
Math 461 Homework 3 Solutions 9/25/2020

Exercises:
§13, 14, 15, 16

1. Equip R with the standard topology. Show that a set U ⊂ R is open if and only if for all x ∈ U there
exists ε > 0 such that (x− ε, x+ ε) ⊂ U .

2. Let X be a space.

(a) Let {Ti | i ∈ I} be a non-empty collection topologies on X (indexed by some set I). Show that⋂
i∈I Ti is a topology on X.

(b) Let B be a basis for a topology T on X. Show that T is the intersection of all topologies on X
that contain B.

(c) Let S be a subbasis for a topology T on a space X. Suppose T ′ is another topology on X that
contains S. Show that T is coarser than T ′.

(d) Let S and T be as in the previous part. Show that T is the intersection of all topologies on X
that contain S.

3. Let X be an ordered set (with at least two elements) equipped with the order topology. For a subspace
Y ⊂ X, show that the collection S consisting of sets of the form Y ∩ (−∞, a) or Y ∩ (a,+∞) for a ∈ X
form a subbasis for the subspace topology on Y .

4. Let X and Y be topological spaces. A function f : X → Y is called an open map if for every open
subset U ⊂ X one has that its image f(U) is open in Y .

(a) Equip X × Y with the product topology. Show that the coordinate projections π1 : X × Y → X
and π2 : X × Y → Y are open maps.

(b) Let B be a basis for the topology on X and suppose f(B) is open for all B ∈ B. Show that f is
an open map.

(c) Show that the previous part does not hold for subbases. [Hint: consider the function f : R→ R
with f(0) = 1 and f(x) = |x| if x 6= 0 where R has the standard topology.]

5. Equip R with the standard topology.

(a) Show that the subspace topology on { 1n | n ∈ N} ⊂ R is the discrete topology.

(b) Show that the subspace topology on {0} ∪ { 1n | n ∈ N} is not the discrete topology.

6. In this exercise, you will show that there is a countable basis that generates the standard topology on
R. For parts (a)–(c), you should only use the properties of Z and R given in §4.

(a) For x ∈ R, show that there is exactly one n ∈ Z satisfying n ≤ x < n+ 1.

(b) For x, y ∈ R, show that if x− y > 1 then there is at least one n ∈ Z satisfying y < n < x.

(c) For x, y ∈ R, show that if x− y > 0 then there exists z ∈ Q satisfying y < z < x.

(d) Let B be the collection of open intervals (a, b) ⊂ R with a, b ∈ Q. Show that B is countable and
is a basis for a topology on R.

(e) Show B generates the standard topology on R.

———————————————————————————————————————————–

Solutions:

1. Recall that the standard topology is the topology generated by the basis of open intervals. Suppose
U ⊂ R is open. Then for x ∈ U there exists an open interval (a, b) satisfying x ∈ (a, b) ⊂ U .
Now, x ∈ (a, b) implies a < x < b and in particular ε := min b− x, x− a > 0. It follows that
(x − ε, x + ε) ⊂ (a, b) ⊂ U . Conversely, suppose U ⊂ R satisfies that for all x ∈ U there exists ε > 0
such that (x− ε, x+ ε) ⊂ U . Since (x− ε, x+ ε) is an open interval (hence a basis set) and contains x,
we see that U is open in the topology generated by the open sets; that is, U is open in the standard
topology. �
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2. (a) We will verify for T0 :=
⋂
i∈I Ti the three conditions in the definition of a topology. First, we

have ∅, X ∈ Ti for all i ∈ I and thus ∅, X ∈ T0. Next, if S ⊂ T0 is a subcollection, then this same
subcollection is containend in every Ti, i ∈ I. As each of these is a topology, we have⋃

U∈S
U ∈ Ti

for each i ∈ I. Consequently this union belongs to T0. Lastly, if U1, . . . , Un ∈ T0, then these
sets also belong to Ti for every i ∈ I whence U1 ∩ · · · ∩ Un ∈ Ti for every i ∈ I. Therefore
U1 ∩ · · · ∩ Un ∈ T0 and so T0 is a topology. �

(b) Let T ′ be the intersection of all topologies containing B. This collection of topologies is non-
empty (it contains T for example) and so by the previous part it is a topology on X. Because T
is one the topologies in this collection (by virtue of containing B), we immediately obtain T ′ ⊂ T .
On the other hand, observe that B ⊂ T ′ and we showed in §13 that any topology containing B
contains T . Thus T ⊂ T ′ and so T = T ′. �

(c) If T ′ contains S and is a topology, then T ′ contains all finite intersections of sets from S, and
all unions of such intersection. But we showed §13 that T consists of precisely such sets, and so
T ⊂ T ′. �

