
Math 317H Homework 10 Solutions 12/9/2021

Exercises:

1. Let V be an inner product space with an orthonormal basis B := {v1, . . . ,vn}.

(a) Prove that for any x,y ∈ V
〈x,y〉 = 〈[x]B, [y]B〉,

where the first inner product is from V and the second is from Fn.

(b) Prove Parseval’s identity:

〈x,y〉 =

n∑
j=1

〈x,vj〉〈vj ,y〉 ∀x,y ∈ V.

2. Let V be an inner product space and let PE be the orthogonal projection onto a subspace E ⊂ V .

(a) Prove that PE(v) = v if and only if v ∈ E.

(b) Prove that PE(w) = 0 if and only if w ⊥ E.

(c) Show that PE ◦ PE = PE and PE ◦ (I − PE) = O.

3. Let V be an inner product space and let S ⊂ V be a subset. Define

S⊥ := {v ∈ V : v ⊥ x ∀x ∈ S}.

(a) Prove that S⊥ is a subspace (even when S is not).

(b) Show that S ⊂ (S⊥)⊥.

(c) Prove that S = (S⊥)⊥ if and only if S is a subspace.

(d) Prove that (S⊥)⊥ = spanS.

4. Let V be a finite-dimensional inner product space, let E ⊂ V be a proper subspace (E 6= V and
E 6= {0}), and let PE be the orthogonal projection onto E.

(a) Determine the spectrum σ(PE).

(b) Prove that PE is diagonalizable.

(c) Find a diagonalization of PE .

5. Let v1, . . . ,vn ∈ Fn. Show that the system v1, . . . ,vn is orthonormal if and only if the matrix

A =
(
v1 · · · vn

)
is unitary.

6. Let A ∈Mn×n be a normal matrix: A∗A = AA∗.

(a) Show that an eigenvector v of A with eigenvalue λ is also an eigenvector of A∗ with eigenvalue λ̄.

(b) Show that if λ, µ are distinct eigenvalues of A, then the eigenspaces Ker(A−λI) and Ker(A−µI)
are orthogonal.

(c) Show that there exists a unitary matrix U ∈Mn×n so that

A = U

 λ1 0
. . .

0 λn

U∗,

where λ1, . . . , λn are the eigenvalues of A counting multiplicities.
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7*. (Not collected) Let V be a real vector space with norm ‖ · ‖. Assume the parallelogram identity
holds:

‖x + y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2

for all x,y ∈ V . Define

〈x,y〉 :=
1

4
‖x + y‖2 − 1

4
‖x− y‖2.

In this exercise you will prove that the above map is an inner product.

(a) Show that 〈x,x〉 = ‖x‖2 for all x ∈ V . Use this to prove non-negativity and non-degeneracy.

(b) Prove symmetry directly; that is, show that 〈y,x〉 = 〈x,y〉 for all x,y ∈ V .

(c) Show that 〈2x,y〉 = 2〈x,y〉 and 〈 12x,y〉 = 1
2 〈x,y〉 for all x,y ∈ V .

(d) Show that 〈w + x,y〉 = 〈w,y〉+ 〈x,y〉 for all w,x,y ∈ V .

[Hint: use w + x± y = w ± 1
2y + x± 1

2y.]

(e) Show that 〈−x,y〉 = −〈x,y〉 for all x,y ∈ V .

(f) Show that 〈nx,y〉 = n〈x,y〉 and 〈 1nx,y〉 = 1
n 〈x,y〉 for all n ∈ Z and all x,y ∈ V .

(g) Show that 〈qx,y〉 = q〈x,y〉 for all q ∈ Q and all x,y ∈ V .

(h) Use the previous parts to prove rational linearity; that is,

〈pw + qx,y〉 = p〈w,y〉+ q〈x,y〉,

for all p, q ∈ Q and all w,x,y ∈ V .

(i) Use the parallelogram identity and the triangle inequality to show |〈x,y〉| ≤ ‖x‖‖y‖ for all
x,y ∈ V .

(j) Show that
|〈αx,y〉 − α〈x,y〉| ≤ 2|α− q|‖x‖‖y‖

for any α ∈ R, q ∈ Q, and x,y ∈ V .

(j) Use the fact that Q is dense in R (that is, any real number has a sequence of rational numbers
converging to it) to prove 〈αx,y〉 = α〈x,y〉 for all α ∈ R and all x,y ∈ V .

(k) Use the previous parts to prove linearity.

