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Roughly speaking, nets are a generalization of sequences wherein the indexing set N is replaced by a
directed set. As the name suggests, these sets have a notion of direction much like N does (1 — 2 — 3--+),
however they may be uncountable and may have multiple paths to “infinity.” The elements that are indexed
by a directed set live in a topological space so that one can consider the notion of convergence of a net.
Net are essential for general topology in the sense that they can characterize closedness, compactness, and
continuity in the same way that sequences do in metric spaces.

1 Directed Sets

Definition 1.1. A directed set [ is a set equipped with a binary relation < that satisfies:
(i) @ <ifor all i € I (reflexive);
(ii) if ¢ < j and j <k, then i < k (transitive);

(iii) for any 4,j € I there exists k € I with 4, j < k (upper bound property).

Typically reflexivity and transitivity are obvious, whereas the upper bound property may need to be
justified.

Example 1.2. N, Z, Q, R are all directed sets with the usual ordering. In fact, any subset of R (even finite
ones) are directed sets with the order they inherit from R.

Example 1.3. Let X be a set, and let # denote the collection of all finite subsets of X. For A, B € .%,
write A < B if A C B. This makes .% into a directed set. Note that A U B serves as an upper bound for
both A and B.

Example 1.4. Let X be a topological space, and fix g € X. Let A4 (x¢) denote the collection of open
neighborhoods of zg. For A, B € A (xg), write A < B if A D B. This makes .4 (zg) into a directed set
where A N B is an upper bound for A and B.

Example 1.5. Let X be a topological space. Then {(¢, K): ¢ > 0 K C X compact} is a directed set where
(e, K) < (,K")

if and only if € > ¢ and K C K'. (Exercise: determine a common upper bound for (¢, K) and (¢/, K').)

2 Nets

Definition 2.1. Let X be a topological space. A net in X is a map z: I — X where I is a directed set.

A net x: I — X is usually denoted (z());es or (x;);er where z; := x(i). This is supposed to remind you
of sequence notation. As with sequences in a metric space, there is a notion of convergence:

Definition 2.2. A net (z;);c; converges to x € X if for every open subset U C X containing « there is
ig € I so that x; € U whenever i > ig. In this case we call x the limit of the net and write

z =limz;.
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When I = N, this is simply the usual notion of convergence for a sequence. When I = R this is also
capturing familiar behavior:

Example 2.3. Let f: R — R be a function. Recall that we say f has a limit at oo if there exists L € R so
that for all € > 0 there exists tg € R so that

|f(t) = L| <e Yt > to.
But this is precisely saying that the net (f(¢)):cr converges to L.

Example 2.4. Let X be a topological space, let 2o € X and let 4 (xy) be as in Example 1.4. For each
U € A (x0) pick any point in U and label it 2. Then (2y)ye s (2,) is @ net which converges to 2. Indeed,
let U C X be an open set containing . Then U € A (zg) and for any U’ € A4 (xg) with U’ > U, we have
zpr e U CU.

Example 2.5. Let X be a topological space and let f: X — C be a function. For each pair (¢, K) as in
Example 1.5, let f( k) be any function g: X — C satisfying [f(z) — g(z)| < € for all z € K. Then the
net (f( x)) converges to f in the topology of uniform convergence on compact subsets. Indeed, fix K C X
compact. Let € > 0, then for any (¢/, K') > (¢, K) we have |f(z) — fie, x| < € < eforall z € K'; in
particular, for all x € K.

Proposition 2.6. Let X be a topological space. Then V C X is closed if and only if for every convergent
net (x;)icr CV one has lim; x; € V.

Proof. (=): Let (z;);er C V be a convergent net. Suppose, towards, a contradiction, that x := lim; z; is
not contained in V. Then x € V¢ which is an open set. Consequently, by definition of the convergence of a
net, there exists ig € I such that x; € V¢ for all i > i3. But this contradicts x; € V for all ¢ € I. Thus it
must be that x € V.

