Math 461 Homework 1 Solutions 9/11/2020

Exercises: (52, 3,6, 7)

1. Let f: A — B be a function.
(a) For Ag C A and By C B, show that Ag C f~1(f(Ap)) and f(f~1(By)) C Bo.
(b) Show that f is injective if and only if Ag = f~(f(Ap)) for all subsets Ay C A.
(c) Show that f is surjective if and only if f(f~*(By)) = By for all subsets By C B.

2. Let C be a relation on a set A. For a subset Ay C A, the restriction of C to Ay is the relation defined
by the subset D := C N (Ap x Ap).

(a

(b

(c

(d

For a,b € A, show that aDb if and only if a,b € Ay and aCb.
Show that if C' is an equivalence relation on A, then D is an equivalence relation on Aj.

Show that if C' is an order relation on A, then D is an order relation on Ajg.

D D

Show that if C' is a partial order relation on A, then D is a partial order relation on Ag.
3. Let A and B be non-empty sets.

(a) Prove that A x B is finite if and only if A and B are both finite.
(b) Let B4 denote the set of functions f: A — B. Show that if A and B are finite, then so is BA.
(c) Suppose B# is finite and B has at least two elements. Show that A and B are finite.

4. We say two sets A and B have the same cardinality if there is a bijection of A with B. In this exercise,
you will prove the Schréder—Bernstein Theorem: if there exist injections f: A — B and g: B — A,
then A and B have the same cardinality.

(a) Suppose C C A and that there is an injection f: A — C. Define Ay := A, Cy :=C, and for n > 1
recursively define A,, := f(A,—1) and C,, := f(C,,—1). Show that

A13013A23023A3D"'

and that f(A, \ Cpn) = Apt1 \ Cpyq for all n € N.
(b) Using the notation from the previous part, show that h: A — C defined by

h(z) == f(z) ifxe A, \C, for somen € N
Tz otherwise

is a bijection. [Hint: draw a picture.]

(¢) Prove the Schréder—Bernstein Theorem.
5. Let {0, 1} denote the set of functions f: N — {0,1}.

(a) Show that {0,1}" and P(N) have the same cardinality.

(b) Let C be the collection of countable subsets of {0,1}N. Show that C and {0,1}" have the same
cardinality. [Hint: first construct an injection from C to ({0,1})N then use Exercise 4.]

Solutions:

1. (a) Let a € Ag. Then f(a) € f(Ap) and therefore a € f~1(f(Ag)). Since a € Ay was arbitrary,
we have Ag C f~1(f(Ap)). Next, let b € f(f~1(By)). Then there exists a € f~1(Bg) such that
f(a) =b. But a € f~1(By) implies b = f(a) € By. Since b € f(f~1(Bp)) was arbitrary, we have
f(f~1(Bo)) C Bo. O
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(b)

(=) : Suppose f is injective and let Ag C A. By the previous part, it suffices to show
7Y f(Ag)) C Ag. Ifa € f~1(f(Ap)), then f(z) € f(Ap) and so there is some a; € Ay with
f(a) = f(a1). Since f is injective, we must have a = a; € Ag. Thus f~1(f(Ag)) C Ao.

(«<=) : We will proceed by contrapositive. Suppose f is not injective. Then there exists aq,as € A
with a; # ag and f(a1) = f(az). Consider Ay := {a1}. Then f({a1}) = {f(a1)} and so
ar,az € f~1(f({a1})). Consequently, {a;} does not equal f~1(f({a1})) (it is a strict subset). O

(=) : Suppose f is surjective and let By C B. By part (a) it suffices to show By C f(f~1(By))-
Let b € By. Since f is surjective, we can find some a € A with f(a) = b. Consequently,
a € f~H(By) and b= f(a) € f(f~'(Bo)). Thus By C f(f~"(Bo))-

(<=) : We will again proceed by contrapositive. Suppose f is not surjective. Then there exists
b € B so that f(a) # b for all a € A. Consider By := {b}. Since nothing in A is mapped to b by

£, we have f=L({b}) = 0. Thus f(f~1({b})) = 0 # {b}. O

If aDb, then this means (a,b) € D = C' N (Ap x Ag). In particular, (a,b) € C so that aCb, and
(a,b) € Ay x Ap so that a,b € Ay. Conversely, if a,b € Ay and aCb, then the former implies
(a,b) € Ag x Ao and the latter implies (a,b) € C. Thus (a,b) is in their intersection, which is D,
and consequently aDb. O

