
Math 461 Homework 5 Solutions 10/9/2020

Exercises:
§17, 18

1. Prove each of the following topological spaces is Hausdorff.

(a) A set X with an order relation < and the order topology.

(b) A product X × Y with the product topology where X and Y are Hausdorff spaces.

(c) A subspace Y ⊂ X with the subspace topology where X is a Hausdorff space.

2. Let X be a topological space. Show that X is Hausdorff if and only if the diagonal

∆ := {(x, x) | x ∈ X}

is a closed subset of X ×X with the product topology.

3. Consider the collection T = {U ⊂ R | R \ U is finite} ∪ {∅}.

(a) Show that T is a topology on R. We call this the finite complement topology.

(b) Show that the finite complement topology is T1: given distinct points x, y ∈ R there exists open
sets U and V with x ∈ U 63 y and x 6∈ V 3 y.

(c) Show that the finite complement topology is not Hausdorff.

(d) Find all the points that the net ( 1
n )n∈N converges to in the finite complement topology.

4. Let X be a set with two topologies T and T ′ and let i : X → X be the identity function: i(x) = x
for all x ∈ X. Equip the domain copy of X with the topology T and the range copy of X with the
topology T ′.

(a) Show that i is continuous if and only if T is finer than T ′.
(b) Show that i is a homeomorphism if and only if T = T ′.

5. Consider the functions f, g : R2 → R defined by

f(x, y) = x+ y and g(x, y) = x− y.

(a) Show that if R and R2 are given the standard topologies, then f and g are continuous.

(b) Suppose R is given the lower limit topology and R2 = R× R is given the corresponding product
topology. Determine and prove the continuity or discontinuity of f and g.

6*. In this exercise you will establish a homeomorphism between the following two subspaces of R2:

X := R2 \ {(0, 0)} and Y := {(x, y) ∈ R2 | x2 + y2 > 1}.

Throughout, R2 will have the standard topology and X and Y will have their subspace topologies.

(a) Define a function ‖ · ‖ : R2 → [0,+∞) by ‖(x, y)‖ = (x2 + y2)1/2. Show that this function is
continuous when [0,+∞) ⊂ R is given the subspace topology. [Hint: think geometrically.]

(b) Show that X = {(x, y) ∈ R2 | ‖(x, y)‖ > 0} and Y = {(x, y) ∈ R2 | ‖(x, y)‖ > 1}.
(c) Show that f : X → R2 defined by f(x, y) = 1

‖(x,y)‖ (x, y) is continuous.

(d) Find continuous functions g : X → Y and h : Y → X satisfying g◦h(x, y) = (x, y) and h◦g(x, y) =
(x, y), and deduce that X and Y are homeomorphic.

———————————————————————————————————————————–

Solutions:
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1. (a) Let x, y ∈ X be distinct. If the open interval (x, y) is empty, then the open rays U := (−∞, y)
and V := (x,∞) are neighborhoods of x and y respectively. Also U ∩ V = (x, y) = ∅, so these
neighborhoods are disjoint. If (x, y) is not empty, then let z ∈ (x, y) and consider the open rays
U := (−∞, z) and V = (z,∞), which are again neighborhoods of x and y respectively. Also U ∩V
consists of those points w satisfying w < z and z < w. But this cannot occur in an order relation
and so U ∩ V must be empty; that is, U and V are disjoint. Thus X is Hausdorff. �

(b) Let (x1, y1), (x2, y2) ∈ X × Y be distinct points. Since the pairs are distinct, we must have either
x1 6= x2 or y1 6= y2. Without loss of generality, assume x1 6= x2. Since X is Hausdorff, there are
disjoint neighborhoods U1 and U2 of x1 and x2, respectively. Then U1×Y and U2×Y are disjoint
neighborhoods of (x1, y1) and (x2, y2), respectively. Hence X × Y is Hausdorff. �

(c) Let y1, y2 ∈ Y be distinct points. Since y1 and y2 also belong to X, which is Hausdorff, there
exists disjoint open subsets U1, U2 ⊂ X with yj ∈ Uj , j = 1, 2. Consequently, Vj := Y ∩ Uj is an
open in the subspace topology and contains yj , j = 1, 2. Moreover, V1 ∩ V2 = Y ∩ U1 ∩ U2 = ∅.
Hence V1 and V2 are disjoint neighborhoods of y1 and y2, and so Y is Hausdorff. �

2. (⇒) : Assume X is Hausdorff. To show ∆ is closed, we will show its complement is open. Observe that

O := (X ×X) \∆ = {(x, y) ∈ X ×X | x 6= y}.

