Math 461 Homework 3 Solutions 9/25/2020

Exercises:
§13, 14, 15, 16

1. Equip R with the standard topology. Show that a set U C R is open if and only if for all x € U there
exists € > 0 such that (x — e,z +¢€) C U.

2. Let X be a space.
(a) Let {7; | i € I} be a non-empty collection topologies on X (indexed by some set I). Show that
(Mics Ti is a topology on X.

(b) Let B be a basis for a topology 7 on X. Show that 7 is the intersection of all topologies on X
that contain B.

(¢) Let S be a subbasis for a topology 7 on a space X. Suppose 7' is another topology on X that
contains S. Show that T is coarser than 7.

(d) Let S and T be as in the previous part. Show that 7 is the intersection of all topologies on X
that contain S.

3. Let X be an ordered set (with at least two elements) equipped with the order topology. For a subspace
Y C X, show that the collection S consisting of sets of the form Y N (—o0,a) or Y N(a,+o0) for a € X
form a subbasis for the subspace topology on Y.

4. Let X and Y be topological spaces. A function f: X — Y is called an open map if for every open
subset U C X one has that its image f(U) is open in Y.

(a) Equip X x Y with the product topology. Show that the coordinate projections m: X XY — X
and m3: X XY — Y are open maps.

(b) Let B be a basis for the topology on X and suppose f(B) is open for all B € B. Show that f is
an open map.

(c¢) Show that the previous part does not hold for subbases. [Hint: consider the function f: R — R
with f(0) =1 and f(x) = |z| if  # 0 where R has the standard topology.]
5. Equip R with the standard topology.

(a) Show that the subspace topology on {1 | n € N} C R is the discrete topology.
(b) Show that the subspace topology on {0} U{% | n € N} is not the discrete topology.
6. In this exercise, you will show that there is a countable basis that generates the standard topology on
R. For parts (a)—(c), you should only use the properties of Z and R given in §4.
(a) For x € R, show that there is exactly one n € Z satisfying n <z <n+ 1.
(b)
(¢) For z,y € R, show that if x — y > 0 then there exists z € Q satisfying y < z < x.
)

(d) Let B be the collection of open intervals (a,b) C R with a,b € Q. Show that B is countable and
is a basis for a topology on R.

For z,y € R, show that if z — y > 1 then there is at least one n € Z satisfying y < n < z.

(e) Show B generates the standard topology on R.

Solutions:

1. Recall that the standard topology is the topology generated by the basis of open intervals. Suppose
U C R is open. Then for x € U there exists an open interval (a,b) satisfying = € (a,b) C U.
Now, = € (a,b) implies a < x < b and in particular € := minb—2z,2 —a > 0. It follows that
(x —e,x +¢€) C (a,b) C U. Conversely, suppose U C R satisfies that for all € U there exists € > 0
such that (z — e,z +¢) C U. Since (z — ¢,z + €) is an open interval (hence a basis set) and contains z,
we see that U is open in the topology generated by the open sets; that is, U is open in the standard
topology. O
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2.

(a) We will verify for Ty := (,c; 7i the three conditions in the definition of a topology. First, we
have (), X € T; for all i € I and thus #, X € 7. Next, if S C Tg is a subcollection, then this same
subcollection is containend in every 7;, ¢ € I. As each of these is a topology, we have

UveT

UeS

for each ¢ € I. Consequently this union belongs to 7y. Lastly, if Uy,...,U, € Ty, then these
sets also belong to 7; for every ¢ € I whence Uy N---NU, € T; for every « € I. Therefore
Uyn---nU, €7y and so Ty is a topology. O

(b) Let T’ be the intersection of all topologies containing B. This collection of topologies is non-
empty (it contains 7 for example) and so by the previous part it is a topology on X. Because T
is one the topologies in this collection (by virtue of containing B), we immediately obtain 7' C T.
On the other hand, observe that B C 7' and we showed in §13 that any topology containing B
contains 7. Thus 7 C 7" andso T =T". O