———————————————————————————————————————————–

Solutions:

1. (a) We know there are scalars α1, . . . , αn and β1, . . . , βn such that

[x]B = α1v1 + · · ·+ αnvn and [y]B = β1v1 + · · ·+ βnvn.

This implies

x =

 α1

...
αn

 and y =

 β1
...
βn

 .

Now, using linearity and conjugate linearity we have

〈x,y〉 = 〈α1v1 + · · ·+ αnvn, β1v1 + · · ·+ βnvn〉 =

n∑
i,j=1

αiβ̄j 〈vi,vj〉

Recalling that v1, . . . ,vn is an orthonormal system, this reduces to

〈x,y〉 =

n∑
i=1

αiβ̄i‖vi‖2 =

n∑
i=1

αiβ̄i = 〈[x]B, [y]B〉 .

�

2 c©Brent Nelson 2021



Math 317H Homework 10 Solutions 12/9/2021

(b) Letting the αi’s and βi’s be as in the previous part, we have for each j = 1, . . . , n that

〈x,vj〉 = 〈α1v1 + · · ·+ αnvn,vj〉 =

n∑
i=1

αi 〈vi,vj〉 = αj‖vj‖2 = αj .

By a similar computation, we obtain 〈vj ,y〉 = β̄j . Thus by part (a) we obtain

n∑
j=1

〈x,vj〉 〈vj ,y〉 =

n∑
j=1

αj β̄j = 〈[x]B, [y]B〉 = 〈x,y〉

�

2. (a) (=⇒): Suppose PE(v) = v. Then by definition of the orthogonal projection v = PE(v) ∈ E.

(⇐=): Suppose v ∈ E. Then recall that by a theorem from lecture we have

‖v − PE(v)‖ ≤ ‖v − x‖ ∀x ∈ E.

In particular, this holds for x = v which makes the right-hand side zero. This forces the left-hand
side to be zero and so we must have v − PE(v) = 0, or v = PE(v). �

(b) (=⇒): Suppose PE(w) = 0. Observe that w = w− 0 = w−PE(w), which is orthogonal to E by
definition of the orthogonal projection.

(⇐=): Suppose w ⊥ E. Let v ∈ E, then

〈PE(w),v〉 = 〈PE(w),v〉 − 〈w,v〉 = 〈PE(w)−w,v〉 = −〈w − PE(w),v〉 = 0,

where the last equality holds since (w − PE(w)) ⊥ E by definition of the orthogonal projection.
The above holds, in particular, when v = PE(w), which yields 〈PE(w), PE(w)〉 = 0 and so
PE(w) = 0 by non-degeneracy. �

(c) Let v ∈ V . Then PE(v) ∈ E by part (a). Thus, by part (a) again we have PE(PE(v)) = PE(v).
That is, PE ◦ PE(v) = PE(v). Since v ∈ V was arbitrary, this implies PE ◦ PE = PE .

For the second equation, simply observe

PE ◦ (I − PE) = PE ◦ I − PE ◦ PE = PE − PE = O,

where we have used the first part. �

3. (a) Let v,w ∈ S⊥ and let α, β be scalars. Then for any x ∈ S we have by linearity of the inner
product that

〈αv + βw,x〉 = α 〈v,x〉+ β 〈w,x〉 = α0 + β0 = 0.

Thus αv+βw ∈ S⊥ and so S⊥ is closed under addition and scalar multiplication. Also, 〈0,x〉 = 0
for all x ∈ S, and so 0 ∈ S⊥. Hence S is a subspace. �

(b) Let x ∈ S. Then for any v ∈ S⊥ we have 〈x,v〉 = 0 so that x ⊥ v. Since v ∈ S⊥ was arbitrary,
we have x ∈ (S⊥)⊥. �

(c) (=⇒): Suppose S = (S⊥)⊥. Then letting S1 := S⊥, we have S = S⊥1 and so S is a subspace by
part (a).

(⇐=): Suppose S is a subspace. From part (b) we know S ⊂ (S⊥)⊥, and so it suffices to show
S ⊃ (S⊥)⊥. Let y ∈ (S⊥)⊥ and let PS be the orthogonal projection onto S. Let w := y−PS(y),
which is orthogonal to S by definition of the orthogonal projection. That is, w ∈ S⊥ and so
PS(y) ⊥ w, but also y ⊥ w since y ∈ (S⊥)⊥. Thus

〈w,w〉 = 〈y − PS(y),w〉 = 〈y,w〉 − 〈PS(y),w〉 = 0− 0 = 0.