Thus X being Hausdorff implies that for each (x, y) ∈ O there are disjoint neighborhoods Ux and Vy
of x and y, respectively. Since these sets are disjoint, it follows that Ux × Vy is disjoint from X ×X.
Consequently, Ux × Vy ⊂ O and so

O =⊂(x,y)∈O Ux × Vy,

which shows that O is open and therefore ∆ is closed.

(⇐) : Assume that ∆ is closed. Let x, y ∈ X be distinct. This implies (x, y) 6∈ ∆. Since the complement
of ∆ is open, there exists a basis set for the product topology U×V (i.e. U, V ⊂ X are open) satisfying
(x, y) ∈ U × V ⊂ (X × X) \ ∆. Thus x ∈ U and y ∈ V so U and V are neighborhoods for x and y
respectively. Also, since U ×V belongs to the complement of ∆ it follows that they are disjoint. Hence
X is Hausdorff. �

3. (a) Since R \ R = ∅ is finite, we have R ∈ T . We also have ∅ ∈ T by assumption. Let S ⊂ T be a
subcollection. Observe that

R \
⋃
U∈S

U =
⋂
U∈S

R \ U.

Thus the above is an intersection of finite sets and is therefore finite. This implies
⋃
U∈S U ∈ T .

Finally, let U1, . . . , Un ∈ T . Then

R \ (U1 ∩ · · · ∩ Un) = (R \ U1) ∪ · · · ∪ (R \ Un).

So the above is a finite union of finite sets and is therefore finite. This implies U1 ∩ · · · ∩Un ∈ T .
Thus T is a topology. �

(b) Let x, y ∈ R be distinct. Note that U := R \ {y} and V := R \ {x} are both open in the finite
complement topology because their complements are singleton sets. Moreover, x ∈ U 63 y and
x 6∈ V 3 y. Thus T is T1. �

(c) Consider two non-empty subsets U, V ⊂ R which are open in the finite complement topology.
Thus R \ U and R \ V are finite and we claim that they cannot be disjoint. Indeed, U ∩ V = ∅
implies V ⊂ R\U and hence is finite. But since R\V is finite, this would imply R = V ∪(R\V ) is
finite, a contradiction. Thus any two non-empty open sets cannot be disjoint. In particular, given
any distinct points x, y ∈ R any neighborhoods U and V of x and y respectively are necessarily
non-empty (they contain either x or y) and hence cannot be disjoint. Thus X is not Hausdorff.
�
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(d) We claim that every point in R is a limit point of this net. Fix x ∈ R. Let U be a neighborhood
of x. Since U is open and non-empty, we have R \ U is finite. Consequently it can only contain
1
n for finitely many n ∈ N. Let

n0 := 1 + max{n ∈ N | 1

n
∈ R \ U}.

Then for any n ≥ n0, we have 1
n 6∈ R\U and therefore 1

n ∈ U . Thus ( 1
n )n∈N converges to x. Since

x ∈ R was arbitrary, every point in R is a limit of this net. �

4. (a) Observe that for any set A ⊂ X, i−1(A) = A. So we have

T is finer than T ′ ⇔ T ′ ⊂ T
⇔ U ∈ T for all U ∈ T ′

⇔ i−1(U) ∈ T for all U ∈ T ′

⇔ i is continuous.

