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Chapter 5

Applications of Integration



CHAPTER 5. APPLICATIONS OF INTEGRATION

5.2 Volumes

Section Objective(s):

• Use integrals to find the volume of a 3D solid

• Identify whether to use the disk, washer, or another method to find volume

Example 5.2.1. Let R be the region bounded by y = x2, x = 1, and the x-axis. Find the area of R by

integrating

(a) with respect to x.

(b) with respect to y.
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5.2. VOLUMES

Example 5.2.2. Let R be the region bounded by y = x2, x = 1, and the x-axis. Find the volume of the solid

generated when R is rotated around the x-axis.

Definition(s) 5.2.3. Let S be a solid that lies between x = a and x = b. If the cross-sectional area of S

in the plane Px, through x and perpendicular to the x-axis, is A(x), where A is a continuous function,

then the volume of S is

V = lim
n→∞

n∑
i=1

A(x∗i )∆x =

∫ b

a

A(x)dx
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CHAPTER 5. APPLICATIONS OF INTEGRATION

Definition(s) 5.2.4. The solid in the previous example is called a solid of revolution

because it is obtained by revolving a region about a line.

Theorem 5.2.5. In general we can calculate the volume of a solid of revolution by using the basic defining

formula

V =

∫ b

a

A(x) dx or V =

∫ c

c

A(y) dy

and we find the cross-sectional area A(x) or A(y) in one of the following ways:

• If the cross-section is a disk, we find the radius of the disk(in terms of x or y) and use

A = π(radius)2

• If the cross-section is a washer, we find the inner radius rin and outer radius rout from a sketch and

compute the area of the washer by subtracting the area of the inner disk from the area of the outer

disk:

A = π(rout)
2 − π(rin)2

Example 5.2.6. Let R be the region bounded by y = x2, x = 1, and the x-axis. Find the volume of the solid

generated when R is rotated around the y-axis.
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5.2. VOLUMES

Example 5.2.7. Find the volume of the solid obtained by rotating the region bounded by y =
√
x, x = 0,

y = 2, and x = 1 about the line y = 3. Draw a picture of the volume you are finding.

Example 5.2.8. Consider the region of the xy-plane bounded by y = 0, x = 0 and y = 1 − x. Find the

volume of the solid generated by revolving this region about the line x = 2.
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CHAPTER 5. APPLICATIONS OF INTEGRATION

Example 5.2.9. Consider the solid with triangular base formed by y = x/2, y = 0 and x = 4, for which

parallel cross-sections perpendicular to the base and x-axis are squares. Find the volume of such a solid

(shown below).

x

y

z

Example 5.2.10. Find the volume of the solid whose base B is the region bounded by the parabola y = x2

and y = 1 and whose cross sections perpendicular to the y-axis are equilateral triangles.

x
y

z
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5.4. WORK

5.4 Work

Section Objective(s):

• Use integrals to find work

• Determine the equation for force in a given situation

Definition(s) 5.4.1. We define the work done in moving an object from a to b as:

W = lim
n→∞

n∑
i=1

f(x∗i )∆x =

∫ b

a

f(x)dx

Example 5.4.2. When a particle is located a distance x feet from the origin, a force of x2 + 2x pounds acts

on it. How much work is done in moving it from x = 1 to x = 3?
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CHAPTER 5. APPLICATIONS OF INTEGRATION

Example 5.4.3. A 10 ft cable weighing 50 lbs and a bucket of water weighing 60 lbs is hanging down in a

well. How much work must be done to lift bucket and cable to the top of the well?

Definition(s) 5.4.4. Hooke’s Law states that the force required to maintain a spring

stretched x units beyond its natural length is proportional to x. That is: f(x) = kx where k

is a positive constant.

Example 5.4.5. A force of 40 N is required to hold a spring that has been stretched from its natural length of

10 cm to a length of 15 cm. How much work is done in stretching the spring from 14 cm to 16 cm?
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5.4. WORK

Example 5.4.6. A tank has the shape of an inverted circular cone with height 10 m and base radius 4 m. It is

filled with oil weighing 30 pounds per cubic foot to a height of 8 m. Find the work required to empty the tank

by pumping all of the oil to the top of the tank.

Theorem 5.4.7. If σ is the density of the liquid, d(y) is the distance to the where the liquid is being

pumped, A(y) is the area of a cross selection of liquid perpendicular to the y-axis and the liquid exists

between y = a and y = b then

Work =

∫ b

a

σ · A(y) · d(y) dy
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CHAPTER 5. APPLICATIONS OF INTEGRATION

Example 5.4.8. A tank has the shape of an inverted right rectangular cone with height 8 m and base rectangle

4m × 4m shown below. It is filled with oil weighing 20 N/m3. Find the work required to pump the oil to a

spot 3 meters above the tank.

4 m 4 m
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Chapter 6

Inverse Functions:

Exponential, Logarithmic, and Inverse Trigonometric Functions



CHAPTER 6. INVERSE FUNCTIONS:

Forest for the Trees
Months from now you will look back and long for the simpler times of Chapter 6. In Chapter 6 we add a few
more functions to our calculus tool kit including how to differentiate and integrate functions related to:

• Exponentials, Logarithms, Inverse Trigonometrics, and Hyperbolics

In addition, we will learn how to differentiate in style by using a technique called logarithmic differentiation.
We will also study how to defeat more interesting limits using L’Hospital’s Rule. By the end of Chapter 6 you
will be able to solve problems such as:

Example: Find the derivatives of:

(a) f(x) = lnx+ log5 x (b) g(x) = ex + 2x

(c) h(x) = (2x)3x (d) h(x) = sin−1(x) + tanh(x)

Example: Bill Bourbon was murdered in Savannah sometime last night. The temperature outside has been a
constant 65◦ F. At 9AM Bill’s body temperature was 82◦ F and at 10AM his temperature was 80◦ F. Nathaniel
Nutmeg was seen at the bar from 9PM-2AM last night. Could he have committed the murder? (Assume
initial body temperature was 98.6◦ F.)

Example: Evaluate the following limits:

(a) lim
x→0+

(
1

sinx
− 1

x

)
(b) lim

x→0+
(2x)3x

(c) lim
x→0+

(
3

x

)5x

(d) lim
x→∞

(
1 +

2

x

)x

6.1

6.2

6.3

6.4

6.5 9.3

6.6

6.8

6.7>

>

>

>

>

>
>

>

> <

MTH 132

Chapter 6 Map
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6.1. INVERSE FUNCTIONS

6.1 Inverse Functions

Section Objective(s):

• Find the inverse of a function

• Evaluate the derivative of the inverse of a given function

Definition(s) 6.1.1. A function f is called a one-to-one function if it never takes

on the same value twice; that is,

f(x1) 6= f(x2) whenever x1 6= x2

Remark 6.1.2. Horizontal Line Test : A function is one-to-one if and only if no

horizontal line intersects its graph more than once

Definition(s) 6.1.3. Let f be a one-to-one function with domain A and range B. Then its

inverse function f−1 has domain B and range A and is defined by

f−1(y) = x ⇐⇒ f(x) = y

for any y in B.

Remark 6.1.4. Note that:

domain of f−1 = range of f

range of f−1 = domain of f
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CHAPTER 6. INVERSE FUNCTIONS:

Definition(s) 6.1.5. Cancellation equations:

f−1(f(x)) = x for every x in A

f(f−1(x)) = x for every x in B

Theorem 6.1.6. How to Find the Inverse Function of a One-to-One Function f :

Step 1 Write y = f(x).

Step 2 Solve this equation for x in terms of y (if possible).

Step 3 To express f−1 as a function of x, interchange x and y . The resulting

equation is y = f−1(x) .

Example 6.1.7. Find the inverse function of f(x) = x3 + 2.

Remark 6.1.8. The graph of f−1 is obtained by reflecting the fraph of f about the line y = x.
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6.1. INVERSE FUNCTIONS

Theorem 6.1.9. If f is a one-to-one continuous function defined on an interval, then its inverse function

f−1 is also continuous .

Theorem 6.1.10. If f is a one-to-one differentiable function with inverse function f−1 and

f
′
(f−1(a)) 6= 0 , then the inverse function is differentiable at a and

(f−1)
′
(a) =

1

f ′(f−1(a))

save some room here to explain why f ′(f−1(a)) 6= 0 is a reasonable condition.

Use graph and reflect over y = x

Example 6.1.11. If f(x) = x3 + 2, find (f−1)
′
(3).
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CHAPTER 6. INVERSE FUNCTIONS:

Example 6.1.12. Consider the function f(x) =
4x+ 1

2x+ 3

(a) Find the inverse of f

(b) Find (f−1)′(1/3)
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6.2. THE NATURAL LOGARITHMIC FUNCTION

6.2 The Natural Logarithmic Function

Section Objective(s):

• Identify properties of the natural logarithmic function.

• Explore the process of logarithmic differentiation

Definition(s) 6.2.1. The natural logarithmic function is the function

defined by

lnx =

∫ x

1

1

t
dt x > 0

Theorem 6.2.2. Laws of Logarithms If x and y are positive numbers and r is a rational number, then

(a) ln(xy) = ln x+ ln y

(b) ln

(
x

y

)
= lnx− ln y

(c) ln(xr) = r lnx

Example 6.2.3. Express ln(3) + 4 ln(4x) as a single logarithm.
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CHAPTER 6. INVERSE FUNCTIONS:

Remark 6.2.4.
d

dx
(lnx) =

1

x

Definition(s) 6.2.5. e is the number such that ln e = 1 .

Remark 6.2.6. In general, if we combine Remark 6.2.2 with the Chain Rule, we get

d

dx
[ln g(x)] =

g
′
(x)

g(x)

Example 6.2.7. Find the derivative d

dx
ln(sin(3x2)).
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6.2. THE NATURAL LOGARITHMIC FUNCTION

Remark 6.2.8.
d

dx
(ln |x|) =

1

x

∫
1

x
dx = ln |x|+ C∫

tan x dx = ln | secx|+ C

Theorem 6.2.9. Steps in Logarithmic Differentiation

1. Take natural logarithms of both sides of an equation y = f(x) and use the

Laws of Logarithms to simplify.

