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Roughly speaking, nets are a generalization of sequences wherein the indexing set N is replaced by a
directed set. As the name suggests, these sets have a notion of direction much like N does (1→ 2→ 3 · · · ),
however they may be uncountable and may have multiple paths to “infinity.” The elements that are indexed
by a directed set live in a topological space so that one can consider the notion of convergence of a net.
Net are essential for general topology in the sense that they can characterize closedness, compactness, and
continuity in the same way that sequences do in metric spaces.

1 Directed Sets

Definition 1.1. A directed set I is a set equipped with a binary relation ≤ that satisfies:

(i) i ≤ i for all i ∈ I (reflexive);

(ii) if i ≤ j and j ≤ k, then i ≤ k (transitive);

(iii) for any i, j ∈ I there exists k ∈ I with i, j ≤ k (upper bound property).

Typically reflexivity and transitivity are obvious, whereas the upper bound property may need to be
justified.

Example 1.2. N, Z, Q, R are all directed sets with the usual ordering. In fact, any subset of R (even finite
ones) are directed sets with the order they inherit from R.

Example 1.3. Let X be a set, and let F denote the collection of all finite subsets of X. For A,B ∈ F ,
write A ≤ B if A ⊂ B. This makes F into a directed set. Note that A ∪ B serves as an upper bound for
both A and B.

Example 1.4. Let X be a topological space, and fix x0 ∈ X. Let N (x0) denote the collection of open
neighborhoods of x0. For A,B ∈ N (x0), write A ≤ B if A ⊃ B. This makes N (x0) into a directed set
where A ∩B is an upper bound for A and B.

Example 1.5. Let X be a topological space. Then {(ε,K) : ε > 0 K ⊂ X compact} is a directed set where

(ε,K) ≤ (ε′,K ′)

if and only if ε ≥ ε′ and K ⊂ K ′. (Exercise: determine a common upper bound for (ε,K) and (ε′,K ′).)

2 Nets

Definition 2.1. Let X be a topological space. A net in X is a map x : I → X where I is a directed set.

A net x : I → X is usually denoted (x(i))i∈I or (xi)i∈I where xi := x(i). This is supposed to remind you
of sequence notation. As with sequences in a metric space, there is a notion of convergence:

Definition 2.2. A net (xi)i∈I converges to x ∈ X if for every open subset U ⊂ X containing x there is
i0 ∈ I so that xi ∈ U whenever i ≥ i0. In this case we call x the limit of the net and write

x = lim
i
xi.
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When I = N, this is simply the usual notion of convergence for a sequence. When I = R this is also
capturing familiar behavior:

Example 2.3. Let f : R→ R be a function. Recall that we say f has a limit at ∞ if there exists L ∈ R so
that for all ε > 0 there exists t0 ∈ R so that

|f(t)− L| < ε ∀t ≥ t0.

But this is precisely saying that the net (f(t))t∈R converges to L.

Example 2.4. Let X be a topological space, let x0 ∈ X and let N (x0) be as in Example 1.4. For each
U ∈ N (x0) pick any point in U and label it xU . Then (xU )U∈N (x0) is a net which converges to x0. Indeed,
let U ⊂ X be an open set containing x0. Then U ∈ N (x0) and for any U ′ ∈ N (x0) with U ′ ≥ U , we have
xU ′ ∈ U ′ ⊂ U .

Example 2.5. Let X be a topological space and let f : X → C be a function. For each pair (ε,K) as in
Example 1.5, let f(ε,K) be any function g : X → C satisfying |f(x) − g(x)| < ε for all x ∈ K. Then the
net (f(ε,K)) converges to f in the topology of uniform convergence on compact subsets. Indeed, fix K ⊂ X
compact. Let ε > 0, then for any (ε′,K ′) ≥ (ε,K) we have |f(x) − f(ε′,K′)| < ε′ ≤ ε for all x ∈ K ′; in
particular, for all x ∈ K.

Proposition 2.6. Let X be a topological space. Then V ⊂ X is closed if and only if for every convergent
net (xi)i∈I ⊂ V one has limi xi ∈ V .

Proof. (⇒): Let (xi)i∈I ⊂ V be a convergent net. Suppose, towards, a contradiction, that x := limi xi is
not contained in V . Then x ∈ V c which is an open set. Consequently, by definition of the convergence of a
net, there exists i0 ∈ I such that xi ∈ V c for all i ≥ i0. But this contradicts xi ∈ V for all i ∈ I. Thus it
must be that x ∈ V .
(⇐): To show that V is closed, we will show that V c is open. Suppose, towards a contradiction, that
there exists x ∈ V c such that for all open subsets U containing x one has U ∩ V 6= ∅. Let N (x) be as
in Example 1.4. For each U ∈ N (x), let xU ∈ U ∩ V . Then (xU )U∈N (x) ⊂ V and it converges to x by
Example 2.4. By assumption we must have x ∈ V , but this contradicts x ∈ V c. Thus for any x ∈ V c there
is an open set containing which does not intersect V ; that is, V c is open.

