Spectral gap characterizations of property (T) for II_1 Factors

Hui Tan

University of California, San Diego

ECOAS, 2022

Goal: characterization of Property (T) by spectral gaps in inclusions into tracial von Neumann algebras for separable II_1 factors.

Goal: characterization of Property (T) by spectral gaps in inclusions into tracial von Neumann algebras for separable II_1 factors. (A question asked in [Goldbring, 2020])

Bimodules (Correspondences) and Connes' Tensor Product

Hilbert bimodules

• For two tracial von Neumann algebras (M, τ_M) and (N, τ_N) , a M-N-bimodule is a Hilbert space \mathcal{H} equipped with a normal unital homomorphism $\pi_I: M \to \mathcal{B}(\mathcal{H})$ and a normal unital homomorphism $\pi_r: N^{op} \to \mathcal{B}(\mathcal{H})$ such that π_I and π_r commute.

Bimodules (Correspondences) and Connes' Tensor Product

Hilbert bimodules

• For two tracial von Neumann algebras (M, τ_M) and (N, τ_N) , a M-N-bimodule is a Hilbert space \mathcal{H} equipped with a normal unital homomorphism $\pi_I: M \to \mathcal{B}(\mathcal{H})$ and a normal unital homomorphism $\pi_r: N^{op} \to \mathcal{B}(\mathcal{H})$ such that π_I and π_r commute.

Example

Given a tracial von Neumann algebra (M, τ_M) , let $L^2(M, \tau)$ be the completion of M with the inner product $\langle x, y \rangle = \tau(x^*y)$. Then $L^2(M, \tau)$ is an M-M-bimodule.

Bimodules (Correspondences) and Connes' Tensor Product

Hilbert bimodules

• For two tracial von Neumann algebras (M, τ_M) and (N, τ_N) , a M-N-bimodule is a Hilbert space \mathcal{H} equipped with a normal unital homomorphism $\pi_I: M \to \mathcal{B}(\mathcal{H})$ and a normal unital homomorphism $\pi_r: N^{op} \to \mathcal{B}(\mathcal{H})$ such that π_I and π_r commute.

Example

Given a tracial von Neumann algebra (M, τ_M) , let $L^2(M, \tau)$ be the completion of M with the inner product $\langle x, y \rangle = \tau(x^*y)$. Then $L^2(M, \tau)$ is an M-M-bimodule.

• For an M-N-bimodule ${}_M\mathcal{H}_N$ and an N-P-bimodule ${}_N\mathcal{K}_P$, where M, N and P are three tracial von Neumann algebras, the *Connes fusion tensor product* $\mathcal{H} \otimes_N \mathcal{K}$ is a M-P-bimodule .

For groups

Let Γ be a discrete group. Then Γ has *Property (T)* ([Kazhdan, 1967]), if for any unitary representation (π, \mathcal{H}) of Γ with almost invariant unit vectors ξ_i 's:

$$\xi_i \in \mathcal{H}$$
 such that $||\pi(\gamma)\xi_i - \xi_i|| \to 0$ for every $\gamma \in \Gamma$,

 π has a non-zero invariant vector.

For groups

Let Γ be a discrete group. Then Γ has *Property (T)* ([Kazhdan, 1967]), if for any unitary representation (π, \mathcal{H}) of Γ with almost invariant unit vectors ξ_i 's:

$$\xi_i \in \mathcal{H}$$
 such that $||\pi(\gamma)\xi_i - \xi_i|| \to 0$ for every $\gamma \in \Gamma$,

 π has a non-zero invariant vector.

For II₁ factors

A II₁ factor M has Property (T) ([Connes, 1982]), if for any M-M-bimodule \mathcal{H} with almost central unit vectors ξ_i 's,

$$\xi_i \in \mathcal{H}$$
 such that $||x\xi_i - \xi_i x|| \to 0$ for all $x \in M$,

 \mathcal{H} has a non-zero M-central vector ($\eta \in \mathcal{H}$ such that $x\eta = \eta x$ for any $x \in M$).

For II₁ factors

A II₁ factor M has Property (T) ([Connes, 1982]), if for any M-M-bimodule \mathcal{H} with almost central unit vectors ξ_i 's,

$$\xi_i \in \mathcal{H}$$
 such that $||x\xi_i - \xi_i x|| \to 0$ for all $x \in M$,

 \mathcal{H} has a non-zero M-central vector ($\eta \in \mathcal{H}$ such that $x\eta = \eta x$ for any $x \in M$).

