
Math 317H Homework 6 Solutions 10/21/2019

Exercises:

1. For the following matrix, compute its rank and find bases for each of its four fundamental subspaces:

A =


1 2 3 1 1
1 4 0 1 2
0 2 −3 0 1
1 0 0 0 0

 .

2. Let S : U → V and T : V →W be a linear transformations between finite-dimensional vector spaces.

(a) Prove that if V0 ⊂ V is a subspace, then

T (V0) = {w ∈W : w = T (v) for some v ∈ V0}

is a subspace.

(b) Prove that dim(T (V0)) ≤ min{rank(T ),dim(V0)}.
(c) Prove that rank(T ◦ S) ≤ min{rank(T ), rank(S)}.

3. Let V be a finite dimensional vector space and let X,Y ⊂ V be subspaces. The goal of this exercise is
to proof the following formula

dim(X + Y ) = dim(X) + dim(Y )− dim(X ∩ Y ).

Here, X + Y := {v = x + y : x ∈ X, y ∈ Y }.

(a) Prove that X + Y is a subspace of V .

(b) The direct sum of X and Y is the following set

X ⊕ Y := {(x, y) : x ∈ X, y ∈ Y }.

This can be made into a vector space with operations of addition

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2),

and scalar multiplication
α(x, y) = (αx, αy).

You do not need to prove that X ⊕ Y is a vector space, but do prove that dim(X ⊕ Y ) =
dim(X) + dim(Y ).

(c) Consider the transformation T : X ⊕ Y → V defined by T (x, y) = x− y. Prove that T is linear.

(d) Show that Ran(T ) = X + Y .

(e) Show that Ker(T ) ∼= X ∩ Y .

(f) Use the rank-nullity theorem on T to prove the claimed formula.

4. Let A ∈ Mm×n. Prove that Ax = b is consistent for all b ∈ Fm if and only if ATx = 0 has a unique
solution.

5. Complete the following set of vectors to a basis for R5:

v1 =


1
2
−1

2
3

 , v2 =


2
2
1
5
5

 , v3 =


−1
−4

4
7
−8


———————————————————————————————————————————–
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Solutions:

1. The RREF of A is

B =


1 0 0 0 0
0 1 0 1/4 1/2
0 0 1 1/6 0
0 0 0 0 0


Since there are three pivots, we have rank(A) = 3. The pivots occur in the first three columns of B,
so the corresponding columns of A form a basis for Ran(A):

1
1
0
1

 ,


2
4
2
0

 ,


3
0
−3

0

 .

The pivots also occur in the first three rows of B, so those rows form a basis for Ran(AT ):
1
1
0
0
0

 ,


0
1
0

1/4
1/2

 ,


0
0
1

1/6
0

 .

To find a basis for Ker(A), we note that the augmented matrix (B | 0) implies the solution of Ax = 0
are of the form:

x =


0

− 1
4x4 −

1
2x5

− 1
6x4
x4
x5

 = x4


0

−1/4
−1//6

1
0

 + x5


0

−1/2
0
0
1

 , x4, x5 ∈ F.

Thus (0,− 1
4 ,−

1
6 , 1, 0)T , (0,− 1

2 , 0, 0, 1)T form a basis for Ker(A).

To find a basis for Ker(AT ), we first compute the RREF of AT :

C =


1 0 −1 0
0 1 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 .

So solutions to ATx = 0 are of the form

x =


x3
−x3
x3
0

 = x3


1
−1

1
0

 .

Therefore (1,−1, 1, 0)T is a basis for Ker(AT ).

2. (a) Suppose V0 is a subpace. Then 0V ∈ V0 and therefore

0W = T (0V ) ∈ T (V0).

Next, let w1,w2 ∈ T (V0). Then there exists v1,v2 ∈ V0 such that T (v1) = w1 and T (v2) = w2.
But then using the linearity of T we have

w1 + w2 = T (v1) + T (v2) = T (v1 + v2).
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Since V0 is a subspace, v1 + v2 ∈ V0 and so w1 + w2 ∈ T (V0). Finally, let α be a scalar and let
w1,v1 be as above. Again using the linearity of T and the fact that V0 is a subspace, we have

αw1 = αT (v1) = T (αv1) ∈ T (V0).

Thus T (V0) is a subspace. �

(b) We will show dim(T (V0)) ≤ rank(T ) and dim(T (V0)) ≤ dim(V0), which implies the desired in-
equality. First, note that V0 ⊂ V implies T (V0) ⊂ T (V ). Thus T (V0) is a subspace (by the
previous part) of T (V ). But T (V ) = Ran(T ) and so

dim(T (V0)) ≤ dim(T (V )) = dim(Ran(T )) = rank(T ).

Next, note that V0 is finite-dimensional by virtue of being a subspace of the finite-dimensional
vector space V . So let v1, . . . ,vr form a basis for V0. Then T (v1), . . . , T (vr) is spanning for
T (V0). Indeed, given any w ∈ T (V0) we have w = T (v) for some v ∈ V0. But then there are
scalars α1, . . . , αr such that v = α1v1 + · · ·+ αrvr. Applying T to each side and using linearity
we see that

w = T (v) = T (α1v1 + · · ·+ αrvr) = α1T (v1) + · · ·+ αrT (vr).

Thus T (v1), . . . , T (vr) are spanning for T (V0) as claimed. Consequently, we know that this system
can be reduced to a basis for T (V0). But then this system will have at most r vectors which implies

dim(T (V0)) ≤ r = dim(V0),

as claimed. �

(c) Denote V0 := S(U) = Ran(S). Then T (V0) = T (S(U)) = Ran(T ◦ S). Thus

rank(T ◦ S) = dim(T (V0))

rank(S) = dim(V0).