2. Differentiate implicitly with respect to x .

3. Solve the resulting equation for y′ .
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CHAPTER 6. INVERSE FUNCTIONS:

Example 6.2.10. Compute the derivative for the following function: y =
(sin2 x)(x+ 3)4

(5x− 8)10
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6.2. THE NATURAL LOGARITHMIC FUNCTION

Example 6.2.11. Find the derivative of y = t2 + 3 ln(5 ln(t))

Example 6.2.12. Evaluate the integral
∫ 10

9

1

t ln t
dt
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CHAPTER 6. INVERSE FUNCTIONS:

6.3 The Natural Exponential Function

Section Objective(s):

• Identify properties of the natural exponential function.

• Practice differentiation/integration of the natural exponential function.

Definition(s) 6.3.1. The inverse of the natural logarithmic function

is the denoted by exp(x) . We define

ex = exp(x)

ex = y ⇐⇒ ln y = x

Cancellation equations:

elnx = x x > 0 and ln(ex) = x for all x

Example 6.3.2. Solve the equation 2e2−x = 30.
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6.3. THE NATURAL EXPONENTIAL FUNCTION

Theorem 6.3.3. Properties of the Natural Exponential Function The exponential function

f(x) = ex is an increasing continuous function with domain R and range (0,∞). Thus ex > 0

for all x. Also

lim
x→−∞

ex = 0 lim
x→∞

ex =∞

So the x-axis is a horizontal asymptote of f(x) = ex.

Definition(s) 6.3.4. Laws of Exponents If x and y are real numbers and r is rational, then

(a) ex+y = exey

(b) ex−y =
ex

ey

(c) (ex)r = erx
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CHAPTER 6. INVERSE FUNCTIONS:

Remark 6.3.5. The natural exponential function has the remarkable property that it is its own derivative.

d

dx
(ex) = ex

In general, if we combine this with the Chain Rule, we get

d

dx
(eu) = eu

du

dx

Example 6.3.6. Evaluate the derivative d

dx
esin(3x).

Example 6.3.7.
∫
ex dx
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6.3. THE NATURAL EXPONENTIAL FUNCTION

Example 6.3.8. Find the equation of the tangent line to the curve y =
4e−x

x2
at (−2, e2).

Example 6.3.9. Evaluate the integral
∫

4ex
√

3 + ex dx
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CHAPTER 6. INVERSE FUNCTIONS:

6.4 General Logarithmic and Exponential Functions

Section Objective(s):

• Explore the properties and calculus of general exponential functions.

• Explore the properties of the general logarithmic function.

Definition(s) 6.4.1. We define

ax = ex ln a

Theorem 6.4.2. The general Laws of Exponents follow from this together with

the laws for ex. If x and y are real numbers and a, b > 0, then

(a) ax+y = axay

(b) ax−y = ax/ay

(c) (ar)x = arx

(d) (ab)x = axbx

Theorem 6.4.3.

(a)
d

dx
(ax) = ax ln a

(b)
∫
axdx =

ax

ln a
+ C when a 6= 1
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6.4. GENERAL LOGARITHMIC AND EXPONENTIAL FUNCTIONS

Example 6.4.4. Evaluate
∫

4−xdx.

Theorem 6.4.5. The Power Rule If n is any real number and f(x) = xn, then

f
′
(x) = nxn−1

Definition(s) 6.4.6. If a > 0 and a 6= 1, then f(x) = ax is a one-to-one function. Its inverse function

is called the logarithmic function with base a and is denoted by loga . Thus

loga x = y ⇐⇒ ay = x

Remark 6.4.7. Change of Base Formula For any positive number a with a 6= 1, we have

loga x =
lnx

ln a

Example 6.4.8. Evaluate the following: log8 256
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CHAPTER 6. INVERSE FUNCTIONS:

Theorem 6.4.9. d

dx
(loga x) =

1

x ln a

Example 6.4.10. Use logarithmic differentiation to find dy/dx for y = (1 + x)1/x
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6.4. GENERAL LOGARITHMIC AND EXPONENTIAL FUNCTIONS

Example 6.4.11. Find the derivative of

(a) y = 4x + x4

(b) f(x) = 3sin(2x)

(c) g(x) = (2x)3x for x > 0
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CHAPTER 6. INVERSE FUNCTIONS:

Example 6.4.12. Evaluate the integrals

(a)
∫
x5x

2

dx

(b)
∫

2sin θ cos θ dθ
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6.5. EXPONENTIAL GROWTH AND DECAY

6.5 Exponential Growth and Decay

Section Objective(s):

• Explore different applications of exponential functions.

• Recognize exponentials are the solutions to certain differential equations.

Theorem 6.5.1. The only solutions of the differential equation dy/dt = ky are the expo-

nential functions

y(t) = y(0)ekt

Definition(s) 6.5.2. In the context of population growth, where P (t) is the size of a population at time t,

we can write
dP

dt
= kP or

1

P

dP

dt
= k

This k is the growth rate divided by the population size; it is called the relative growth rate. If the

population at time 0 is P0, then the expression for the population is

P (t) = P0e
kt

Example 6.5.3. The number of cases of a disease is reduced by 20% each year. If there are 10,000 cases
today, how long will it take to reduce the number to 1000?
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CHAPTER 6. INVERSE FUNCTIONS:

Definition(s) 6.5.4. Radioactive substances decay by spontaneously emitting radiation. Ifm(t) is the

mass remaining from an initial massm0 of the substance after time t

dm

dt
= km

where k is a negative constant. The mass decays exponentially:

m(t) = m0e
kt

Example 6.5.5. ElementX is radioactive. 7 days ago my sample of elementX weighed 100 grams but today
it only weighs 90 grams. How many days until it weighs 45 grams?

Definition(s) 6.5.6. Physicists express the rate of decay in terms of half-life, the time required for half

of any given quantity to decay. This can be found by

half-life = − ln 2

k
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6.5. EXPONENTIAL GROWTH AND DECAY

Definition(s) 6.5.7. Newton’s Law of Cooling states that the rate of cooling of an object is proportional

to the temperature difference between the object and its surroundings. If we let T (t) be the temperature

of the object at time t and Ts be the temperature of the surroundings, then

dT

dt
= −k(T − Ts)

where k is a constant. This can be solved to find

T (t) = Ts + (T0 − Ts)e−kt

Example 6.5.8. Bill Bourbon was murdered in Savannah sometime last night. The temperature outside has
been a constant 65◦ F. At 9AM Bill’s body temperature was 82◦ F and at 10AM his temperature was 80◦ F.
Nathaniel Nutmeg was seen at the bar from 9PM-2AM last night. Could he have committed the murder?
(Assume initial body temperature was 98.6◦ F.)
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CHAPTER 6. INVERSE FUNCTIONS:

9.3 Separable Equations

Section Objective(s):

• Apply techniques to solve separable differential equations.

• Recall how to solve initial value problems.

Definition(s) 9.3.1. A separable equation is a first-order differential equation in

which the expression for dy/dx can be written in the form:

dy/dx = f(x)g(y)

Equivalently, if g(y) 6= 0 then we could write it as:

dy/dx = f(x)/h(y)

where h(y) = 1/g(y).

Technique for solving separable differential equations

1. Rewrite the equation in the differential form:

2. Integrate both sides:

3. Solve for y in terms of x (if possible)

Example 9.3.2. Find the general solution of the differential equation 2yy′ − x = 0
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9.3. SEPARABLE EQUATIONS

Example 9.3.3. Solve the initial value problems:

(a) y
dy

dx
− ex = 0, y(0) = 4.

(b) 2x
dy

dx
− lnx2 = 0, y(1) = 2.

(c)
dT

dt
= −k(T − Ts), T (0) = T0 (to verify the formula for Newton’s Law of Cooling)

Page 35



CHAPTER 6. INVERSE FUNCTIONS:

6.6 Inverse Trigonometric Functions

Section Objective(s):

• Define the inverse trigonometric functions

• Understand the calculus of the inverse trigonometric functions

Definition(s) 6.6.1. The inverse sine function , sin−1, has domain [−1, 1] and

range [−π/2, π/2]

sin−1 x = y ⇐⇒ sin y = x and − π

2
≤ y ≤ π

2

The cancellation equations for inverse functions become, in this case,

sin−1(sinx) = x for− π

2
≤ x ≤ π

2

sin(sin−1 x) = x for− 1 ≤ x ≤ 1

and its derivative is given by

d

dx
(sin−1 x) =

1√
1− x2

− 1 < x < 1

Example 6.6.2. Evaluate d

dx
sin−1(ln(3x2))
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6.6. INVERSE TRIGONOMETRIC FUNCTIONS

Definition(s) 6.6.3. The inverse cosine function is handled similarly.

cos−1 x = y ⇐⇒ cos y = x and 0 ≤ y ≤ π

The cancellation equations for inverse functions become, in this case,

cos−1(cosx) = x for 0 ≤ x ≤ π

cos(cos−1 x) = x for− 1 ≤ x ≤ 1

The inverse cosine function, cos−1, has domain [−1, 1] and range [0, π], and its derivative is given by

d

dx
(cos−1 x) = − 1√

1− x2
− 1 < x < 1

Definition(s) 6.6.4. The inverse tangent function is defined

tan−1 x = y ⇐⇒ tan y = x and − π

2
< y <

π

2

The lines y = π/2 and y = −π/2 are horizontal asymptotes of the graph of tan−1.

lim
x→∞

tan−1 x =
π

2
lim

x→−∞
tan−1 x = −π

2

Its derivative is given by
d

dx
(tan−1 x) =

1

1 + x2
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CHAPTER 6. INVERSE FUNCTIONS:

Remark 6.6.5. Pictures of graphs and derivatives
sin−1 x cos−1 x tan−1 x

(sin−1 x)′ (cos−1 x)′ (tan−1 x)′

Example 6.6.6. Evaluate d

dx
cos−1(5x)

Example 6.6.7. Evaluate
∫

3

(2x)2 + 1
dx
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6.6. INVERSE TRIGONOMETRIC FUNCTIONS

Theorem 6.6.8. The remaining inverse trigonometric functions are not used as frequently and are

summarized here.

y = csc−1(x) (|x| ≥ 1) ⇐⇒ csc(y)= x and y ∈ (0, π/2] ∪ (π, 3π/2]

y = sec−1(x) (|x| ≥ 1) ⇐⇒ sec(y)= x and y ∈ (0, π/2] ∪ (π, 3π/2]

y = cot−1(x) (x ∈ R) ⇐⇒ cot(y) = x and y ∈ (0, π)

Theorem 6.6.9. Table of Derivatives of Inverse Trigonometric Functions

d

dx
(sin−1 x) =

1√
1− x2

d

dx
(csc−1 x) = − 1

x
√

1− x2

d

dx
(cos−1 x) = − 1√

1− x2
d

dx
(sec−1 x) =

1

x
√

1− x2

d

dx
(tan−1 x) =

1

1 + x2
d

dx
(cot−1 x) = − 1

1 + x2

Theorem 6.6.10.