• The group von Neumann algebra $L(\Gamma)$ has Property (T) iff Γ has Property (T).

Let (M, τ) be a tracial von Neumann algebra and $A \subset M$ a von Neumann subalgebra.

Let (M, τ) be a tracial von Neumann algebra and $A \subset M$ a von Neumann subalgebra.

Spectral Gap and Weak Spectral Gap

Let (M, τ) be a tracial von Neumann algebra and $A \subset M$ a von Neumann subalgebra.

Spectral Gap and Weak Spectral Gap

• $A \subset M$ has spectral gap if for every net of unit vectors $(\xi_i)_i \in L^2(M)$ with $\lim_i ||x\xi_i - \xi_i x||_2 = 0$ for every $x \in A$, $\lim_i ||\xi_i - E_{A' \cap M}(\xi_i)||_2 = 0$,

Let (M, τ) be a tracial von Neumann algebra and $A \subset M$ a von Neumann subalgebra.

Spectral Gap and Weak Spectral Gap

- $A \subset M$ has spectral gap if for every net of unit vectors $(\xi_i)_i \in L^2(M)$ with $\lim_i ||x\xi_i \xi_i x||_2 = 0$ for every $x \in A$, $\lim_i ||\xi_i E_{A' \cap M}(\xi_i)||_2 = 0$,
- $A \subset M$ has weak spectral gap if for every bounded net $(\xi_i)_i \in (M)_1$ with $\lim_i ||x\xi_i \xi_i x||_2 = 0$ for every $x \in A$, $\lim_i ||\xi_i E_{A' \cap M}(\xi_i)||_2 = 0$,

Let (M, τ) be a tracial von Neumann algebra and $A \subset M$ a von Neumann subalgebra.

Spectral Gap and Weak Spectral Gap

- $A \subset M$ has spectral gap if for every net of unit vectors $(\xi_i)_i \in L^2(M)$ with $\lim_i ||x\xi_i \xi_i x||_2 = 0$ for every $x \in A$, $\lim_i ||\xi_i E_{A' \cap M}(\xi_i)||_2 = 0$, i.e. $A' \cap L^2(M)^{\omega} = L^2(A' \cap M)^{\omega}$.
- $A \subset M$ has weak spectral gap if for every bounded net $(\xi_i)_i \in (M)_1$ with $\lim_i ||x\xi_i \xi_i x||_2 = 0$ for every $x \in A$, $\lim_i ||\xi_i E_{A' \cap M}(\xi_i)||_2 = 0$,

Fix a free ultrafilter ω on \mathbb{N} , the *ultrapower* of M is $M^{\omega} = \prod_n M/I_{\omega}$, where $\prod_n M = \{(x_n)|x_n \in M, \sup_n ||x_n|| < \infty\}$ and $I_{\omega} = \{(x_n)|\lim_{\omega} \tau(x_n^*x_n) = 0\}$.

Let (M, τ) be a tracial von Neumann algebra and $A \subset M$ a von Neumann subalgebra.

Spectral Gap and Weak Spectral Gap

- $A \subset M$ has spectral gap if for every net of unit vectors $(\xi_i)_i \in L^2(M)$ with $\lim_i ||x\xi_i \xi_i x||_2 = 0$ for every $x \in A$, $\lim_i ||\xi_i E_{A' \cap M}(\xi_i)||_2 = 0$, i.e. $A' \cap L^2(M)^{\omega} = L^2(A' \cap M)^{\omega}$.
- $A \subset M$ has weak spectral gap if for every bounded net $(\xi_i)_i \in (M)_1$ with $\lim_i ||x\xi_i \xi_i x||_2 = 0$ for every $x \in A$, $\lim_i ||\xi_i E_{A' \cap M}(\xi_i)||_2 = 0$, i.e. $A' \cap M^{\omega} = (A' \cap M)^{\omega}$.

Fix a free ultrafilter ω on \mathbb{N} , the *ultrapower* of M is $M^{\omega} = \prod_n M/I_{\omega}$, where $\prod_n M = \{(x_n)|x_n \in M, \sup_n ||x_n|| < \infty\}$ and $I_{\omega} = \{(x_n)|\lim_{\omega} \tau(x_n^*x_n) = 0\}$.

6/16

Let (M, τ) be a tracial von Neumann algebra and $A \subset M$ a von Neumann subalgebra.