(¢) If T’ contains S and is a topology, then 7’ contains all finite intersections of sets from S, and
all unions of such intersection. But we showed §13 that 7 consists of precisely such sets, and so

TCT. O

(d) Let T’ be the intersection of all topologies containing S. This collection of topologies is non-
empty (it contains T for example) and so by part (a) it is a topology on X. Because T is one the
topologies in this collection (by virtue of containing §), we immediately obtain 7/ C 7. On the
other hand, § C 7’ and so by the previous part we have 7/ C 7. Thus 7 = T". O

3. We first show this collection S is a subbasis (i.e. that its union is all of V). Since X contains at least

two elements, we can find a,b € X with a < b. Then for all z € X we have either x < a, z = a,
or a < x. In the first two cases we have z < b and so x € (—o0,b), while in the last case we have
x € (a,+00). Since x € X was arbitrary, we have shown

X = (a,+00) U (—o0,b).
Consequently,
Y =Y Nl(a,+00) U (—00,b)] = [Y N (a,+o0)]U[Y N (b, +0)].
The latter set is contained in the union over all of S, and so S is indeed a subbasis for Y.

Let T be the topology on Y generated by S, and let 7’ be the subspace topology on Y. Since open
rays are open in X, the sets in S are open in the subspace topology on Y. Thus S C T'. By Exercise
2.(c), we obtain T C T’. Conversely, that open rays are a subbasis for the order topology on X.
Consequently the collection B of finite intersections of open rays forms a basis for the order topology
on X. We saw in §16 that this implies

By :Z{YﬂB‘BEB}

is a basis for the subspace topology 7' on Y. Observe that each Y N B € By is a finite intersection of
sets from S and therefore Y N B € T. Thus By C T, which implies 7/ C 7. Hence T = T". O

For parts (a) and (b) we will require the following claim: the image of a union of sets is the union
of images. Indeed, if f: A — B is a function and C is a collection of subsets C' C A, then for
be f(UgeeC) we have b= f(a) for some a € |Joee C. Thus ¢ € C for some C € C and so

b=f(a) € f(C) c | £(O).

ceC

Conversely, if b € (Jg e f(C), then b € f(C) for some C' € C and hence b = f(a) for some a € C. Since

a€CCUgeeC, we have
b:f(a)ef<U C).

cec
This prove the claim.
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(a)

Recall that the basis for the product topology on X x Y is the collection of sets of the form
U x V for open subsets U C X and V' C Y. Thus an arbitrary open set in X X Y is of the form
W .= Uie] U; x V; for some indexing set I and open subsets U; C X and V; C Y. From the above
claim, we have

mW) =Jm (U x V) = U,

i€l il
which is open in X as the union of open subsets. Similarly, m2(W) = (J;c; Vi, which is open in
Y. Thus m; and 725 are open maps. ([l

Let T be the topology on X. Then for any U € T we have

v= |J B

B>BCU

Thus, using the above claim, we have

fo)y= | £,

B>BCU
which is open as the union of open sets. Hence f is an open map. O
We first note that this function f is not open because f((—3, 1)) = (0, 2)U{1}, which is not open

in R. However, the open rays in R are a subbasis for the order topoology on R, which is the same
as the standard topology. Observe that

(a,+00) ifa>0
(0, +00) otherwise

f((a; +00)) = {

and
(la],+00) ifa<0
f((=00,a)) = :
(0,+00)  otherwise
Thus f maps the subbasis of open rays to open sets, but it is not an open map. O

Denote this set by A. We will {1} is open in A for each n € N. Note that {1} = AN (3/4,+00)

and so is open in A. FornENWithn>1,1ete::%—n¥+1:ﬁ. Thenn%_l<%—§and
ﬁ > % + 5. Consequently,

1 1 €1 €

_ = AN - — =, = —

{n} (n 2 n+2>
and so is open in A. O

Denote this set by B. We claim that {0} is not open in B. If it was open, then there would
exist an open subset U of R satisfying {0} = BN U. However, 0 € U implies there exists € > 0
satisfying (0 — €,0 4+ €) = (—¢,€) C U. Let n € N be such that n > 1. Then 0 < 1 < ¢ and hence