∫
1√

1− x2
dx = sin−1 x+ C

∫
1

x2 + 1
dx = tan−1 x+ C

Example 6.6.11.
∫

1

x2 + a2
dx

1

a
tan−1

(x
a

)
+ C
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CHAPTER 6. INVERSE FUNCTIONS:

Example 6.6.12. Evaluate:
∫

dx

x2 + 2x+ 5
. (Hint: complete the square)

Example 6.6.13. Evaluate:
∫

x+ 1

1 + x2
dx.
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6.7. HYPERBOLIC FUNCTIONS

6.7 Hyperbolic Functions

Section Objective(s):

• Introduce and define the hyperbolic functions

• Examine the properties of the hyperbolic functions

Definition(s) 6.7.1. Definition of the Hyperbolic Functions

sinh(x) =
ex − e−x

2
csch(x) =

1

sinhx

cosh(x) =
ex + e−x

2
sech(x) =

1

coshx

tanh(x) =
sinhx

coshx
coth(x) =

coshx

sinhx

Remark 6.7.2. Graphs of hyperbolic sine and cosine

sinhx coshx
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CHAPTER 6. INVERSE FUNCTIONS:

Theorem 6.7.3. Hyperbolic Identities

sinh(−x) = − sinhx cosh(−x) = cosh x

cosh2 x− sinh2 x = 1 1− tanh2 x = sech2x

Remark 6.7.4. the relations between sinh t and sin t, cosh t and cos t.

Theorem 6.7.5. Table of Derivatives of Inverse Trigonometric Functions

d

dx
(sinhx) = cosh x

d

dx
(cschx) = −cschx cothx

d

dx
(coshx) = sinh x

d

dx
(sechx) = −sechx tanhx

d

dx
(tanhx) = sech2x

d

dx
(cothx) = −csch2x
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6.7. HYPERBOLIC FUNCTIONS

Example 6.7.6. Evaluate the following derivatives:

(a)
d

dx
tanh(

√
1 + x2)

(b)
d

dθ
sinh(ln(cosh θ))

Example 6.7.7. Evaluate the limit: lim
x→∞

sinh(2x)

cosh(3x)
.
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CHAPTER 6. INVERSE FUNCTIONS:

Example 6.7.8. Evaluate the following integrals:

(a)
∫

sinh(3x+ 1) dx

(b)
∫

tanh(4x) dx

(c)
∫ 1

0

t3(cosh2(5t)− sinh2(5t)) dt
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6.8. INDETERMINATE FORMS AND L’HOSPITAL’S RULE

6.8 Indeterminate Forms and L’Hospital’s Rule

Section Objective(s):

• Explore indeterminate forms of limits

• Understand and apply L’Hospital’s Rule

Definition(s) 6.8.1. If we have a limit of the form

lim
x→a

f(x)

g(x)

where both f(x) → 0 and g(x) → 0 as x → a, then the limit may or may not exist and is called an

indeterminate form of type 0

0
.

If we have a limit of the form

lim
x→a

f(x)

g(x)

where both f(x)→∞(or −∞) and g(x)→∞(or −∞) as x→ a, then the limit may or may not exist

and is called an indeterminate form of type ∞
∞

.

Theorem 6.8.2. L’Hospital’s Rule Suppose f and g are differentiable and and g′(x) 6= 0 on an open
interval I that contains a (except possibly at a). Suppose that

lim
x→a

f(x)= 0 and lim
x→a

g(x)= 0

or that

lim
x→a

f(x) = ±∞ and lim
x→a

g(x)= ±∞

(In other words, we have an indeterminate form of type
0

0
or
∞
∞

.) Then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)

if the limit on the right side exists (or is∞ or −∞).
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CHAPTER 6. INVERSE FUNCTIONS:

Example 6.8.3. Use L’Hospital’s Rule to calculate lim
x→∞

lnx√
x

Remark 6.8.4. There are additional indeterminate forms such as:

0 · ∞ ∞−∞ 00

∞0 1∞

We will demonstrate how to utilize L’Hospital’s Rule to solve these.

Calculus 1 Theorem: if f(x) is continuous then:

lim
x→a

f(g(x)) = f
(

lim
x→a

g(x)
)

if the limit exists.
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6.8. INDETERMINATE FORMS AND L’HOSPITAL’S RULE

Example 6.8.5. Use L’Hospital’s Rule to calculate the following limits:

(a) lim
x→∞

1

x
lnx

(b) lim
x→0+

(
1

sinx
− 1

x

)

(c) lim
x→0+

(2x)3x
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CHAPTER 6. INVERSE FUNCTIONS:

Example 6.8.6. Use L’Hospital’s Rule to calculate the following limits:

(a) lim
x→0+

(
3

x

)5x

(b) lim
x→∞

(
3

x

)5x

(c) lim
x→∞

(
1 +

2

x

)x
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Chapter 7

Techniques of Integration



CHAPTER 7. TECHNIQUES OF INTEGRATION

Forest for the Trees

Chapter 7 is all about integration. We will learn quite a few new tricks such as Integration by Parts,

Trigonometric Substitution, Partial Fractions, and Improper Integrals. In fact we will learn so many

tricks/techniques that it will be hard to keep them all straight. Because of this we will end the Chapter with

7.5, Strategy for Integration, which helps us strategise what we should when we encounter a new integral.

By the end of Chapter 7 you should be able to solve problems such as:

Example : Evaluate
∫ √

4− x2
x2

Example : Evaluate
∫
ex cosh 2x dx

Example : Evaluate
∫ 1

−1

1

x2
dx

7.1 7.2 7.3 7.4

7.5 7.8

> >

> > > >

CH 5/6

Chapter 7 Map
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7.1. INTEGRATION BY PARTS

7.1 Integration by Parts

Section Objective(s):

• Learn the method of integration by parts

• Apply integration by parts to a variety of problems

Theorem 7.1.1. Formula for integration by parts

∫
f(x)g′(x)dx = f(x)g(x)−

∫
g(x)f ′(x)dx

Let u = f(x) and v = g(x). By the Substitution Rule, the formula becomes

∫
udv = uv −

∫
vdu

Remark 7.1.2. We can evaluate definite integrals by parts:

∫ b

a

f(x)g′(x)dx = f(x)g(x)
∣∣∣b
a
−
∫ b

a

g(x)f ′(x)dx
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CHAPTER 7. TECHNIQUES OF INTEGRATION

Example 7.1.3. Evaluate
∫
x cosx dx

Example 7.1.4. Evaluate
∫
x2e3xdx
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7.1. INTEGRATION BY PARTS

Example 7.1.5. Evaluate
∫ 2

1

lnx dx

Example 7.1.6. Evaluate
∫

tan−1(5x) dx
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CHAPTER 7. TECHNIQUES OF INTEGRATION

Example 7.1.7. Evaluate
∫
ex cosh 2x dx
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7.2. TRIGONOMETRIC INTEGRALS

7.2 Trigonometric Integrals

Section Objective(s):

• Identify strategies for integrating certain combinations of trigonometric functions

• Integrate some integrals!

Theorem 7.2.1. Strategy for Evaluating
∫

sinm x cosn x dx

(a) If the power of cosine is odd (n = 2k + 1), save one cosine factor and use cos2 x = 1 − sin2 x to

express the remaining factors in terms of sine:

∫
sinm x cos2k+1 x dx =

∫
sinm x(cos2 x)k cosxdx =

∫
sinm x(1− sin2 x)k cosxdx

Then substitute u = sinx.

(b) If the power of sine is odd (m = 2k + 1), save one sine factor and use sin2 x = 1− cos2 x to express

the remaining factors in terms of cosine:

∫
sin2k+1 x cosn x dx =

∫
(sin2 x)k cosn x sinxdx =

∫
(1− cos2 x)k cosn x sinxdx

Then substitute u = cosx.

Example 7.2.2. Evaluate
∫

sin4 x cos3 x dx
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CHAPTER 7. TECHNIQUES OF INTEGRATION

Theorem 7.2.1 Continued:

(c) If the powers of both sine and cosine are even, use the half-angle identities

sin2 x =
1

2
(1− cos 2x) cos2 x =

1

2
(1 + cos 2x)

It is sometimes helpful to use the identity

sinx cosx =
1

2
sin 2x

Example 7.2.3. Evaluate
∫

sin2 x cos2 xdx
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7.2. TRIGONOMETRIC INTEGRALS

Theorem 7.2.4. Strategy for Evaluating
∫

tanm x secn x dx

(a) If the power of secant is even (n = 2k, k ≥ 2), save a factor of sec2 x and use sec2 x = 1 + tan2 x to

express the remaining factors in terms of tanx:

∫
tanm x sec2k xdx =

∫
tanm x(sec2 x)k−1 sec2 xdx =

∫
tanm x(1 + tan2 x)k−1 sec2 xdx

Then substitute u = tanx.