�

(b) Since i is always a bijection, it is a homeomorphism if and only if i and i−1 are continuous, which
by the previous part is equivalent to T ⊂ T ′ and T ′ ⊂ T . Thus i is a homeomorphism if and only
if T = T ′. �

5. (a) Recall that a map is continuous if and only if it is continuous at all of the points in its domain.
Thus it suffices to show f and g are continuous at every (x, y) ∈ R2, and we will do so using the
characterization of continuity at a point in terms of convergent nets. We will also only prove the
continuity of f since the proof for g is similar. Suppose ((xi, yi))i∈I ⊂ R2 is a net converging to
some (x, y). We must show the net (f(xi, yi))i∈I = (xi + yi)i∈I converges to f(x, y) = x+ y. Let
U be a neighborhood of x+ y. Then there exists an ε > 0 so that (x+ y− ε, x+ y+ ε) ⊂ U . Now,

V := (x− ε

2
, x+

ε

2
)× (y − ε

2
, y +

ε

2
)

is a neighborhood of (x, y) and so by the convergence of the net there is some i0 ∈ I so that for
all i ≥ i0 we have (xi, yi) ∈ V . We claim that for i ≥ i0 we have f(xi, yi) ∈ U . Indeed, we have

f(xi, yi) = xi + yi < x+
ε

2
+ y +

ε

2
= x+ y + ε,

and
f(xi, yi) = xi + yi > x− ε

2
+ y − ε

2
= x+ y − ε.

Thus f(xi, yi) ∈ (x+y−ε, x+y+ε) ⊂ U . We have shown that for all i ≥ i0 one has f(xi, yi) ∈ U .
Thus the net (f(xi, yi))i∈I converges to x+y, and hence f is continuous at (x, y). Since (x, y) ∈ R2

was arbitrary, we obtain that f is continuous. �

(b) We claim that f is still continuous, but g is not. We prove the continuity of f using the same
strategy as in the previous part. Suppose ((xi, yi)i∈I ⊂ R2 is a net converging to (x, y) ∈ R2.
We must show the net (f(xi, yi))i∈I = (xi + yi)i∈I converges to f(x, y) = x + y. Let U be a
neighborhood of x + y. Recall that the lower limit topology has a basis of half-open intervals of
the form [a, b). Thus there exists such a half-open interval satisfying x + y ∈ [a, b) ⊂ U . Let
ε = b − (x + y), then we have x + y ∈ [x + y, x + y + ε) ⊂ [a, b) ⊂ U . We will show that there
exists i0 ∈ I so that for all i ≥ i0 one has xi + yi ∈ [x+ y, x+ y + ε). Observe that

V := [x, x+
ε

2
)× [y, y +

ε

2
)

is an open neighborhood of (x, y). Thus there exists i0 ∈ I so that (xi, yi) ∈ V for all i ≥ i0.
Consequently,

f(xi, yi) = xi + yi < x+
ε

2
+ y +

ε

2
= x+ yε
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and
f(xi, yi) = xi + yi ≥ x+ y.

Hence f(xi, yi) ∈ [x + y, x + y + ε) ⊂ U for all i ≥ i0. Thus (f(xi, yi))i∈I converges to f(x, y),
and so f is continuous at (x, y). Since (x, y) ∈ R2 was arbitrary, we see that f is continuous.

To see that g is not continuous, consider the net (sequence) ((0, 1
n ))n∈N. We claim that this

converges to (0, 0) ∈ R2, but its image under g does not converge to f(0, 0) = 0. Let U be a
neighborhood of (0, 0). The collection of subsets of the form [a, b)× [c, d) is a basis for the product
topology on R2. Hence there exists such a basis set satisfying (0, 0) ∈ [a, b) × [c, d) ⊂ U . In
particular, this implies c ≤ 0 < d so that we can find n0 ∈ N with c ≤ 0 < 1

n0
< d. Therefore

(0, 1
n ) ∈ [a, b)× [c, d) ⊂ U for all n ≥ n0. Thus ((0, 1

n ))n∈N converges to (0, 0). Now, the interval
[0, 1) is an open neighborhood of f(0, 0) = 0. However, g(0, 1

n ) = 0− 1
n . = − 1

n fails to be in this
neighborhood for any n ∈ N. Consequently, (g(0, 1

n ))n∈N cannot converge to g(0, 0) and so g is
not continuous at (0, 0). In particular, g is not continuous. �

6. (a) Since [0,+∞) is convex, the subspace topology on [0,+∞) is the same as its order topology.
Consequently, the open rays (−∞, a) and (a,+∞) for a ≥ 0 form a subbasis for this topology.
Hence it suffices to show their preimages under ‖ · ‖ are open. Note that ‖(x, y)‖ gives the
distance in R2 to the origin, and thus the preimage of (−∞, a) is the interior of the circle with
radius a which we have seen is in open in the standard topology (recall that we actually showed
the collection of interiors of circles generated the standard topology on R2). Also, the preimage
of (a,+∞) is the exterior of the circle of radius a. To see that this is open, let (x, y) be a point
in the set and define

ε := ‖(x, y)‖ − a > 0.