(d) Let T ′ be the intersection of all topologies containing S. This collection of topologies is non-
empty (it contains T for example) and so by part (a) it is a topology on X. Because T is one the
topologies in this collection (by virtue of containing S), we immediately obtain T ′ ⊂ T . On the
other hand, S ⊂ T ′ and so by the previous part we have T ′ ⊂ T . Thus T = T ′. �

3. We first show this collection S is a subbasis (i.e. that its union is all of Y ). Since X contains at least
two elements, we can find a, b ∈ X with a < b. Then for all x ∈ X we have either x < a, x = a,
or a < x. In the first two cases we have x < b and so x ∈ (−∞, b), while in the last case we have
x ∈ (a,+∞). Since x ∈ X was arbitrary, we have shown

X = (a,+∞) ∪ (−∞, b).

Consequently,
Y = Y ∩ [(a,+∞) ∪ (−∞, b)] = [Y ∩ (a,+∞)] ∪ [Y ∩ (b,+∞)].

The latter set is contained in the union over all of S, and so S is indeed a subbasis for Y .

Let T be the topology on Y generated by S, and let T ′ be the subspace topology on Y . Since open
rays are open in X, the sets in S are open in the subspace topology on Y . Thus S ⊂ T ′. By Exercise
2.(c), we obtain T ⊂ T ′. Conversely, that open rays are a subbasis for the order topology on X.
Consequently the collection B of finite intersections of open rays forms a basis for the order topology
on X. We saw in §16 that this implies

BY := {Y ∩B | B ∈ B}

is a basis for the subspace topology T ′ on Y . Observe that each Y ∩B ∈ BY is a finite intersection of
sets from S and therefore Y ∩B ∈ T . Thus BY ⊂ T , which implies T ′ ⊂ T . Hence T = T ′. �

4. For parts (a) and (b) we will require the following claim: the image of a union of sets is the union
of images. Indeed, if f : A → B is a function and C is a collection of subsets C ⊂ A, then for
b ∈ f

(⋃
C∈C C

)
we have b = f(a) for some a ∈

⋃
C∈C C. Thus c ∈ C for some C ∈ C and so

b = f(a) ∈ f(C) ⊂
⋃
C∈C

f(C).

Conversely, if b ∈
⋃
C∈C f(C), then b ∈ f(C) for some C ∈ C and hence b = f(a) for some a ∈ C. Since

a ∈ C ⊂
⋃
C∈C C, we have

b = f(a) ∈ f

(⋃
C∈C

C

)
.

This prove the claim.
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(a) Recall that the basis for the product topology on X × Y is the collection of sets of the form
U × V for open subsets U ⊂ X and V ⊂ Y . Thus an arbitrary open set in X × Y is of the form
W :=

⋃
i∈I Ui×Vi for some indexing set I and open subsets Ui ⊂ X and Vi ⊂ Y . From the above

claim, we have

π1(W ) =
⋃
i∈I

π1(Ui × Vi) =
⋃
i∈I

Ui,

which is open in X as the union of open subsets. Similarly, π2(W ) =
⋃
i∈I Vi, which is open in

Y . Thus π1 and π22 are open maps. �

(b) Let T be the topology on X. Then for any U ∈ T we have

U =
⋃

B3B⊂U
B.

Thus, using the above claim, we have

f(U) =
⋃

B3B⊂U
f(B),

which is open as the union of open sets. Hence f is an open map. �

(c) We first note that this function f is not open because f((− 1
2 ,

1
2 )) = (0, 12 )∪{1}, which is not open

in R. However, the open rays in R are a subbasis for the order topoology on R, which is the same
as the standard topology. Observe that

f((a,+∞)) =

{
(a,+∞) if a > 0

(0,+∞) otherwise

and

f((−∞, a)) =

{
(|a|,+∞) if a < 0

(0,+∞) otherwise

Thus f maps the subbasis of open rays to open sets, but it is not an open map. �

5. (a) Denote this set by A. We will { 1n} is open in A for each n ∈ N. Note that {1} = A ∩ (3/4,+∞)
and so is open in A. For n ∈ N with n > 1, let ε := 1

n −
1

n+1 = 1
n2+n . Then 1

n+1 <
1
n −

ε
2 and

1
n−1 >

1
n + ε

2 . Consequently, {
1

n

}
= A ∩

(
1

n
− ε

2
,

1

n
+
ε

2

)
and so is open in A. �

(b) Denote this set by B. We claim that {0} is not open in B. If it was open, then there would
exist an open subset U of R satisfying {0} = B ∩ U . However, 0 ∈ U implies there exists ε > 0
satisfying (0− ε, 0 + ε) = (−ε, ε) ⊂ U . Let n ∈ N be such that n > 1