Therefore the desired inequality follows immediately from the previous part. �

3. (a) Since both X and Y are subspaces, 0V ∈ X and 0V ∈ Y . Therefore

0V = 0V + 0V ∈ X + Y.

Next, let v1,v2 ∈ X + Y . Then there are x1,x2 ∈ X and y1,y2 ∈ Y such that

v1 = x1 + y1 and v2 = x2 + y2.

But then since X and Y are closed under addition we have

v1 + v2 = x1 + y1 + x2 + y2 = (x1 + x2) + (y1 + y2) ∈ X + Y.

Finally, let α be a scalar and let v1,x1,y1 be as above. Since X and Y are closed under scalar
multiplication, we have (by the distributive law) that

αv1 = α(x1 + y1) = αx1 + αy1 ∈ X + Y.

Thus X + Y is a subspace. �

(b) Since X and Y are subspaces of the finite-dimensional V , they are both finite-dimensional. Let
x1, . . . ,xn and y1, . . . ,ym be bases for X and Y , respectively. We claim that

(x1,0), . . . , (xn,0), (0,y1), . . . , (0,ym)

is a basis for X ⊕ Y . If this is true, then we have dim(X ⊕ Y ) = n+m = dim(X) + dim(Y ), as
desired. We first check linear independence: suppose there are scalars α1, . . . , αn, β1, . . . , βm such
that

α1(x1,0) + · · ·+ αn(xn,0) + β1(0,y1) + · · ·+ βm(0,ym) = 0X⊕Y .
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Note that 0X⊕Y = (0,0). By definition of the addition and scalar multiplication operations, this
is equivalent to

(α1x1 + · · ·αnxn, β1y1 + · · ·+ βmym) = (0,0),

which is in turn equivalent to the pair of equations

α1x1 + · · ·αnxn = 0

β1y1 + · · ·+ βmym = 0.

As x1, . . . ,xn and y1, . . . ,ym are both bases, we must have α1 = · · · = αn = 0 and β1 = · · · =
βm = 0. Hence the original vectors are linearly independent. To see that they are spanning, let
(x,y) ∈ X ⊕ Y . Then there are scalars α1, . . . , αn and scalars β1, . . . , βm such that

α1x1 + · · ·αnxn = x

β1y1 + · · ·+ βmym = y.

But then by the same computation as above, we have

α1(x1,0) + · · ·+ αn(xn,0) + β1(0,y1) + · · ·+ βm(0,ym) = (x,y).

Hence the vectors are spanning and therefore a basis for X ⊕ Y . �

(c) Let (x1,y1), (x2,y2) ∈ X ⊕ Y and let α and β be scalars. Then

T (α(x1,y1) + β(x2,y2)) = T (αx1 + βx2, αy1 + βy2)

= (αx1 + βx2)− (αy1 + βy2)

= α(x1 − y1) + β(x2 − y2) = αT (x1,y1) + βT (x2,y2).

Thus T is linear. �

(d) Let v ∈ X + Y . Then there exists x ∈ X and y ∈ Y such that v = x + y. But then T (x,−y) =
x− (−y) = x + y = v. Thus X + Y ⊂ Ran(T ). On the other hand, for any (x,y) ∈ X ⊕ Y , we
have T (x,y) = x − y = x + (−y) ∈ X + Y . So the other inclusion holds and we therefore have
X + Y = Ran(T ). �

(e) Suppose (x,y) ∈ Ker(T ). Then 0 = T (x,y) = x − y, which implies x = y. Since x ∈ X and
y ∈ Y , their being equal implies x = y ∈ X ∩ Y . Thus Ker(T ) = {(w,w) : w ∈ X ∩ Y }. We
claim that

Ker(T ) 3 (w,w) 7→ w ∈ X ∩ Y

defines an isomorphism. Indeed, it is clearly linear and its inverse is simply the map

X ∩ Y 3 w 7→ (w,w) ∈ Ker(T ).

Thus Ker(T ) ∼= X ∩ Y as claimed. �

(f) The rank-nullity theorem for T states

rank(T ) + nullity(T ) = dim(X ⊕ Y ).

By part (b), the right-hand side is dim(X) + dim(Y ). By part (d), rank(T ) = dim(Ran(T )) =
dim(X + Y ). By part (e), nullity(T ) = dim(Ker(T )) = dim(X ∩ Y ). Substituting all of this into
the above equation yields

dim(X + Y ) + dim(X ∩ Y ) = dim(X) + dim(Y ).

Subtracting dim(X ∩ Y ) from each side yields the desired equation. �
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4. (=⇒) : Suppose Ax = b is consistent for all b ∈ Fm. By an observation from lecture, this means
the RREF of A has a pivot in every row and therefore rank(A) = m. By the matrix version of the
rank-nullity theorem we have nullity(AT ) = m − rank(A) = 0. Thus Ker(AT ) is the zero subspace,
which only contains 0. Hence ATx = 0 has a unique solutions (namely x = 0).

(⇐=) : Suppose ATx = 0 has a unique solution. By an observation from lecture, this means the RREF
of AT has a pivot in every column. Since AT ∈Mn×m, this means rank(AT ) = m. But the rank of A
and AT agree, so rank(A) = m. Thus the RREF of A has a pivot in every row, and therefore Ax = b
is consistent for all b ∈ Fm. �

5. We let A be the matrix with rows vT
1 ,v

T
2 ,v

T
3 . Then its RREF is: 1 0 2 0 7

2
0 1 − 3

2 0 1
4

0 0 0 1 − 1
2

 .

Columns 3 and 5 are missing pivots. So by the algorithm discussed in lecture, v1,v2,v3, e3, e5 form a
basis for R5. (Note that we can verify this by checking that the RREF of the matrix (v1v2v3e3e5) is
I5.)
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