferograms are given by

P(xr, ·) ∗t P(xr′ , −·)(t) =

∫∞
−∞ P(xr, s)P(xr′ , s− t)ds

Here we consider for simplicity the source imaging problem.
Arrival time information is lost since only travel time differences are
relevant. So this imaging functional has poor range resolution.
However, its cross range resolution is relatively stable in random media.
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Incoherent interferometry II

In the frequency domain we have

IINT (yS) =

∫
dω

∣∣∣∣∣∑
xr

P̂(xr,ω)e−iωτ(xr,y
S)

∣∣∣∣∣
2

This is almost Matched Field Imaging

IMF(yS) =

∫
dω

∣∣∣∣∣∑
xr

P̂(xr,ω)Ĝ0(xr, y
S,ω)

∣∣∣∣∣
2

, Ĝ0(x, y,ω) =
eiωτ(x,y)

4π|x − y|

that is widely used in sonar and elsewhere in more general situations
(waveguides, enclosures, etc) with a suitable Ĝ0.
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Decoherence distance Xd and decoherence frequency Ωd

The trace cross-correlation

P(xr, ·) ∗t P(xr′ , −·)(t)

does not have a peak if |xr − xr′ | > Xd.

The phases of P̂(xr,ω1) and P̂(xr,ω2) decorrelate when
|ω1 −ω2| > Ωd.

Both Xd and Ωd can be ESTIMATED from the array data directly.
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Coherent interferometric imaging

To combine good random phase cancellation, which KM does not have
but matched field methods have, with exploitation of residual coherence
we use the Coherent Interferometric imaging functional:

ICINT (yS;Xd,Ωd) =

∫ ∫
|ω1−ω2|6Ωd

dω1dω2

∑∑
|xr−x′

r|6Xd

P̂(xr,ω1)P̂(x ′r,ω2)e
−i(ω1τ(xr,y

S)−ω2τ(x
′
r,y
S))

If we take Xd = a and Ωd = B, which means that there is no smoothing,
then the CINT functional is just the Kirchhoff migration functional
squared: ICINT = (IKM)2. The case Ωd = 0, suitably interpreted, is
incoherent interferometry.
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Adaptive Selection of Xd and Ωd

For CINT to be effective we need to be able to determine the
decoherence length and frequency adaptively. We do this by minimizing
the bounded variation norm of the (random) functional ICINT

{X∗d,Ω∗d} = argminXd,Ωd ||ICINT (·;Xd,Ωd)||BV

where

||f||BV =

∫
|f(y)|dy + α

∫
|∇f(y)|dy

The bounded variation norm is used because it is smoothing on small
scales but is respectful of large scale features (discontinuities). The
smoothing is limited by the L1 norm. Other sparsity-type norms can be
used, such as entropy norms.
The parameter α is chosen so that the two terms in the BV norm balance.
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What about denoising the data first and then migrating?

The array data P, not the image, could be denoised by minimizing

α||P −Q||PROX + ||Q||REG

over Q. This is an expensive calculation for large array data sets.
The denoising can also be done by harmonic analysis methods:
decompose the data P in some well chosen basis (ridgelets?), threshold
the Fourier coefficients below some level and reconstruct to get the
denoised data Q.
After the denoising one can do Kirchhoff migration with Q as array data.
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Coherent interferometric imaging results

Passive Array

Active Array

Coherent Interferometry images in random media with s = 3%.
Left Figures: Xd = a, Ωd = B (Kirchhoff Migration, no smoothing)
Middle Figures: Xd = X∗d, Ωd = Ω∗d (Adaptively selected optimal
smoothing)
Right Figures: Xd < X

∗
d, Ωd < Ω

∗
d (Too much smoothing)
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Comments on the CINT results

• Without smoothing there is no statistical stability of the image:
Different realizations of the random medium give different images.
Smoothing, especially in frequency, gives stable but blurred images.

• Statistical stability of the image is very important because it allows
further processing with deblurring methods. We have used Level Set
Deblurring methods successfully, provided that we have a good
estimate of the amount of blurring.

• The optimal decoherence frequency Ω∗d is not known and it is
determined adaptively, as explained above. So is the decoherence
distance X∗d.
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Resolution theory for specific models

A resolution theory can be developed based on several assumptions about
the random medium and the propagation regime.
Such assumptions are NOT used in the numerical simulations.

• With the paraxial approximation, the white noise limit, and a high
frequency expansion we reduce all theoretical calculations to the use
of one relatively simple formula obtained from the random
Schrödinger equation: a second order moment formula.

• One other regime where analytical results can be obtained: Layered
media. In no other regime do we have, or expect, analytical results.
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Summary: Resolution limits

Determin Known Rand (TR) Unknown Rand (CINT)

Range
c0

B

c0

B

c0

Ωd

Cross Range
c0L

ωa

c0L

ωae
∼ Xd

c0L

ωXd
∼ ae

Resolution limits in deterministic media and in random media, when the
random medium is known as in physical time reversal, and when the
random medium is not known as in coherent interferometry.
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Role of coherence in array imaging

Coherence is essential in array imaging. A more physical, and more
conventional, way to measure coherence is through the transport mean
free path l?. In the regime where waves energy propagates by diffusion,
the diffusion coefficient is given by

D =
c0l

?