Let C be an equivalence relation on A and let D be its restriction to a subset A9 C A. So C
satisfies reflexivity, symmetry, and transitivity and we must show D inherits these properties. For
a € Ay, we have aCa by reflexivity and consequently aDa by part (a). Thus D is reflexive. For
a,b € Ay, if aDb, then aCb by part (a). By symmetry of C' we have bCa and since we still have
a,b € Ap, we obtain bDa by part (a). Thus D is symmetric. Finally, for a,b,c € Ay, if aDb and
bDc, then we have aCb and bC'¢, and so aCc by transitivity of C. Using part (a) again we obtain
aDc whence D is transitive. ]

Let C be an order relation on A and let D be its restriction to a subset Ag C A. So C satisfies
comparability, non-reflexivity, and transitivity and we must show D inherits these properties. Let
a,b € Ag with a # b. Then aCb by comparability, and consequently aDb by part (a); that is, D
has comparability. Let a € Ay. If aDa, then aCa by part (a), which contradicts non-reflexivity
of C. Thus aDa holds for no a € Ay, which means D has non-reflexivity. Finally, the proof of
transitivity follows by exactly the same argument as in part (b). O

Let C be a partial order relation on A and let D be its restriction to a subset A9 C A. So C
satisfies reflexivity, antisymmetry, and transitivity and we must show D inherits these properties.
Reflexivity and transitivity follows by the same arguments as in part (b), so it suffices show D is
antisymmetric. If a,b € Ag satisfy aDb and bDa, then we have aCb and bCa by part (a). Since
C' is antisymmetric, we must have ¢ = b. Thus D is antisymmetric. (]

(=) : Suppose A x B is finite. Then by Corollary 6.7, there is an injective function f: A x B —
{1,2,...,n} for some n € N. Let ap € A and by € B (which exist since A and B are assumed to
be non-empty), and note that the maps

ta: Adar (a,by) € Ax B
tp: B3 b (ap,b) e AX B
are injective. Consequently, fota: A — {1,2,...,2} and fourp: B — {1,2,...,n} are injective

maps as compositions of injective maps. Thus A and B are finite by Corollary 6.7.

(<) : Suppose A and B are finite. By Corollary 6.7, there are injective functions f: A —
{1,2,...,n} and g: B — {1,2,...,m}. Note that n,m > 1 since A and B are both non-empty.
Observe that the map

h:{1,2,...;n} x{1,2,...,m} = {1,2,...,nm}
(i,9) = (i—1)m+j

is injective. Indeed, if h(i,7) = h(i',j') then (i —i')m = j' — j, which implies j' — j is divisible
by m. Since j —j € {-m+1,-m+2,...,—1,0,1,...,m — 2,m — 1}, this is only possible if
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j"— 7 =0 in which case (¢ —i')m = 0. Thus j = j' and ¢ = ¢’ and h is injective. Consider the
map k: A x B — {1,2,...,nm} defined by k(a,b) := h(f(a),g(b)). We claim this is injective,
in which case A x B is ﬁmte by Corollary 6.7. Suppose k(a,b) = k(a’,b"). Then h(f(a),g(b)) =
h(f(a'),g(b")). Since h is injective, we must have (f(a),g(b)) = (f(a’),g(¥’)). So f(a) = f(a')
and g(b) = g(b'), but since each of these functions is injective we obtain a = a’ and b = b'. Thus
k is injective. ]

Let n be the cardinality of A and m the cardinality of B. We will show that there is a bijection
between B4 and B", and then use the previous part (and induction) to show B” is finite. Since A
has cardinality n, there is a bijection o: {1,2,...,n} — A. So we can define a map ¢: B4 — B"
by 6(f) == (F(o(1)),..., f(o(n)) for f € BA. Suppose 6(f) = o(f') for f,f' € BA. Then
fle(9) = f'(o(j)) for each j = 1,...,n. This implies f = f’ because each a € A occurs in the
set {o(1),...,0(n)}. Thus ¢ is injective. Also, given any (by,...,b,) € B™ the function f € B4
defined by f(a) := by-1(4) satisfies ¢(f) = (b1, ..., bn). Thus ¢ is also surjective. So it now suffices
to show B" is finite, and we will proceed by induction on n. If n = 1, then this is immediate from
the finiteness of B. So suppose we know B"~! is finite. Then B” = B"~! x B, and consequently
B™ is finite by part (a). Induction then concludes the proof. O

We will first show A is finite. Let b1,bo € B be distinct elements. For a fixed a € A, define
fa: A— Bby fu(a) = by and f,(a’) = by for a’ # a.Then a + f, is an injection from A into B4.
Since B4 is finite, there is an injection from B4 to {1,...,n} for some n € N. The composition
of these injections, along with Corollary 6.7 shows A is finite. Next, we show B is finite. For each
b € B, define g,: A — B by gy(a) := b for all a € B. Then b+ g, is an injection from B to BA.
By the same argument as with A, this implies B is finite. |

7

We will establish this series of containments by proving “A,, D C,, D A,+1” via induction on n.
For n =1, we have A1 = A, C; = C, and As = f(A). So the inclusion A; D C} follows from the
fact that C is a subset of A, and the inclusion C; D As follows from the fact that the C is the range
of f. Now assume A,,_1 D C,,—1 D A,. Then appllying f yields f(A,—1) D f(Cn-1) D f(An),
but this is precisely the series of inclusions A,, D C,, D A,41. Thus the full series of inclusions
holds by induction.