By non-degeneracy we must have w = 0, which implies y = PS(y). Then by Exercise 2.(a), we
have y ∈ S. �
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(d) Let E := spanS, which is a subspace. Now, the inclusion S ⊂ E implies E⊥ ⊂ S⊥. Indeed, if
w ∈ E⊥ then w ⊥ v for all v ∈ E. In particular, w ⊥ x for all x ∈ S ⊂ E and thus w ∈ S⊥. Thus
E⊥ ⊂ S⊥, and by the same reasoning we have (S⊥)⊥ ⊂ (E⊥)⊥. By part (c), we then know the
latter set is E and so (S⊥)⊥ ⊂ E. On the other hand, by parts (a) and (b), (S⊥)⊥ is a subspace
containing S. It must therefore contain the span of S; that is, E ⊂ (S⊥)⊥. Hence E = (S⊥)⊥, as
claimed. �

4. (a) Let λ ∈ σ(PE) and let v be an associated eigenvector. Since PE ◦ PE = PE by Exercise 2.(c), we
have

λv = PE(v) = PE ◦ PE(v) = PE(λv) = λ2v,

which implies (λ − λ2)v = 0. Since v 6= 0 (by virtue of being an eigenvector), we must have
λ− λ2 = 0. Noting that λ− λ2 = λ(1− λ), we see that this is only possible if λ ∈ {0, 1}. Hence
σ(PE) ⊂ {0, 1}. On the other hand, since E is a propert subspace there exists non-zero vectors
v ∈ E and w ∈ E⊥ and by Exercise 2.(a),(b) we have

PE(v) = v = 1v

PE(w) = 0 = 0w,

so that 1, 0 ∈ σ(PE). Thus σ(PE) = {0, 1}. �

(b) Let B be a basis for E and let C be a basis for E⊥. From the proof of Corollary 5.16 which says

dim(E) + dim(E⊥) = dim(V ),

we know that B ∪ C is a basis for V . By the previous part, we know this is a basis of eigenvectors
for PE and therefore PE is diagonalizable. �

(c) Let B and C be as in the previous part. Then

[PE ]B∪CB∪C =



1 0
. . .

1
0

. . .

0 0


,

where the number of 1’s along the diagonal is dim(E). �

5. Note that

A∗ =

 v∗1
...
v∗n

 .

It follows that
(A∗A)i,j = v∗i vj = 〈vi,vj〉 .

If v1, . . . ,vn is an orthonormal system, we obtain

(A∗A)i,j =

{
1 if i = j

0 otherwise
= (In)i,j .

Thus A∗A = In which implies A∗ is a left-inverse of A. Since A is square, it is the inverse of A. That
is, A∗ = A−1 and so A is unitary.

Conversely, suppose A is unitary. Then by our computation above we have

〈vi,vj〉 = (A∗A)i,j = (In)i,j =

{
1 if i = j

0 otherwise
.

Hence v1, . . . ,vn is an orthonormal system. �
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6. (a) We must show A∗v = λ̄v, and we will use the non-degeneracy of the inner product to accomplish
this: 〈

A∗v − λ̄v, A∗v − λ̄v
〉

= 〈A∗v, A∗v〉 − λ 〈A∗v,v〉 − λ̄ 〈v, A∗v〉 − |λ|2 〈v,v〉
(Proposition 5.6) = 〈v, AA∗v〉 − λ 〈v, Av〉 − λ̄ 〈Av,v〉 − |λ|2 〈v,v〉

(A is normal) = 〈v, A∗Av〉 − λ 〈v, λv〉 − λ̄ 〈λv,v〉 − |λ|2 〈v,v〉
= 〈Av, Av〉 − |λ|2 〈v,v〉 − |λ2| 〈v,v〉+ |λ|2 〈v,v〉
= 〈λv, λv〉 − |λ|2 〈v,v〉
= |λ|2 〈v,v〉 − |λ|2 〈v,v〉 = 0

Hence A∗v − λ̄v = 0, or equivalently A∗v = λ̄v. �

(b) Let v ∈ Ker(A−λI) and w ∈ Ker(A−µI). Since λ 6= µ, one of them must be non-zero. Without
loss of generality we may assume λ 6= 0. Using part (a) and Proposition 5.6 we have

〈v,w〉 =
λ

λ
〈v,w〉 =

1

λ
〈λv,w〉 =

1

λ
〈Av,w〉 =

1

λ
〈v, A∗w〉 =

1

λ
〈v, µ̄w〉 =

µ

λ
〈λ, µ〉 .

