Math 461 Homework 12 Solutions 12/4/2020

Exercises:
§27, 28, 31

1. Let X be a compact topological space and (Y, d) a metric space. Let C(X,Y’) denote the set of all
continuous functions f: X — Y.

(a) For f,g € C(X,Y), show that h: X — R defined by h(x) := d(f(z), g(x)) is continuous.
(b) Show that D(f,g) := sup,ex d(f(x), g(x)) exists and defines a metric on C'(X,Y).

(¢) Let ¢: X — X be a continuous function. Show that the map ®: C(X,Y) — C(X,Y) defined by
®(f) := f o is uniformly continuous with respect to the metric D.

2. Let (X, d) be a metric space. For € X and nonempty A C X, recall that d(x, A) := inf,c4 d(x, a).
(a) Show that d(z, A) = 0 if and only if z € A.
(b) Suppose A C V for A compact and V open. Show that there exists ¢ > 0 so that

U By(a,e) C V.

acA
[Hint: consider the function f(z) =d(z, X \ V)]

3. Let (X, d) be a compact metric space and let f: X — X be a function satisfying d(f(x), f(y)) = d(z,y)
for all z,y € X. (We call such a function an isometry.) Show that f is a homeomorphism.

4. Let X be a normal topological space and let A, B C X be disjoint closed subsets of X. Show that
there are open subsets U,V C X satisfying ACU, BCV,andUNV = 0.

5. Let X be a normal topological space. We say A C X is a G set if it is a countable intersection of open
sets. Show that A C X is a closed G5 set if and only if there exists a continuous function f: X — [0, 1]
with f(z) =0 for all z € A and f(z) > 0 for all z ¢ A. [Hint: use Urysohn’s Lemma.|

6*. Forde Nand a =0,1,...,d — 1 define
Ujo:={dn+a|necZ} CZ.
In this exercise you will use topology to show that there are infinitely many prime numbers.

(a) Show that the collection B := {Uy, |d €N, a =0,1,...,d — 1} forms a basis for a topology on
Z.

(b) Show that Uy, is clopen in this topology.
(¢) Show that if U C Z is nonempty and open in this topology, then U is infinite.
(d) Let P C N be the subset of prime numbers. Consider

A= UU’O'

peP

Show that Z \ A is finite.
(e) Deduce that P is infinite.

Solutions:

1. (a) Observe that h is the composition of the functions f x g: X - Y xY and d: Y xY — R. The
former is continuous by Exercise 1 on Homework 6, and the latter is continuous by Exercise 4 on
Homework 7. Hence h is continuous. |
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(b) By the previous part, = — d(f(x),g(x)) is continuous. Since X is compact, the extreme value
theorem implies the supremum D(f, g) is achieved, and in particular exists. Now, D(f,g) > 0
since d(f(z),g(z)) > 0 for all z € X. If f = g, then d(f(x),g(x)) = 0 for all x € X and hence
D(f,g9) = 0. Conversely, if D(f,g) = 0, then d(f(z),g(z)) = 0 for all x € X, which means
f(z) = g(z) for all x € X. That is, f = ¢g. The symmetry D(f,g) = D(g, f) follows from the
corresponding symmetry of d. Finally, for f,g,h € C(X,Y) and each x € X we have

d(f(x), h(x)) < d(f(x),9(x)) + d(g(x), h(z)) < D(f,9) + D(g, h).

Taking a supremum over x € X on the left yields D(f,h) < D(f,g) + D(g,h). Hence D is a
metric.

(c) Let € > 0. Set § = ¢, and suppose f,g € C(X,Y) satisfy D(f,g) < § = ¢, then d(f(z), g(x))
D(f,g) for all z € X. In particular, this holds for all z € ¢(X): d(f(p(z)),9(¢(z))) < D(f,9)
for all x € X. Therefore

D(@(f),®(g)) = Sup d(fop(z),gop(z)) < D(f,g)<d=¢

IN

Hence @ is uniformly continuous. O

2. (a) We know z € A if and only if By(z,e)NA # () for all € > 0. The latter is equivalent to d(z, A) < €
for all € > 0. Since d(z, A) > 0, this is equivalent to d(z, A) = 0. |

(b) Define f: X — Rby f(z) := d(z, X \ V), which is continuuous by a lemma from lecture. For each
a € A CV, there exists § > 0 so that By(a,d) C V and hence d(a,y) > e for ally € X \ By(x,€) D
X \ V. Consequently, f(a) > 0 for all a € A. Since A is compact, the extreme value theorem
implies f attains a smallest value on A, say at ag € A: f(ag) < f(a) for all a € A. Set € := f(ag),
which is strictly positive by our above argument. We claim

U Bg(a,e) C V.
acA

Indeed, otherwise Bg(a,e) N (X \ V) # () for some a € A. Thus d(a,y) < € for some y € X \ V
and therefore

fla) =d(a, X\ V) < d(a,y) < e= f(ao),

contradicting f(ag) being the smallest element. O

3. If f(z) = f(y), then
d(z,y) = d(f(z), f(y)) =0,
so that x = y. Thus f is injective. We also note that f is continuous according to the e-d definition of
continuity for metric spaces by simply choosing § = e.

Suppose, towards a contradiction, that f is not surjective. Then there exists y € X \ f(X). Since

X is compact and f is continuous, f(X) is compact and in particular closed (since metric spaces are

Hausdorff). Consequently, X \ f(X) is open and so there exists ¢ > 0 so that By(y,e) C X \ f(X).