(b) If the power of tangent is odd (m = 2k + 1), save a factor of secx tanx and use tan2 x = sec2 x− 1

to express the remaining factors in terms of secx:

∫
tan2k+1 x secn xdx =

∫
(tan2 x)k secn−1 x secx tanxdx =

∫
(sec2 x− 1)k secn−1 x secx tanxdx

Then substitute u = secx.

Example 7.2.5. Evaluate
∫

tan4 x sec6 x dx
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CHAPTER 7. TECHNIQUES OF INTEGRATION

Theorem 7.2.6. We will sometimes need to be able to integrate tanx or secx:

•
∫

tanx dx = ln | secx|+ C

•
∫

secx dx = ln | secx+ tanx|+ C

Proof:
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7.2. TRIGONOMETRIC INTEGRALS

Example 7.2.7. Evaluate
∫

tan3 x dx

Example 7.2.8. Evaluate
∫
x sin3 x dx
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CHAPTER 7. TECHNIQUES OF INTEGRATION

Theorem 7.2.9. To evaluate the integrals

(i)
∫

sin(mx) cos(nx) dx,

(ii)
∫

sin(mx) sin(nx) dx,

(iii)
∫

cos(mx) cos(nx) dx,

use the corresponding identities:

(a) sinA cosB =
1

2
[sin(A−B) + sin(A+B)]

(b) sinA sinB =
1

2
[cos(A−B)− cos(A+B)]

(c) cosA cosB =
1

2
[cos(A−B) + cos(A+B)]

Example 7.2.10. Evaluate
∫

sin(2x) cos(3x) dx
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7.3. TRIGONOMETRIC SUBSTITUTION

7.3 Trigonometric Substitution

Section Objective(s):

• Understand the trigonometric substitution technique for integrating certain functions

• Identify integrals problems that can be solved with this technique.

Definition(s) 7.3.1. In general, we can make a substitution of the form x = g(t) by using the Substitution

Rule in reverse. To make our calculations simpler, we assume that g has an inverse function; that is, g is

one-to-one. In this case, if we replace u by x and x by t in the Substitution Rule, we obtain

∫
f(x)dx =

∫
f(g(t))g′(t)dt

This kind of substitution is called inverse substitution.

Theorem 7.3.2. Table of Trigonometric Substitutions

In the following table we list trigonometric substitutions that are effective for the given radical expressions

because of the specified trigonometric identities.

Expression Substitution Identity

√
a2 − x2 x = a sin θ − π

2
≤ θ ≤ π

2
1− sin2 θ = cos2 θ

√
a2 + x2 x = a tan θ − π

2
< θ <

π

2
1 + tan2 θ = sec2 θ

√
x2 − a2 x = a sec θ − 0 ≤ θ <

π

2
or π ≤ θ <

3π

2
sec2 θ − 1 = tan2 θ
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CHAPTER 7. TECHNIQUES OF INTEGRATION

Example 7.3.3. Evaluate
∫

dx√
4 + x2

dx√
4 + x2

=
dx√

4 + 4 tan2 θ
(where x = 2 tan θ, θ ∈ (−π/2, π/2))

=
dx√

4(sec2 θ

=
dx

2| sec θ|

=
| cos θ|

2
dx

=
cos θ

2
(2 sec2 θ dθ) (since θ ∈ (−π/2, π/2))

= sec θ dθ

So by the last section section know that
∫

sec θ dθ = ln | sec θ+ tan θ|+C. Now to get it back into terms of

x we know that x = 2 tan θ so tan θ = x/2 and we know by looking at the right triangle that 2

√
x2 + 4x

•

cos θ =
x√
x2 + 4

so sec θ =

√
x2 + 4

x
giving us the final answer of ln |

√
x2 + 4

x
+
x

2
|+ C
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7.3. TRIGONOMETRIC SUBSTITUTION

Example 7.3.4. Evaluate
∫

dx√
9− x2

This one is obvious. It is arc sine. But lets do it pretending we forget this fact to show another (longer) way

that it can be derived. Consider using x = 3 sin θ for θ ∈ [−π/2, π/2] then we have

dx√
9− x2

=
dx√

9− 9 sin2 θ

=
3 cos θ dθ√

9(cos2 θ)

=
3 cos θ dθ

3| cos θ|

=
cos θ dθ

cos θ
(since θ ∈ [−π/2, π/2])

= dθ

So
∫
dθ = θ + C and since

x = 3 sin θ

x/3 = sin θ

sin−1(x/3) = θ

Giving us the final answer of sin−1(x/3) + C .

Page 63



CHAPTER 7. TECHNIQUES OF INTEGRATION

Example 7.3.5. Evaluate
∫ √

4− x2
x2

dx

Now just look how all these look so very similar. It is important to learn the technique. The technique won’t

fail but trying to look and guess most likely will. Consider using x = 2 sin θ for θ ∈ [−π/2, π/2] then we

have

√
4− x2
x2

dx =

√
4− 4 sin2 θ

4 sin2 θ
dx

=
2|cosθ|
4 sin2 θ

(2 cos θ dθ)

=
cosθ

4 sin2 θ
(cos θ dθ) (since domain!!!!)

=
1

4 sin2 θ
dθ

And we can check that

d/dx(cotx) = d/dx(
cos θ

sin θ
)

=
− sin θ(sin θ)− cos θ(cos θ)

sin2 θ

=
−1

sin2 θ

So therefore
∫ 1

4 sin2 θ
dθ = −1

4
cot θ. Now to put it back in terms of x′s. We know that x = 2 sin θ so

sin θ = x/2 and we know by looking at the right triangle that
√
4− x2

2x

•

So therefore cotθ =

√
4− x2
x

giving us the final answer of
−
√

4− x2
4x

+ C
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7.3. TRIGONOMETRIC SUBSTITUTION

Example 7.3.6. Evaluate
∫ √

x2 − 25

x
dx

Last one! Sit back and enjoy! x = 5 sec θ with θ ∈ [0, π/2) ∪ [π, 3π/2). Now:

√
x2 − 25

x
dx =

√
25 sec2 θ − 25

5 sec θ
(5 sec θ tan θ dθ)

=
5| tan θ|
5 sec θ

(5 sec θ tan θ dθ)

= 5 tan2 θ dθ (because of domain!!!!)

= 5(sec2 θ − 1) dθ

So therefore we get
∫

5(sec2 θ − 1) dθ = 5 tan θ − 5θ + C.

So therefore our final answer is
√
x2 − 25− 5 sec−1(x/5) + C
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CHAPTER 7. TECHNIQUES OF INTEGRATION

7.4 Integration of Rational Functions by Partial Fractions

Section Objective(s):

• Understand how to break apart fractions in a new way.

• Recall how to solve systems of equations.

• Learn the partial fraction method of integrating rational functions

Definition(s) 7.4.1. Partial fractions can be used to help integrate many rational

functions. It essentially “finding a common denominator ” in reverse.

Example 7.4.2. Use the fact that 2x+ 1

x(x+ 1)
=

1

x
+

1

1 + x
to evaluate

∫
2x+ 1

x2 + x
dx

Partial Fractions Technique: for the rational function f(x)

g(x)
where deg(f) <deg(g)

1. Factor the denominator into linear and irreducible quadratic terms.

2. Express the rational function as a sum of partial fractions of the form

A

(ax+ b)i
or

Ax+B

(ax2 + bx+ c)i

where i takes on all the values less than or equal to the power of the factor.

3. Solve for the unknown constants using algebraic techniques for solving

systems of linear combinations .
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7.4. INTEGRATION OF RATIONAL FUNCTIONS BY PARTIAL FRACTIONS

Example 7.4.3. Evaluate
∫

5x− 3

x2 − 2x− 3
dx

5x− 3

x2 − 2x− 3
=

5x− 3

(x− 3)(x+ 1)

=
A

x− 3
+

B

x+ 1

A(x+ 1) +B(x− 3) = 5x− 3

Ax+ A+Bx− 3B = 5x− 3

(A+B)x+ (A− 3B) = 5x− 3

A− 3B = −3

A+B = 5

−4B = −8 =⇒ B = 2 =⇒ A = 3. keep going

Example 7.4.4. Evaluate
∫

x+ 4

(x+ 1)2
dx

x+ 4

(x+ 1)2
=

A

x+ 1
+

B

(x+ 1)2

A(x+ 1) +B = x+ 4

Ax+ (A+B) = x+ 4

A = 1 =⇒ B = 3
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CHAPTER 7. TECHNIQUES OF INTEGRATION

Example 7.4.5. Evaluate
∫

−2x+ 4

(x2 + 1)(x− 1)2
dx

−2x+ 4

(x2 + 1)(x− 1)2
=
Ax+B

x2 + 1
+

C

x− 1
+

D

(x− 1)2

(Ax+B)(x− 1)2 + C(x2 + 1)(x− 1) +D(x2 + 1) = −2x+ 4

(Ax+B)(x− 2x+ 1) + C(x3 − x2 + x− 1) +D(x2 + 1) = −2x+ 4

Ax3 − 2Ax2 + Ax+Bx2 − 2Bx+B + Cx3 − Cx2 + Cx− C +Dx2 +D = −2x+ 4

(A+ C)x3 + (B − 2A− C +D)x2 + (A− 2B + C)x+ (B − C +D) = 0x3 + 0x2 − 2x+ 4

A+ C = 0 =⇒ A = −C

B − 2A− C +D = 0 =⇒ B − A+D = 0

B + A+D = 4 =⇒ 2A = 4 =⇒ A = 2 =⇒ C = −2

A− 2B + C = −2 =⇒ −2B = −2 =⇒ B = 1

1− 2 +D = 0 =⇒ D = 1

Remark 7.4.6. To apply partial fractions for rational functions f(x)

g(x)
where deg(f) ≥ deg(g)

include the additional step

0. Divide the rational function using polynomial long division to express it as

the sum of a polynomial and a proper rational function.
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7.4. INTEGRATION OF RATIONAL FUNCTIONS BY PARTIAL FRACTIONS