3
.

If the transport mean free path l? is small compared to the range L of
the object to be imaged then migration methods, including CINT, will
not work. In our numerical simulations l? is of the order of L, which is
the regime where we expect CINT to be effective.
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Optimal illumination and waveform design

Optimal illumination in array imaging is up to now aimed at
DETECTION. That is, if f̂(~xs,ω) is the signal in the frequency domain
that is emitted at ~xs then the signal received at ~xr is given by

Ns∑
s=1

Π̂(~xr,~xs,ω)f̂(~xs,ω).

The total power received at the array is given by

P =

∫
|ω−ω0|6B

dω

Nr∑
r=1

∣∣∣∣∣
Ns∑
s=1

Π̂(~xr,~xs,ω)f̂(~xs,ω)

∣∣∣∣∣
2

.

We want to maximize this functional over all illumination signals f̂(~xs,ω)
with the normalization∫

|ω−ω0|6B
dω

Ns∑
s=1

∣∣∣f̂(~xs,ω)
∣∣∣2 = 1
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Optimal illumination and waveform design

In general, Optimal Illumination for Detection (SVD) produces images
with bad resolution.
Just like in Adaptive Coherent Interferometry we can, however, introduce
an optimal illumination objective that is tied to the resolution of the
image itself.
We now show the results of numerical simulations using this approach to
optimal illumination.
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Optimal Illumination, Random Medium
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Left: Image; Center: Illumination Weights; Right: Probing Pulse.
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Optimal Illumination, Deterministic Medium
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Left: Image; Center: Illumination Weights; Right: Probing Pulse
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The algorithm

We compute first the weighted average of the migrated traces

m̂(~xr,~y
S,ω) =

Ns∑
s=1

wsf̂B(ω−ω0)Π̂(~xr,~xs,ω)e−iω[τ(~xr,~yS)+τ(~xs,~y
S)].

We then cross correlate these migrated traces

ICINT(~yS; w, f̂) =

∫
|ω−ω0|6B

dω

∫
|ω ′ −ω0| 6 B

|ω ′ −ω| 6 Ωd

dω ′

Nr∑
r=1

Nr∑
r ′ = 1

|~xr − ~x ′r| 6
2c0

(ω+ω′)κd

m̂(~xr,~y
S,ω)m̂(~xr′ ,~yS,ω ′),

where w = (w1, ...,wNs).
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The algorithm continued

We determine w and f̂ by minimizing an objective function O(w, f̂) that
quantifies the quality of the image. We take it to be the L1 norm. We
then determine the weights w = (w1, . . . ,wNs) and the waveform f̂(ω)
as minimizers of O(w, f̂), subject to the following constraints.
The weights should be nonnegative and sum to one

Ns∑
s=1

ws = 1, ws > 0, s = 1, . . . ,Ns.

The support of f̂(ω) = f̂B(ω−ω0) is restricted to the fixed frequency
band [ω0 − B,ω0 + B], we ask that

f̂B(ω−ω0) > 0, for all ω ∈ [ω0 − B,ω0 + B]

and its integral is one.
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Optimal subspace selection and CINT

Another way to introduce an optimization process using the SVD is by
subspace selection. Let

D
[
Π̂(ω);ω

]
=

p∑
j=1

σj(ω)dj(ω)uj(ω)v∗j (ω)

a subspace selector with weights {dj(ω)}. Now let

m(~xr,~xs, y
S,ω;d) = D

[
Π̂(ω);ω

]
rs
e−iω(τ(~xr,y

S)+τ(~xs,y
S))

The CINT imaging functional to be optimized is:

ICINT (yS;d) =

∫ ∫
|ω−ω′|6Ωd

dωdω ′
∑

|~xr−~xr′ |6Xd

∑
|~xs−~xs′ |6Xd

m(~xr,~xs, y
S,ω;d)m(~x ′r,~x

′
s, y

S,ω;d)
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Summary of CINT and Imaging in Random Media

• Coherent interferometry, which is the back propagation of local
cross-correlations of traces, deals well with partial loss of coherence
in cluttered environments.

• Adaptive estimation of the space-frequency decoherence addresses
well the issue of learning the unknown environment.

• The key parameters Ωd and Xd, which characterize the clutter, play
a triple role: they are thresholding parameters for CINT, they
determine its resolution, and characterize the coherence of the data.
Theory and implementation issues merge.

• In Optimal Subspace and Illumination selection is computationally
intensive but makes a huge difference.
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Concluding remarks

Imaging in its many forms is at the center of modern applied
mathematics.