Spectral Gap and Weak Spectral Gap

- $A \subset M$ has spectral gap if for every net of unit vectors $(\xi_i)_i \in L^2(M)$ with $\lim_i ||x\xi_i \xi_i x||_2 = 0$ for every $x \in A$, $\lim_i ||\xi_i E_{A' \cap M}(\xi_i)||_2 = 0$, i.e. $A' \cap L^2(M)^{\omega} = L^2(A' \cap M)^{\omega}$.
- $A \subset M$ has weak spectral gap if for every bounded net $(\xi_i)_i \in (M)_1$ with $\lim_i ||x\xi_i \xi_i x||_2 = 0$ for every $x \in A$, $\lim_i ||\xi_i E_{A' \cap M}(\xi_i)||_2 = 0$, i.e. $A' \cap M^{\omega} = (A' \cap M)^{\omega}$. (Notice we automatically have $A' \cap M^{\omega} \supseteq (A' \cap M)^{\omega}$)

Fix a free ultrafilter ω on \mathbb{N} , the *ultrapower* of M is $M^{\omega} = \prod_{n} M/I_{\omega}$, where $\prod_{n} M = \{(x_{n})|x_{n} \in M, \sup_{n} ||x_{n}|| < \infty\}$ and $I_{\omega} = \{(x_{n})|\lim_{\omega} \tau(x_{n}^{*}x_{n}) = 0\}$.

6/16

For a separable II_1 factor M:

- M has Property (T);
- ② any inclusion of M into a tracial von Neumann algebra \tilde{M} has weak spectral gap, i.e. $M' \cap \tilde{M}^{\omega} = (M' \cap \tilde{M})^{\omega}$.

For a separable II_1 factor M:

- M has Property (T);
- ② any inclusion of M into a tracial von Neumann algebra \tilde{M} has weak spectral gap, i.e. $M' \cap \tilde{M}^{\omega} = (M' \cap \tilde{M})^{\omega}$.

We know $1 \Rightarrow 2$.

For a separable II_1 factor M:

- M has Property (T);
- ② any inclusion of M into a tracial von Neumann algebra \tilde{M} has weak spectral gap, i.e. $M' \cap \tilde{M}^{\omega} = (M' \cap \tilde{M})^{\omega}$.

We know $1 \Rightarrow 2$.

Need to show $2 \Rightarrow 1$.

For a separable II_1 factor M:

- M has Property (T);
- ② any inclusion of M into a tracial von Neumann algebra \tilde{M} has weak spectral gap, i.e. $M' \cap \tilde{M}^{\omega} = (M' \cap \tilde{M})^{\omega}$.

We know $1 \Rightarrow 2$.

Need to show $2 \Rightarrow 1$.

Suppose an M-M-bimodule $\mathcal H$ has almost central, unit vectors ξ_i but no non-zero central vectors. Construct from $\mathcal H$ an inclusion $M\subseteq \tilde M$ such that $(M'\cap \tilde M)^\omega \subsetneq M'\cap \tilde M^\omega$.

For a tracial von Neumann algebra M and a symmetric M-bimodule \mathcal{H} ,

• $\tilde{\mathcal{H}} = L^2(M) \oplus \bigoplus_{n=1}^{\infty} \mathcal{H}^{\bigotimes_{M}^n}$, full Fock space of \mathcal{H} .

For a tracial von Neumann algebra M and a symmetric M-M-bimodule \mathcal{H} ,

- $\tilde{\mathcal{H}} = L^2(M) \oplus \bigoplus_{n=1}^{\infty} \mathcal{H}^{\bigotimes_{M}^n}$, full Fock space of \mathcal{H} .
- M acts on $\tilde{\mathcal{H}}$: left and right actions on $L^2(M)$ and $\mathcal{H}^{\bigotimes_M^n}$.

For a tracial von Neumann algebra M and a symmetric M-M-bimodule \mathcal{H} ,

- $\tilde{\mathcal{H}} = L^2(M) \oplus \bigoplus_{n=1}^{\infty} \mathcal{H}^{\bigotimes_{M}^n}$, full Fock space of \mathcal{H} .
- M acts on $\tilde{\mathcal{H}}$: left and right actions on $L^2(M)$ and $\mathcal{H}^{\bigotimes_M^n}$.
- For $\xi \in \mathcal{H}^0$, define the *left creation operator* $I(\xi) \in \mathcal{B}(\tilde{\mathcal{H}})$

$$I(\xi)(x) = \xi x \text{ for } x \in L^2(M),$$

$$I(\xi)(\xi_1 \otimes_M \cdots \otimes_M \xi_n) = \xi \otimes_M \xi_1 \otimes_M \cdots \otimes_M \xi_n.$$