Note that the circle centered at (x, y) with radius ε is tangent to the circle of radius a. Conse-
quently, the interior of the circle with center (x, y) and radius ε is an open set that contains (x, y)
and is contained in the exterior of the circle of radius a. Since (x, y) was arbitrary, this shows the
exterior of the circle of radius a is open, and thus ‖ · ‖ is continuous. �

(b) Note that ‖(x, y)‖ = 0 if and only if x2 + y2 = 02 = 0. Since x2, y2 ≥ 0, this sum can give
zero if and only if x = y = 0. Thus ‖(x, y)‖ = 0 if and only if (x, y) = (0, 0), which means
{(x, y) ∈ R2 | ‖(x, y)‖ > 0} = R2 \ {(0, 0)} = X. The equality for Y follows from ‖(x, y)‖ > 1 if
and only if x2 + y2 = ‖(x, y)‖2 > 12 = 1. �

(c) We first require a lemma (the triangle inequality for ‖ · ‖): for x,y, z ∈ R2,

‖x− z‖ ≤ ‖x− y‖+ ‖y − z‖,

where subtraction is defined entrywise (i.e. vector subtraction). Note that ‖x−z‖ is precisely the
usual distance from x to z. The above inequality will follow from ‖u+v‖ ≤ ‖u‖+‖v‖ by choosing
u = x − y and v = y − z, so we prove this new inequality instead. Squaring and expanding the
left-hand side yields

‖u + v‖2 = ‖u‖2 + 2(u · v) + ‖v‖2.

The Cauchy–Schwarz inequality implies the quantity u · v is bounded above by ‖u‖‖v‖ (this can
also be checked directly by squaring both quantities), and so we have

‖u + v‖2 ≤ ‖u‖2 + 2‖u‖‖v‖+ ‖v‖2 = (‖u‖+ ‖v‖)2.

Taking the square root yields ‖u + v‖ ≤ ‖u‖ + ‖v‖, and so we also obtain the original desired
inequality.

Now, we will show that f is continuous at every point in X. Fix some x0 ∈ X and let V be a
neighborhood of f(x0). We must find a neighborhood U of x0 so that f(U) ⊂ V . First note that
there exists an ε > 0 so that the interior of the circle with center f(x0) and radius ε is contained
in V . The interior of this circle is precisely the set

B := {y ∈ R2 | ‖y − f(x0)‖ < ε}.
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We will show that there exists some δ > 0 so that ‖x−x0‖ < δ implies ‖f(x)− f(x0)‖ < ε. Since
the set of x satisfying ‖x−x0‖ < δ is exactly the interior of the circle with center x0 and radius δ,
it is a neighborhood U of x0. Thus finding such a δ yields a neighborhood U with f(U) ⊂ B ⊂ V ,
and therefore shows f is continuous at x0. Since x0 ∈ X was arbitrary, this will complete the
proof. In order to determine a suitable δ we first require some computations. Using our lemma
we have for x ∈ X

‖f(x)− f(x0)‖ =

∥∥∥∥ x

‖x‖
− x

‖x0‖
+

x

‖x0‖
− x0

‖x0‖

∥∥∥∥ ≤ ∥∥∥∥ x

‖x‖
− x

‖x0‖

∥∥∥∥+

∥∥∥∥ x

‖x0‖
− x0

‖x0‖

∥∥∥∥
Now, observing that ‖αx‖ = |α|‖x‖ for α ∈ R, we continue our estimate of the above with

‖f(x)− f(x0)‖ ≤
∣∣∣∣ 1

‖x‖
− 1

‖x0‖

∣∣∣∣ ‖x‖+
1

‖x0‖
‖x− x0‖

=

∣∣∣∣‖x0‖ − ‖x‖
‖x‖‖x0‖

∣∣∣∣ ‖x‖+
1

‖x0‖
‖x− x0‖

=
1

‖x0‖
(|‖x0‖ − ‖x‖|+ ‖x− x0‖) .