ε . Then 0 < 1
n < ε and hence

1

n
∈ B ∩ (−ε, ε) ⊂ B ∩ U,

a contradiction. �

6. (a) We first argue that there is at least one such n ∈ Z. First, suppose there exists a, b ∈ Z with
a ≤ x ≤ b. Let n be the largest integer in {a, a + 1, a + 2, . . . , a + (b − a) = b} satisfying n ≤ x.
Consequently, n+ 1 > x and hence n ≤ x < n+ 1. Now, if no such a, b ∈ Z exist, then we must
have that either x is a lower bound for Z or an upper bound for Z. We will argue that the latter
yields a contradiction (the proof of the former is similar). Indeed, if Z is bounded above, then it
has a least upper bound y ∈ R. But y − 1 cannot be an upper bound for Z (lest we contradict y
being the least upper bound) and hence y − 1 ≤ n for some n ∈ Z. Adding 1 to each side of this
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inequality yields y ≤ n+ 1 and so y < n+ 2 ∈ Z, which contradicts y being an upper bound for
Z. Thus we must always be in the first case, where we found n ≤ x < n+ 1.

Now, suppose n ≤ x < n+ 1 and m ≤ x < m+ 1 for n,m ∈ Z. We must show n = m. If not, then
(without loss of generality) n < m. Consequently n+ 1 ≤ m, which implies x < n+ 1 ≤ m ≤ x,
which contradicts the strict inequality x < n+ 1. �

(b) Note that x−y > 1 implies y < y+1 < x. Let n ∈ Z be the unique integer satisfying n ≤ x < n+1.
We consider two cases: n = x and n < x. In the former case, we claim y < n − 1 < x. The
second inequality is immediate and if the first inequality fails then n− 1 ≤ y which is equivalent
to x − y ≤ 1 (using x = n), which contradicts x − y > 1. In the case when n < x, we claim
y < n < x. Again the second inequality is immediate and if the first fails then we have n ≤ y
which implies n+ 1 ≤ y + 1 < x, contradicting x < n+ 1. �

(c) Let n ∈ N be such that n > 1
x−y (which exists since otherwise Z is bounded above we obtain the

same contradiction as in part (a)). It follows that nx − ny = n(x − y) > 1. By part (b), there
exists m ∈ Z with ny < m < nx. Dividing by n yields y < m

n < x, and so we take z := m
n ∈ Q.�

(d) We first show B is countable. Define a function f : B → Q → Q by sending the interval (a, b) to
the ordered pair (a, b) (pardon the unfortunate notation). This is clearly an injection. We have
also seen that Q is countable and that finite products of countable sets are countable, hence Q×Q
is countable. So by Theorem 7.1 there is an injection g : Q × Q → N. But then g ◦ f : B → N is
an injection and hence B is countable by Theorem 7.1 again.

Next we show B is a basis. For x ∈ R, using part (a) there exists n ∈ Z so that n ≤ x < n + 1.
Consequently, x ∈ (n − 1, n + 1) ∈ B. So every element of R is contained in a basis set. Next,
suppose x ∈ B1 ∩ B2 for B1, B2 ∈ B. Then B1 = (a, b) and B2 = (c, d) for some a, b, c, d ∈ Q.
Since B1 and B2 are not disjoint (there intersection contains x), we cannot have b ≤ c or d ≤ a.
That is c < b and a < d. Consequently, we are in one of the four following cases:

a ≤ c < b ≤ d ⇒ B1 ∩B2 = (c, b)

a ≤ c < d ≤ b ⇒ B1 ∩B2 = (c, d)

c ≤ a < d ≤ b ⇒ B1 ∩B2 = (a, d)

c ≤ a < b ≤ d ⇒ B1 ∩B2 = (a, b)

In all four cases, B3 := B1 ∩B2 ∈ B and so we have x ∈ B3 ⊂ B1 ∩B2. Thus B is a basis. �

(e) Let T denote the standard topology on R and let T ′ denote the topology generated by B. First
note that B ⊂ T , since the basis consists of open intervals. Hence T ′ ⊂ T . Conversely, let
x, y ∈ R with x < y. We will show (x, y) ∈ T ′ and since open intervals form a basis for the
standard topology on R it will follow that T ⊂ T ′ and hence T = T ′. For z ∈ (x, y) we have
z − x > 0 and y − z > 0. Thus by part (c) there exist az, bz ∈ Q satisfying x < az < z < bz < y.
Consequently, we have z ∈ (az, bz) ⊂ (x, y) and (az, bz) ∈ T ′. Therefore

(x, y) =
⋃

z∈(x,y)

(az, bz) ∈ T ′

as claimed. �
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