For a tracial von Neumann algebra M and a symmetric M-M-bimodule \mathcal{H} ,

- $\tilde{\mathcal{H}} = L^2(M) \oplus \bigoplus_{n=1}^{\infty} \mathcal{H}^{\bigotimes_{M}^n}$, full Fock space of \mathcal{H} .
- M acts on $\tilde{\mathcal{H}}$: left and right actions on $L^2(M)$ and $\mathcal{H}^{\bigotimes_M^n}$.
- For $\xi \in \mathcal{H}^0$, define the *left creation operator* $I(\xi) \in \mathcal{B}(\tilde{\mathcal{H}})$

$$I(\xi)(x) = \xi x \text{ for } x \in L^2(M),$$

$$I(\xi)(\xi_1 \otimes_M \cdots \otimes_M \xi_n) = \xi \otimes_M \xi_1 \otimes_M \cdots \otimes_M \xi_n.$$

• $\{s(\xi)|\xi\in\mathcal{H}^0,\xi=J(\xi)\}$ is the *M-valued semicircular system*, where $s(\xi)=I(\xi)+I(\xi)^*$.

For a tracial von Neumann algebra M and a symmetric M-M-bimodule \mathcal{H} ,

- $\tilde{\mathcal{H}} = L^2(M) \oplus \bigoplus_{n=1}^{\infty} \mathcal{H}^{\bigotimes_{M}^n}$, full Fock space of \mathcal{H} .
- M acts on $\tilde{\mathcal{H}}$: left and right actions on $L^2(M)$ and $\mathcal{H}^{\bigotimes_M^n}$.
- For $\xi \in \mathcal{H}^0$, define the *left creation operator* $I(\xi) \in \mathcal{B}(\tilde{\mathcal{H}})$

$$I(\xi)(x) = \xi x \text{ for } x \in L^2(M),$$

$$I(\xi)(\xi_1 \otimes_M \cdots \otimes_M \xi_n) = \xi \otimes_M \xi_1 \otimes_M \cdots \otimes_M \xi_n.$$

- $\{s(\xi)|\xi\in\mathcal{H}^0,\xi=J(\xi)\}$ is the *M-valued semicircular system*, where $s(\xi)=I(\xi)+I(\xi)^*$.
- $\tilde{M} = M \vee \{s(\xi)|\xi \in \mathcal{H}^0, \xi = J(\xi)\}'' = M \vee \{s(\xi)|\xi \in \mathcal{H}^0\}''$ is a tracial von Neumann algebra with $\tau_{\tilde{M}}(x) = \langle x1_M, 1_M \rangle_{\tilde{H}}$.

For a tracial von Neumann algebra M and a symmetric M-M-bimodule \mathcal{H} ,

- $\tilde{\mathcal{H}} = L^2(M) \oplus \bigoplus_{n=1}^{\infty} \mathcal{H}^{\bigotimes_{M}^n}$, full Fock space of \mathcal{H} .
- M acts on $\tilde{\mathcal{H}}$: left and right actions on $L^2(M)$ and $\mathcal{H}^{\bigotimes_M^n}$.
- For $\xi \in \mathcal{H}^0$, define the *left creation operator* $I(\xi) \in \mathcal{B}(\tilde{\mathcal{H}})$

$$I(\xi)(x) = \xi x \text{ for } x \in L^2(M),$$

$$I(\xi)(\xi_1 \otimes_M \cdots \otimes_M \xi_n) = \xi \otimes_M \xi_1 \otimes_M \cdots \otimes_M \xi_n.$$

- $\{s(\xi)|\xi\in\mathcal{H}^0,\xi=J(\xi)\}$ is the *M-valued semicircular system*, where $s(\xi)=I(\xi)+I(\xi)^*$.
- $\tilde{M} = M \vee \{s(\xi)|\xi \in \mathcal{H}^0, \xi = J(\xi)\}'' = M \vee \{s(\xi)|\xi \in \mathcal{H}^0\}''$ is a tracial von Neumann algebra with $\tau_{\tilde{M}}(x) = \langle x1_M, 1_M \rangle_{\tilde{\mathcal{U}}}$.
- $\tilde{\mathcal{H}} \cong L^2(\tilde{M}, \tau_{\tilde{M}})$ as M-M-bimodules.