Now, we claim that |‖x0‖ − ‖x‖| ≤ ‖x−x0‖ (this is called the reverse triangle inequality. Indeed,
from our lemma we have ‖u + v‖ − ‖v‖ ≤ ‖u‖, and choosing u = x− x0 and v = x0 yields

‖x‖ − ‖x0‖ ≤ ‖x− x0‖,

while choosing u = x0 − x and v = x

‖x0‖ − ‖x‖ ≤ ‖x0 − x‖

which is equivalent to
−‖x− x0‖ = −‖x0 − x‖ ≤ ‖x‖ − ‖x0‖.

Thus |‖x‖ − ‖x0‖| = |‖x0‖ − ‖x‖| ≤ ‖x− x0‖. Consequently we may continue our estimate for f
with

‖f(x)− f(x0)‖ ≤ 2

‖x0‖
‖x− x0‖.

Thus if we choose δ := ε‖x0‖
2 > 0 (recall that x0 ∈ X implies ‖x0‖ > 0), then ‖x−x0‖ < δ implies

‖f(x)− f(x0)‖ < 2
‖x0‖δ = ε. As discussed above, this completes the proof. �

(d) Consider
g(x) := (1 + ‖x‖)f(x) and h(x) := (‖x‖ − 1)f(x).

Observe that for x ∈ X

‖g(x)‖ = (1 + ‖x‖)
∥∥∥∥ x

‖x‖

∥∥∥∥ = (1 + ‖x‖)‖x‖
‖x‖

= 1 + ‖x‖.

This is strictly bigger than 1 since by part (b) we have ‖x‖ > 0 for all x ∈ X. Hence g(x) ∈ Y
by part (b) again. Similarly, for x ∈ Y we have ‖h(x)‖ = ‖x‖ − 1 > 0, so that h(x) ∈ X. Thus
g : X → Y and h : Y → X.

We next check g and h are inverses of one another. Using our above computations we have for
x ∈ Y

g ◦ h(x) = (1 + ‖h(x)‖) h(x)

‖h(x)‖
= (1 + ‖x‖ − 1)

(‖x‖ − 1)f(x)

‖x‖ − 1
= ‖x‖f(x) = x,

and for x ∈ X we have

h ◦ g(x) = (‖g(x)‖ − 1)
g(x)

‖g(x)‖
= (1 + ‖x‖ − 1)

(1 + ‖x|)f(x)

1 + ‖x‖
= ‖x‖f(x) = x.
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Thus g and h are inverses of one another, and in particular are both bijections.

Finally, it remains to check g and h are continuous. We will once again check continuity at each
point. Fix x0 ∈ X. Using our lemma and estimates from the previous part we have for x ∈ X
that

‖g(x)− g(x0)‖ = ‖(1 + ‖x‖)f(x)− (1 + ‖x0‖)f(x) + (1 + ‖x0‖)f(x)− (1 + ‖x0‖)f(x0)‖
≤ ‖(1 + ‖x‖)f(x)− (1 + ‖x0‖)f(x)‖+ ‖(1 + ‖x0‖)f(x)− (1 + ‖x0‖)f(x0)‖
= |‖x‖ − ‖x0‖|+ (1 + ‖x0‖)‖f(x)− f(x0)‖

≤ ‖x0 − x‖+ (1 + ‖x0‖)
2

‖x0‖
‖x− x0‖

=

(
3 +

2

‖x0‖

)
‖x− x0‖.

So by proceeding in the same manner as in the previous part, given ε > 0 we can choose δ :=(
3 + 2

‖x0‖

)−1
ε > 0 to show that g is continuous at x0 and hence continuous everywhere. A similar

string of inequalities to the above yields for x,x0 ∈ Y that

‖h(x)− h(x0)‖ ≤
(

3− 2

‖x0‖

)
‖x− x0‖.

Note that x0 ∈ Y implies ‖x0‖ > 1 and so the first factor on the right side above is greater
than 3− 2 = 1, and so in particular is positive. Thus, as before given some ε > 0 we can choose

δ :=
(

3− 2
‖x0‖

)−1
ε > 0 to show that h is continuous at x0 and hence continuous everywhere.

Thus X and Y are homeomorphic. �
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