• It is naturally interdisciplinary

• It is profoundly mathematical

• It has to deal with large data sets

• It has to deal with statistical issues

• It has to deal with optimization issues
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Background references

1. 3D Seismic Imaging, B.L. Biondi, no 14 in Investigations in
Geophysics (Tulsa: Society of Exploration Geophysics). Recent book
on basic seismic imaging with detailed treatment of velocity analysis

2. Mathematics of Multidimensional Seismic Imaging, Migration, and
Inversion, Bleistein N, Cohen J K and Stockwell J W Jr, Springer,
2001. Mathematical treatment of migration imaging

3. Wave propagation and time reversal in randomly layered media,
Fouque, Garnier, Papanicolaou and Solna, Springer, 2007. The first
five chapters cover basic wave propagation in layered media.
Chapter 6 is a self-contained treatment of asymptotics for stochastic
equations as it is used in the rest of the book. Chapter 7 is a basic,
mathematical treatment of waves in one-dimensional random media
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Background references continued

4 Wave propagation and scattering in the heterogeneous Earth, Sato
H and Fehler M 1998 (New York: Springer-Verlag). The use of
radiative transport in seismology

5 Transport equations for elastic and other waves in random media,
Ryzhik L V, Papanicolaou G C and Keller J B, 1996, Wave Motion,
vol 24, 327-370. A more mathematical treatment of topics found in
the previous reference

6 Imaging the Earth’s interior, Claerbout J F, 1985, (Palo Alto:
Blackwell Scientific Publications). Introduction to migration imaging
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References for the lectures

1. Theory and applications of time reversal and interferometric
imaging, Borcea, Papanicolaou and Tsogka, Inverse Problems, vol
19, (2003), pp. 5139-5164. Contains details of many basic
resolution calculations

2. Statistical stability in time reversal, Papanicolaou, Ryzhik and Solna,
SIAM J. on Appl. Math., 64 (2004), pp. 1133-1155. Contains basic
theory for statistical stability in random media

3. Self-averaging from lateral diversity in the Ito-Schroedinger
equation, George Papanicolaou, Leonid Ryzhik and Knut Solna,
SIAM Journal on Multiscale Modeling and Simulation, vol 6, (2007),
pp. 468-492. Essentially a continuation of the previous paper

4. Imaging and time reversal in random media, Liliana Borcea,
Chrysoula Tsogka, G. Papanicolaou and James Berryman, Inverse
Problems, 18 (2002), pp. 1247–1279. Use of SVD in imaging
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More references

5 Edge illumination and imaging of extended reflectors, Liliana Borcea,
George Papanicolaou and Fernando Guevara Vasquez, SIAM Journal
on Imaging Sciences, vol 1 (2008), pp. 75-114. Use of SVD in edge
illumination and imaging

6 Passive Sensor Imaging Using Cross Correlations of Noisy Signals in
a Scattering Medium, Josselin Garnier and George Papanicolaou,
SIAM Journal on Imaging Sciences, vol 2 (2009), pp. 396-437.
Imaging with noise

7 Stable iterative reconstruction algorithm for nonlinear travel time
tomography Berryman J, 1990, Inverse Problems, vol 6, 21-42.
Basic reference for travel time tomography

8 Adaptive interferometric imaging in clutter and optimal illumination
Borcea, Papanicolaou, and Tsogka, 2006, Inverse Problems, vol 22,
1405-1436. Paper on which Lectures IX and X are based, plus
Tsogka’s lectures

9 Optimal illumination and waveform design for imaging in random
media Borcea, Papanicolaou, and Tsogka, 2007, J. Acoust. Soc.
Am., vol 122, 3507-3518. Same as previous reference
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References for noise cross correlation methods

1. Surface wave tomography from microseisms in Southern California,
Sabra K G, Gerstoft P, Roux P, and Kuperman W, 2005, Geophys.
Res. Lett., vol 32, L14311

2. Interferometric daylight seismic imaging, Schuster G T, Yu J, Sheng
J and Rickett J, 2004, Geophysical Journal International, vol 157,
832-852

3. Velocity inversion by differential semblance optimization, Symes W
W and Carazzone J J, 1991, Geophysics, vol 56, 654-663

4. Green’s function representations for seismic interferometry,
Wapenaar K and Fokkema J, 2006, Geophysics, vol 71, SI33-SI46
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References for cross correlations continued

5 Surface-wave array tomography in SE Tibet from ambient seismic
noise and two-station analysis I. Phase velocity maps, Yao H, van
der Hilst R D, and de Hoop M V, 2006, Geophysical Journal
International, vol 166, 732-744

6 Ambient noise cross correlation in free space: Theoretical approach,
Roux P, Sabra K G, Kuperman W A, and Roux, A 2005, J. Acoust.
Soc. Am., 117, 79-84

7 Acoustic daylight imaging via spectral factorization: Helioseismology
and reservoir monitoring, Rickett J and Claerbout J, 1999, The
Leading Edge, vol 18, 957-960

8 Correlation of random wave fields: an interdisciplinary review, Larose
E, Margerin L, Derode A, Van Tiggelen B, Campillo M, Shapiro N,
Paul A, Stehly L, and Tanter M, 2006, Geophysics, vol 71, SI11-SI21

9 Seismic interferometry - turning noise into signal, Curtis A, Gerstoft
P, Sato H, Snieder R, and Wapenaar K, 2006, The Leading Edge,
vol 25, 1082-1092
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