From Shlyakhtenko's M-valued semicircular system construction,

From Shlyakhtenko's M-valued semicircular system construction, $(L^2(M), \mathcal{H}) \rightsquigarrow \tilde{\mathcal{H}} = L^2(M) \oplus \bigoplus_{n=1}^{\infty} \mathcal{H}^{\bigotimes_{M}^n}$, the full Fock space, $\xi_n \rightsquigarrow s(\xi_n) \in \mathcal{B}(\tilde{\mathcal{H}})$, $(M, (s(\xi_n))) \rightsquigarrow \tilde{M} \subseteq \mathcal{B}(\tilde{\mathcal{H}})$, tracial.

From Shlyakhtenko's M-valued semicircular system construction, $(L^2(M), \mathcal{H}) \rightsquigarrow \tilde{\mathcal{H}} = L^2(M) \oplus \bigoplus_{n=1}^{\infty} \mathcal{H}^{\bigotimes_{M}^n}$, the full Fock space, $\xi_n \rightsquigarrow s(\xi_n) \in \mathcal{B}(\tilde{\mathcal{H}})$, $(M, (s(\xi_n))) \rightsquigarrow \tilde{M} \subseteq \mathcal{B}(\tilde{\mathcal{H}})$, tracial.

• (ξ_n) almost central $\Rightarrow (s(\xi_n)) \in M' \cap \tilde{M}^{\omega}$.

From Shlyakhtenko's M-valued semicircular system construction, $(L^2(M), \mathcal{H}) \rightsquigarrow \tilde{\mathcal{H}} = L^2(M) \oplus \bigoplus_{n=1}^{\infty} \mathcal{H}^{\bigotimes_{M}^n}$, the full Fock space, $\xi_n \rightsquigarrow s(\xi_n) \in \mathcal{B}(\tilde{\mathcal{H}})$, $(M, (s(\xi_n))) \rightsquigarrow \tilde{M} \subseteq \mathcal{B}(\tilde{\mathcal{H}})$, tracial.

- (ξ_n) almost central $\Rightarrow (s(\xi_n)) \in M' \cap \tilde{M}^{\omega}$.
- \mathcal{H} has no non-zero central vectors $\Rightarrow (s(\xi_n)) \notin (M' \cap \tilde{M})^{\omega}$.

From Shlyakhtenko's M-valued semicircular system construction, $(L^2(M), \mathcal{H}) \rightsquigarrow \tilde{\mathcal{H}} = L^2(M) \oplus \bigoplus_{n=1}^{\infty} \mathcal{H}^{\bigotimes_{M}^n}$, the full Fock space, $\xi_n \rightsquigarrow s(\xi_n) \in \mathcal{B}(\tilde{\mathcal{H}})$, $(M, (s(\xi_n))) \rightsquigarrow \tilde{M} \subseteq \mathcal{B}(\tilde{\mathcal{H}})$, tracial.

- (ξ_n) almost central $\Rightarrow (s(\xi_n)) \in M' \cap \tilde{M}^{\omega}$.
- \mathcal{H} has no non-zero central vectors $\Rightarrow (s(\xi_n)) \notin (M' \cap \tilde{M})^{\omega}$.

From Shlyakhtenko's M-valued semicircular system construction, $(L^2(M), \mathcal{H}) \leadsto \tilde{\mathcal{H}} = L^2(M) \oplus \bigoplus_{n=1}^{\infty} \mathcal{H}^{\bigotimes_{M}^n}$, the full Fock space, $\xi_n \leadsto s(\xi_n) \in \mathcal{B}(\tilde{\mathcal{H}})$, $(M, (s(\xi_n))) \leadsto \tilde{M} \subseteq \mathcal{B}(\tilde{\mathcal{H}})$, tracial.

- (ξ_n) almost central $\Rightarrow (s(\xi_n)) \in M' \cap \tilde{M}^{\omega}$.
- \mathcal{H} has no non-zero central vectors \Rightarrow $(s(\xi_n)) \notin (M' \cap \tilde{M})^{\omega}$. So $(M' \cap \tilde{M})^{\omega} \subseteq M' \cap \tilde{M}^{\omega}$, $2 \Leftrightarrow 1$.

Weak spectral gap only in irreducible inclusions

- M has Property (T);
- ② any inclusion of M into a tracial von Neumann algebra \tilde{M} has weak spectral gap, i.e. $M' \cap \tilde{M}^{\omega} = (M' \cap \tilde{M})^{\omega}$.