(«<): To show that V is closed, we will show that V¢ is open. Suppose, towards a contradiction, that
there exists x € V¢ such that for all open subsets U containing x one has UNV # 0. Let 4 (x) be as
in Example 1.4. For each U € A (x), let zy € UNV. Then (vy)yes(w) C V and it converges to x by
Example 2.4. By assumption we must have z € V, but this contradicts x € V¢. Thus for any = € V¢ there
is an open set containing which does not intersect V'; that is, V¢ is open. O

We say a subset S C X in a topological space is sequentially closed if whenever (z,)n,ey C S is a
convergent sequence one has lim,, x,, € S. Since sequences are particular kinds of nets, the above proposition
implies that closed sets are sequentially closed. In a metric space, the two notions are equivalent. However,
for general topological spaces sequentially closed does not imply closed, as the following example illustrates.

Example 2.7. ! Consider R® with the product topology, which we think of as arbitrary functions f: R — R.
Recall that under the product topology, an open subset of R® is a union of subsets of the form

HUt7

teR

where U; C R is open for all t € R and U; # R for only finitely many ¢ € R. Consequently, a net (f;);c; C R®
converges to f € R if and only if they converge pointwise as functions on R. Let B be the subset of Borel
functions. Then B is sequentially closed because we know from measure theory that the pointwise limit of
a sequence of Borel functions is Borel. B is also also dense. Indeed, let f € RE. Let .# be the collection
of finite subsets of R, ordered by inclusion. Then for each F' € .# we can find a polynomial pg such that
pr(t) = f(t) for each t € F. The net (pr)res converges pointwise to f and consists of Borel functions.
Therefore the closure of B is all of R®. On the otherhand, we know there are non-Borel functions so B is
not closed.

Proposition 2.8. Let X and Y be topological spaces. Then f: X — Y is continuous if and only if for every
convergent net (x;)ier C X one has that (f(z;))ier CY is a convergent net with lim; f(x;) = f (lim; z;).

IThanks to Ben Hayes for supplying this example.
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Proof. (=): Suppose f is continuous and (x;);e; C X converges to some z € X. Let U C Y be an open
subset containing f(z). Then f~1(U) C X is an open subset containing z. Consequently there exists ig € I
such that for all i > iy we have x; € f~1(U). Thus for all i > iy we have f(z;) € U. So (f(z;)ic1) converges
to f(x).

(<): Let U C Y be an open subset. We must show f~(U) is open. If not, then there is an x € f~1(U)
such that N N f=1(U)¢ # 0 for all N € A4 (z). We can then define a net by letting zny € N N f~1(U)¢ for
each N € .4/ (z). Then the net (zn)ne () converges to x by Example 2.4. By construction, f(zy) € U°
for all N € A4 (z). By assumption, (f(zn))nes(x) converges to f(z), and since U€ is closed the previous
proposition implies f(x) € U¢. But this contradicts z € f~1(U). Thus f~!(U) must be open and therefore
f is continuous. O

Let (X,d) be a metric space. We say a net (z;);e; C X is Cauchy if for all € > 0 there exists iy € I so
that whenver 4, j > iy we have d(x;,z;) < e. We conclude this section by examining Cauchy nets in a metric
spaces. In particular, we will show that Cauchy nets in a complete metric space converge. The idea is to
extract a Cauchy sequence from the Cauchy net, so as to use the completeness.

Proposition 2.9. Let (X,d) be a complete metric space and let (z;)icr be a Cauchy net. Then (x;)ecr
converges.

Proof. Let i(1) € I be such that d(x;,x;) < 1. Let i(2) € I be such that i(2) > i(1) and d(z;,z;) < 5 for
all 4,5 > i(2). We inductively find i(n) € I for each n € N such that i(n) > i(n — 1) and d(z;, x;) < g for
all 4, j > i(n). We claim that the sequence (z;(,))nen is Cauchy. Indeed, let € > 0. If N' € N satisfies & < ¢,
then for n,m > N we have d(;(n), Tj(m)) < % < €. Since (X,d) is complete, (z;(,))nen converges to some
x € X. We claim the original net also converges to this z. Indeed, let ¢ > 0 and choose N &€ N such that for
all n > N we have d(z;(,),z) < §. By choosing a larger N if necessary, we may assume 7 < 5. Then for