Example 7.4.7. Evaluate
∫
x5 + 5x4 + 7x3 + x2 + x− 2

x4 + x2
dx

1

x
− 2

x2
+

3

x2 + 1
+ (x+ 5) =

x(x2 + 1)

x2(x2 + 1)
− 2(x2 + 1)

x2(x2 + 1)
+

3x2

x2(x2 + 1)
+
x2(x2 + 1)(x+ 5)

x2(x2 + 1)

=
x(x2 + 1)− 2(x2 + 1) + 3x2 + x2(x2 + 1)(x+ 5)

x2(x2 + 1)

=
x3 + x− 2x2 − 2 + 3x2 + (x4 + x2)(x+ 5)

x2(x2 + 1)

=
x3 + x2 + x− 2 + x5 + 5x4 + x3 + 5x2

x2(x2 + 1)

=
x5 + 5x4 + 7x3 + x2 + x− 2

x2(x2 + 1)

=
x5 + 5x4 + 7x3 + x2 + x− 2

x4 + x2

Page 69



CHAPTER 7. TECHNIQUES OF INTEGRATION

7.8 Improper Integrals

Example 7.8.1. Evaluate
∫ 1

−1

1

x2
dx

Section Objective(s):

• Understand the need for improper integrals

• Classify different types of improper integrals

• Identify when improper integrals are needed

• Evaluate some improper integrals
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7.8. IMPROPER INTEGRALS

Definition(s) 7.8.2. Improper Integral of Type 1

(a) If
∫ t

a

f(x) dx exists for every number t ≥ a, then

∫ ∞
a

f(x) dx = lim
t→∞

∫ t

a

f(x) dx

provided this limit exists(as a finite number).

(b) If
∫ b

t

f(x) dx exists for every number t ≤ b, then

∫ b

−∞
f(x) dx = lim

t→−∞

∫ b

t

f(x) dx

provided this limit exists (as a finite number).

The improper integrals
∫ ∞
a

f(x) dx and
∫ b

−∞
f(x) dx are called convergent if the

corresponding limit exists and divergent if the limit does not exist.

(c) If both
∫ ∞
a

f(x) dx and
∫ a

−∞
f(x) dx are convergent, then we define

∫ ∞
−∞

f(x)dx =

∫ a

−∞
f(x)dx+

∫ ∞
a

f(x)dx

In part (c) any real number a can be used.
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CHAPTER 7. TECHNIQUES OF INTEGRATION

Example 7.8.3. Determine if the following integral converges or diverges:
∫ ∞
1

lnx

x2
dx

Theorem 7.8.4.
∫ ∞
1

1

xp
dx is convergent if p > 1 and divergent if p ≤ 1.

Proof:
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7.8. IMPROPER INTEGRALS

Definition(s) 7.8.5. Improper Integral of Type 2

(a) If f is continuous on [a, b) and is discontinuous at b, then

∫ b

a

f(x)dx = lim
t→b−

∫ t

a

f(x)dx

if this limit exists(as a finite number).

(b) If f is continuous on (a, b] and is discontinuous at a, then

∫ b

a

f(x)dx = lim
t→a+

∫ b

t

f(x)dx

if this limit exists(as a finite number).

The improper integral
∫ b

a

f(x)dx is called convergent if the corresponding limit exists and divergent

if the limit does not exist.

(c) If f has a discontinuity at c, where a < c < b, and both
∫ c

a

f(x) dx and
∫ b

c

f(x) dx are convergent,

then we define ∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx

Example 7.8.6. Determine if the following integral converges or diverges:
∫ 1

0

1√
x
dx

Sometimes it is impossible to find the exact value of an improper integral and yet it is important to know

whether it is convergent or divergent. In such cases the following theorem is useful.
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CHAPTER 7. TECHNIQUES OF INTEGRATION

Theorem 7.8.7. Comparison Theorem Suppose that f and g are continuous functions with

f(x) ≥ g(x) ≥ 0 for x ≥ a.

(a) If
∫ ∞
a

f(x) dx is convergent, then
∫∞
a
g(x) dx is convergent.

(b) If
∫ ∞
a

g(x) dx is divergent, then
∫∞
a
f(x) dx is divergent.

Picture:

Example 7.8.8. Determine if the following integral converges or diverges:
∫ ∞
1

sin2 x

x2
dx
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7.5 Strategy for Integration

Section Objective(s):

• Review the various formulas for integration

• Overview a general strategy for integration

Remark 7.5.1. A Four-Step Strategy for Integration

1. Simplify the Integrand if possible Sometimes the use of algebraic

manipulation or trigonometric identities will make the method of integration obvious.

2. Look for an obvious Substitution Try to find some function u = g(x) in the

integrand whose differential du = g′(x) dx also occurs, apart from a constant factor.

3. Classify the integrand according to its form If steps 1 and 2 have not led to the

solution, then we take a look at the form of the integrand f(x) which could include any of the

following:

(a) Trigonometric functions.

(b) Rational functions.

(c) Integration by parts.

(d) Radicals.

4. Try Again If the first three steps have not produced the answer, remember that there

are basically only two methods of integration: substitution and parts.
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Example 7.5.2. Evaluate
∫ 1

0

5x+ 1

3x+ 2
dx
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Example 7.5.3. Evaluate
∫
x3ex

2

dx
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Example 7.5.4. Evaluate
∫ √

x2 − 2x+ 2 dx
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CHAPTER 8. FURTHER APPLICATIONS OF INTEGRATION

8.1 Arc Length

Section Objective(s):

• Understand the formula for calculating arc length

Theorem 8.1.1. The Arc Length Formula If f ′ is continuous on [a, b], then the length

of the curve y = f(x), a ≤ x ≤ b, is

L =

∫ b

a

√
1 + [f ′(x)]2 dx

Remark 8.1.2. If a curve has the equation x = g(y) for c ≤ y ≤ d, and g′(y) is continuous then by

interchanging the roles of x and y we obtain the following formula for its length:

L =

∫ d

c

√
1 + [g′(y)]2 dx

Example 8.1.3. Find the arc length for f(x) =
x3

12
+

1

x
on the interval 1 ≤ x ≤ 4.
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Idea of a Proof of Theorem 8.1.1

•

•

•

•

•

•

•

•

•

•

•
•
•
• • •

•

•

•

•
• • •

•

•

•

•
•
• •

with 20 line segments

Definition(s) 8.1.4. If a smooth curve C has the equation y = f(x), for a ≤ x ≤ b, let s(x) be the

distance along C from the initial point P0(a, f(a)) to the point Q(x, f(x)). Then s is a function, called

the arc length function , and

s(x) =

∫ x

a

√
1 + [f ′(t)]2 dt

Example 8.1.5. Find the arc length function for f(x) =
x3

12
+

1

x
starting at initial point x = 1.

Page 81



CHAPTER 8. FURTHER APPLICATIONS OF INTEGRATION

Example 8.1.6. Find the arc length of f(x) = ln(cos x) on the interval 0 ≤ x ≤ π/3.

Example 8.1.7. Setup an integral the represents the arc length function for f(t) = tan−1(t)

with initial point at t = 1.
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CHAPTER 11. INFINITE SEQUENCES AND SERIES

Forest for the Trees

In Chapter 11 we switch gears to an old topic. Recall back in calculus 1 we found that the tangent line of f

near a approximated f near a pretty well (we called it the linear approximation). One natural way to expand

on this is ask “What quadratic (2nd degree) polynomial approximates f near a the best?” or how about a 3rd

degree polynomial, or 4th, or 5th? Turns out with higher degree polynomials you can get better and better

approximations of a function. So what about infinite polynomials? By that I mean polynomials that don’t

have a highest degree that just go on and on for ever. For instance:

1 + x+ x2 + x3 + x4 + x5 + x6 + · · ·

It turns out that sometimes you can take these infinite polynomials (better known as power series) and make

them equal to the function itself! So this is our end goal. To get there we need a reminder about sequences

and will be practicing with normal series for awhile before upgrading to power series!

By the end of Chapter 11 you should be able to solve problems such as:

Example : Evaluate Find the Maclaurin series for the function f(x) = 3
√

1 + x and find its radius of

convergence.

Example : Evaluate Determine if the series
∞∑
n=0

3n − 2

52n
is convergent or divergent. If it is convergent, find

what is converges to.

11.1 11.2

11.3

11.4

11.5 11.6

11.8 11.9 11.10 11.11

>

>

>

>

>

>

> > >

>

>

Chapter 11 Map
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11.1. SEQUENCES

11.1 Sequences

Section Objective(s):

• Examine properties of sequences and their limits

• Use limits of functions to calculate limits of sequences

Definition(s) 11.1.1. A sequence can be thought of as a list of numbers written in a definite

order:

a1, a2, a3, a4, ..., an, ...

The number a1 is called the first term, a2 is the second term, and in general an is the nth term.

Remark 11.1.2. The sequence {a1, a2, a3, ...} is also denoted by

{an} or {an}∞n=1

Example 11.1.3. Write a function with domain Z+ that defines the following list of numbers:

12, 14, 16, 18,...

Definition(s) 11.1.4. A sequence {an} has the limit L and we write

lim
n→∞

an = L or an → L as n→∞

if we can make the terms an as close to L as we like by taking n sufficiently large. If lim
n→∞

an exists ,

we say the sequence converges (or is convergent ).

Otherwise, we say the sequences diverges (or is divergent ).
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Theorem 11.1.5. If lim
x→∞

f(x) = L and f(n) = an when n is an integer, then lim
n→∞

an = L .

Remark 11.1.6. Theorem 11.1.5 implies then that many of the properties of limits of functions apply to

limits of sequences!

Theorem 11.1.7. If lim
n→∞

an = L and lim
n→∞

bn = M then

lim
n→∞

(an + bn) = L+M lim
n→∞

(an · bn) = LM

Theorem 11.1.8. Squeeze Theorem for Sequences If an ≤ bn ≤ cn for n ≥ n0

and lim
n→∞

an = lim
n→∞

cn = L, then lim
n→∞

bn = L .

Theorem 11.1.9. If lim
n→∞

|an| = 0 , then lim
n→∞

an = 0 .