We say a subset S ⊂ X in a topological space is sequentially closed if whenever (xn)n∈N ⊂ S is a
convergent sequence one has limn xn ∈ S. Since sequences are particular kinds of nets, the above proposition
implies that closed sets are sequentially closed. In a metric space, the two notions are equivalent. However,
for general topological spaces sequentially closed does not imply closed, as the following example illustrates.

Example 2.7. 1 Consider RR with the product topology, which we think of as arbitrary functions f : R→ R.
Recall that under the product topology, an open subset of RR is a union of subsets of the form∏

t∈R
Ut,

where Ut ⊂ R is open for all t ∈ R and Ut 6= R for only finitely many t ∈ R. Consequently, a net (fi)i∈I ⊂ RR

converges to f ∈ RR if and only if they converge pointwise as functions on R. Let B be the subset of Borel
functions. Then B is sequentially closed because we know from measure theory that the pointwise limit of
a sequence of Borel functions is Borel. B is also also dense. Indeed, let f ∈ RR. Let F be the collection
of finite subsets of R, ordered by inclusion. Then for each F ∈ F we can find a polynomial pF such that
pF (t) = f(t) for each t ∈ F . The net (pF )F∈F converges pointwise to f and consists of Borel functions.
Therefore the closure of B is all of RR. On the otherhand, we know there are non-Borel functions so B is
not closed.

Proposition 2.8. Let X and Y be topological spaces. Then f : X → Y is continuous if and only if for every
convergent net (xi)i∈I ⊂ X one has that (f(xi))i∈I ⊂ Y is a convergent net with limi f(xi) = f (limi xi).

1Thanks to Ben Hayes for supplying this example.
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Proof. (⇒): Suppose f is continuous and (xi)i∈I ⊂ X converges to some x ∈ X. Let U ⊂ Y be an open
subset containing f(x). Then f−1(U) ⊂ X is an open subset containing x. Consequently there exists i0 ∈ I
such that for all i ≥ i0 we have xi ∈ f−1(U). Thus for all i ≥ i0 we have f(xi) ∈ U . So (f(xi)i∈I) converges
to f(x).
(⇐): Let U ⊂ Y be an open subset. We must show f−1(U) is open. If not, then there is an x ∈ f−1(U)
such that N ∩ f−1(U)c 6= ∅ for all N ∈ N (x). We can then define a net by letting xN ∈ N ∩ f−1(U)c for
each N ∈ N (x). Then the net (xN )N∈N (x) converges to x by Example 2.4. By construction, f(xN ) ∈ U c
for all N ∈ N (x). By assumption, (f(xN ))N∈N (x) converges to f(x), and since U c is closed the previous
proposition implies f(x) ∈ U c. But this contradicts x ∈ f−1(U). Thus f−1(U) must be open and therefore
f is continuous.

Let (X, d) be a metric space. We say a net (xi)i∈I ⊂ X is Cauchy if for all ε > 0 there exists i0 ∈ I so
that whenver i, j ≥ i0 we have d(xi, xj) < ε. We conclude this section by examining Cauchy nets in a metric
spaces. In particular, we will show that Cauchy nets in a complete metric space converge. The idea is to
extract a Cauchy sequence from the Cauchy net, so as to use the completeness.

Proposition 2.9. Let (X, d) be a complete metric space and let (xi)i∈I be a Cauchy net. Then (xi)∈I
converges.

Proof. Let i(1) ∈ I be such that d(xi, xj) < 1. Let i(2) ∈ I be such that i(2) ≥ i(1) and d(xi, xj) <
1
2 for

all i, j ≥ i(2). We inductively find i(n) ∈ I for each n ∈ N such that i(n) ≥ i(n − 1) and d(xi, xj) <
1
n for

all i, j ≥ i(n). We claim that the sequence (xi(n))n∈N is Cauchy. Indeed, let ε > 0. If N ∈ N satisfies 1
N < ε,

then for n,m ≥ N we have d(xi(n), xi(m)) <
1
N < ε. Since (X, d) is complete, (xi(n))n∈N converges to some

x ∈ X. We claim the original net also converges to this x. Indeed, let ε > 0 and choose N ∈ N such that for
all n ≥ N we have d(xi(n), x) < ε

2 . By choosing a larger N if necessary, we may assume 1
N ≤

ε
2 . Then for

any i ≥ i(N) we have

d(xi, x) ≤ d(xi, xi(N)) + d(xi(N), x) <
1

N
+
ε

2
≤ ε.