Thus (
1− µ

λ

)
〈v,w〉 = 0.

Since λ 6= µ, we know the first factor above is non-zero. Thus the second factor, 〈v,w〉, must be
zero. That is, v ⊥ w. Since v ∈ Ker(A−λI) and w ∈ Ker(A−µI) were arbitrary, the eigenspaces
are orthogonal. �

(c) Let λ1, . . . , λr be the distinct eigenvalues of A. From lecture we know that normal matrices are
diagonalizable, so it follows that

r∑
k=1

dim(Ker(A− λkI)) = n.

For each k = 1, . . . , r, let Bk be an orthonormal basis for the eigenspace Ker(A− λkI). Note that
Bk consists of eigenvectors of A with eignevalue λk. By the previous part, B := B1 ∪ · · · ∪ Br is
an orthonormal system and hence linearly independent. The above equation implies B contains
n elements and hence is an orthonormal basis for Fn (consisting of eigenvectors for A). Let
U ∈Mn×n be the matrix whose columns are the vectors in B. Then

A = U

 λ1 0
. . .

0 λn

U−1

By Exercise 5, U is a unitary matrix and so U−1 = U∗. �

7*. (a) We have

〈x,x〉 =
1

4
‖x + x‖2 − 1

4
‖x− x‖2 =

1

4
‖2x‖2 − 1

4
‖0‖2 =

1

4
4‖x‖2 − 0 = ‖x‖2.

Thus 〈x,x〉 = ‖x‖2 ≥ 0 for all x ∈ V , and 〈x,x〉 = 0 ⇔ ‖x‖ = 0 ⇔ x = 0, which implies 〈 · , · 〉
is non-negative and non-degenerate. �

(b) We compute

〈y,x〉 =
1

4
‖y+x‖2−1

4
‖y−x‖2 =

1

4
‖x+y‖2−1

4
‖−(x−y)‖2 =

1

4
‖x+y‖2−1

4
|−1|2‖x−y‖2 = 〈x,y〉 .

�
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(c) We compute

〈2x,y〉 =
1

4
‖2x + y‖2 − 1

4
‖2x− y‖2 =

1

4
‖(x + y) + x‖2 − 1

4
‖(x− y) + x‖2. (1)

Now, using the parallelogram identity, we have

‖(x± y) + x‖2 = −‖(x± y)− x‖2 + 2‖x± y‖2 + 2‖x‖2

= −‖ ± y‖2 + 2‖x± y‖2 + 2‖x‖2

= −‖y‖2 + 2‖x± y‖2 + 2‖x‖2

Substituting this into Equation (1) gives

〈2x,y〉 =
1

4
(−‖y‖2 + 2‖x + y‖2 + 2‖x‖2)− 1

4
(−‖y‖2 + 2‖x− y‖2 + 2‖x‖2)

=
2

4
‖x + y‖2 − 2

4
‖x− y‖2 = 2 〈x,y〉 .

From this it follows that 〈x,y〉 =
〈
2 1
2x,y

〉
= 2

〈
1
2x,y

〉
. Thus

〈
1
2x,y

〉
= 1

2 〈x,y〉. �

(d) We compute

〈w + x,y〉 =
1

4
‖w + x + y‖2 − 1

4
‖w + x− y‖2

=
1

4
‖(w +

1

2
y) + (x +

1

2
y)‖2 − 1

4
‖(w − 1

2
y) + (x− 1

2
y)‖2 (2)

Now, using the parallelogram identity, we have

‖(w ± 1

2
y) + (x± 1

2
y)‖2 = −‖(w ± 1

2
y)− (x± 1

2
y)‖2 + 2‖w ± 1

2
y‖2 + 2‖x± 1

2
y‖2

= −‖w − x‖2 + 2‖w ± 1

2
y‖2 + 2‖x± 1

2
y‖2

Substituting this into Equation (2) gives

〈w + x,y〉 =
1

4

(
−‖w − x‖2 + 2‖w +

1

2
y‖2 + 2‖x +

1

2
y‖2
)

− 1

4

(
−‖w − x‖2 + 2‖w − 1

2
y‖2 + 2‖x− 1

2
y‖2
)

=
2

4
‖w +

1

2
y‖2 − 2

4
‖w − 1

2
y‖2 +

2

4
‖x +

1

2
y‖2 − 2

4
‖x− 1

2
y‖2

=2

〈
w,

1

2
y

〉
+ 2

〈
x,

1

2
y

〉
=2

〈
1

2
y,w

〉
+ 2

〈
1

2
y,x

〉
= 〈y,w〉+ 〈y,x〉
= 〈w,y〉+ 〈x,y〉 .