Example 11.1.10. Calculate: lim
n→∞

cosn

n

Remark 11.1.11. The sequence {rn} is convergent if −1 < r ≤ 1 and divergent for all other values of r.

lim
n→∞

rn =


0 if − 1 < r < 1

1 if r = 1

pull up calculator and demonstrate with r=.99
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Definition(s) 11.1.12. A sequence {an} is called increasing if an < an+1 for all

n ≥ 1, that is a1 < a2 < a3 · · · . It is called decreasing if an > an+1 for all n ≥ 1.

A sequence is monotonic if it is either increasing or decreasing .

Theorem 11.1.13. If f(x) is an increasing function and f(n) = an then {an} is an

increasing sequence. And similar for decreasing .

Example 11.1.14. Show that the following sequence is decreasing:
{

1

2n

}

Example 11.1.15. Consider the sequence: 1,
−1

2
,
1

3
,
−1

4
, . . .. Find a formula for an.
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Example 11.1.16. Consider the sequence
{

1 + 5n

3− 2n

}
. Find the limit of the sequence.

Example 11.1.17. Consider the sequence
{(
−1

5

)n
+

sinn

n

}
. Find the limit of the sequence.

Example 11.1.18. Consider the sequence
{

ln 3n

2n

}
. Find the limit of the sequence.
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11.2 Series

Section Objective(s):

• Define series and some different types of series

• Determine some strategies for identifying when series converge or diverge

Definition(s) 11.2.1. In general, if we try to add the terms of an infinite sequence {an}∞n=1 we get an

expression of the form

a1 + a2 + a3 + · · ·+ an + · · ·

which is called an infinite series (or just a series ) and is denoted, for short by the

symbol
∞∑
n=1

an or
∑

an

Definition(s) 11.2.2. Given a series
∞∑
n=1

an = a1 + a2 + a3 + · · · , let sn denote its nth partial sum:

sn =
n∑
i=1

ai = a1 + a2 + a3 + · · ·+ an

If the sequence {sn} is convergent and lim
n→∞

sn = s exists as a real number, then the series
∑
an is called

convergent and we write

a1 + a2 + a3 + · · ·+ an + · · · = s or
∞∑
n=1

an = s

The number s is called the sum of the series. If the sequence {sn} is divergent, then the series is

called divergent .
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Example 11.2.3. Determine if the following series converges or diverges: 1 + 2 + 3 + 4 + 5 + · · ·

Example 11.2.4. Determine if the following series converges or diverges: 1 + 1
2

+ 1
4

+ 1
8

+ 1
16

+ · · ·

Definition(s) 11.2.5. The previous series is called a geometric series . In general these

are of the form

a+ ar + ar2 + ar3 + · · · =
∞∑
n=0

ari

Theorem 11.2.6. The geometric series

a+ ar + ar2 + ar3 + · · · =
∞∑
n=0

ari

is convergent if |r| < 1 and its sum is

∞∑
n=0

arn =
a

1− r

If |r| ≥ 1 , then the geometric series is divergent.
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Theorem 11.2.7. If the series
∞∑
n=1

an is convergent, then lim
n→∞

an = 0 .

Theorem 11.2.8 (nth term test for divergence).

If lim
n→∞

an does not exist or if lim
n→∞

an 6= 0, then the series
∞∑
n=1

an is divergent .

Theorem 11.2.9. If
∑
an and

∑
bn are convergent series, then so are the series

∑
can (where c is a

constant),
∑

(an + bn), and
∑

(an − bn), and

(i)
∞∑
n=1

can = c
∞∑
n=1

an (ii)
∞∑
n=1

(an + bn) =
∞∑
n=1

an +
∞∑
n=1

bn

(iii)
∞∑
n=1

(an − bn) =
∞∑
n=1

an −
∞∑
n=1

bn

Example 11.2.10. Determine if the following series is convergent or divergent:
∞∑
n=1

−n
2n+ 5
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Remark 11.2.11. If lim
n→∞

an = 0 it does not guarantee that the series
∞∑
n=1

an is convergent.

Definition(s) 11.2.12. The harmonic series is defined as:
∞∑
n=1

1

n

Theorem 11.2.13. The harmonic series is divergent

Example 11.2.14. Determine if the following series are convergent or divergent. If they are convergent, find

what they converge to

(a)
∞∑
n=0

3n − 2

52n

(b)
∞∑
n=1

1√
n
− 1√

n+ 1
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11.3 The Integral Test

Section Objective(s):

• Understand the hypotheses and conclusion of the Integral Test.

• Apply the Integral Test to some series

Theorem 11.3.1 (The Integral Test). Suppose an = f(n) and that f is

(i) continuous

(ii) positive

(iii) decreasing

on [1,∞). If all these conditions are met then

(a) If
∫ ∞
1

f(x) dx is convergent, then
∞∑
n=1

an is convergent.

(b) If
∫ ∞
1

f(x) dx is divergent, then
∞∑
n=1

an is divergent.

Remark 11.3.2. Why the Integral Test makes sense
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Example 11.3.3. Determine if
∞∑
n=0

1

n2 + 1
converges or diverges

Theorem 11.3.4 (p-series test).
∞∑
n=1

1

np
is convergent if p > 1 and divergent if p ≤ 1.

Example 11.3.5. Determine if the following series is convergent or divergent.
∞∑
i=1

2

1 + ei
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Theorem 11.3.6 (The math of increasing and decreasing positive continuous functions). Suppose f1(x)

and f2(x) are increasing functions and g1(x) and g2(x) are decreasing functions on an interval I then

• f1(x) + f2(x) is increasing

• f1(x)f2(x) is increasing

• 1

f1(x)
is decreasing

• If c > 0 then

◦ cf1(x) is increasing

◦ −cf1(x) is decreasing

• g1(x) + g2(x) is decreasing

• g1(x)g2(x) is decreasing

• 1

g1(x)
is increasing

• If c > 0 then

◦ cg1(x) is decreasing

◦ −cg1(x) is increasing

Proof of one of these:
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Example 11.3.7. Determine if the following series are convergent or divergent.

(a)
∞∑
k=1

−3√
k3

(b)
∞∑
n=2

5

n lnn
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11.4 The Comparison Tests

Section Objective(s):

• Go over the Direct and Limit Comparison Tests

• Apply the Comparison tests to a variety of series problems

Theorem 11.4.1 (The Direct Comparison Test). Suppose that
∑
an and

∑
bn are series with positive

terms.

(i) If
∑
bn is convergent and an ≤ bn for all n, then

∑
an is also convergent.

(ii) If
∑
bn is divergent and an ≥ bn for all n, then

∑
an is also divergent.

Theorem 11.4.2 (The Limit Comparison Test). Suppose that
∑
an and

∑
bn are series with positive

terms. If

lim
n→∞

an
bn

= c

where c is a finite number and c > 0, then either both series converge or both diverge.

Example 11.4.3. Determine if the following series is convergent or divergent:
∞∑
n=1

4

3n− 1
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Example 11.4.4. Determine if the following series are convergent or divergent.

(a)
∞∑
n=1

1

n2 + n+ 1

(b)
∞∑
n=1

1

n2 − n− 1
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Example 11.4.5. Determine if the following series are convergent or divergent.

(a)
∞∑
n=1

√
n

n2 + 1

(b)
∞∑
n=1

ne−n
2

3 + e−n
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11.5 Alternating Series

Section Objective(s):

• Define Alternating Series

• Determine when Alternating Series converge and diverge.

Definition(s) 11.5.1. An alternating series is a series whose terms are alternately

positive and negative. Heres an example:

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · · =

∞∑
n=1

(−1)n−1
1

n

Remark 11.5.2. The nth term of an alternating series is of the form

an = (−1)n−1bn or an = (−1)nbn

where bn is a positive number. (In fact, bn = |an|.)

Theorem 11.5.3 (Alternating Series Test). If the alternating series

∞∑
n=1

(−1)n−1bn = b1 − b2 + b3 − b4 + b5 − b6 + · · ·

satisfies

(i) 0 < bn+1 ≤ bn for all n

(ii) lim
n→∞

bn = 0

then the series is convergent .
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Example 11.5.4. Determine if the following series are convergent or divergent.

(a)
∞∑
n=1

(−1)n+1 1

n · 3n

(b)
∞∑
n=1

(−1)n
n2

1 + e2n
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Example 11.5.5. Determine if the following series are convergent or divergent.

(a)
∞∑
n=1

(−1)n+1(
√
n+ 3−

√
n)

(b)
∞∑
n=1

(−1)n cos

(
2π

n

)
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11.6 Absolute Convergence and the Ratio Test

Section Objective(s):

• Define absolutely and conditionally convergent.

• Understand the statement of the Ratio Test

• Apply the Ratio test to a variety of series

Definition(s) 11.6.1. A series
∑
an is called absolutely convergent if the series

of absolute values
∑
|an| is convergent.

Definition(s) 11.6.2. A series
∑
an is called conditionally convergent if it

is convergent but not absolutely convergent.

Remark 11.6.3. The series
∑ (−1)n

n
is conditionally convergent.

Theorem 11.6.4. If a series
∑
an is absolutely convergent then it is convergent .

Example 11.6.5. Determine if the following series is absolutely or conditionally convergent:
∞∑
n=1

(−1)n+1 1

n2
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Theorem 11.6.6. The Ratio Test

(i) If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L < 1, then the series
∞∑
n=1

an is absolutely convergent

(and therefore convergent ).

(ii) If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L > 1 or lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ =∞, then the series
∞∑
n=1

an is divergent .

(iii) If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1, the Ratio Test is inconclusive ;

that is, no conclusion can be drawn about the convergence or divergence of
∑
an.

Example 11.6.7. See what happens when you try to apply the ratio test to

(a)
∞∑
n=1

1

n

(b)
∞∑
n=1

1

n2

Remark 11.6.8. Recall that n! = n · (n− 1) · (n− 2) · · · 3 · 2 · 1

Example: 5! = 5 · 4 · 3 · 2 · 1 = 120

Page 104



11.6. ABSOLUTE CONVERGENCE AND THE RATIO TEST

Example 11.6.9. Determine if the following series is convergent or divergent:
∑ (2n)!

