THE FIFTH ANNUAL HERZOG PRIZE EXAMINATION
November 12, 1977

Problem 1: (D. Moran) Let M be an \(n \times n \) matrix of integers whose inverse is also a matrix of integers. Prove that the number of odd entries in M is at least \(n \) and at most \(n^2 - n + 1 \).

Problem 2: (A.M.M.E 1297) Having chosen \(0 < a_1, b_1 < 1 \) define recursively

\[
a_{n+1} = a_1(1 - a_n - b_n) + a_n
\]
and
\[
b_{n+1} = b_1(1 - a_n - b_n) + b_n.
\]
Prove that \(\lim_{n \to \infty} a_n \) and \(\lim_{n \to \infty} b_n \) both exist and evaluate these limits.

Problem 3: (L. Kelly) Consider the binary homogeneous quadratic form \(x^2 + bxy + y^2 \). Suppose it is known that this form produces perfect integral squares for all positive \(a \neq \epsilon \) choices of \(x \) and \(y \). Prove that \(b \) must be \(\pm 2 \).

Problem 4: (L. Kelly) A solid sphere rolls on a plane \(\pi \) always touching a fixed line \(L \). Find the locus of its center.

Problem 5: (L. Kelly) Show that if all the distances between pairs of points of a seven point subset of the unit disc are at least 1, then the points must be the vertices of a regular inscribed hexagon and the center of the circle.

Problem 6: (A.M.M.E 1342) If \(x, y > 0 \), prove that
\[
x^y + y^x > 1.
\]