�

(e) First observe that

〈0,y〉 =
1

4
‖0 + y‖2 − 1

4
‖0− y‖2 =

1

4
‖y‖2 − 1

4
‖ − y‖2 = 0.

Thus by the previous part we have

〈x,y〉+ 〈−x,y〉 = 〈x + (−x),y〉 = 〈0,y〉 = 0,

so that 〈−x,y〉 = −〈x,y〉. �
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(f) We will first prove 〈nx,y〉 = n 〈x,y〉 for n ∈ N by induction on n. The base case of n = 1 is
immediate. So suppose it holds for n. Then we have by part (d) that

〈(n+ 1)x,y〉 = 〈nx + x,y〉 = 〈nx,y〉+ 〈x,y〉 = n 〈x,y〉+ 〈x,y〉 = (n+ 1) 〈x,y〉 .

So by induction we have the claimed formula. Now, for −n, we simply apply the above and part
(e). Finally, observe that

〈x,y〉 =

〈
n

1

n
x,y

〉
= n

〈
1

n
x,y

〉
,

so that 1
n 〈x,y〉 =

〈
1
nx,y

〉
. �

(g) For any q ∈ Q, we can write q = n
m for n ∈ Z and m ∈ N. So using part (f) twice we get

〈qx,y〉 = n

〈
1

m
x,y

〉
= n

1

m
〈x,y〉 = q 〈x,y〉 .

�

(h) Using part (d) and (g) we have

〈pw + qx,y〉 = 〈pw,y〉+ 〈qx,y〉 = p 〈w,y〉+ q 〈x,y〉 .

�

(i) First note that by the parallelogram identity that

〈x,y〉 =
1

4
‖x + y‖2 − 1

4
(2‖x‖2 + 2‖y‖2 − ‖x + y‖2) =

1

2

(
‖x + y‖2 − ‖x‖2 − ‖y‖2

)
.

We also have

−〈x,y〉 =
1

4
‖x− y‖2 − 1

4
(2‖x‖2 + 2‖y‖2 − ‖x− y‖2) =

1

2

(
‖x− y‖2 − 2‖x‖2 − 2‖y‖2

)
.

Now, the triangle inequality implies

‖x± y‖2 ≤ (‖x‖+ ‖y‖)2 = ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2.

Substituting this into our earlier computations yields

±〈x,y〉 ≤ 1

2
(2‖x‖‖y‖) = ‖x‖‖y‖.

Thus | 〈x,y〉 | ≤ ‖x‖‖y‖. �

(j) Let α ∈ R and let q ∈ Q. Using parts (d) and (g) we have

〈αx,y〉 = 〈(α− q + q)x,y〉 = 〈(α− q)x,y〉+ 〈qx,y〉 = 〈(α− q)x,y〉+ q 〈x,y〉 .

Thus
〈αx,y〉 − α 〈x,y〉 = 〈(α− q)x,y〉+ (q − α) 〈x,y〉 .

Then using part (i) we get

| 〈αx,y〉−α 〈x,y〉 | ≤ | 〈(α− q)x,y〉 |+|q−α|| 〈x,y〉 | ≤ ‖(α−q)x‖‖y‖+|α−q|‖x‖‖y‖ ≤ 2|α−q|‖x‖‖y‖,

where we have used homogeneity of the norm in the last step. �

(k) Let α ∈ R. Since Q is dense there is a sequence (qn)n∈N such that

lim
n→∞

qn = α.

In particular,
lim
n→∞

|α− qn| = |α− α| = 0.

So using part (j) we see that

| 〈αx,y〉 − α 〈x,y〉 | = lim
n→∞

| 〈αx,y〉 − α 〈x,y〉 | ≤ lim
n→∞

2|α− qn|‖x‖‖y‖ = 0.

Thus 〈αx,y〉 − α 〈x,y〉 = 0 or 〈αx,y〉 = α 〈x,y〉. �
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(l) Using parts (d) and (k) we have for any α, β ∈ R that

〈αw + βx,y〉 = 〈αw,y〉+ 〈βx,y〉 = α 〈w,y〉+ β 〈x,y〉 .

�
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