Weak spectral gap only in irreducible inclusions

- M has Property (T);
- ullet for any inclusion of M into a tracial von Neumann algebra \tilde{M} where $M'\cap \tilde{M}=\mathbb{C}1,\ M'\cap \tilde{M}^\omega=(M'\cap \tilde{M})^\omega=\mathbb{C}1.$

- M has Property (T);
- ullet for any inclusion of M into a tracial von Neumann algebra \tilde{M} where $M'\cap \tilde{M}=\mathbb{C}1,\ M'\cap \tilde{M}^\omega=(M'\cap \tilde{M})^\omega=\mathbb{C}1.$

In the proof of $2 \Rightarrow 1$:

$$(L^2(M), \mathcal{H}) \leadsto \tilde{\mathcal{H}}, \ \xi_n \leadsto s(\xi_n) \in \mathcal{B}(\tilde{\mathcal{H}}), \ (M, (s(\xi_n))) \leadsto \tilde{M} \subseteq \mathcal{B}(\tilde{\mathcal{H}}).$$

- (ξ_n) almost central $\Rightarrow (s(\xi_n)) \in M' \cap \tilde{M}^{\omega}$.
- ${\mathcal H}$ has no non-zero central vectors $\Rightarrow (s(\xi_n)) \notin (M' \cap \tilde{M})^{\omega}$.

- M has Property (T);
- ullet for any inclusion of M into a tracial von Neumann algebra \tilde{M} where $M'\cap \tilde{M}=\mathbb{C}1,\ M'\cap \tilde{M}^\omega=(M'\cap \tilde{M})^\omega=\mathbb{C}1.$

In the proof of $2 \Rightarrow 1$:

$$(L^2(M), \mathcal{H}) \leadsto \tilde{\mathcal{H}}, \ \xi_n \leadsto s(\xi_n) \in \mathcal{B}(\tilde{\mathcal{H}}), \ (M, (s(\xi_n))) \leadsto \tilde{M} \subseteq \mathcal{B}(\tilde{\mathcal{H}}).$$

- (ξ_n) almost central $\Rightarrow (s(\xi_n)) \in M' \cap \tilde{M}^{\omega}$.
- ullet \mathcal{H} has no non-zero central vectors \Rightarrow $(s(\xi_n)) \notin (M' \cap \tilde{M})^\omega$.

For $3 \Rightarrow 1$,

• We need the above construction to satisfy $M' \cap \tilde{M} = \mathbb{C}1$.

- M has Property (T);
- ullet for any inclusion of M into a tracial von Neumann algebra \tilde{M} where $M'\cap \tilde{M}=\mathbb{C}1,\ M'\cap \tilde{M}^\omega=(M'\cap \tilde{M})^\omega=\mathbb{C}1.$

In the proof of $2 \Rightarrow 1$:

$$(L^2(M), \mathcal{H}) \rightsquigarrow \tilde{\mathcal{H}}, \ \xi_n \rightsquigarrow s(\xi_n) \in \mathcal{B}(\tilde{\mathcal{H}}), \ (M, (s(\xi_n))) \rightsquigarrow \tilde{M} \subseteq \mathcal{B}(\tilde{\mathcal{H}}).$$

- (ξ_n) almost central \Rightarrow $(s(\xi_n)) \in M' \cap \tilde{M}^{\omega}$.
- ullet \mathcal{H} has no non-zero central vectors \Rightarrow $(s(\xi_n)) \notin (M' \cap \tilde{M})^\omega$.

For $3 \Rightarrow 1$,

- We need the above construction to satisfy $M' \cap \tilde{M} = \mathbb{C}1$.
- $\tilde{\mathcal{H}} = L^2(M) \oplus \bigoplus_{n=1}^{\infty} \mathcal{H}^{\bigotimes_{M}^n} \cong L^2(\tilde{M}).$

- M has Property (T);
- ullet for any inclusion of M into a tracial von Neumann algebra \tilde{M} where $M'\cap \tilde{M}=\mathbb{C}1,\ M'\cap \tilde{M}^\omega=(M'\cap \tilde{M})^\omega=\mathbb{C}1.$

In the proof of $2 \Rightarrow 1$:

$$(L^2(M), \mathcal{H}) \rightsquigarrow \tilde{\mathcal{H}}, \ \xi_n \rightsquigarrow s(\xi_n) \in \mathcal{B}(\tilde{\mathcal{H}}), \ (M, (s(\xi_n))) \rightsquigarrow \tilde{M} \subseteq \mathcal{B}(\tilde{\mathcal{H}}).$$

- (ξ_n) almost central \Rightarrow $(s(\xi_n)) \in M' \cap \tilde{M}^{\omega}$.
- ullet \mathcal{H} has no non-zero central vectors \Rightarrow $(s(\xi_n)) \notin (M' \cap \tilde{M})^\omega$.