Now, we must show f(A,\Cp) = An41\Crt1 foreachn € N. Fixn € Nand let a € 4,\C,,. Then
f(a) € A,q1 by definition of A,,;1. We also cannot have f(a) € C,1 because C,11 = f(Ch)
would imply that f(a) = f(¢) for some ¢ € C,, and hence a = ¢ € O, since f is injective, a
contradiction. Thus f(a) € Apt1 \ Cra1, and so f(A, \ Cn) C Apt1 \ Cne1. Conversely, let
be Apy1\ Cry1. Then A, 41 = f(A,) implies there is some a € A,, with f(a) = b. We must also
have a ¢ C,, because otherwise b = f(a) € Cj,41, a contradiction. Thus A,,11\Crnt+1 C f(An\Ch)
and so the sets are equal.

We first show h is injective. Suppose h(z) = h(y). If © € A, \ C, for some n € N, then
h(y) = h(z) = f(x) € Aps1 \ Cny1 by part (a). We cannot have h(y) = y because this would
require (by definition of h) that y € A,, \ C,, for any n, and yet y = h(y) = f(z) € Apnt1 \ Cnt1-
Thus we must have h(y) = f(y), and so f(y) = f(z). Since f is injective, this implies = y. If
x & A, \ Cy, for all n € N, then h(z) = z by definition of h. By the same reasoning as above, we
cannot have y € A,, \ Oy, for any m, and so we have y = h(y) = h(x) = x. Thus h is injective.
Next we show h is surjective. Let y € C. If y & A, \ C,, for any n € N, then h(y) = y and so y is
in the image of h. If y € A,, \ C,, for some n, then we must have n > 1 since y € C' = C;. Thus,
by part (a), A, \ Cp, = f(An—1\ Cn—_1). So there is some = € A,_; \ Cp, with f(z) = y. Since
x € Ap_1\ Cn_1, we have h(z) = f(x) = y. Thus h is surjective.
Suppose f: A — B and g: B — A are injections. Consider C' := ¢g(B) C A and note that
go f: A — C is an injection. So by part (b), there is a bijection h: A — C. Since ¢ is an
injection, by changing the range of g we get that g: B — ¢g(B) = C is a bijection. Hence
“loh: A — B is a bijection and so A and B have the same cardinality. ]

Given f € {0,1}", define a subset a subset of the natural numbers by Ay := {n € N| f(n) = 1}.
We claim that f ~ Ay is a bijection {0, 1} — P(N). If A; = A/, then for each n € N we have
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f(n)=f'(n)=1ifne Ay = Ay and f(n) = f'(n) = 0 otherwise. Thus f — A/ is injective.
Given A € P(N), define f: N — {0,1} by f(n) = 1if n € A and f(n) = 0 otherwise. Then
Ay = A and so the map is also surjective. Thus {0,1}" and P(N) have the same cardinality. [

We will show there are injections C — {0,1} and {0,1}" — C and then use the Schréder—
Bernstein Theorem. The latter is easy to define: simply send f € {0,1}" to {f} € C. For the the
former, we will actually define intermediate injections C — ({0, 1})N — {0, 1}".

If C € C, then by Theorem 7.1 there is a surjective function fo: N — C. Changing the range
of fo to all of {0,1}N, we can view fc € ({0,1}")N where C is the image of f. Then for
C,C" € C, if fo = for then in particular the image of fo (which is C) equals the image of
fcor (which is C"). Thus C + fc is an injection C — ({0,1}¥)N. It remains to show there is
an injection ({0, 1} — {0, 1}N. First recall that since N x N is countably infinite, there is a
bijection g: N = N — N. Now, given f € ({0, 1}V, we view it as a function f: N — {0, 1},
That is, for each n € N, f(n) € {0,1}" and so f(n): N — {0,1}. Thus (f(n))(m) € {0,1} for
each n,m € N, which means we can view f as a function f: N x N — {0,1}. Consequently,
fog:N = {0,1}, or fog € {0,1}. We claim f +— f o g is the desired injection. Indeed, if
fog= fogfor f f € ({0,1}")N, then for any (n,m) € Nx N let k = g~ '(n,). We have
fn,m) = f(g(k)) = f'(g(k)) = f'(n,m). Since (n,m) € N x N was arbitrary, we obtain f = f’
and so f +— f og is injective. ]
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