Hence the (xi)i∈I converges to x.

Remark 2.10. When (X, d) is a metric space, any Cauchy sequence (xn)n∈N ⊂ X is bounded. Indeed, let
N ∈ N be such that d(xn, xm) ≤ 1 for all n,m ≥ N . Then setting R := max{d(x1, xN ), . . . , d(xN−1, xN ), 1},
we have (xn)n∈N ⊂ B(xN , R). This same argument does not work for nets. We can still find i0 ∈ I such
that d(xi, xj) ≤ 1 for all i, j ≥ i0, but then there are not necessarily finitely many i ≤ i0. For example, the
net (e−t)t∈R converges in R to zero but is not bounded.

3 Subnets

Subnets are the analogue of subsequences, though they are a bit more subtle.

Definition 3.1. Let (xi)i∈I be a net in a topological space. Then (yj)j∈J is a subnet of (xi)i∈I if there
exists a map σ : J → I such that

(i) xσ(j) = yj for all j ∈ J ;

(ii) if j1 ≤ j2 then σ(j1) ≤ σ(j2) (monotone);

(iii) for any i ∈ I there exists j ∈ J such that σ(j) ≥ i (final).

Example 3.2. For a sequence (xn)n∈N, any subsequence (xnk
)k∈N is a subnet where σ(k) = nk. However,

because we only require the map σ to be monotone (rather than strictly monotone) there are subnets of the
sequence which are not subsequences. For example, (x1, x1, x1, x2, x3, . . .) is a valid subnet, even though it
is not a vallid subsequence.

Proposition 3.3. Let X be a topological space. If a net (xi)i∈I ⊂ X converges, then every subnet converges
to the same limit.
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Proof. Let x := limi xi. Let (yj)j∈J be a subnet with monotone final map σ : J → I. Let U ⊂ X be an
open subset containing x. Then there exists i0 ∈ I such that xi ∈ U for all i ≥ i0. By finality there exists
j0 ∈ J such that σ(j0) ≥ i0. Thus by monotonicity we for all j ≥ j0 that σ(j) ≥ σ(j0) ≥ i0 and hence
yj = xσ(j) ∈ U . That is, (yj)j∈J converges to x.

Finally, we conclude this note by characterizing compactness in terms of convergent subnets. This is
the analogue of the fact that in a metric space a set is compact if and only if every sequence in it has a
convergent subsequence (which is sometimes called being sequentially compact).

Proposition 3.4. Let X be a topological space. Then K ⊂ X is compact if and only if every net (xi))i∈I ⊂ K
has a convergent subnet.

Proof. (⇒): Let K be a compact. We recall that it has the finite intersection property: if {Ci}i∈I is a
collection of closed subsets of K satisfying

⋂
i∈F Ci 6= ∅ for any finite subset F ⊂ I, then

⋂
i∈I Ci 6= ∅.

Indeed, otherwise {Cci }i∈I is an open cover for K with no finite subcover.

Now, let (xi)i∈I ⊂ K be a net. Define Ci := {xj : j ≥ i}. Then for F ⊂ I finite, we can find j ≥ i for
each i ∈ F and so

xj ∈
⋂
i∈F

Ci 6= ∅

By the finite intersection property we therefore have
⋂
i∈I Ci 6= ∅. Let y be an element of this set. Then for

every i ∈ I, y ∈ Ci which means for every neighborhood U of y, U ∩ {xj : j ≥ i} 6= ∅. That is, for every
i ∈ I and every neighborhood U , there exists j ≥ i such that xj ∈ U . Set y(U,j) := xj . Then (y(U,j)) is a
net (where (U, j) ≤ (U ′, j′) means U ⊃ U ′ and j ≤ j′), which converges to y. Defining σ(U, j) := j yields a
monotone final map and so (y(U,j)) is a (convergent) subnet of (xi)i∈I .

(⇐): Towards a contradiction, let {Ui : i ∈ I} be an open cover of K with no finite subcover. Let F be
the collection of finite subsets of I, which we make into a directed set by ordering by inclusion. For each
F ∈ F let xF be any point in K \

⋃
i∈F Ui (which exists by virtue of there being no finite subcover). Then

(xF )F∈F is a net and consequently has a convergent subnet (xσ(j))j∈J , say with limit x. Then x ∈ Ui for
some i ∈ I and consequently there is j0 ∈ J such that xσ(j) ∈ Ui for all j ≥ j0. Let j1 ∈ J be such that
σ(j1) ≥ {i} ∈ F . Then there exists j ≥ j1 and j ≥ j0. For this j we have xσ(j) ∈ Ui but σ(j) ≥ σ(j1) ≥ {i}
implies xσ(j) 6∈ Ui, a contradiction. Thus every open cover of K has a finite subcover and K is therefore
compact.
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