any ¢ > i(IN) we have

1
d(xi, x) < d(xq, z5v)) + d(i(n), ) < N + - <e

DO ™

Hence the (z;);er converges to . O

Remark 2.10. When (X, d) is a metric space, any Cauchy sequence (2, )nen C X is bounded. Indeed, let
N € N be such that d(xy, zy,) <1 for all n,m > N. Then setting R := max{d(z1,zn),...,.d(zN_1,2N),1},
we have (z,,)neny C B(xn, R). This same argument does not work for nets. We can still find iy € I such
that d(z;,2;) <1 for all 7,j > iy, but then there are not necessarily finitely many i < iy. For example, the
net (e *)ier converges in R to zero but is not bounded.

3 Subnets

Subnets are the analogue of subsequences, though they are a bit more subtle.

Definition 3.1. Let (2;);cr be a net in a topological space. Then (y;)jcs is a subnet of (z;);cs if there
exists a map o: J — I such that

(i) To(y =y; forall j € J;
(ii) if j1 < jo then o(j1) < 0(j2) (monotone);
(iii) for any ¢ € I there exists j € J such that o(j) > ¢ (final).

Example 3.2. For a sequence (2, )nen, any subsequence (2., )ren is a subnet where o (k) = nj. However,
because we only require the map o to be monotone (rather than strictly monotone) there are subnets of the
sequence which are not subsequences. For example, (z1,x1,z1,Z2,23,...) is a valid subnet, even though it
is not a vallid subsequence.

Proposition 3.3. Let X be a topological space. If a net (x;);cr C X converges, then every subnet converges
to the same limit.
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Proof. Let x := lim; z;. Let (y;)jes be a subnet with monotone final map o: J — I. Let U C X be an
open subset containing x. Then there exists g € I such that z; € U for all ¢ > ig. By finality there exists
jo € J such that o(jp) > i9. Thus by monotonicity we for all j > jo that o(j) > o(jo) > ip and hence
Yj = To(;) € U. That is, (y;);es converges to z. O

Finally, we conclude this note by characterizing compactness in terms of convergent subnets. This is
the analogue of the fact that in a metric space a set is compact if and only if every sequence in it has a
convergent subsequence (which is sometimes called being sequentially compact).

Proposition 3.4. Let X be a topological space. Then K C X is compact if and only if every net (x;))icr C K
has a convergent subnet.

Proof. (=): Let K be a compact. We recall that it has the finite intersection property: if {C;}ics is a
collection of closed subsets of K satisfying (;c C; # 0 for any finite subset F' C I, then (., C; # 0.
Indeed, otherwise {C§}icr is an open cover for K with no finite subcover.

Now, let (z;);er C K be a net. Define C; := {z;: j > i}. Then for F' C I finite, we can find j > ¢ for

each 7 € F and so
CL’j c m CZ # @
ieF

By the finite intersection property we therefore have (., C; # (). Let y be an element of this set. Then for
every i € I, y € C; which means for every neighborhood U of y, U N {z;: j > i} # (. That is, for every
i € I and every neighborhood U, there exists j > 4 such that z; € U. Set y ;) := x;. Then (yw ;) is a
net (where (U, j) < (U’,j') means U D U’ and j < j'), which converges to y. Defining o(U, j) := j yields a
monotone final map and so (y(v,j)) is a (convergent) subnet of (z;)icr.

(«): Towards a contradiction, let {U;: 7 € I'} be an open cover of K with no finite subcover. Let .# be
the collection of finite subsets of I, which we make into a directed set by ordering by inclusion. For each
F € .7 let xp be any point in K \ |J;cp Us (which exists by virtue of there being no finite subcover). Then
(rF)res is a net and consequently has a convergent subnet (z,(;))jes, say with limit z. Then 2 € U; for
some ¢ € I and consequently there is jo € J such that x,;) € U; for all j > jo. Let j; € J be such that
o(j1) > {i} € F. Then there exists j > j; and j > jo. For this j we have z,(;) € U; but o(j) > o(j1) > {i}
implies z4(j) € U;, a contradiction. Thus every open cover of K has a finite subcover and K is therefore
compact. O
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