For each n € N, define z, := fo- -0 f(y). Thus (z,)neny C X is a sequence and for m < n we have
—

n times

d(xna xm) = d(f(l'nfl)v f(xmfl)) = d(xnfla xmfl) == d(xnfm%»l; xl) = d(f(xnfm)a f(y)) = d(xnfmay)

Since Zp—m = f(Tn—m—1) € f(X), the above distance is at least e. Thus d(z,,, z,,) > € for all distinct
n,m € N. Now, since X is compact, the sequence (z,)nen necessarily has a convergent subsequence
(Zn, )ken, say converging to x € X. Thus there exists K € N so that £ > K implies

d(zp,,x) <

N

But then for £,/ > K we have

€ €
d(l'"k,.'ljnz) S d(.’ljnk,z) + d(l’,l‘n[) < 5 + 5 = 67
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contradicting d(x,,, ) > € for all n,m € N. Thus f must be surjective, and therefore bijective.
It remains to show f~!': X — X is continuous. But if f(x) = a and f(y) = b then

d(f~H(a), [~ (a)) = d(z,y) = d(f(x), f(y)) = d(a,b).
Thus f~! is an isometry and is therefore continuous by the same argument as above. |

4. Since X is normal, there exists disjoint open sets U1, V1 C X with A C Uy and B C V1. By a proposition
from the lecture on §31, there exists a neighborhood U of A satisfying U C Uy. Set V := V3, and note
that V' € X \ Uy, which is a closed set. Hence V.C X \ U; C X \ U. Consequently, U NV = ). O

5. (=>): Suppose A is a closed Gs set. Let {U,: n € N} be open subsets of X with
(| Un=A
neN

Using Urysohn’s Lemma, for each n € N we can find a continuous function f,,: X — [0,1] with f,, [a=0
and f, |x\v,= 1. Define f: X — [0,1] by

fl@) =" 27" fula).
n=1

Note that 0 < f,(x) <1 implies
0< flx) <) 27" =1,
n=1

so f is well-defined. Also, f(x) = 0 for all z € A since f,(x) = 0. On the other hand, if x ¢ A then
there must be some n € N such that ¢ U,. Consequently, f,(x) = 1 and so f(z) > 27" > 0. It
remains to show that f is continuous. We will show that the partial sums

N
Sn(x) =Y 27" fu(x)

converge uniformly to f. Since each Sy is continuous (as a finite sum of continuous functions), the
Uniform Limit Theorem will imply f is continuous. Let € > 0. Let Ny € N be large enough so that
2=No < ¢. Then for all N > Ny

Z 27 =2 N ir" =27N <e.
n=1

n=N+1

Consequently, for all x € X and all N > Ny we have

0<f@) =Sy = 3 2"fule)< 3 27" <e
n=N+1 n=N+1

Thus

sup [f(z) — Sn(z)] <€
reX

for all N > Ny, and so (Sy)nen converges uniformly to f.

(«<=): Suppose there is a continuous function f: X — [0, 1] satisfying f(z) = 0 for all x € A and
f(x) > 0 for all x ¢ A. First note that A = f~1({0}) is closed since f is continuous. Next, for each
n € N set U, := f~%([0, )), which is open since f is continuous. Then A C U, for all n € N, and if
z € U, then f(z) < % for all n € N, which means f(z) = 0 and so z € A. Thus

Ac (U, cA

neN

Therefore A is the intersection of the U,,’s and therefore Gj. O
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6*.

(a)

First note that Uy o = Z, and so every element of Z is contained in a set in the collection B. Next,
suppose & € Uy oMU . Then x = dn+a = em+b for some n,m € Z. Let f be the least common
multiple of d and e and let ¢ be the remainder one gets after dividing « by f: x = fm + ¢ for
some multiple m € Z. Then x € Uy, and in fact Uy . = {z + fn: n € Z}. Observe that fn is a
multiple of both d and e since f is the least common multiple, and therefore x + fn € Uy, N U
for all n € Z. Hence Uy, C Uy q N Ucp, and therefore B is a basis for a topology on Z. O

Uq,q is certainly open. To see that it is closed, observe that

Z\Uga = Uas.
b#a

Indeed, x € Ugy if and only if = dn+0b for some n € Z. Soif x € Uy oNUqgp, then dn+b = dm+a
for some n,m € Z, and therefore a — b = d(n — m). This implies a — b is divisible by d, but
a—be{-(d-1),...,-1,0,1,...,d — 1} and so this is only possible if a = b. This shows Uy, is
disjoint from Uy for all b # a and so

U Ud,b CZ \ Ud,a~
b#a

Conversely, if x € Z\ Ugq, let b € {0,...,d — 1} be the remainder one gets after dividing = by d:
x =dn+ b for some n € N. So x € Uy, and since x € Ug o, we must have b # a. This yields the
other inclusion and establishes the desired equality. O

Suppose U C Z is nonempty and open. Let z € U. Since B is a basis, there exists d € N and
a € {0,1,...,d — 1} such that z € Uz, C U. Define f: N — U by f(n) := dn + a. This is
injective, and hence U is infinite. g

If © € Z\ A, this means x ¢ U, for any prime number p. Consequently, x is not divisible by
p for any prime p. There are only two numbers not divisible by any prime number: +1. Thus
Z\ A ={-1,1}, which is of course finite. O

Suppose, towards a contradiction that P is finite. Then A from the previous part is a finite union
of closed sets (recall that U, ¢ is closed by part (b)), and thus is closed. Therefore its complement
Z \ A is open. However, in the previous part we showed Z \ A is finite and nonempty, which
contradicts part (c). Thus P must be infinite. O
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