(n!)2

Example 11.6.10. Determine if the following series is absolutely convergent, conditionally convergent, or

divergent:
∑ (−1)nn2

n!
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Example 11.6.11. Determine if the following series are absolutely convergent, conditionally convergent, or

divergent:

(a)
∑

n

(
3

5

)n

(b)
∑ cos(πn)

3n
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11.8 Power Series

Section Objective(s):

• Define power series.

• Begin calculating closed forms of power series.

• Calculate radii and interval of convergence for power series.

Definition(s) 11.8.1. A power series is a series of the form

∞∑
n=0

cnx
n = c0 + c1x+ c2x

2 + c3x
3 + · · ·

where x is a variable and the cn’s are constants called the coefficients of the series.

So now instead of a series approaching a number we can think that power series approach functions.

Additionally,

Definition(s) 11.8.2. A series of the form

∞∑
n=0

cn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + · · ·

is called a power series in (x− a) or a

power series centered at a or a power series about a .

Example 11.8.3. Find a closed expression for the following series: 1− 1

2
(x−2)+

1

4
(x−2)2− 1

8
(x−2)3+· · ·
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Theorem 11.8.4. For a given power series
∞∑
n=0

cn(x− a)n there are only three possibilities:

(i) The series converges only when x = a.

(ii) The series converges for all x.

(iii) There is a positive numberR such that the series converges if |x−a| < R and diverges if |x−a| > R.

Remark 11.8.5. The number R in case (iii) is called the radius of convergence of

the power series. By convention, the radius of convergence is R = 0 in case (i) and R =∞ in

case (ii). The interval of convergence of a power series is the interval that consists

of all values of x for which the series converges.

Example 11.8.6. Find the open interval of convergence for the following power series:
∞∑
n=0

n(x+ 3)n

5n
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Example 11.8.7. Find the radius and interval of convergence for the following power series:
∞∑
n=0

n(x+ 3)n

n2 + 1

Example 11.8.8. Find the radius and interval of convergence for the following power series:
∞∑
n=1

xn lnn
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Example 11.8.9. Find the radius and interval of convergence for the following power series:
∞∑
n=0

n!xn

Example 11.8.10. Find the interval of convergence for the following power series:
∞∑
n=1

(−1)n(3x+ 5)n
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11.9 Representations of Functions as Power Series

Section Objective(s):

• Understand how functions can be represented as power series

• Learn differentiation and integration for power series

Theorem 11.9.1.
1

1− x
= 1 + x+ x2 + x3 + · · · =

∞∑
n=0

xn |x| < 1

Example 11.9.2. Express 1

1− 3x2
as a power series. Find the radius of the convergence.

Example 11.9.3. Express x

3 + x
as a power series. Find the interval of the convergence.
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Theorem 11.9.4. If the power series
∑
cn(x− a)n has radius of convergence R > 0, then the function

f defined by

f(x) = c0 + c1(x− a) + c2(x− a)2 + · · · =
∞∑
n=0

cn(x− a)n

is differentiable (and therefore continuous) on the interval (a−R, a+R) and

(i) f ′(x) = c1 + 2c2(x− a) + 3c3(x− a)2 + · · · =
∞∑
n=1

cn(x− a)n−1

(ii)
∫
f(x) dx = C + c0(x− a) + c1

(x− a)2

2
+ c2

(x− a)3

3
+ · · · =

∞∑
n=0

cn
(x− a)n+1

n+ 1

The radii of convergence of the power series in Equations (i) and (ii) are both R.

Example 11.9.5. Find a power series representation for 1

(1− x)2
and its radius of convergence.
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Example 11.9.6. Find a power series representation for ln(1 + x) and its radius of convergence.

Example 11.9.7. Find a power series representation for tan−1(1 + x) and its radius of convergence.
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11.10 Taylor and Maclaurin Series

Section Objective(s):

• Define and compute Taylor and Maclaurin Series

• Define and compute Taylor and Maclaurin Polynomials

• Recognize what these polynomials and series represent.

• Define and calculate the remainder

Let’s consider the function f(x) = 1/x and polynomials that approximate f(x) as best they can at a = 1.

The best degree 0 polynomial (which we will call T0(x)) can agree

with f at 1. That is

x

y

The best degree 1 polynomial (which we will call T1(x)) can agree

with f at 1 and have the same slope. We should remember this from

Calculus 1 as the tangent line
x

y

The best degree 2 polynomial (which we will call T2(x)) can agree

with f at 1, have the same slope, and the same concavity. That is

x

y

Page 114



11.10. TAYLOR AND MACLAURIN SERIES

Theorem 11.10.1. If f has a power series representation (expansion) at a, that is, if

f(x) =
∞∑
n=0

cn(x− a)n |x− a| < R

then its coefficients are given by the formula

cn =
f (n)(a)

n!

Definition(s) 11.10.2. If f has a power series expansion at a, then it must be of the following form:

f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n = f(a) +

f
′
(a)

1!
(x− a) +

f
′′
(a)

2!
(x− a)2 +

f
′′′

(a)

3!
(x− a)3 + · · ·

This is called the Taylor series of the function f at a (or about a

or centered at a). For the special case a = 0 the Taylor series becomes

f(x) =
∞∑
n=0

f (n)(0)

n!
xn = f(0) +

f
′
(0)

1!
x+

f
′′
(0)

2!
x2 + · · ·

This case arises frequently enough that it is given the special name Maclaurin series .

Example 11.10.3. Find the 2nd degree Maclaurin polynomial for f(x) =
√
x+ 1.
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CHAPTER 11. INFINITE SEQUENCES AND SERIES

Definition(s) 11.10.4. In the case of the Taylor series the partial sums are

Tn(x) =
n∑
i=0

f (i)(a)

i!
(x− a)i = f(a) +

f
′
(a)

1!
(x− a) +

f
′′
(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n

Notice that Tn is a polynomial of degree n called the

nthe-degree Taylor polynomial of f at a . In general, f(x)

is the sum of its Taylor series if

f(s) = lim
n→∞

Tn(x)

Definition(s) 11.10.5. If we let

Rn(x) = f(x)− Tn(x) so that f(x) = Tn(x) +Rn(x)

Then Rn(x) is called the remainder of the Taylor series.

Example 11.10.6. Find the Taylor series generated by f(x) = 1/x centered at a = 2.

Page 116



11.10. TAYLOR AND MACLAURIN SERIES

Theorem 11.10.7 (Important Maclaurin Series and their Radii of Convergence).

1

1− x
=
∞∑
n=0

xn = 1 + x+ x2 + x3 + · · · R = 1

ex =
∞∑
n=0

xn

n!
= 1 +

x

1!
+
x2

2!
+
x3

3!
+ · · · R =∞

sinx =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
= x− x3

3!
+
x5

5!
− x7

7!
+ · · · R =∞

cosx =
∞∑
n=0

(−1)n
x2n

(2n)!
= 1− x2

2!
+
x4

4!
− x6

6!
+ · · · R =∞

tan−1 x =
∞∑
n=0

(−1)n
x2n+1

2n+ 1
= x− x3

3
+
x5

5
− x7

7
+ · · · R = 1

ln(1 + x) =
∞∑
n=1

(−1)n−1
xn

n
= x− x2

2
+
x3

3
− x4

4
+ · · · R = 1

(1 + x)k =
∞∑
n=0

(
k

n

)
xn = 1 + kx+

k(k − 1)

2!
x2 +

k(k − 1)(k − 2)

3!
x3 + · · · R = 1

Proof: ex =
∞∑
n=0

xn

n!
and that R =∞
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CHAPTER 11. INFINITE SEQUENCES AND SERIES

Example 11.10.8. Consider f(x) = e4x

(a) Find the nth term Maclaurin polynomial for f using Definition 11.10.4.

(b) Find the nth term Maclaurin polynomial for f using Theorem 11.10.7.
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11.10. TAYLOR AND MACLAURIN SERIES

Theorem 11.10.9. If f(x) = Tn(x) +Rn(x), where Tn is the nth degree polynomial of f at a and

lim
n→∞

Rn(x) = 0

for |x− a| < R, then f is equal to the sum of its Taylor series on the interval |x− a| < R.

Theorem 11.10.10. Taylor Remainder Theorem Suppose f(x) = Tn(x) +Rn(x) where Tn is the nth

degree Taylor polynomial of f at a. Then Rn is the Lagrange form of the remainder of order n and is

given by

Rn(x) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1

for some c between a and x.

Example 11.10.11. Find the Taylor polynomial of degree 3 for the function f(x) =
√
x+ 9 about the point

x = −5. Then write R3(x) as a function of x and c.
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11.11 Additional Applications and Problems for Taylor Polynomials

Section Objective(s):

• Use Taylor polynomials to calculate terms for various binomial series

• Multiply known Taylor polynomials to find the terms of Taylor polynomials for additional functions

• Use Taylor polynomials to help evaluate limits

• Use Taylor polynomials to determine what a series converges to.

• State and apply the Taylor Inequality

Definition(s) 11.11.1. A generalized binomial coefficient can be defined as:

(
α

0

)
= 1(

α

1

)
=
α

1!
= α(

α

2

)
=
α(α− 1)

2!
= 1

2
α(α− 1)

...(
α

n

)
=
α(α− 1)(α− 2) · · · (α− n+ 1)

n!

Example 11.11.2. Find the first four terms of the binomial series for the following function:

f(x) = (1 + x3)−1/2
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11.11. ADDITIONAL APPLICATIONS AND PROBLEMS FOR TAYLOR POLYNOMIALS

Example 11.11.3. Find the Maclaurin series for the function f(x) = 3
√

1 + x and find its radius of

convergence.