1
— € BN(—e€) C BN,
n

a contradiction. O

We first argue that there is at least one such n € Z. First, suppose there exists a,b € Z with
a < x < b. Let n be the largest integer in {a,a + 1,a+2,...,a+ (b — a) = b} satisfying n < z.
Consequently, n +1 > x and hence n < x < n + 1. Now, if no such a,b € Z exist, then we must
have that either z is a lower bound for Z or an upper bound for Z. We will argue that the latter
yields a contradiction (the proof of the former is similar). Indeed, if Z is bounded above, then it
has a least upper bound y € R. But y — 1 cannot be an upper bound for Z (lest we contradict y
being the least upper bound) and hence y — 1 < n for some n € Z. Adding 1 to each side of this
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inequality yields y < n+ 1 and so y < n + 2 € Z, which contradicts y being an upper bound for
Z. Thus we must always be in the first case, where we found n < x <n + 1.

Now, suppose n <z < n+1and m <z <m+1 for n,m € Z. We must show n = m. If not, then
(without loss of generality) n < m. Consequently n + 1 < m, which implies x <n+1<m <z,
which contradicts the strict inequality z < n + 1. O

Note that x—y > 1 implies y < y+1 < z. Let n € Z be the unique integer satisfying n < z < n+1.
We consider two cases: n = x and n < x. In the former case, we claim y < n —1 < x. The
second inequality is immediate and if the first inequality fails then n — 1 < y which is equivalent
to x —y < 1 (using x = n), which contradicts z —y > 1. In the case when n < z, we claim
y < n < z. Again the second inequality is immediate and if the first fails then we have n < y
which implies n + 1 <y + 1 < z, contradicting x < n + 1. O
Let n € N be such that n > ﬁ (which exists since otherwise Z is bounded above we obtain the
same contradiction as in part (a)). It follows that ne — ny = n(x —y) > 1. By part (b), there
exists m € Z with ny < m < nz. Dividing by n yields y < 7 <z, and so we take z := * € Q.J

We first show B is countable. Define a function f: B — Q — Q by sending the interval (a,b) to
the ordered pair (a,b) (pardon the unfortunate notation). This is clearly an injection. We have
also seen that Q is countable and that finite products of countable sets are countable, hence Q x Q
is countable. So by Theorem 7.1 there is an injection g: Q x Q — N. But then go f: B — N is
an injection and hence B is countable by Theorem 7.1 again.

Next we show B is a basis. For x € R, using part (a) there exists n € Z so that n <z < n+ 1.
Consequently, € (n — 1,n+ 1) € B. So every element of R is contained in a basis set. Next,
suppose & € By N By for By, By € B. Then By = (a,b) and By = (¢,d) for some a,b,c,d € Q.
Since By and Bs are not disjoint (there intersection contains x), we cannot have b < c or d < a.
That is ¢ < b and a < d. Consequently, we are in one of the four following cases:

a<c<b<d = BiNBy=(cb)
a<c<d<b = ByNDBy =/ cd)
c<a<d<b = ByNDBy=/a,d)
c<a<b<d = BiNBy=(

In all four cases, B3 := By N By € B and so we have x € B3 C By N By. Thus B is a basis. O

Let T denote the standard topology on R and let 7’ denote the topology generated by B. First
note that B C T, since the basis consists of open intervals. Hence 7' C 7. Conversely, let
z,y € R with © < y. We will show (z,y) € 7' and since open intervals form a basis for the
standard topology on R it will follow that 7 C 7’ and hence 7 = T'. For z € (z,y) we have
z—x>0and y — 2z > 0. Thus by part (c) there exist a,,b, € Q satisfying x < a, <z <b, <y.
Consequently, we have z € (a,,b,) C (z,y) and (a,,b,) € T'. Therefore

(xvy) = U (a27b2) eT

2€(z,y)

as claimed. O
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