For $3 \Rightarrow 1$,

- We need the above construction to satisfy $M' \cap \tilde{M} = \mathbb{C}1$.
- $\tilde{\mathcal{H}} = L^2(M) \oplus \bigoplus_{n=1}^{\infty} \mathcal{H}^{\bigotimes_{M}^n} \cong L^2(\tilde{M}).$

- M has Property (T);
- § for any inclusion of M into a tracial von Neumann algebra \tilde{M} where $M' \cap \tilde{M} = \mathbb{C}1$, $M' \cap \tilde{M}^{\omega} = (M' \cap \tilde{M})^{\omega} = \mathbb{C}1$.

In the proof of $2 \Rightarrow 1$:

$$(L^2(M), \mathcal{H}) \rightsquigarrow \tilde{\mathcal{H}}, \ \xi_n \rightsquigarrow s(\xi_n) \in \mathcal{B}(\tilde{\mathcal{H}}), \ (M, (s(\xi_n))) \rightsquigarrow \tilde{M} \subseteq \mathcal{B}(\tilde{\mathcal{H}}).$$

- (ξ_n) almost central $\Rightarrow (s(\xi_n)) \in M' \cap \tilde{M}^{\omega}$.
- ${\mathcal H}$ has no non-zero central vectors $\Rightarrow (s(\xi_n)) \notin (M' \cap \tilde{M})^{\omega}$.

For $3 \Rightarrow 1$,

- We need the above construction to satisfy $M' \cap \tilde{M} = \mathbb{C}1$.
- $\tilde{\mathcal{H}} = L^2(M) \oplus \bigoplus_{n=1}^{\infty} \mathcal{H}^{\bigotimes_{M}^n} \cong L^2(\tilde{M}).$

Extra step. We need $\mathcal H$ to satisfy $\mathcal H^{\bigotimes_M^n}$ not to have non-zero $M\text{-}M\text{-}\mathrm{central}$ vectors, so that $M'\cap L^2(\tilde M)=\mathbb C1$.

For $3 \Rightarrow 1$, it suffices to show:

For $3\Rightarrow 1$, it suffices to show: if M does not have Property (T) then we have an M-M-bimodule $\mathcal H$ such that $\mathcal H$ has almost central, unit vectors ξ_n and $\mathcal H^{\bigotimes_M^n}$ has no non-zero M-central vectors

For $3 \Rightarrow 1$, it suffices to show: if M does not have Property (T) then we have an M-M-bimodule \mathcal{H} such that \mathcal{H} has almost central, unit vectors ξ_n and $\mathcal{H}^{\bigotimes_M^n}$ has no non-zero M-central vectors ($\iff \mathcal{H}$ being weakly mixing).

For $3 \Rightarrow 1$, it suffices to show:

if M does not have Property (T) then we have an M-M-bimodule $\mathcal H$ such that $\mathcal H$ has almost central, unit vectors ξ_n and $\mathcal H^{\bigotimes_M^n}$ has no non-zero M-central vectors ($\iff \mathcal H$ being weakly mixing).

Weak Mixing of Bimodules [Peterson and Sinclair, 2012]

The following are equivalent definitions for \mathcal{H} being a (left) weakly mixing M-M-bimodule:

For $3 \Rightarrow 1$, it suffices to show:

if M does not have Property (T) then we have an M-M-bimodule $\mathcal H$ such that $\mathcal H$ has almost central, unit vectors ξ_n and $\mathcal H^{\bigotimes_M^n}$ has no non-zero M-central vectors ($\iff \mathcal H$ being weakly mixing).

Weak Mixing of Bimodules [Peterson and Sinclair, 2012]

The following are equivalent definitions for \mathcal{H} being a (left) weakly mixing M-M-bimodule:

- **1** the M-M-bimodule $\mathcal{H} \otimes_M \overline{\mathcal{H}}$ contains no non-zero central vector;
- $oldsymbol{@}{\mathcal{H}}$ has no non-zero right M-finite dimensional subbimodule;
- **3** there exists a sequence of unitaries $(u_n) \subset \mathcal{U}(M)$ such that $\lim_n \sup_{b \in (N)_1} |\langle u_n \xi b, \eta \rangle| = 0$ for any ξ and η in \mathcal{H} .

We need to show if M does not have Property (T) then there is an M-M-bimodule $\mathcal H$ such that $\mathcal H$ has almost central, unit vectors ξ_n and $\mathcal H$ is weakly mixing.

We need to show if M does not have Property (T) then there is an M-M-bimodule $\mathcal H$ such that $\mathcal H$ has almost central, unit vectors ξ_n and $\mathcal H$ is weakly mixing.