Example 11.11.4. Find the first 3 terms for the Maclaurin series for the function f(x) = e2x sin(x)

Example 11.11.5. Find the first 4 terms for the Maclaurin series for the function f(x) =
x

cos(x)
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CHAPTER 11. INFINITE SEQUENCES AND SERIES

Example 11.11.6. Evaluate lim
x→0

sin(x3)− x3

x9

Example 11.11.7. Evaluate lim
x→0

x− ln(x+ 1)

x2
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11.11. ADDITIONAL APPLICATIONS AND PROBLEMS FOR TAYLOR POLYNOMIALS

Example 11.11.8. Use Taylor series to evaluate
∞∑
k=0

2k

k!

Example 11.11.9. Use Taylor series to evaluate 1

1 · 2
− 1

3 · 23
+

1

5 · 25
− 1

7 · 27
+ · · ·
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Theorem 11.11.10. Taylor’s Inequality If |f (n+1)(x)| ≤M for |x− a| ≤ d, then the remainder Rn(x)

of the Taylor series satisfies the inequality

|Rn(x)| ≤ M

(n+ 1)!
|x− a|n+1 for |x− a| ≤ d

Example 11.11.11. Consider approximating f(x) = e2x with T2(x) = 1 + 2x + 2x2. Find the maximum

error by making this approximation on the interval [−2, 2].
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CHAPTER 10. PARAMETRIC EQUATIONS AND POLAR COORDINATES

10.1 Curves Defined by Parametric equations

Section Objective(s):

• Define parametric equations.

• Use parametric equations to sketch curves.

• Transform between parametric and Cartesian equations.

Definition(s) 10.1.1. Suppose that x and y are both given as functions of a third variable t (called a

parameter ) by the equations

x = f(t) y = g(t)

(called parametric equations ). Each value of t determines a point (x, y), which

we can plot in a coordinate plane. As t varies, the point (x, y) = (f(t), g(t)) varies and traces out a curve

C, which we call a parametric curve .

Example 10.1.2. Plot the parametric equations x = 2t and y = 3 − t. Find the corresponding Cartesian

equation

Remark 10.1.3. Sometimes we restrict t to lie in a finite interval. In general, the curve with parametric
equations

x = f(t) y = g(t) a ≤ t ≤ b

has initial point (f(a), g(a)) and terminal point (f(b), g(b))
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10.1. CURVES DEFINED BY PARAMETRIC EQUATIONS

Example 10.1.4. Plot the parametric equations x = 2 sin t and y = 2 cos t for t ∈ [0, π/2]. Find the

corresponding Cartesian equation.

Example 10.1.5. Plot the parametric equations x = 3 sin 2t and y = −5 cos 2t for t ∈ [0, π/2]. Find the

corresponding Cartesian equation.
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CHAPTER 10. PARAMETRIC EQUATIONS AND POLAR COORDINATES

Example 10.1.6. Find the corresponding Cartesian equation for the parametric equations x = 2 sec(3t) and

y = −5 tan(3t).

Example 10.1.7. Find the a parametric equation for y = x2 − x+ 3 which starts at (0, 3) when t = 0 and

ends a (3, 9) when t = 5.
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10.2. CALCULUS WITH PARAMETRIC CURVES

10.2 Calculus with Parametric Curves

Section Objective(s):

• Apply methods of calculus to parametric curves

• Practice solving problems involving tangents and arc length

Definition(s) 10.2.1. Suppose the curve is traced out once by the parametric equations x = f(t) and

y = g(t) and that f and g are differentiable functions. Assuming we want to find the tangent line at a

point on the curve where y is also a differentiable function of x then the Chain Rule gives

dy

dt
=
dy

dx
· dx
dt

If dx/dt 6= 0, we can solve for dy/dx:

dy

dx
=

dy

dt
dx

dt

if
dx

dt
6= 0

Example 10.2.2. Find the equation of the tangent line to the curve given by:

x = 3t− sin(t), y = 1− cos(t), at t = π/3
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CHAPTER 10. PARAMETRIC EQUATIONS AND POLAR COORDINATES

Example 10.2.3. Find an equation of the tangent to the curve x = 1 + ln t, y = t2 + 3 at the point (1, 4)

Example 10.2.4. Find the points on the curve x = t3 − 3t, y = t2 − 3 where the tangent is horizontal or

vertical.
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10.2. CALCULUS WITH PARAMETRIC CURVES

Theorem 10.2.5. If a curve C is described by the parametric equations x = f(t), y = g(t), α ≤ t ≤ β,

where f ′ and g′ are continuous on [α, β] and C is traversed exactly once at t increases from α to β, then

the length of C is

L =

∫ β

α

√(
dx

dt

)2

+

(
dy

dt

)2

dt

Example 10.2.6. Find the length of a circle of radius 3 defined by: x = 3 cos(t), y = 3 sin(t) on 0 ≤ t ≤ 2π
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CHAPTER 10. PARAMETRIC EQUATIONS AND POLAR COORDINATES

Example 10.2.7. Find the exact length of the curve x = 1 + 3t2, y = 2 + 2t3 for t ∈ [0, 1]

Example 10.2.8. Find the length of the curve x = et + e−t, y = 1− 2t for t ∈ [0, 2]
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10.3. POLAR COORDINATES

10.3 Polar Coordinates

Section Objective(s):

• Understand the concept of polar coordinates

• Transfer back and forth between Cartesian and polar coordinates.

• Graph equations given in polar coordinates.

• Find tangent lines given in polar coordinates.

What are polar coordinates?

Theorem 10.3.1.

x = r cos θ, y = r sin θ

x2 + y2 = r2, tan θ = y/x

Example 10.3.2. Graph the polar coordinates

(a) (θ, r) = (7π/6, 2)

(b) (θ, r) = (−π/3,−3)

(c) (θ, r) = (3π, 0)

0

π/4

π/2

3π/4

π

5π/4 7π/4

3π/2

π/6

π/32π/3

5π/6

7π/6

4π/3 5π/3

11π/6

0 1 2 3 4 5
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Example 10.3.3. Convert the following polar coordinates into Cartesian coordinates

(a) (θ, r) = (0, 2)

(b) (θ, r) = (−π/4, 5)

Example 10.3.4. Convert the following Cartesian coordinates into polar coordinates

(a) (x, y) = (0, 3)

(b) (x, y) = (−2, 2)

Definition(s) 10.3.5. The graph of a polar equation r = f(θ), or more generally F (r, θ) = 0, consists

of all points P that have at least one polar representation (r, θ) whose coordinates satisfy the equation.
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10.3. POLAR COORDINATES

Example 10.3.6. Consider the curve given by r = 2 sin θ

(a) Graph the curve using the point plotting method

(b) What geometric figure is the curve?

(c) Transform the curve into Cartesian coordinates to confirm your suspicions in part (b)

0

π/4

π/2

3π/4

π

5π/4 7π/4

3π/2

0

π/6

π/32π/3

5π/6

7π/6

4π/3 5π/3

11π/6

0 1 2 3 4 5
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Example 10.3.7. Consider the curve given by 1

r
= sin θ + cos θ for θ ∈ (−π/4, 3π/4)

(a) Graph the curve using the point plotting method

(b) What geometric figure is the curve?

(c) Transform the curve into Cartesian coordinates to confirm your suspicions in part (b)

0

π/4

π/2

3π/4

π

5π/4 7π/4

3π/2

0

π/6

π/32π/3

5π/6

7π/6

4π/3 5π/3

11π/6

0 1 2 3 4 5
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10.3. POLAR COORDINATES

Definition(s) 10.3.8. To find a tangent line to a polar curve r = f(θ), we regard θ as a parameter and

write its parametric equations as

x = r cos θ = f(θ) cos θ y = r sin θ = f(θ) sin θ

Then using the method of finding slopes of parametric curves and the Product Rule, we have

dy

dx
=

dy

dθ
dx

dθ

=

dr

dθ
sin θ + r cos θ

dr

dθ
cos θ − r sin θ

Example 10.3.9. Find the slope of the tangent line to the curve r = 1 + 2 cos θ at θ = π/6.

Page 137
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10.4 Areas and Lengths in Polar Coordinates

Section Objective(s):

• Apply the formula for the area of a region whose boundary is given by polar coordinates

• Apply the formula for the arc length of a curve given by polar coordinates

Theorem 10.4.1. Suppose the boundary of a region R is given by the polar equation r = f(θ). The area

A of R is given by

A =

∫ b

a

1

2
[f(θ)]2dθ or A =

∫ b

a

1

2
r2dθ

Example 10.4.2. Find the area enclosed by the cardioid r = 2(1 + cos(θ)).

Remark 10.4.3. Don’t forget, symmetry is your friend.
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10.4. AREAS AND LENGTHS IN POLAR COORDINATES

A quick lesson in intersecting functions

Example 10.4.4. Consider the functions r = 2 cos θ and r = 2 sin θ for θ ∈ [0, π].

(a) Graph both of the functions together on the graph below.

(b) How would the picture look if you graphed these curves with θ ∈ [0, 2π]?

(c) Find all (r, θ) values were these two functions intersect on.

(d) Find all (x, y) values were these two functions intersect on.

(e) Calculate the area shared by these two circles.

0

π/4

π/2

3π/4

π

5π/4 7π/4

3π/2

0

π/6

π/32π/3

5π/6

7π/6

4π/3 5π/3

11π/6

0 1 2 3
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Theorem 10.4.5. Suppose f(θ) and g(θ) are continuous polar functions and that f(θ) ≥ g(θ) ≥ 0 for

all θ ∈ [α, β]. The area bounded between f(θ) and g(θ) on [α, β] is given by

A =

∫ β

α

1

2

[
(f(θ)2 − (g(θ))2

]
dθ

Example 10.4.6. Find the area inside the cardioid r = 1 + cos θ and outside the circle r = 3/2

(shown below)

x

y
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10.4. AREAS AND LENGTHS IN POLAR COORDINATES

Theorem 10.4.7. The length of a curve with polar equation r = f(θ), a ≤ θ ≤ b, is

L =

∫ b

a

√
r2 +

(
dr

dθ

)2

dθ

Example 10.4.8. Find the exact length of the polar curve r = 2 cos θ for 0 ≤ θ ≤ 3π

4

Example 10.4.9. Find the exact length of the polar curve r = θ2 for 0 ≤ θ ≤ π
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