In the group case:

Theorem ([Bekka and Valette, 1993])

Let G be a group. Then the following are equivalent:

- G has Property (T);
- ② any unitary representation π of G on a Hilbert space which has almost invariant unit vectors has a non-zero finite dimensional subrepresentation.

Theorem ([Tan, 2022])

For a separable II_1 factor M, the following are equivalent:

- M has Property (T);
- for any M-M-bimodule \mathcal{H} with almost central unit vectors, \mathcal{H} has a subbimodule \mathcal{K} which is left or right finite M-dimensional (not both left and right weakly mixing);

Theorem ([Tan, 2022])

For a separable II_1 factor M, the following are equivalent:

- M has Property (T);
- for any M-M-bimodule \mathcal{H} with almost central unit vectors, \mathcal{H} has a subbimodule \mathcal{K} which is left or right finite M-dimensional (not both left and right weakly mixing);
- ② any inclusion of M into a tracial von Neumann algebra \tilde{M} has weak spectral gap, i.e. $M' \cap \tilde{M}^{\omega} = (M' \cap \tilde{M})^{\omega}$;
- § for any inclusion of M into a tracial von Neumann algebra \tilde{M} where $M'\cap \tilde{M}=\mathbb{C}1,\ M'\cap \tilde{M}^\omega=\mathbb{C}1.$

Theorem ([Tan, 2022])

For a separable II_1 factor M, the following are equivalent:

- M has Property (T);
- for any M-M-bimodule \mathcal{H} with almost central unit vectors, \mathcal{H} has a subbimodule \mathcal{K} which is left or right finite M-dimensional (not both left and right weakly mixing);
- ② any inclusion of M into a tracial von Neumann algebra \tilde{M} has weak spectral gap, i.e. $M' \cap \tilde{M}^{\omega} = (M' \cap \tilde{M})^{\omega}$;
- § for any inclusion of M into a tracial von Neumann algebra \tilde{M} where $M'\cap \tilde{M}=\mathbb{C}1,\ M'\cap \tilde{M}^\omega=\mathbb{C}1.$

It suffices to show Condition 4 implies the following:

• there exists a finite subset $F \subset \mathcal{U}(M)$ and $\varepsilon > 0$, such that for any M-M-bimodule $\mathcal{K} \cong {}_{M}(\bigoplus_{1}^{n} L^{2}(M))p_{\theta(M)}$ where $\theta(M)' \cap pM_{n}(M)p = \mathbb{C}p$, if \mathcal{K} has a (F,ε) -almost central unit vector, then \mathcal{K} has a non-zero central vector.

It suffices to show Condition 4 implies the following:

• there exists a finite subset $F \subset \mathcal{U}(M)$ and $\varepsilon > 0$, such that for any M-M-bimodule $\mathcal{K} \cong {}_{M}(\bigoplus_{1}^{n} L^{2}(M))p_{\theta(M)}$ where $\theta(M)' \cap pM_{n}(M)p = \mathbb{C}p$, if \mathcal{K} has a (F, ε) -almost central unit vector, then \mathcal{K} has a non-zero central vector.

Intermediate steps

- M is non-Gamma.
- cp maps close to the identity are uniformly non-weakly mixing.

References I

[Bekka and Valette, 1993] Bekka, M. E. and Valette, A. (1993).

Kazhdan's property (T) and amenable representations.

Mathematische Zeitschrift, 212(1):293–299.

[Connes, 1982] Connes, A. (1982).

Classification des facteurs.

Operator algebras and applications, Part 2, Proceedings of Symposia in Pure Mathematics, 38:43–109.

[Goldbring, 2020] Goldbring, I. (2020).

On popa's factorial commutant embedding problem.

Proceedings of the American Mathematical Society, 148(11):5007–5012.

[Kazhdan, 1967] Kazhdan, D. A. (1967).

Connection of the dual space of a group with the structure of its close subgroups.

Functional analysis and its applications, 1(1):63-65.

References II

```
[Peterson and Sinclair, 2012] Peterson, J. and Sinclair, T. (2012).
```

On cocycle superrigidity for gaussian actions.

Ergodic Theory and Dynamical Systems, 32(1):249–272.

[Shlyakhtenko, 1999] Shlyakhtenko, D. (1999).

A-valued semicircular systems.

Journal of functional analysis, 166(1):1-47.

[Tan, 2022] Tan, H. (2022).

Spectral gap characterizations of property (t) for ii _1 factors. arXiv preprint arXiv:2202.06089.